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1. Introduction

1.1. Basic questions. Recall the concept of Lie groups. For a Lie group G, any
subgroup H ⊂ G, which is closed in the natural topology of G is a Lie subgroup. In
particular, it is a smooth submanifold of G. Moreover, the space G/H of left cosets of
H in G can be naturally made into a smooth manifold in such a way that the canonical
map p : G → G/H defined by p(g) := gH is a surjective submersion. In particular, a
mapping f from G/H to any smooth manifold M is smooth if and only if f ◦p : G→M
is smooth.

The manifold G/H carries a natural smooth action of G, defined by g · (g̃H) :=
(gg̃)H. This action is transitive, so G/H “looks the same” around each point, whence
it is called a homogeneous space of G. Consider a smooth action G×M →M of G on
a smooth manifold M . For a point x ∈M , the isotropy group Gx := {g ∈ G : g ·x = x}
is a closed subgroup of G and acting on x defined a smooth bijection from G/Gx onto
the orbit G · x := {g · x : g ∈ G}. Thus homogeneous spaces of G are the models for
orbits of smooth actions of G.

The basic question to be answered in this course concerns G–invariant geometric
structures on a homogeneous space G/H. As a typical example, consider the question
of existence of a Riemannian metric on G/H for which each element of G acts as
an isometry. A priori, this sounds like a very difficult question, since the space of
Riemannian metrics on G/H certainly is infinite dimensional. However, it turns out
that such questions can be reduced to finite dimensional representation theory and
hence in many cases to questions in linear algebra, which can be solved effectively.

This may sound like a rather restricted setting, but indeed there are general re-
sults that make sure that automorphism groups of certain geometric structures are
Lie groups. A classical example of such a result is the so-called Myers–Steenrod theo-
rem that says that the isometries of a Riemannian manifold always form a Lie group
which acts smoothly on M . Now suppose that (M, g) is a Riemannian manifold which
is homogeneous in the sense that for any two points x, y ∈ M , there is an isometry
f : M → M such that f(x) = y. But this just says that the obvious action of the
Lie group G := Isom(M) of isometries of M is transitive, so fixing a point x ∈ M , its
stabilizer H := {f ∈ G : f(x) = x} is a closed subgroup in G and f 7→ f(x) induces a
smooth bijection G/H → M , which can be shown to be a diffeomorphism. Hence the
above considerations actually apply to all homogeneous Riemannian manifolds.

1.2. An introduction to the Erlangen program. Apart from its intrinsic inter-
est, this topic fits into a much wider perspective, since it provides a connection between
classical geometry and differential geometry. This is due to the approach to classical
geometry known as the “Erlangen program” by F. Klein. To outline this, consider
the example of affine and Euclidean geometry. Affine geometry can be phrase on an
abstract affine space, which basically means that one takes a vector space, called the
modeling vector space of the affine space and forgets its origin. This leads to two basic
operations. On the one hand, given to points in the affine space A, there is a vector −→pq
in the modeling vector space V connecting the two points. On the other hand, given
p ∈ A and v ∈ V , one obtains a point p + v by “attaching v to p”. In this way, one
can axiomatically define affine spaces similarly to vector spaces. Less formally, one can
use the fact that for any p ∈ A, the maps q 7→ −→pq and v 7→ v + p are inverse bijections
to identify A with V , but keep in mind that none of the resulting identifications is pre-
ferred. In any case, there is an obvious notion of an affine subspace obtained by adding
to some point p ∈ A all elements of a linear subspace W ⊂ V .
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To do Euclidean geometry, one has to consider in addition a positive definite inner
product 〈 , 〉 on the modeling vector space V . This allows on to measure distances
of points and angles between intersecting lines, etc. A crucial ingredient in any form
of geometry is the concept of a motion. The difference between affine and Euclidean
motions is also the simplest way to explain the difference between affine and Euclidean
geometry. Initially, on may define affine motions as set functions Φ : A→ A, such that
for any affine line ` ⊂ A also Φ(`) ⊂ A is an affine line. It turns out that identifying
A with V , affine motions are exactly the functions of the form Φ(v) = f(v) + v0 for a
fixed vector v0 ∈ V and a linear map f : V → V .

Likewise, Euclidean motions can be defined as set maps which preserve the Euclidean
distance of points. In this case, it is even less obvious that there is a relation to the
linear (or affine) structure. However, it turns out that, identifying A with V , Euclidean
motions are exactly the maps of the form v 7→ f(v)+v0 for a fixed vector v0 ∈ V and an
orthogonal linear map f : V → V . Another interpretation is that the inner product on
V can be viewed as defining a Riemannian metric on Euclidean space, and Euclidean
motions are exactly the isometries of this metric (in the sense of Riemannian geometry).
The equivalence of these three pictures is proved as Proposition 1.1 in my lecture notes
on Riemannian geometry.

The basic role of affine respectively Euclidean motions is that any result of affine
respectively Euclidean geometry should be (in an appropriate sense) compatible with
the corresponding concept of motions. The basic idea of the Erlangen program is to take
this as the fundamental definition of (a general version of) “geometry”. By definition
both affine an Euclidean motions form Lie groups and they act transitively on affine
space. The general version of geometry advocated by the Erlangen program thus is the
study of properties of subsets of a homogeneous space G/H, which are invariant under
the action of G. This of course raises the question what kind of “geometric objects”
could be available on a homogeneous space. To formally define this, we will need the
concept of various types of bundles which will be developed in Section 2.

1.3. The groups of affine and Euclidean motions. To describe the groups
Aff(n) of affine motions and Euc(n) of Euclidean motions in dimension n, one starts from
a fixed affine hyperplane in Rn+1. Let us take the hyperplane of all points (x1, . . . , xn+1)
for which xn+1 = 1, and briefly write such a point as

(
x
1

)
. An invertible matrix in

GL(n+ 1,R) evidently maps this hyperplane to itself if and only if its last row has the

form (0, . . . , 0, 1). Otherwise put, we can write the matrix in block form as

(
A v
0 1

)
, and

invertibility means that A ∈ GL(n,R) while v ∈ Rn is arbitrary. Evidently, these ma-
trices form a closed subgroup of GL(n+1,R). Such a matrix clearly maps

(
x
1

)
to
(
Ax+b

1

)
,

so we see that this is the affine group Aff(n). The stabilizer of the obvious base–point(
0
1

)
is formed by all block matrices with v = 0, so this is a closed subgroup isomorphic

to GL(n,R). Hence we get a realization of affine n–space as Aff(n)/GL(n,R).
To obtain Euclidean motions rather than affine motions, we can simply form the

subgroup Euc(n) ⊂ Aff(n) of all block matrices as above with A ∈ O(n). Since O(n) is
a closed subgroup of GL(n,R), this is a Lie subgroup. Similarly to above, we obtain a
realization of Euclidean space as Euc(n)/O(n).

It is easy to see that these identifications lead to a nice perspective on geometry.
To see this, let us look at the Lie algebras. The affine Lie algebra aff(n), is obviously
formed by all (n + 1) × (n + 1)–matrices with last row consisting of zeros. Writing
such a matrix as a pair (X,w) with X ∈ Mn(R) and w ∈ Rn, the Lie bracket is
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given by [(X1, w1), (X2, w2)] = ([X1, X2], X1w2 − X2w1). (This is called a semidirect
sum of gl(n,R) and the abelian Lie algebra Rn.) For the Euclidean Lie algebra, we
obtain the same picture, but with X ∈ o(n), i.e. X t = −X. If we restrict to the
subgroups GL(n,R) ⊂ Aff(n) respectively O(n) ⊂ Euc(n), then the adjoint action is
given by Ad(A)(X,w) = (AXA−1, Aw) in both cases. Hence aff(n) = gl(n,R) ⊕ Rn

as a representation of GL(n,R) ⊂ Aff(n) and euc(n) = o(n) ⊕ Rn as a representation
of O(n) ⊂ Euc(n). Now we can for example take an element w ∈ Rn, view it as
an element of aff(n) respectively euc(n), and form the one–parameter subgroup etw in
Aff(n) respectively Euc(n). Since the matrix corresponding to w has zero square, we

see that etw =

(
I tw
0 1

)
in both cases. Acting with this on any point

(
x
1

)
, we get the

affine line {x+ tw : t ∈ R} through x in direction w.

1.4. The tangent bundle of a homogeneous space. To get a perspective on
how to describe geometric objects on homogeneous spaces, let us give a description
of the tangent bundle T (G/H) of G/H. We already noted that p : G → G/H is
a surjective submersion, so in particular Tep : TeG → TeH(G/H) is surjective. Now
TeG is the Lie algebra g of G, and since p(g) = p(e) if and only if g ∈ H, we see
that the kernel of Tep is h ⊂ g. Hence TeH(G/H) is isomorphic to the quotient space
g/h. Now the adjoint action of G can be restricted to the subgroup H ⊂ G. For each
h ∈ H the subspace h ⊂ g of course is invariant under the adjoint action Ad(h), so
there is an induced action Ad(h) : g/h → g/h. Observe that in the examples of affine
and Euclidean motions discussed in 1.3 above, this gives rise to the standard action of
GL(n,R) respectively of O(n) on Rn. Using this, we now formulate:

Proposition 1.4. The tangent bundle T (G/H) can be naturally identified with
the space of equivalence classes of the equivalence relation on G × (g/h) defined by
(g,X + h) ∼ (g′, X ′+ h) if and only if there is an element h ∈ H such that g′ = gh and
X ′ + h = Ad(h−1)(X + h).

Proof. Consider the map G×g→ T (G/H) defined by (g,X) 7→ Tgp ·LX(g), where
LX is the left invariant vector field generated by X. Since the left invariant vector fields
span each tangent space of G and p is a surjective submersion, this map is surjective.
Denoting by λg : G→ G the left translation by g and by `g : G/H → G/H the natural
action by g, one by definition has p ◦ λg = `g ◦ p. Differentiating this, we conclude
that Tgp · Teλg · X = TeH`g · Tep · X. Since `g is a diffeomorphism, we conclude that
Tgp · LX(g) = 0 if and only if Tep ·X = 0 and hence X ∈ h.

Thus we see that (g,X + h) 7→ Tgp · LX(g) induces a well–defined surjection G ×
(g/h) → T (G/H). Thus it remains to show that to elements have the same image
under this map if and only if they are equivalent in the sense defined in the proposition.
Now above we have already seen that for fixed g ∈ G, our map restricts to a bijection
g/h→ TgH(G/H). Thus, given g, X and h ∈ H, it suffices to characterize the (unique)
element Y + h ∈ g/h such that Tghp · LY (gh) = Tgp · LX(g). But denoting by ρh the
right translation by h, we can differentiate p ◦ ρh = p to get Tghp ◦ Tgρh = Tgp. Hence,
up to an element of h, we can compute Y as

Tghλ(gh)−1 · Tgρh · Teλg ·X = Thλh−1Tghλg−1 · Thλg · Teρh ·X = Ad(h−1)(X).

In the computation, we have used that ρh ◦ λg = λg ◦ ρh and that λg−1 is inverse to
λg. �
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2. Bundles

This section develops the general theory of various types of bundles (fiber bundles,
vector bundles, principal bundles), which provides a basic tool for the geometric study
of homogeneous spaces.

2.1. Fiber bundles. A smooth map p : E → M is a fiber bundles with standard
fiber S if and only if for each x ∈ M there is an open neighborhood U of x in M and
a diffeomorphism ϕ : p−1(U) → U × S. Then E is called the total space of the fiber
bundle, while M is called its base. In this setting the diffeomorphism ϕ is called a fiber
bundle chart and this naturally leads to the concept of a fiber bundle atlas.

Observe that at this stage there is no natural compatibility condition between fiber
bundle charts, since they are already assumed to diffeomorphisms. We will impose such
compatibility conditions later to define special classes of bundles.

A (smooth) section of E is a smooth map σ : M → E such that p◦σ = idM . A local
section is characterized by the same condition but only defined on some open subset
of M . The spaces of sections and of local sections defined on U are denote by Γ(E)
or Γ(E|U), respectively. Evidently, there always are many local sections defined on the
domain of a fiber bundle chart, since these are equivalent to smooth functions U → S.
Global sections of a fiber bundle do not exist in general.

From the existence of local smooth sections, it follows readily that the bundle pro-
jection p of any fiber bundle is a surjective submersion. Consequently, for any point
x ∈ M , the fiber of E over x, Ex := p−1({x}) is a smooth submanifold of E, which is
diffeomorphic to S.

A morphism between two fiber bundles p : E →M and p̃ : Ẽ → M̃ is a smooth map
F : E → Ẽ, which maps fibers to fibers. This means that there is a map f : M → M̃
such that p̃ ◦ F = f ◦ p, so F (Ex) ⊂ Ẽf(x). Since p is a surjective submersion, it follows
that f is automatically smooth. An isomorphism of fiber bundles is a morphism F of
fiber bundles, which is a diffeomorphism. In this case, also F−1 is a morphism of fiber
bundles.

A fiber bundle is called trivial if it is isomorphic to pr1 : M ×S → S. The existence
of fiber bundle charts then exactly means that fiber bundles are locally trivial, and fiber
bundle charts are also called local trivializations.

Example 2.1. (1) For arbitrary manifoldsM and S, the first projectionM×S →M
defines a (trivial) fiber bundle with standard fiber S.

(2) For any smooth manifold M , the tangent bundle p : TM →M is a fiber bundle
with standard fiber Rn, where n = dim(M).

(3) Let G be a Lie group G and H ⊂ G a closed subgroup and consider the homo-
geneous space G/H and the canonical canonical map p : G → G/H. In the standard
proof that G/H is a smooth manifold (see e.g. §1.16 of [LG]), one chooses a complement
k to the h ⊂ g. Then one proves that for a sufficiently small neighborhood W of 0 in k,
the map ψ : W ×H → G defined by (X, h) 7→ exp(X)h defines a diffeomorphism onto
an open neighborhood of H in G. Then one shows that p(W ) is an open neighborhood
of eH in G/H and that p ◦ exp : W → p(W ) is a diffeomorphism. But by construction
p−1(p(W )) is the image of ψ, so ψ defines a local trivialization around eH. This can
be transported around using the left action of G, thus showing that p : G→ G/H is a
fiber bundle with standard fiber H.

Let us next analyze the analog of chart-changes for fiber bundle charts. Of course,
these are only defined if the domains of the bundle charts have non–empty intersection.



2. BUNDLES 5

For later use, we denote these domains by Uα, Uβ ⊂ M and the charts by ϕα and ϕβ
and we put Uαβ := Uα ∩ Uβ. Then the chart change is (ϕα ◦ ϕ−1

β )|Uαβ×S and maps

Uαβ × S to itself. By definition it is of the form (ϕα ◦ ϕ−1
β )(x.y) = (x, ϕαβ(x, y)) for a

smooth function ϕαβ : Uαβ × S → S, which has the property that for each x, the maps
y 7→ ϕαβ(x, y) is a diffeomorphism of S.

For a general fiber bundle, there is no restriction on the chart changes, these will
later be used to define special types of bundles. The examples of p : TM →M (changes
are linear in the second variable) and of p : G → G/H (chart chart changes are given
by left multiplication in H) will be typical models.

There is a general way how to make a set into a fiber bundle from fiber bundle
charts, provided that the chart changes are smooth. This will be frequently used to
construct fiber bundles later on.

Lemma 2.1. Let E be a set, M and S smooth manifolds and p : E →M a set map.
Suppose that there is an open covering {Uα : α ∈ I} of M together with bijective maps
ϕα : p−1(Uα)→ Uα×S such that pr1 ◦ϕα = p|Uα. Suppose further that for each α, β ∈ I
such that Uαβ := Uα ∩ Uβ 6= ∅ the map (ϕα ◦ ϕ−1

β )|Uαβ×S : Uαβ × S → Uαβ × S is given
by (x, y) 7→ (x, ϕαβ(x, y)) for a smooth function ϕαβ : Uαβ × S → S.

Then E can be uniquely made into a smooth manifold in such a way that {(Uα, ϕα)}
is a fiber bundle atlas.

Sketch of proof. We first fix an atlas for M , then consider intersections of the
domains of the charts in this atlas with the Uα and then pass to a countable subcover
(which exists since M is a Lindelöff space). Since fiber bundle charts can clearly be
restricted to open subsets of their domain, we may assume that we start from a countable
atlas {(Vi, vi)} of M and from fiber bundle charts ϕi : p−1(Vi)→ Vi × S such that each
ϕi is the restriction of some ϕα.

Now we consider the collection of the subsets U ⊂ E such that for each i, ϕi(U ∩
p−1(Vi)) is open in Vi × S, which clearly define a topology on E. If V ⊂ M is open
then V ∩ Vi is open in Vi for all i, so p−1(V ) is open in this topology and hence p
is continuous. The topology on E is Hausdorff, since points in different fibers can be
separated by preimages of open subsets of M , while different points in one fiber can
be separated by open subsets in S. Further, since M and S are second countable, it
follows that E is second countable, which is sufficient for allowing it to be the underlying
topological space of a smooth manifold.

For an open subset W ∈ S, we claim that ϕ−1
i (Vi×W ) ⊂ E is open for each i. Thus

we have to take V` such that Vi` 6= ∅ and prove that ϕ`(p
−1(V`) ∩ ϕ−1

i (Vi ×W )) is open
in V` × S. But now V` ∩ Vi is open in Vi, so Vi` ×W is open in Vi` × S, and the subset
we consider is the image of this under ϕ` ◦ ϕ−1

i . But by assumption this composition is
smooth as a map from Vi` ∩ S to itself. Since the same holds for ϕi ◦ ϕ−1

` it even is a
diffeomorphism and thus a homeomorphism, which implies the claim.

Now fixing a countable atlas {(Wj, wj)} for S and the sets ϕ−1
i (Vi×Wj) form an open

covering of E and for each i and j, (vi×wj)◦ϕi is a homeomorphism onto vi(Vi)×wj(Wj),
which is an open subset in RN for appropriate N . One immediately verifies that the
resulting chart changes are smooth, so we can use this as an atlas to define a smooth
structure on E. By construction, the map p just corresponds to the first projection in
these charts and thus is smooth. Continuity of p implies that each of the sets p−1(Uα)
is open in E, and one easily verifies directly that each ϕα is a diffeomorphism, which
shows that {(Uα, ϕα)} defines a fiber bundle atlas on E. �
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2.2. Bundles with structure group. Fix a left action of a Lie group G on S.
Then two fiber bundle charts ϕα and ϕβ on p : E → M corresponding to open subsets
Uα and Uβ in M are called G–compatible if either Uαβ = ∅, or the chart change is given
by ϕαβ(x, y) = ψαβ(x) ·y for a smooth map ψαβ : Uαβ → G. As in the case of manifolds,
this leads to the concept of a G–atlas and a notion of compatibility of G–atlases. A fiber
bundle together with an equivalence class of compatible G–atlases is then called a fiber
bundle with structure group G. (Although the given action of G should be mentioned,
this is not usual.)

In this language, the discussion in 2.1 shows that for any smooth manifold M of
dimension n, the tangent bundle p : TM → M is a bundle with structure group
GL(n,R) (acting on Rn in the usual way). Likewise, p : G→ G/H has structure group
H (acting on itself by left translations).

2.3. Vector bundles. Let V be a real vector space. Then a vector bundle with
typical fiber V is a fiber bundle with fiber V and structure group GL(V ). This means
that the chart changes are linear in the second variable. The charts in a G-atlas are
then referred to as vector bundle charts. For a complex vector bundle one requires that
V is a complex vector space and that the structure group is the group of complex linear
automorphisms of V .

The definition easily implies that each fiber Ex of a (complex) vector bundle inherits
the structure of a (complex) vector space. Given y1, y2 ∈ Ex and t ∈ K, one chooses
a vector bundle chart (U,ϕ) with x ∈ U . Then ϕ(yi) = (x, vi) for vi ∈ V , and one
defines y1 + ty2 := ϕ−1(x, v1 + tv2). This is independent of the choice of chart by
construction. Hence for a K–vector bundle E (K = R or C), the spaces Γ(E) and
Γ(E|U) are vector spaces and modules over C∞(M,K) and C∞(U,K), respectively,
(pointwise operations). This readily shows that any vector bundle has many smooth
sections, since local smooth sections can be globalized by multiplying by bump functions
and extending by zero. Partitions of unity can be used (as for vector fields or tensor
fields) to construct sections with prescribed properties.

There is a general concept of morphisms of vector bundles. Given p : E → M and
q : F → N , a vector bundle homomorphism from E to F is a fiber bundle morphism f :
E → F with underlying map f : M → N such that for each x ∈M , the restriction of Φ
to Ex is a linear map Ex → Ff(x). In the special case that M = N and f = idM , a vector

bundle homomorphism f : E → F induces a linear map f∗ : Γ(E) → Γ(F ), defined by
f∗(σ) = f ◦ σ. These operators can be characterized similarly to the characterization of
the action of tensor fields.

Proposition 2.3. Let E →M and Ẽ →M be vector bundles. Then a linear map
Φ : Γ(E)→ Γ(Ẽ) comes from a vector bundle homomorphism if and only if it is linear
over C∞(M,R).

Sketch of proof. The proof is analogous to the characterization of tensor fields
as maps on vector fields and one-forms that are multilinear over smooth functions.
Necessity of the condition is easy to verify directly.

For sufficiency, one has to show that linearity over C∞(M,R) implies that Φ(σ(x)) ∈
Ẽx depends only on σ(x) ∈ Ex. Having done that, one defines F : E → Ẽ by F (v) :=
Φ(σ)(x)for v ∈ Ex and any smooth section σ of E such that σ(x) = v, which easily
implies that Φ = F∗. To see that this is well defined, it suffices to show that σ(x) = 0
implies Φ(σ)(x) = 0 by linearity. This is proved in two steps. First if σ vanishes on an
open set U containing x, then one chooses a bump function ψ with support contained
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in U such that ψ(x) = 1. Then ψσ = 0 so Φ(ψσ) = 0 by linearity of Φ. But this shows
that 0 = ψ(x)Φ(σ)(x) = Φ(σ)(x).

Again using linearity, this implies that, for any open subset U ⊂M , Φ(σ)|U depends
only on σ|U . Now for x ∈ M and σ(x) = 0 we choose a vector bundle chart ϕ :
p−1(U)→ U×V with x ∈ U and a basis {v1, . . . , vn} for V . Defining σi(y) := ϕ−1(y, vi)
for y ∈ U , we get local sections σ1, . . . , σn for E whose values form a basis in each
point. This implies that there are smooth functions ψi : U → R for i = 1, . . . , n
such that σ|U =

∑
ψiσi, and σ(x) = 0 implies that ψi(x) = 0 for all i. But then

Φ(σ)|U =
∑
ψiΦ(σi) shows that Φ(σ)(x) = 0. �

Example 2.3. (1) For any smooth manifold M of dimension n the tangent bundle
p : TM →M is a vector bundle with n–dimensional fibers. Indeed, a chart (U, u) of M
induces a diffeomorphism Tu : TU → u(u)×Rn and composing u−1 × id with that, we
arrive at a diffeomorphism TU → U×Rn. The changes between two such charts are well
known to be linear in the second variable (they are the derivative of the chart–changes)
so these charts form a vector bundle atlas.

For a smooth map f : M → N , the tangent map Tf : TM → TN is a homomor-
phism of vector bundles with base map f .

(2) Suppose that E ⊂ TM is a smooth distribution of rank k on a smooth manifold
M of dimension n. This means that for each x ∈ M , there is a specified subspace
Ex ⊂ TxM of dimension k and E is the union of these spaces. Hence there is a natural
projection p : E →M .

The condition of smoothness says that for each x there is an open neighborhood
U of x ∈ M and there are local smooth vector fields ξ1, . . . , ξk ∈ U such that for
each y ∈ U , the vectors ξ1(y), . . . , ξk(y) span the subspace Ey ⊂ TyM . But this exactly
means that each ξ ∈ Ey can be uniquely written as a1ξ1(y)+ · · ·+akξk(y) for coefficients
a1, . . . , ak ∈ R. Mapping ξ to (y, (a1, . . . , ak)) ∈ U × Rk then defines a vector bundle
chart p−1(U)→ U×Rk. It is easy to see that the inclusion E → TM is a homomorphism
of vector bundles.

One can apply the same construction to TM itself, showing that for local vector
fields ξ1, . . . , ξn defined on U whose values in each y ∈ U form a basis of TyM , one
obtains a vector bundle chart for TM defined on U . Such a collection is called a local
frame for TM .

(3) Recall that the Grassmann–manifold Gr(k,Rn) is the set of all k–dimensional
linear subspace of Rn. This can be made into a smooth manifold by identifying it with
a homogeneous space of GL(n,R) (or of O(n), which shows that it is compact). The
simplest example is real projective space RP n−1, the space of one–dimensional linear
subspaces of Rn.

Each of the Grassmann manifolds carries a so–called tautological bundle defined as
follows. Consider the trivial bundle Gr(k,Rn) × Rn, and define a subset in there as
E := {(V, v) : v ∈ V }. Hence one attaches to each subspace V the space V itself. We
will see later, that E is indeed a locally trivial vector bundle (which is nicely related to
GL(n,R)→ Gr(k,Rn)).

2.4. Principal fiber bundles.

Definition 2.4. Let G be a Lie group. A principal fiber bundle with structure G
(or a principal G–bundle) is a fiber bundle p : P → M with fiber G structure group G
acting on itself by multiplication from the left.

By definition this means that we have an atlas {(Uα, ϕα)α ∈ I} of fiber bundle charts
ϕα : p−1(Uα)→ Uα×G such that for Uαβ 6= ∅, there is a smooth function ϕαβ : Uαβ → G
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such that (ϕα◦ϕ−1
β )(x, g) = (x, ϕαβ(x) ·g). In particular, for any Lie group G and closed

subgroup H, the natural map p : G→ G/H is a principal H–bundle.

While principal bundle are a very versatile and effective tool, they are a bit hard to
imagine and initially the definition may be slightly mysterious. On should first observe
that the fibers of a principal G–bundle are diffeomorphic to the Lie group G, but they
do not carry a natural group structure. This is simply because of the fact that left
translations in a group are not group homomorphisms.

The structure on a principal bundle which comes closest to a group structure is
the principal right action. For a principal G–bundle p : P →M , this is a smooth right
action P×G→ P of G on P . To define this action, take u ∈ P and g ∈ G, put x = p(u)
and choose a principal bundle chart ϕα : p−1(Uα) → Uα × G. If ϕα(u) = (x, h), the
define u ·g := ϕ−1

α (x, hg). Since left and right translations commute, this is independent
of the chart, and smoothness is obvious. From the definition it follows readily that the
orbits of the principal right action are exactly the fibers of p : P → M and that the
action is free, i.e. if for g ∈ G there is one point u ∈ P such that u · g = u, then g = e,
the neutral element of G.

The principal right action is also a crucial ingredient in the definition of morphism
between principal bundles. The most general version of a morphism is defined as follows.
Suppose that ψ : G → H is a homomorphism between two Lie groups, p : P → M is
a principal G–bundle and q : Q → N is a principal H–bundle. Then a morphism of
principal bundles over ψ is a morphism F : P → Q of fiber bundles, which is equivariant
for the principal right actions over ψ, i.e. such that F (u · g) = F (u) · ψ(g) for all u ∈ P
and g ∈ G.

An important special case with a non–trivial homomorphism is the following. Sup-
pose that H ⊂ G is a closed subgroup and i : H → G is the inclusion. Then for a
principal G–bundle p : P → M a reductions to the structure group H is a principal
H–bundle q : Q → M together with a morphism F : Q → P of principal bundles over
i, which covers the identity on M , i.e. is such that p ◦ F = q.

When considering morphisms of principal G–bundles on usually does not consider
nontrivial homomorphism, but just equivariancy in the sense the F (u · g) = F (u) · g.
In particular, one can consider one principal G–bundle p : P → M and morphisms
F : P → P covering the identity on M . These are called gauge transformations, and
the concept of gauge theories in physics is formulated on principal fiber bundles.

Example 2.4. (1) We have already noted the p : G→ G/H is a principal H bundle.
Of course, the principal right action G × H → G in this case is just the restriction of
the group multiplication.

(2) To understand the second basic example, let us first recall a bit of linear algebra.
Consider a real vector space V of dimension n and the set of all linear isomorphism
u : Rn → V . Given such an isomorphism u and A ∈ GL(n,R) also u ◦ A is a linear
isomorphism. If u and v are two isomorphisms, then u−1◦v =: A is a linear isomorphism
Rn → Rn and thus an element of GL(n,R) and v = u ◦ A. This shows that GL(n,R)
acts freely and transitively from the right on the set of linear isomorphisms Rn → V ,
which thus can be interpreted as a principal bundle over a point.

Equivalently, one may interpret a linear isomorphism Rn → V as a choice of basis
of V by looking at the image of the standard basis of Rn.

(3) The example in (2) generalizes to the tangent bundle TM of a manifold M and
indeed to arbitrary vector bundles. For x ∈M , one defines Px to be the set of a linear
isomorphisms Rn → TxM , where n = dim(M). Defining P to be the union of of the
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spaces Px, there is an obvious projection p : P →M sending Px to x. For a local chart
(Uα, uα) of M on defines a map ϕα : p−1(Uα)→ Uα ×GL(n,R) as follows. For u ∈ Px
with x ∈ Uα, one defines ϕα(u) := (x, Txuα ◦ ϕ), observing that Txuα : TxM → Rn is
a linear isomorphism. One easily verifies that the resulting chart changes are of the
form (x,A) 7→ (x, ϕαβ(x)A) for a smooth map ϕαβ : Uαβ → GL(n,R) (the derivative of
the chart–change). Lemma 2.1 then implies that p : P → M can be made into a fiber
bundle in such a way that (Uα, ϕα) becomes a fiber bundle atlas, thus making P into a
principal GL(n,R) bundle over M . This is called the linear frame bundle of M .

The reason for the name “frame bundle” becomes clear if one looks at local sections.
If σ : U → PM is a local smooth section, then for each x ∈ U , σ(x) is a linear
isomorphism Rn → TxM . Denoting by {e1, . . . , en} the standard basis of Rn, consider
ξi(x) := σ(x)(ei). This is easily seen to define a vector field on U and clearly, these
fields form a local frame on U . Conversely, a local frame determines an isomorphism
Rn → TxM for each x in the domain of definition of the frame. It is easy to see that
the resulting local section of PM is smooth. This also shows that PM does not admit
global smooth sections in general, since this would lead to a global frame. Such frames
do not exist in general, for example by the hairy ball theorem, even dimensional spheres
do not admit any global vector field which is nowhere vanishing.

(4) In the same way, if E → M is a vector bundle with typical fiber V , one define
a frame bundle for E, which is a principal bundle with structure group GL(V ). One
sets Px to be the set of all linear isomorphisms V → Ex, defines P to be the union of
the spaces Px, and uses local vector bundle charts for E to construct principal bundle
charts for P . Again local smooth sections of P are equivalent to local frames for E.

Lemma 2.4. (1) If F : P → Q is a morphism of principal bundles and u ∈ E is a
point, then F (u) determines the values of F on the fiber containing u.
(2) Any morphism F : P → Q of principal G–bundles whose base map is a diffeomor-
phism is an isomorphism. In particular, any gauge transformation is an isomorphism.

Proof. (1) Equivariancy of F implies that F (u) determines the values F (u · g) for
each g in the structure group of P , and the set of these points coincides with the fiber
containing U .

(2) Since F (u · g) = F (u) · g for all g ∈ G, we see that the restriction of F to
each fiber is bijective. Together with bijectivity of the base map f of F , this easily
implies that F is bijective. Now it suffices to prove that the inverse map F−1 is smooth,
since then it is automatically a morphism of fiber bundles and equivariancy of F readily
implies equivariancy of F−1. But this is a local problem, so we can use principal bundle
charts ϕ : p−1(U) → U × G for P and ψ : q−1(V ) → V × G for Q with f(U) = V .
Evidently ψ ◦ F ◦ ϕ−1 has the form (x, g) 7→ (f(x),Φ(x)g) for some smooth function
Φ : U → G by equivariancy. But then also y 7→ Φ(f−1(y))−1 is smooth since f is a
diffeomorphism and inversion in G is smooth. But then clearly ϕ ◦ F−1 ◦ ψ−1 must be
given by (y, g) 7→ (f−1(y),Φ(f−1(y))−1 · g) and this is smooth, too. �

Let us use this to develop some perspective on interpretations of reduction of struc-
ture group. Consider a smooth manifold M with linear frame bundle PM . Then by
definition, the fiber PxM over x ∈M consists of all linear isomorphisms u : Rn → TxM .
Now suppose that we have given a Riemannian metric g on M . Then gx is a (positive
definite) inner product on TxM . Since up to isomorphism there is just one such inner
production, there are isomorphisms u as above, which are orthogonal for the standard
inner product on Rn and the inner product gx. Similarly as before, one verifies that v
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is another such isomorphism if and only if v = u ◦ A for some A ∈ O(n) ⊂ GL(n,R).
Denote the resulting subsets by OxM ⊂ PxM and by OM ⊂ PM .

Now the Gram–Schmidt procedure can be used to construct local orthonormal
frames for TM . The vector bundle chart constructed from an orthonormal frame can
then be used to construct a principal bundle chart on OM , showing the OM is a princi-
pal bundle with structure group O(n). Of course, the inclusion of OM into PM defines
a reduction of structure group.

Conversely, suppose that Q→M is a principal O(n)–bundle, and that F : Q→M
is a reduction of structure group. For x ∈ M consider F (Qx) ⊂ PxM and choose
an isomorphism u : Rn → TxM in this subset. Then F (Qx) consist exactly of the
isomorphisms u ◦ A for A ∈ O(n). Consequently, defining gx(ξ, η) := 〈u−1(ξ), u−1(η)〉
we obtain an inner product on TxM , which does not depend on the choice of u. It is
easy to see that gx depends smoothly on x, so we obtain an induced Riemannian metric
on M . Hence Riemannian metrics on M are equivalent to reductions of structure group
of PM to the subgroup O(n) ⊂ GL(n,R).

This construction is extremely flexible. For example a reduction of PM to the struc-
ture group GL+(n,R) := {A ∈ GL(n,R) : det(A) > 0} is equivalent to an orientation
on M . For the stabilizer of Rk ⊂ Rn, a reduction of structure group corresponds to
a distribution E ⊂ TM of rank k. Identifying Cn with R2n, we see that GL(n,C) is
a closed subgroup of GL(2n,R). Taking a real vector bundle E → M with fibers of
dimension 2n, we obtain a frame bundle with structure group GL(2n,R). A reduction
of structure group to GL(n,C) is equivalent to making E into a complex vector bundle
with n–dimensional fibers. A further reduction to U(n) then is equivalent to a so–called
Hermitian bundle metric, i.e. a choice of a Hermitian inner product on each fiber which
depends smoothly on the base point.

2.5. Cocycles of transition functions. Suppose that p : P → M is a principal
G–bundle, and that {(Uα, ϕα)α ∈ I} is a principal bundle atlas with transition functions
ϕαβ : Uαβ → G. Since the bundle is trivial over each of the sets Uα, one may expect
that indeed the transition functions carry the main information about the bundle, and
it turns out that this is indeed the case. From the definition, it readily follows that for
x ∈ Uαβγ := Uα ∩ Uβ ∩ Uγ, one always gets

ϕαβ(x)ϕβγ(x) = ϕαγ(x),

which is called the cocycle equation. For α = β = γ, this implies ϕαα(x)ϕαα(x) = ϕαα(x)
and hence ϕαα(x) = e for all x. Knowing this, and putting γ = α, we conclude that
ϕβα(x) = ϕαβ(x)−1.

Conversely, assume that for a smooth manifold M , we have given an open covering
{Uα : α ∈ I}. Then a cocycle of transition functions is a family ϕαβ : Uαβ → G of
smooth functions such for each x ∈ Uαβ≥ the above equation is satisfied. Then one

defines P̃ := {(α, x, g) : α ∈ I, x ∈ Uα, g ∈ G}. On this set define a relation by
(α, x, g) ∼ (β, x′, g′) if x = x′ (and hence lies in Uαβ) and g = ϕαβ(x)g′. This relation is
evidently reflexive and symmetry easily follows from ϕβα(x) = ϕαβ(x)−1. On the other
hand, the cocycle equation easily implies transitivity, so we have defined an equivalence
relation. Putting P := P/ ∼ and denoting the obvious projection by p : P → M one
constructs (on the level of sets) a principal bundle atlas {(Uα, ϕα)α ∈ I} with transition
functions ϕαβ. Hence by Lemma 2.1 we can make p : P → M into a smooth principal
bundle, thus realizing the given cocycle of transition functions.
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So it remains to understand when two cocycles lead to isomorphic principal bun-
dles. By restricting charts, we may without loss of generality assume that we deal
with principal bundle charts ϕα and ψα and hence with cocycles ϕαβ and ψαβ corre-
sponding to the same covering {Uα}. If F is an isomorphism between the two bundles
(with base map the identity on M), then for each α ∈ U and x ∈ Uα, we can write
ψα(F (ϕ−1

α (x, g))) = (x, fα(x)g) for some element fα(x) ∈ G. This defines a smooth
function fα : Uα → G and we can analyze how the family {fα : α ∈ I} is com-
patible with the transition functions. For x ∈ Uαβ, we can recast the definition as
F (ϕ−1

β (x, g) = ψ−1
β (x, fβ(x)g) and applying ψα to this, we obtain (x, ϕαβ(x)fβ(x)g).

But the definition of transition functions also shows that ϕ−1
β (x, g) = ϕ−1

α (x, ϕαβ(x)g),
and applying ϕα ◦ F to this, we obtain (x, fα(x)ϕαβ(x)g). Thus we conclude that
ψαβ(x)fβ(x) = fα(x)ϕαβ(x) has to hold for all α, β ∈ I and all x ∈ Uαβ. In this case,
one calls the cocycle cohomologous. Conversely, one easily shows that one can use a
family of functions fα with these compatibility conditions to define an isomorphism in
local charts.

This construction can be viewed as a non–commutative version of Čech–cohomology
in degree 1. Apart from providing a nice way to describe an construct principal bundles,
this leads at least in the case of commutative groups, to a relation to algebraic topology.
This for example to classify principal bundles with structure group R \ {0} and C \ {0}
and thus also real and complex vector bundles with one–dimensional fibers (so–called
line–bundles) in terms of algebraic topology.

2.6. Pullbacks. Suppose that M and N are smooth manifolds, p : E → N is a fiber
bundle and f : M → N is a smooth function. Then one defines f ∗E := {(x, u) ∈M×E :
f(x) = p(u)}, which evidently is a closed subspace of M × E. Restricting projections
of the product to this subspace one obtains f ∗p : f ∗E → M and p∗f : f ∗E → E. By
definition, for each x ∈M the pre–image (f ∗p)−1({x}) coincides with the fiber Ef(x) of
E over f(x) ∈ N .

Now suppose that U ⊂ N is open and that ϕ : p−1(U)→ U×S is a fiber bundle chart
defined over U . Then f−1(U) is open in M and for (x, u) ∈ (f ∗p)−1(f−1(U)) we have
f(x) ∈ U and u ∈ Ef(x). Thus we obtain a well defined map ϕ̃ : (f ∗p)−1(f−1(U)) →
f−1(U)× S by putting ϕ̃(x, u) := (x, pr2(ϕ(u))). For two such charts ϕα, ϕβ such that
(ϕα ◦ϕ−1

β )(x, y) = (x, ϕαβ(x, y)) we readily see that (ϕ̃α ◦ ϕ̃−1
β )(x, y) = (x, ϕαβ(f(x), y)).

Hence we get smooth chart changes and so f ∗p : f ∗E → M is a smooth fiber bundle
by Lemma 2.1. Then by definition p∗f : f ∗E → E is a fiber bundle morphism covering
f : M → N . Moreover, the form of the chart changes readily shows that any pullback
of a vector bundle is again a vector bundle, while the pullback of a principal bundle is
a principal bundle, too.

Proposition 2.6. Let E →M and Ẽ → M̃ be vector bundles and let f : M → M̃
be a smooth map. Then vector bundle homomorphisms F : E → Ẽ with base map f are
in bijective correspondence with vector bundle homomorphisms F̂ : E → f ∗Ẽ with base
map the identity. Moreover F̂ is an isomorphism of vector bundles if and only if for
each x ∈M , the restriction Fx : Ex → Ẽf(x) is a linear isomorphism.

Proof. Given F̂ : E → f ∗Ẽ with base map the identity, we define F : E → Ẽ
as p∗f ◦ F̂ . By construction, this is a vector bundle homomorphism with base map
f . Conversely, suppose we are given F : E → Ẽ with base map f . For u ∈ E
with x = p(u), we by definition have F (u) ∈ Ẽf(x). But this readily implies that
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F̂ (u) := (p(u), F (u)) ∈ f ∗Ẽ and it lies over x. Obviously, F̂ preserves fibers, is linear
in each fiber and has the identity as a base map.

Concerning the last claim, it is clear that a vector bundle isomorphisms induces linear
isomorphisms in each fiber. To prove the converse direction, it suffices to show that if
E and Ẽ are vector bundles over M and F : E → Ẽ is a vector bundle homomorphisms
with base map the identity which restricts to a linear isomorphism in each fiber, then F is
an isomorphism of vector bundles. But under this assumption, we immediately conclude
that F is bijective, and is suffices to show that the inverse is a smooth homomorphisms of
vector bundles. But this can be done in local vector bundle charts, where F is described
by a smooth function to GL(n,R). But then also forming the pointwise inverse defines
a smooth function, which implies the result. �

This has rather surprising applications showing how general bundles be realized as
pullbacks. For example let M ⊂ Rn be a smooth submanifold of dimension k. Then
for each x ∈ M , the tangent space TxM is a k–dimensional subspace of Rn, so we can
view x 7→ TxM as a smooth map f from M to the Grassmann manifold Gr(k,Rn)
of k–dimensional subspaces of Rn. This is an analog of the Gauß map in the theory
of hypersurfaces. Recall that in Section 2.3 we have met the tautological subbundle
E → Gr(k,Rn). This was defined as the subspace of Gr(k,Rn) × Rn consisting of all
(V, v) with v ∈ V . Hence we see that our map f : M → Gr(k,Rn) naturally lifts to a
map TM → E which is a vector bundle homomorphism inducing linear isomorphisms
in each fiber. Hence TM ∼= f ∗E, any the tangent bundle of any submanifold can be
realized as a pullback of a tautological bundle.

This generalizes rather easily: Suppose that E →M is a vector bundle and suppose
that we can find a vector bundle homomorphism E →M ×RN for some large N . Then
this maps each fiber of E to a linear subspace in RN , and we obtain a smooth map from
M to a Grassmannian of RN . As above we can use this to show that E is a pullback of
the tautological bundle on this Grassmannian.

There are further vast generalizations, which provide a generalization to algebraic
topology. They are best formulated in the setting of topological principal bundles
with structure group a topological group G. So one considers a continuous map p :
P → X which admits local homeomorphisms p−1(U) → U × G such that the chart
changes are are of the form (x, g) 7→ (x, ϕαβ(x)g) for a continuous function ϕαβ : Uαβ →
G. Such bundles can be pulled back along continuous maps. A first crucial result is
that (assuming sufficiently nice base spaces, e.g. paracompact ones) that homotopic
continuous maps lead isomorphic pull–backs. Moreover, for any topological group G,
it turns out that there is a so called universal principal G–bundle p : EG → BG,
which has the property that the total space EG is contractible. Similarly as for the
Grassmannians above, it turns out that any principal G–bundle over a sufficiently nice
space X can be realized as f ∗EG for some continuous map f : X → BG. Moreover,
the fact that EG is contractible implies that two maps f, g : X → BG are homotopic
if and only if the bundles f ∗EG and g∗EG are isomorphic. Hence isomorphism classes
of principal G–bundles over X are in bijective correspondence with the set [X,BG]
of continuous maps from X to BG. Therefore, BG is called the classifying space for
principal G–bundles.

2.7. Fibered products. The next construction we discuss is the fibered product
of two fiber bundles. Formally, this is just the pullback of one bundle to the other
bundle, but we give it a different interpretation.
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Definition 2.7. Let p : E →M and p̃ : Ẽ →M be two fiber bundles over the same
base with standard fibers S and S̃. Then we define the fibered product E×M Ẽ ⊂ E× Ẽ
as the set {(u, v) ∈ E × Ẽ : p(u) = p̃(v)}.

There is an obvious projection q : E ×M Ẽ → M mapping (u, v) to p(u) = p̃(v)
and q−1({x}) = Ex × Ẽx. Now consider fiber bundle charts (without loss of generality
defined on the same open subset U ⊂M) ϕ : p−1(U)→ U ×S and ϕ̃ : p̃−1(U)→ U × S̃.
Then we define ψ : q−1(U)→ U × (S × S̃) by ψ(u, v) = (x, (y, ỹ)), where ϕ(u) = (x, y)
and ϕ̃(v) = (x, ỹ). Obviously, this leads to smooth chart changes, so by Lemma 2.1,
q : E ×M Ẽ →M is a fiber bundle with standard fiber S × S̃.

Restricting the two projections to the fibered product defines morphisms pr1 : E×M
Ẽ → E and pr2 : E ×M Ẽ → E of fiber bundles with base map idM . The fibered
product has an obvious universal property with respect to these projections. Suppose
that F → N is any fiber bundle and Φ : F → E and Φ̃ : F → Ẽ are morphisms of
fiber bundles over the same base map f : N → M , then there is a unique morphism
(Φ, Φ̃) : F → E×M Ẽ with base map f , such that pr1 ◦ (Φ, Φ̃) = Φ and pr1 ◦(Φ, Φ̃) = Φ̃.

Similarly, one may associate to sections σ ∈ Γ(E) and σ̃ ∈ Γ(Ẽ) a unique section
(σ, σ̃) ∈ Γ(E ×M Ẽ). This construction clearly gives rise to an isomorphism Γ(E) ×
Γ(Ẽ) ∼= Γ(E ×M Ẽ).

It is also clear how chart changes for E ×M Ẽ look in terms of chart changes on the
two factors. In particular, if E is a principal G–bundle and Ẽ is a principal G̃–bundle,
then the fibered product is a principal bundle with structure group G× G̃.

Likewise, if E and Ẽ are vector bundles, then E×M Ẽ is also a vector bundle. Since
for vector spaces, the product equals the direct sum, this bundle is usually denoted
by E ⊕ Ẽ and called the direct sum or the Whitney sum of the two vector bundles.
Similarly to the case of vector spaces there is a natural homomorphism i1 : E → E⊕ Ẽ
defined by i1(u) = (u, 0) and likewise for the second factor.

Using fibered products, we can now construct a kind of an inverse to the principal
right action on a principal bundle, which is technically very useful.

Proposition 2.7. Let p : P → M be a principal fiber bundle with structure group
G. Then there is a smooth map τ : P ×M P → G such that for all u, v ∈ P with
p(u) = p(v) one has v = u · τ(u, v).

Proof. For (u, v) ∈ P×M P , we by definition have p(u) = p(v), so there is a unique
element g ∈ G such that v = u · g. Hence the map τ is well defined and it remains
to show that it is smooth. But for a principal bundle chart ϕ : p−1(U) → U × G for
P , the induced chart of P ×M P maps (u, v) to (x, pr2(ϕ(u)), pr2(ϕ(v))). By definition
τ(u, v) = pr2(ϕ(u))−1 · pr2(ϕ(v)), so smoothness follows. �

A simple consequence of this is that a principal fiber bundle p : P → M admits
a global smooth section if and only if it is trivial. Since the trivial bundle M × G
evidently admits smooth sections, it suffices to prove the converse. But ff σ : M → P
is a global section that (x, g) 7→ σ(x) · g and u 7→ (p(u), τ(u, σ(p(u)))) clearly define
inverse isomorphisms between M ×G and P .

2.8. Associated bundles. One of the key features of principal bundles is that a
single principal bundle with structure group G can be used to construct a whole family of
fiber bundles with that structure group. Consider a principal G–bundle p : P →M and
a left action G×S → S on some smooth manifold S. Then we can define a smooth right
action (P×S)×G→ P×S by (u, y)·g := (u·g, g−1·y). Let P [S] := P×GS := (P×S)/G
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be the set of orbits of this action and let us write [u, y] for the orbit of (u, y) ∈ P × S.
On the one hand, we then get an obvious projection q : P × S → P ×G S defined by
q(u, y) := [u, y]. On the other hand, if (u, y) and (v, z) lie in the same orbit, then v = u·g
for some g ∈ G. Hence p(u) = p(v), so there is a well defined map π : P ×G S → M
given by π([u, y]) := p(u).

Definition 2.8. We call π : P ×G S → M , the associated bundle to p : P → M
corresponding to the given left action G× S → S.

Proposition 2.8. For a principal G–bundle p : P → M and a smooth left action
G× S → S we have:

(1) The associated bundle π : E ×G S → M is a smooth fiber bundle with typical
fiber S and structure group G. In particular, if we start with a representation of G on
a vector space V , P ×G V is a vector bundle.

(2) The projection q : P × S → P ×G S is a smooth principal bundle with structure
group G.

(3) There is a smooth map τS : P×M (P×GS)→ S which is uniquely characterized by
the property that for z ∈ P ×GS and u ∈ P with π(z) = p(u) we have z = q(u, τS(u, z)).
In particular, τS(u · g, z) = g−1 · τS(u, z).

Proof. (1) Take a principal bundle atlas {(Uα, ϕα) : α ∈ I} for P . For each α,
define ψα : π−1(Uα)→ Uα × S by ψα([u, y]) := (p(u), pr2(ϕα(u)) · y). Observe first that
π([u, y]) = p(u) ∈ Uα, so ϕα(u) makes sense. Moreover, if [u, y] = [v, z], then there is an
element g ∈ G such that v = u · g and z = g−1 · y. But then pr2(ϕα(v)) = pr2(ϕα(u)) · g
and acting with this on z, we obtain pr2(ϕα(u)) · y, so ψα is well defined.

Given x ∈ Uα and y ∈ S, we put u = ϕ−1
α (x, e) and then obtain ψα([u, y]) = (x, y),

so ψα is surjective. On the other hand, if ψα([u, y]) = ψα([v, z]), then p(u) = p(v), so
there is an element g ∈ G such that v = u · g. As above, pr2(ϕα(v)) = pr2(ϕα(u)) · g, so
we conclude pr2(ϕα(u)) · y = pr2(ϕα(u)) · g · z and hence z = g−1 · y. This shows that
[u, y] = [v, z], so ψα is bijective.

Computing the chart changes, we see that for x ∈ Uαβ and y ∈ S, we get ψ−1
β (x, y) =

[ϕ−1
β (x, e), y]. Applying ψα to this, we get (x, pr2((ϕα ◦ϕ−1

β )(x, e)) · y). But denoting by
ϕαβ : Uαβ → G the transition function of P , this equals (x, ϕαβ(x) · y). Thus part (1)
follows from Lemma 2.1.

(2) Take a principal bundle chart (Uα, ϕα) for P and the bundle chart (Uα, ψα)
for P ×G S as constructed in the proof of (1). Then ψα(q((ϕ−1

α (x, g), y))) = (x, g ·
y), so q is smooth. Moreover, for the open subset π−1(Uα) ⊂ P ×G S, we have
q−1(π−1(Uα)) = p−1(Uα) × S. Define a map τα from this subset to π−1(Uα) × G by
τα(u, y) := ([u, y], pr2(ϕα(u))). One easily verifies directly that (π−1(Uα), τα) is a prin-
cipal bundle atlas for q : P × S → P ×G S.

(3) A typical point in P ×M (P ×G S) has the form (u, [v, y]) with p(u) = π([v, y]) =
p(v). But this means that v = u·g for some g ∈ G and thus [v, y] = [u·g, y] = [u, g·y]. Of
course [u, y] = [u, z] implies y = z, so τS is well defined and we only have to verify that
it is smooth. But for bundle charts (Uα, ϕα) and (Uα, ψα) as above, the corresponding
chart on P ×M (P ×GS) is given by (u, [v, y]) 7→ (p(u), pr2(ϕα(u)), pr2(ϕα(v)) ·y). Since
g = pr2(ϕα(u))−1 pr2(ϕα(v)), we see that in charts τS is given by (x, h, z) 7→ h−1 · z and
hence is smooth. �

We next discuss a description of sections of associated bundles which will be tech-
nically very useful. Let p : P → M be a G–principal bundle and G× S → S a smooth
left action. Then a smooth map f : P → S is said to be G–equivariant if and only if
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f(u · g) = g−1 · f(u) for all u ∈ P and g ∈ G. The space of all such maps is denoted by
C∞(P, S)G.

Corollary 2.8. Let p : P → M be a principal G–bundle and consider the associ-
ated bundle P ×G S with respect to a smooth left action of G on a manifold S. Then
the space Γ(P ×G S) is naturally isomorphic to C∞(P, S)G.

Proof. For a smooth section σ of P ×G M , the function f : P → S defined by
f(u) := τS(u, σ(p(u))) is evidently smooth and it says that σ(p(u)) = [u, f(u)]. For
g ∈ G, we get p(u · g) = p(u) and hence [u, f(u)] = [u · g, f(u · g)], which readily implies
that f(u · g) = g−1 · f(u).

Conversely, suppose that f : P → S is an equivariant smooth function and take a
point x ∈ M . Then the above computation shows that the element [u, f(u)] ∈ P ×G S
is the same for all u ∈ Px, and we define this to be σ(x). Hence we have defined a map
σ : M → P ×GS such that π ◦σ = idM . This is smooth since locally around each point,
we can choose a smooth local section τ of P and then write σ(x) as q(τ(x), f(τ(x))).
Evidently, the two constructions are inverse to each other. �

Example 2.8. (1) Consider the case of linear isomorphisms Rn → V , which can be
viewed as a principal bundle over a point with structure group GL(n,R), see Example
2.4 (2). Let us form the associated bundle corresponding to the standard representation
Rn ofGL(n,R). We have to take P×Rn and consider the action (ϕ, x)·A = (ϕ◦A,A−1x).
But then evidently mapping (ϕ, x) → ϕ(x) induces a bijection between P ×GL(n,R) Rn

and V .
The description of section in the corollary can also be understood in this picture.

Let us interpret P as the space of all ordered bases in V . This means that ϕ : Rn → V
corresponds to the basis {ϕ(e1), . . . , ϕ(en)}. Given a vector v ∈ V , we can compute
its coordinates in each basis and view them as an element of Rn. So we can view v
as a function f : P → Rn. A moment of thought shows that f is explicitly given by
f(ϕ) = ϕ−1(v) ∈ Rn. This immediately shows that f(ϕ ◦ A) = A−1f(ϕ). Conversely,
given f = (f1, . . . , fn) : P → Rn, we can consider f(ϕ) :=

∑
i fi(ϕi) · ϕ(ei) ∈ V .

Equivariancy of f is exactly what is needed in order to obtain the same result for all
choices of ϕ.

(2) This now works in a completely similar way for frame bundles of vector bundles.
Let p : E → M be a vector bundle with n–dimensional fibers and let P → M be its
frame bundle. Then Px consists of all linear isomorphisms u : Rn → Ex and the map
P ×Rn → E defined by (u, y) 7→ u(y) descends to an isomorphism P ×GL(n,R) Rn → E.

(3) We can now easily show that the tautological bundle on a Grassmann manifold
as introduced in Example 2.3 (3) is indeed a locally trivial vector bundle. We consider
the Grassmannian Gr(k,Rn) as the homogeneous space G/H, where G = GL(n,R) and
H is the stabilizer of Rk ⊂ Rn. Then we can restrict the H–action to the invariant
subspace Rk, thus obtaining a representation of H on this space. Since we know that
p : G → G/H is a principal H–bundle, Proposition 2.8 shows that G ×H Rk is a
locally trivial vector bundle over G/H. Now consider the map G× Rk → (G/H)× Rn

defined by (g, v) 7→ (gH, gv). Evidently, this descends to a map G ×H Rk which is
then automatically smooth since q is a surjective submersion. But gH ∈ G/H exactly
corresponds to the subspace g(Rk) so by construction v lies in that subspace. This
implies that the descended map is a bijection onto the subspace {(W,w) : w ∈ W}
which was our definition of the tautological bundle.
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(4) We can also nicely illustrate the flexibility of the construction of associated
bundles by discussing a description of reductions of structure group. Consider a principal
G–bundle p : P → M and a closed subgroup H ⊂ G. Then we can consider the
homogeneous space G/H with its canonical G–action and form the associated bundle
P ×G (G/H). Now we can restrict the principal right action of G on P to the subgroup
H, and we first claim that P ×G (G/H) can be identified with the orbit space P/H.

To see this, consider the map ψ : P → P ×G (G/H) defined by ψ(u) := q(u, eH),
where q : P × (G/H)→ P ×G (G/H) is the natural map. Since q(u, gH) = g(u · g, eH),
this map is surjective. Moreover, q(u, eH) = q(v, eH) if and only if there is an element
g ∈ G such that v = u · g and g−1H = eH and hence g ∈ H.

Now we claim that smooth sections of P ×G (G/H) are in bijective correspondence
with reductions Q→M of P to the structure group H. Given a reduction F : Q→ P ,
consider a local section σ of Q over some open subset of U and form ψ ◦ F ◦ σ, which
clearly is a local smooth section of P ×G (G/H). But any other local section of Q
over U is of the form σ(x) · ϕ(x) for some smooth function ϕ : U → H. But then
H–equivariancy of F and H–invariance of ψ imply that this leads to the same section
of P ×G (G/H). Covering M by the charts of a principal bundle atlas for Q, we get a
family of local sections of P×G (G/H), which agree on the intersections of their domains
and thus fit together to define a global smooth section.

Conversely, give a smooth section of P×G(G/H), we get an associated G–equivariant
function f : P → G/H and we consider Q := f−1(eH) ⊂ G. For a point x ∈M and an
element u ∈ Px∩Q we see that f(u · g) = g · f(u) implies that Px∩Q = {u ·h : h ∈ H}.
Moreover, equivariancy easily implies that f is a regular function, so locally Q is a
submanifold in P and it is easy to verify that it defines a reduction of structure group.

This give a nice perspective on the description of reductions of structure group of the
frame bundle PM →M to the subgroup O(n) ⊂ GL(n,R). The point here is that the
homogeneous space Gn := GL(n,R)/O(n) can be naturally identified with the space of
positive definite inner products on Rn, see Section 1.17 of my lecture notes [LG] on Lie
groups. This easily implies that PM ×GL(n,R) Gn is the bundle whose fiber in each point
is the space of positive definite inner products on the fiber of PM ×GL(n,R) Rn ∼= TM .
So sections of this bundle are exactly Riemannian metrics on M .

2.9. Generalized Frame bundles. We can now prove that under fairly week as-
sumptions bundles with structure group G can always be realized as associated bundles.
Recall that a left action G× S → S is called effective if g · y = y for all y ∈ S implies
y = e. For a general action, it is easy to see that {g ∈ G : ∀y ∈ Sg · y = y} is a closed
normal subgroup of G and one obtains an induced effective action of the quotient group.

Proposition 2.9. Let π : E →M be a fiber bundle with fiber S and structure group
G which acts effectively on S. Then there is a unique (up to isomorphism) G–principal
bundle p : P →M such that E ∼= P ×G S as a bundle with structure group G.

Proof. By definition, there is an atlas {(Uα, ϕα) : α ∈ I} for E such that the chart
changes have the form ϕα ◦ϕ−1

β (x, y) = (x, ϕαβ(x) ·y) for smooth functions ϕαβ : Uαβ →
G. Now for x ∈ Uαβγ and each y ∈ S, we obtain ϕαβ(x)ϕβγ(x) · y = ϕαγ(x) · y. By
effectivity, this implies that ϕαβ is a cocycle of transition functions corresponding to
the covering {Uα : α ∈ I} of M . From 2.5 we know that we can realize this as the
transition function of a principal bundle atlas of a principal G–bundle p : G → M .
Taking the induced atlas {(Uα, ψα) : α ∈ I} for P ×G S, its transition functions are also
given by ψα ◦ ψ−1

β (x, y) = (x, ϕαβ(x) · y). But this implies that the maps defined by
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F (ψ−1
α (x, y)) = ϕ−1

α (x, y) fit together to define a isomorphism P ×G S → E of bundles
with structure group G.

To prove uniqueness assume that P → M and P̃ → M are principal G–bundles
corresponding to cocycles ϕαβ and ϕ̃αβ, without loss of generality for the same covering

{Uα : α ∈ I}. Suppose further that F : P ×G S → P̃ ×G S is an isomorphism of bundles
with structure group G. Then for each α, ϕ̃α ◦ F |p−1(Uα) : p−1(Uα) → Uα × Y must be
G–compatible to the chart ϕα. Hence there is a smooth map fα : Uα → G such that
ϕ̃α(F (ϕ−1

α (x, y))) = (x, fα(x) · y). Changing charts in both atlases, we conclude that
for x ∈ Uαβ and y ∈ S, we obtain fβ(x) · y = ϕ̃βα(x)fα(x)ϕαβ(x) · y. By effectivity, this

implies ϕ̃αβ(x)fβ(x) = fα(x)ϕαβ(x), and thus we see from Section 2.5 that P ∼= P̃ . �

2.10. Functorial properties of associated bundles. We can next show that
the construction of associated bundles is functorial in both arguments. Consider first
a fixed principal bundle p : P → M with structure group G and two left actions
G × S → S and G × S̃ → S̃ on smooth manifolds S and S̃. Then a smooth map
ϕ : S → S̃ is called G–equivariant if it satisfies ϕ(g · y) = g · ϕ(y) for all g ∈ G and
y ∈ S. Then idP ×ϕ : P × S → P × S̃ is G–equivariant, too, so there is a unique
map P [ϕ] : P ×G S → P ×G S̃ such that P [ϕ]([u, y]) := [u, ϕ(y)] and this is smooth
since q : P × S → P ×G S is a surjective submersion. Moreover, in the local associated
bundle charts induced by a principal bundle chart ψ for U , the map P [ϕ] has the form
(x, y) 7→ [ψ−1(x, e), y] 7→ [ψ−1(x, e), ϕ(y)] 7→ (x, ϕ(y)). Equivariancy of ϕ then readily
implies that P [ϕ] is a smooth morphism of fiber bundles with structure group G.

Since the base map of P [ϕ] is the identity, there is an induced map Γ(P ×G S) →
Γ(P ×G S̃) on the spaces of sections. Under the isomorphism to spaces of equivariant
functions from Corollary 2.9, this map corresponds to f 7→ ϕ◦f , which evidently defines
a map C∞(P, S)G → C∞(P, S̃)G by equivariancy. This readily follows from the above
description in view of the equation σ(x) = [u, f(u)] relating sections to equivariant
functions.

In particular, we can apply this to an morphism ϕ : V → W between two representa-
tions of G, i.e. a linear map between the vector spaces which is equivariant for the actions
of G. Then of course we obtain an induced homomorphism P [ϕ] : P ×G V → P ×GW
of vector bundles.

On the other hand, consider a principal G–bundle p : P → M , a principal G̃–
bundle p̃ : P̃ → M̃ , a homomorphism τ : G̃ → G and a morphism F : P̃ → P of
principal bundles over τ with with base map f : M̃ → M . Given a smooth left action
G× S → S, we define a smooth left action of G̃ on S by g̃ · y := τ(g̃) · y. Then we can
form the associated bundles P ×G S and P̃ ×G̃ S. The map F × idS : P̃ × S → P × S
maps (u, y) · g̃ to F (u · g̃, τ(g̃−1) · s) = (F (u), y) · τ(g̃). Hence there is an induced map
F [S] : P̃ ×G̃ S → P ×G S, which is smooth by the universal property of surjective
submersions and has base map f . Evidently, this is a morphism of fiber bundles, and
if we start from a representation of G on V , then both associated bundles are vector
bundles, and we obtain a homomorphism of vector bundles with base map f .

2.11. Linear algebra on vector bundles. Large parts of linear algebra can be
carried over to vector bundles using the connection to the representation theory of the
Lie groups GL(V ). In particular, most functorial constructions with vector spaces can
be extended to vector bundles.

Let us start with the concept of a vector–subbundle, which we have already met
implicitly in the example of distributions in Section 2.4. For a vector bundle p : E →M ,
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a vector–subbundle is a subset Ẽ ⊂ E such that for each x ∈ M , Ẽx := Ẽ ∩ Ex is a
linear subspace and such that p|Ẽ : Ẽ →M is itself a vector bundle. Observe that this

implies that all the spaces Ẽx have the same dimension (over each connected component
of M).

We claim that this is equivalent to the fact that for each x ∈ M that is a local
vector bundle chart ϕ : p−1(U) → U × Rn defined on an open neighborhood U of
x ∈ M and a number k ≤ n such that such that ϕ restricts to a vector bundle chart
p−1(U)∩ Ẽ → U ×Rk. To see this, start from a vector bundle chart for Ẽ defined on a
neighborhood of x and consider the corresponding local frame for E. Then the values of
the elements of this frame in x form a basis for Ẽx ⊂ Ex. Extend them to a local basis
of Ex and then extend these vectors to local sections of E. Then on some neighborhood
of x, these sections together with the local frame for Ẽ form a local frame for E, thus
defining a vector bundle chart with the required properties.

At this point we can already invoke the general machinery. Let H ⊂ GL(n,R) be

the stabilizer of Rk ⊂ Rn. This consists of block matrices

(
A B
0 C

)
where A and C are

invertible matrices of sizes k× k and (n− k)× (n− k), respectively. Obviously, on can
restrict the representation of H on Rn to a representation on Rk, corresponding to the
A–block. On the other hand, H also has a natural representation on Rn/Rk ∼= Rn−k

corresponding to the C–block.
Given the bundle E and the subbundle Ẽ ⊂ E, we obtain a natural principal bundle

p : P → M with structure group H, by taking the fiber Px to be the set of all those
linear isomorphisms Rn → Ex, which map the subspace Rk ⊂ Rn to Ẽx ⊂ Ex (and thus
restrict to an isomorphism between these subspaces).

As in Example 2.8 (2), this readily implies that E ∼= P×HRn and Ẽ ∼= P×HRk, and
we define the quotient bundle E/Ẽ as P×H (Rn/Rk). This is a vector bundle with fibers
of dimension n − k. Moreover, the natural surjection Rn → Rn−k is H–equivariant by
definition, so it induces a vector bundle homomorphism q : E → E/Ẽ. Evidently, this
restricts to a surjection Ex → (E/Ẽ)x on each fiber with kernel Ẽx, so (E/Ẽ)x ∼= Ex/Ẽx
for each x ∈M .

The quotient bundle has a similar universal property as the quotient of a vector
space by a subspace. Let p : E →M and p̃ : Ẽ → M̃ be a vector bundles, F : E → Ẽ a
homomorphism with base map f and let V ⊂ E be a subbundle. Suppose that F (v) = 0
for any v ∈ V ⊂ E. Then there is a unique vector bundle homomorphism F : E/V → Ẽ
with base map f , such that F ◦ q = f . Here the existence of F follows readily from the
universal property of the quotient of vector spaces while smoothness follows from the
obvious fact that q is a surjective submersion.

Consider vector bundles p : E → M and p̃ : Ẽ → M̃ and a homomorphism F :
E → Ẽ of vector bundles with base map f . Then for each x ∈ M , the restriction
Fx := F |Ex : Ex → Ẽf(x) is a linear map, and hence has a well defined rank. We say
that F is a vector bundle homomorphism of constant rank if and only if this rank is the
same for all points of M . In this case, we define the kernel ker(F ) of F to be the union
of the spaces ker(Fx) and the image im(F ) of F to be the union of the spaces im(Ff(x)).

Proposition 2.11. Let p : E → M and p̃ : Ẽ → M̃ be vector bundles and let
F : E → Ẽ be a homomorphism of constant rank with base map f : M → M̃ . Then
ker(F ) is a smooth subbundle of E. If M = M̃ and f = id, im(F ) ⊂ Ẽ is a smooth
subbundle and F induces an isomorphism E/ ker(F )→ im(F ) of vector bundles.
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Proof. Let us first consider the case that M̃ = M and f = idM . Take a point
x ∈ M and a local frame ξ1, . . . , ξn for E defined on some open neighborhood U of x
in M . Then F ◦ ξ1, . . . , F ◦ ξn are smooth sections of Ẽ. Denoting by r the constant
rank of F , we know that the vectors F (ξi(x)) span a subspace of Ẽx of dimension r,
so renumbering if necessary, we can assume that F (ξ1(x)), . . . , F (ξr(x)) are linearly
independent. In a vector bundle chart for Ẽ, the just means that we have r smooth
functions U → Rm whose values in x are linearly independent. This implies that
they are linearly independent locally around x, so shrinking U , we may assume that
F (ξ1(y)), . . . , F (ξr(y)) are linearly independent for all y ∈ U . But since the rank is
constant, the sections F ◦ ξ1, . . . , F ◦ ξr form a local frame for im(F ) on U , so we see
that im(F ) ⊂ Ẽ is a smooth subbundle.

Replacing Ẽ by im(F ) we may without loss of generality assume that all the maps
Fy for y ∈ M are surjective. Let us again start from x ∈ M and choose a basis for Ex
such that the last n − r elements for a basis for ker(Fx). Extend this basis to a local
frame ξ1, . . . , ξn for E defined on an open neighborhood U of x. Possibly shrinking U ,
we may assume that the sections η1 := F ◦ξ1,. . . , ηr := F ◦ξr form a local frame for Ẽ on
all of U . But then by definition F (ξj) = ηj for all j = 1, . . . , r while F (ξj) =

∑r
`=1 c

`
jη`

for some smooth functions c`j : U → R. But this readily implies that the the smooth

sections ξ̃j := ξj−
∑r

`=1 c
`
jξ` for j = r+1, . . . , n have values in ker(F ). The construction

also shows that these elements remain linearly independent, so they form a local smooth
frame for ker(F ). Having observed that ker(F ) is a smooth subbundle, it now follows
that F induces a vector bundle homomorphism F : E/ ker(F )→ im(F ). Linear algebra
implies that this induces a linear isomorphism in each fiber. By Proposition 2.6, F is
an isomorphism of vector bundles, so the proof in the case f = id is complete.

In the general case, we can apply the first part of the proof to the vector bundle
homomorphism F̂ : E → f ∗Ẽ induced by F , see Proposition 2.6. By construction
(f ∗Ẽ)x = Ẽf(x) and F̂x = Fx, so ker(F ) = ker(F̂ ) ⊂ E is a smooth subbundle. �

2.12. Constructions with vector bundles. Next we show that functorial con-
structions with vector spaces, which can be used to define constructions with represen-
tations of Lie groups, can also be used to define constructions with vector bundles. The
simplest example is provided by functors involving only one argument.

The dual bundle. Let p : E → M be a K–vector bundle with K = R or C with
typical fiber Kn. Then we can form the frame bundle p : P → M for E, which is a
principal bundle with structure group G := GL(n,K). Now the standard representation
of G on Kn induces the so–called dual or contragradient representation of G on the
dual space Kn∗ = LK(Kn,K). Explicitly, this is given by (A · λ)(x) = λ(A−1x) for
A ∈ GL(n,K), x ∈ Kn and λ ∈ Kn∗. Since inversion in GL(n,K) is smooth, it follows
readily that this defines a smooth representation. Using this, we define the dual bundle
E∗ to E as P ×G Kn∗.

We claim that for each x ∈M , the fiber E∗x can be naturally identified with (Ex)
∗. To

see this, recall that the fiber Px consists of all linear isomorphisms u : Rn → Ex and from
Example 2.8 we know that that [u, v] 7→ u(v) induces an isomorphism P ×G Rn → E.
For x ∈M and λ ∈ Kn∗ we can now map (u, λ) ∈ P ×Kn∗ to the map Ex → K defined
by ξ 7→ λ(u−1(ξ)). Evidently, this is a linear functional and for (u · A,A−1 · λ), we
obtain ξ 7→ λ(AA−1u−1(ξ)) and hence the same functional. Hence this descends to a
map which associates to each element of E∗x a linear functional on Ex, and it readily
follows that this is an isomorphism.
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Similarly, for sections σ ∈ Γ(E) and τ ∈ Γ(E∗), one may consider the point–wise
pairing x 7→ τ(x)(σ(x)). This gives rise to a map Γ(E) × Γ(E∗) → C∞(M,K), which
is bilinear over smooth functions. Moreover, it is easy to see that a function τ , that
assigns to each point x ∈ M a linear functional on Ex, defines a smooth section of E∗

if and only if for each σ ∈ Γ(E) the function x 7→ τ(x)(σ(x)) is smooth. In particular,
for the tangent bundle of a smooth manifold, the dual bundle is exactly the usual
cotangent bundle T ∗M . Alternatively, the dual pairing can be encoded into a morphism
E ×M E∗ →M ×K of fiber bundles, whose restriction to each fiber is bilinear.

Consider vector bundles p : E →M and p̃ : Ẽ → M̃ and a vector bundle homomor-
phism F : E → Ẽ whose base map f : M → M̃ is a diffeomorphism. Then for each
x ∈M , Fx : Ex → Ẽf(x) is a linear map, so there is a dual map (Fx)

∗ : (Ẽf(x))
∗ → (Ex)

∗.

These maps fit together to define map F ∗ : Ẽ∗ → E∗ with base map f−1. It is easy
to verify in local vector bundle charts that this is a smooth homomorphism of vector
bundles.

Tensor powers, symmetric powers and exterior powers. Given a bundle p :
E →M , one constructs bundles ⊗kE, SkE and ΛkE using the natural representations
of G = GL(n,K) on the kth tensor power ⊗kKn, the kth symmetric power SkKn and
that kth exterior power ΛkKn, respectively. The actions on this spaces are all induced by
A · (x1⊗· · ·⊗xn) := Ax1⊗· · ·⊗Axn. As above, one verifies that (⊗kE)k = ⊗k(Ex) and
so on. Given sections σ1, . . . , σk ∈ Γ(E), one obtains a section si1⊗· · ·⊗σk of Γ(⊗kE),
and any smooth section of ⊗kE can be written as a finite sum of sections of this form.
In the picture of the equivariant functions f1, . . . , fk : P → Kn corresponding to the σi,
the section si1 ⊗ · · · ⊗ σk simply corresponds to the function u 7→ f1(u)⊗ · · · ⊗ fk(u).

The universal properties of these objects from linear algebra carry over to this set-
ting. For example, there is a natural morphism E×M . . .×M E → ⊗kE of fiber bundles
(with k–factors in the fibered product) whose value in each fiber is k–linear. This has
the universal property that any morphism F : E ×M . . . ×M E → Ẽ whose restriction
to each fiber is k–linear comes from a unique homomorphism F̂ : ⊗kE → Ẽ of vector
bundles. In particular, this can be used to associate to a vector bundle homomorphism
F : E → Ẽ, vector bundle homomorphisms ⊗kF : ⊗kE → ⊗kẼ and likewise SkF and
ΛkF . It also follows readily that the canonical isomorphism from linear algebra, like
(⊗kRn)∗ ∼= ⊗k(Rn∗) are isomorphisms of representations and hence continue to hold for
the constructions with vector bundles.

Observe at this point that all the constructions discussed so far can be done more
directly if we start with an associated bundle. Suppose that E = P ×GV for a principal
G–bundle P and a linear representation of G on a vector space V . Then we can define
the dual representation of G on V ∗ and likewise we get canonical representations on
⊗kV , SkV , and ΛkV . Of course, the associated bundles with respect to these repre-
sentations are naturally isomorphic to E∗, ⊗kE, SkE, and ΛkE, respectively. To prove
this formally, one just has to observe that forming the frame bundle P̃ of E with struc-
ture group GL(V ), one gets an obvious morphism P → P̃ of principal bundles over
the homomorphism ρ : G→ GL(V ) defining the representation and with base map the
identity. Now for any representation of GL(V ), one obtains a representation of G, and
this is exactly how the representations on V ∗, ⊗kV , SkV , and ΛkV are obtained. From
2.10 we know that the principal bundle homomorphism induces a homomorphism on
the associated vector bundles with respect to any representation of GL(V ). By con-
struction, each of these homomorphisms has the identity as its base map and induces
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a linear isomorphism on each fiber, and hence is an isomorphism of vector bundles by
Proposition 2.6.

Bundles associated to bifunctors. To extend the above ideas to functors in-
volving several vector spaces, we only need one more observation. To get this, let us
reconsider the definition of the Whitney sum from Section 2.7. Given two vector bundles
E and Ẽ, we defined E ⊕ Ẽ as the fibered product E ×M Ẽ. Now let P and P̃ be prin-
cipal bundles with structure groups G and G̃ such that E = P ×G V and Ẽ = P̃ ×G̃ Ṽ .
(As before we can either start with given associated bundles or take the full linear frame
bundles.) Then we can form the fibered product P ×M P̃ and in Section 2.7 we have
observed that this is a principal bundle with structure group G× G̃.

Since the projections from G×G̃ onto G and G̃ are group homomorphisms, we obtain
representations of G× G̃ on V and Ṽ . Moreover, these define a representation of G× G̃
on V ⊕ Ṽ , which is explicitly given by (g, g̃) · (v, ṽ) = (g · v, g̃ · ṽ). Hence we can form
the bundle (P ×M P̃ )×G×G̃ (V ⊕ Ṽ ). Denoting by q : P × V → E and q̃ : P̃ × Ṽ → Ẽ

the canonical maps, we obtain a map (P ×M P̃ ) × (V ⊕ Ṽ ) → E ×M Ẽ defined by
((u, ũ), (v, ṽ)) 7→ (q(u, v), q̃(ũ, ṽ)). One immediately verifies that this descends to an
isomorphism (P ×M P̃ )×G×G̃ (V ⊕ Ṽ )→ E ⊕ Ẽ.

Having this point of view at hand, things easily generalize. The representations of G
on V and of G̃ on Ṽ give rise to several other representations. Taking the tensor product
V ⊗Ṽ , one defines a representation of G×G̃ by (g, g̃)·(v⊗ ṽ) := (g ·v)⊗(g̃ · ṽ). Similarly,
one obtains a representation ofG×G̃ on L(V, Ṽ ) defined by ((g, g̃)·f)(v) := g̃·(f(g−1·v)).
Forming associated bundles with respect to this representations, we obtain the tensor
product E⊗Ẽ of vector bundles and the bundle of linear maps L(E, Ẽ). By construction,
the fibers of these bundles are given by (E⊗ Ẽ)x = Ex⊗ Ẽx and L(E, Ẽ)x = L(Ex, Ẽx),
respectively.

The tensor product of vector bundles inherits an analog of the universal property
of the tensor product of vector spaces. The bilinear map V × Ṽ → V ⊗ Ṽ induces a
morphism E ×M Ẽ → E ⊗ E by Section 2.10. This is not a homomorphism of vector
bundles, since the restrictions to the fibers of E ×M Ẽ are bilinear rather than linear.
Now suppose that L is any vector bundle and F : E ×M Ẽ → L is a fiber bundle
morphism with base map f such that for each x, the induced map Fx : Ex× Ẽx → Lf(x)

is bilinear. Then one can take the induced linear map Ex⊗ Ẽx → Lf(x) and piece these

maps together to a homomorphism F̃ : E ⊗ Ẽ → L of vector bundles.
Similarly, for a vector bundle homomorphism F : E → Ẽ with base map f , the

linear map Fx : Ex → Ẽx defines an element of L(E, Ẽ)X and these fit together to a
smooth section of the bundle L(E, Ẽ). This establishes an isomorphism between the
space Γ(L(E, Ẽ)) of smooth sections of the bundle L(E, Ẽ) and the space of vector
bundle homomorphisms E → Ẽ with base map the identity.

As before natural isomorphisms between vector spaces like (V ⊗ Ṽ )∗ ∼= (V ∗)⊗ (Ṽ ∗)
and V ∗ ⊗ Ṽ ∼= L(V, V ∗) are isomorphisms of representations, so the corresponding
isomorphisms work for the constructions with vector bundles.

Constructions with vector bundles provide an interesting connection to algebraic
topology. This is usually formulated in the setting of continuous vector bundles over
(sufficiently nice) topological spaces. The basic idea here is to consider the set of
isomorphisms classes of K–vector bundles over M (the more common choice is K = C).
The Whitney sum makes this set into a commutative semi–group with unit element
0 (given by idM : M → M , viewed as a vector bundle with 0–dimensional fibers).
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Similarly as the integers are constructed from N, one can construct an abelian group
K(M) out of this semi–group (the “Grothendieck group”): One takes the set of pairs
(E, Ẽ) and defines an equivalence relation by (E, Ẽ) ∼ (F, F̃ ) if and only if E ⊕ F̃ ∼=
F ⊕ Ẽ. The fiber–wise Whitney sum gives rise to a well defined associative operation
on the set K(M) of equivalence classes, for which (0, 0) is a neutral element. Moreover,
by construction (Ẽ, E) is an inverse for (E, Ẽ), so K(M) is a commutative group. In
particular, for a vector bundle E → M , we denote by [E] ∈ K(M) the class of (E, 0).
Then −[E] is the class of (0, E) and any element in K(M) can be written as [E]− [Ẽ]
for bundles E and Ẽ.

There is a substantial difference to the case of integers, however. Passing from a
semi–group to a group enforces the cancellation rule, which is satisfied in N anyway,
but does not hold for vector bundles in general. Suppose that E, Ẽ and F are vector
bundles, such that E ⊕ F ∼= Ẽ ⊕ F (“stably isomorphic bundles”). Then in K(M)
we have [E] + [F ] = [Ẽ] + [F ] and hence [E] = [Ẽ]. However, it may happen that
stably isomorphic vector bundles are not isomorphic, so K(M) does not contain the full
information on isomorphism classes of vector bundles over M .

For example, consider S2 as the unit sphere in R3. Then the fiber of the tangent
bundle at x ∈ S2 is given by TxS

2 = x⊥. On the other hand, consider S2 × R3 and in
there the subset {(x, y) : y ∈ R · x}. This clearly is isomorphic to S2 × R an we see
that the Whitney sum of TS2 and this bundle is the trivial bundle S2 × R3 and hence
isomorphic to the Whitney sum of S2 ×R2 with S2 ×R. But it is well known that the
bundle TS2 is not trivial, since there is not even one nowhere–vanishing vector field on
S2.

The tensor product of vector bundles induces a multiplication on K(M), making
it into a commutative ring with unit (the trivial bundle M × K → M). Moreover,
for a map f : M → N , the pullback of vector bundles induces a homomorphism f ∗ :
K(N)→ K(M) of rings. This is topological K–theory, which turns out to be a so–called
generalized cohomology theory in the sense of algebraic topology.

3. Homogeneous bundles and invariant sections

3.1. Homogeneous bundles. Following Section 1.4.2 of [book].

Definition 3.1. Homogeneous fiber bundles, vector bundles, principal bundles,
and their morphisms.

Example 3.1. (1) Natural bundles like TM , T ∗M and tensor bundles.
(2) p : G→ G/H and associated bundles.

3.2. Classification of homogeneous bundles. Following Section 1.4.3 of [book]

Proposition 3.2. Functorial isomorphism between H–spaces and homogeneous
fiber bundles over G/H. Interpretation for subclasses of homogeneous bundles.

Example 3.2. Description of tensor bundles over G/H. Underlying reduction of
the full frame bundle of G/H.

3.3. Sections of homogeneous bundles. Following Section 1.4.4 of [book]: The
natural action of G on sections of a homogeneous bundle. Induced representations both
in the picture of sections and of equivariant functions.

Theorem 3.3. Consider the homogeneous bundle π : E → G/H corresponding to a
given left action H × S → S. Then σ 7→ σ(o) induces a bijection between G–invariant
elements in Γ(E) and H–invariant elements in S.
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More generally, consider a left action of G on a set X. Then the evaluation map
evo : Γ(E)→ Eo at o = eH ∈ G/H induces a bijection between the set of G–equivariant
maps X → Γ(E) and the set of H–equivariant maps X → Eo.

Corollary 3.3 (Frobenius reciprocity). Let V be a finite dimensional representa-
tion of H and IndGH(V ) the induced representation of G on Γ(G×H V ). Further, let W
be any representation of G and let ResGH(W ) be the restriction of W to H. Then

HomG(W, IndGH(V )) ∼= HomH(ResGH(W ), V )

3.4. Applications. (1) Invariant Riemannian metrics as in Example 1.4.4 of [book].

As a specific example consider Euclidean space as a homogeneous space of G =
Euc(n) as in 1.3. There we have seen that this realization is given by E= Euc(n)/O(n).
Moreover, as a representation of H = O(n), the Lie algebra euc(n) decomposes as
o(n) ⊕ Rn. In particular, the representation Ad of H on g/h is just the standard
representation of O(n) on Rn. Hence the standard inner product gives rise to a G–
invariant Riemannian metric on En, which is just the usual flat metric. Linear algebra
shows that the standard inner product is the unique O(n)–invariant inner product on
Rn up to a positive multiple. Consequently, the G–invariant metric on En is unique up
to a positive constant multiple, too.

We can also use this example to illustrate a phenomenon called mutation. The
simplest realization of the sphere as a homogeneous space comes from the fact that the
standard action of G := O(n+1) on Rn+1 preserves the norm of vectors and thus restricts
to an action on the unit sphere Sn. Linear algebra shows that this action is transitive
and picking a base point, say en+1, the isotropy group H := Gen+1 is isomorphic to O(n),
compare with Section 1.17 of [LG]. Explicitly, this isomorphism comes from the action
of the isotropy group on en+1

⊥ = Ten+1S
n. Hence Proposition 3.2 and Example 3.2 show

that also in this case g/h ∼= Rn as a representation of H = O(n). The corresponding
O(n+ 1)–invariant Riemann metric on Sn of course is the usual (round) metric.

This discussion shows that from the point of view of invariant tensor fields, there is
absolutely no difference between the compact homogeneous space Sn = O(n+ 1)/O(n)
and the non–compact homogeneous space En = Euc(n)/O(n). Therefore, these two
homogeneous spaces are sometimes called mutations of each other. There actually is a
third mutation in this case. Put G := O(n, 1), the orthogonal group of a Lorentzian
inner product b on Rn+1. One defines the n–dimensional hyperbolic space Hn to be
the set {x ∈ Rn+1 : b(x, x) = −1}. Linear algebra shows that the standard action of
G on Rn+1 restricts to a transitive action on Hn. Moreover, similarly to Sn, one gets
TxHn = {y ∈ Rn+1 : b(x, y) = 0} and Gx

∼= O(n) via the induced action on TxHn.
Hence we again get g/h ∼= Rn as a representation of H = O(n), so Hn carries a unique
(up to a positive constant factor) O(n, 1)–invariant Riemannian metric and the same
invariant tensor fields as Sn and En. Geometrically, Hn is a two–sheeted hyperboloid,
so it consists of two connected components, each of which is diffeomorphic to an open
n–ball.

From the point of view of Riemannian geometry, En, Sn and Hn are exactly the
complete Riemannian space forms, i.e. Riemannian manifolds with constant sectional
curvature, compare with Section 2.11 of [Riem]. This constant curvature is positive for
Sn, negative for Hn, and zero for En.

(2) Decomposing spaces of functions or sections: This is a short outlook
on how one proceeds in understanding induced representations. For simplicity, let us
focus on the example of Sn = SO(n + 1)/SO(n). The simplest example of an induced
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representation then is provided by starting from the trivial representation R of SO(n).

By definition, Ind
SO(n+1)
SO(n) (R) = C∞(Sn,R) with the action of SO(n+1) given by g ·f :=

f ◦ `g−1 . Frobenius reciprocity tells us that for any representation V of SO(n+ 1), the
space HomG(V,C∞(Sn,R)) is isomorphic to HomH(V,R). By compactness of SO(n+1),
we may assume that V is irreducible. Restricting the representation V to SO(n), it is
not irreducible any more, but it splits into a direct sum of irreducible representations.
The space HomH(V,R) is simply Rn(V ), where n(V ) is the number of trivial factors in
this decomposition.

For example, taking V = R, we of course have n(R) = 1 so

HomG(R, C∞(Sn,R)) = R.
This corresponds to the fact that the constant functions on Sn are the only G–invariant
functions. Next, consider the defining representation V = Rn+1. Restricted to SO(n),
this decomposes as Rn ⊕ R, so n(Rn+1) = 1, and HomG(Rn+1, C∞(Sn,R)) = R. The
image of any nonzero homomorphism in this family (which then is independent of the
choice) is an n + 1–dimensional subrepresentation of C∞(Sn,R) isomorphic to Rn+1.
Of course, this subrepresentation is spanned by the the components of the inclusion
Sn ↪→ Rn+1.

More generally, for each k ∈ N, the representation SkRn+1 restricted to SO(n)
decomposes as ⊕ki=0S

iRn. In particular, each of these representations contains exactly
one copy of the trivial representation. Hence for each k, the representation C∞(Sn,R)
contains a unique subrepresentation isomorphic to SkRn+1. This is spanned by the
restrictions to Sn of homogeneous polynomials of degree k on Rn+1.

More complete information can be obtained using the Peter–Weyl theorem. Since
SO(n + 1) is compact, the functions in which lie in a finite dimensional SO(n + 1)–
invariant subspace are dense in C∞(Sn,R). By complete reducibility, any such function
can be written as a finite sum of elements in the image of a G–equivariant map from
an appropriate finite dimensional irreducible representation V to C∞(Sn,R). Hence
these ideas lead to a complete description of a dense subspace of the representation
C∞(Sn,R). Similar arguments apply to more general induced representations.

3.5. Invariant differential forms. Invariant differential forms can be described
using the general result in Theorem 3.3. There are special aspects here, however, due to
the existence of the exterior derivative. Moreover, the relation to de Rham cohomology
leads to interesting results even in cases where the determination of invariant forms
itself is rather trivial.

Let us first make things a bit more explicit to obtain a relation to the calculus on
differential forms. Consider a homogeneous space G/H and for g ∈ G let us write
`g : G/H → G/H for the left action by g. In particular, given a differential form ϕ ∈
Ωk(G/H), we can form the pullback (`g)

∗ϕ. By definition, for vector fields ξ1, . . . , ξk ∈
X(G/H) we have

(`g)
∗ϕ(ξ1, . . . , ξk)(g

′) = ϕ(gg′)(Tg′`g · ξ1, . . . , Tg′`g · ξk).
This shows that the natural action of G on Ωk(G/H) as introduced in Section 3.3 is
given by g ·ϕ = (`g−1)∗ϕ. In particular, ϕ is G–invariant if and only if (`g)

∗ϕ = ϕ for all
g ∈ G. In particular, putting H = {e} one recovers the usual notion of a left–invariant
differential form on G. Theorem 3.3 in this case just recovers the fact that these left
invariant forms are in bijective correspondence with Λkg∗.

Returning to the general case of G/H, Theorem 3.3 shows that the space Ωk(G/H)G

of G–invariant k–forms on G/H is isomorphic to the space (Λk(g/h)∗)H of H–invariant
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elements. For a k–linear, alternating map α : (g/h)k → R, the H–action is given by

(h · α)(X1 + h, . . . , Xk + h) = α(Ad(h−1)(X1) + h, . . . ,Ad(h−1)(X1) + h).

Now it is a standard result in differential geometry that pullbacks of differential forms
are compatible with both the wedge product of differential forms and with the exterior
derivative. This shows that the space Ω∗(G/H)G of all invariant forms is a subalgebra
of the graded commutative algebra Ω∗(G/H) and closed under the exterior derivative.
But via Theorem 3.3 we see that the exterior derivative must give rise to linear maps
(Λk(g/h)∗)H → (Λk+1(g/h)∗)H .

To describe these maps, define a linear map ∂ : Λkg∗ → Λk+1g∗ by

∂α(A0, . . . , Ak) :=
∑
i<j

(−1)i+jα([Ai, Aj], A0, . . . , Âi, . . . , Âj, . . . , Ak),

where the hats denote omission. It is easy to see directly the ∂α is again alternating
(although this will also follow from the next result). Likewise, one can prove directly
that ∂ ◦ ∂ = 0. The map ∂ is called the Lie algebra cohomology differential (for trivial
coefficients).

Proposition 3.5. The map ∂ induces a well defined linear map ∂H : (Λk(g/h)∗)H →
(Λk+1(g/h)∗)H . This map represents the exterior derivative on invariant k–forms in the
sense that if ϕ ∈ Ωk(G/H)G corresponds to α ∈ (Λk(g/h)∗)H , then dϕ corresponds to
∂Hα.

Proof. Let us first consider the case that H = {e}, so we are dealing with left
invariant forms on G. Theorem 3.3 in this case says that if ω ∈ Ωk(G)G is such a form,
then it is uniquely determined by ω(e), which is a k–linear alternating map gk → R.
Explicitly, we get

ω(g)(ξ1, . . . , ξk) = ω(e)(Tgλg−1 · ξ1, . . . , Tgλg−1 · ξ1).

Otherwise put, the left invariant form ω generated by ϕ : gk → R is characterized
by the fact that for X1, . . . , Xk ∈ g and the corresponding left invariant vector fields
LX1 , . . . , LXk , the function ω(LX1 , . . . , LXk) is constant and equal to ϕ(X1, . . . , Xk).
Using this, the standard formula for the exterior derivative reduces to

dω(Lx0 , . . . , LXk) =
∑

i<j(−1)i+jω([LXi , LXj ], LX1 , . . . , L̂Xi , . . . , L̂Xi , . . . , LXk),

which shows that dω corresponds to ∂ϕ.
The general case then follows readily from general facts on the calculus of differential

forms. Consider the projection p : G→ G/H. Given a differential form ω ∈ Ωk(G/H),
we can form the pullback p∗ω ∈ Ωk(G), and p∗dω = dp∗ω by naturality of the exterior
derivative. For g ∈ G, we have p ◦ λg = `g ◦ p. If ω ∈ Ωk(G/H)G, then (`g)

∗ω = ω for
all g ∈ G, which implies p∗ω = p∗(`g)

∗ω = (λg)
∗p∗ω. Hence we see that p∗ω is a left

invariant form on G, so dp∗ω = p∗dω is induced by ∂ϕ̃, where ϕ̃ = p∗ω(e). Denoting
by ϕ : (g/h)k → R the map corresponding to ω, it is clear that ϕ̃(X1, . . . , Xk) =
ϕ(X1 +h, . . . , Xk +h). Hence we see that for an H–equivariant map ϕ, the map ∂ϕ̃ has
to descend to an H–equivariant map (g/h)k+1 → R.

Alternatively, it is a good exercise to verify directly the fact that ∂ϕ̃ descends to an
equivariant map directly. The main step toward this is observing that the infinitesimal
version of equivariancy of ϕ is that for X ∈ h and X1, . . . , Xk ∈ g, one gets

0 =
∑k

i=1 ϕ(X1 + h, . . . , [X,Xi] + h, . . . , Xk + h),

which then implies that ∂ϕ̃ vanishes upon insertion of one element of h, and hence
descends to a map (g/h)k+1 → R. �
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Example 3.5. Let G be any Lie group with Lie algebra g. Then we can consider
the adjoint representation Ad : G → gl(g), and the corresponding dual representation
Ad∗ : G→ gl(g∗), which is usually called the coadjoint representation. If G is compact
or semisimple, then there is a non–degenerate, G–invariant bilinear form on g and thus
g ∼= g∗ as a representation of G, but this is not important here.

By a coadjoint orbit of G, one means one of the G–orbits in g∗. Given λ ∈ g∗, we
can consider the isotropy group Gλ = {g ∈ G : λ◦Ad(g) = λ} and the orbit G ·λ can be
identified with the homogeneous space G/Gλ. The importance of the coadjoint orbits
lies in the fact that they admit a canonical G–invariant symplectic structure, i.e. a G–
invariant 2–form ω, such that for each x, the value ω(x) : g× g→ R is non–degenerate
as a bilinear form and such that dω = 0.

Symplectic structure in this sense form the mathematical framework for the Hamil-
tonian formulation of classical mechanics. Given a symplectic manifold (M,ω) and
a smooth function H : M → R (the “Hamiltonian”), we can consider the one–form
dH ∈ Ω1(M). Non–degeneracy of ω then implies that there is a unique field XH ∈ X(M)
such that dH(ξ) = ω(XH , ξ) for all ξ ∈ TM . This is the Hamiltonian vector field gov-
erning the evolution of the system in time. Symmetries of such a system can be encoded
into an action of a Lie group G on M which is compatible with both the Hamiltonian
H and the symplectic from ω. Via so–called moment maps and symplectic reduction,
coadjoint orbits of G (with their canonical symplectic structure) can be used to describe
G–orbits on M . Hence coadjoint orbits provide the fundamental examples of mechanical
systems with symmetries.

So let us assume that we have given G and 0 6= λ ∈ g∗. Let us first describe the Lie
algebra gλ of the stabilizer Gλ. Differentiating (exp(tX) ·λ)(Y ) = λ(Ad(exp(−tX)(Z)))
we get (X · λ)(Y ) = −λ([X, Y ]), so gλ = {X ∈ g : λ ◦ ad(X) = 0}. Otherwise put,
gλ is exactly the null–space of the skew symmetric bilinear form ∂λ : g × g → R.
Thus we conclude that ∂λ descends to a non–degenerate, skew symmetric bilinear map
g/gλ× g/gλ → R. (This in particular implies that the dimension of g/gλ must be even,
which is not clear from the beginning.) For h ∈ Gλ we further get

(h · ∂λ)(X, Y ) = ∂λ(Ad(h−1)(X),Ad(h−1)(Y ))

= λ([Ad(h−1)(X),Ad(h−1)(Y )]) = λ(Ad(h−1)([X, Y ])) = ∂λ(X, Y ).

This implies that the descended map is Gλ–equivariant and thus induces a G–invariant
2–form ω ∈ Ω2(G/Gλ)

G, which by construction is non–degenerate in each point. This
is called the Kirillov–Kostant–Souriau form or KKS–form on the coadjoint orbit.

To see that dω = 0, we can either directly compute via Proposition 3.5. Alterna-
tively, on can observe that the construction can be rephrased as follows. The functional
λ induces a left–invariant one–form α ∈ Ω1(G)G. While α itself does not descend to
G/Gλ, its exterior derivative dα descends and dα = p∗ω. But this readily implies that
0 = ddα = dp∗ω = p∗dω and by construction p∗ is injective, so dω = 0.

3.6. Invariant cohomology. In certain cases, invariant differential forms make
it possible to compute the de Rham cohomology of homogeneous spaces and, more
generally, of manifolds endowed with group actions. Recall that the exterior derivative
d on differential forms satisfies d2 = d ◦ d = 0. Hence for any smooth manifold M
and each k ∈ N, the space Bk(M) := {dβ : β ∈ Ωk−1(M) of exact k–forms on M is
contained in the space Zk(M) := {α ∈ Ωk(M) : dα = 0} of closed k–forms on M . The
quotient space Hk(M) := Zk(M)/Bk(M) is called the kth de Rham cohomology of M .
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The de Rham cohomology groups (which are vector spaces) are fundamental topological
invariants of M .

If M is endowed with a smooth action G × M → M of a Lie group G, there is
an obvious notion of G–invariant differential forms. One calls α ∈ Ωk(M) invariant, if
and only if (`g)

∗α = α for all g ∈ G, and one writes Ωk(M)G for the space of of G–
invariant k–forms. If M is the homogeneous space G/H, then of course this coincides
with the definition from 3.2. As in Section 3.5 it follows that also in this more general
setting the exterior derivative of an invariant form is invariant, too. Hence one defines
the invariant cohomology Hk

G(M) of M as the quotient of the space Zk(M)G of closed
invariant k–forms on M by the subspace d(Ωk−1(M)G).

Now suppose thatG is a compact Lie group, H ⊂ G is a closed subgroup and consider
the homogeneous space G/H. Then ΛkT ∗M = G ×H Λk(g/h)∗, and hence by Corol-
lary 2.8, we can identify Ωk(M) with the space C∞(G,Λk(g/h)∗)H of H–equivariant
smooth functions. We have also seen in 3.2 that in this picture the G–action is given
by (g · f)(g̃) = f(g−1g̃). Similarly as in the construction of invariant inner products
on representations of G in Section 3.4 of [LG], compactness of G implies that one can
average such a function to obtain a smooth function I(f) : G → Λk(g/h)∗ which is
still H–equivariant but also satisfies g · I(f) = I(f) for all g ∈ G. Otherwise put, one
obtains an operator I : Ωk(G/H) → Ωk(G/H)G. Using a so–called fiber integral, one
similarly defines an operator mapping forms to invariant forms on general manifolds
endowed with an action of a compact Lie group G.

It turns out that for the action of a compact group, the invariant cohomology coin-
cides with the de Rham cohomology. We will not give a full proof, but only sketch how
the proof works in the special case of a homogeneous space of a compact Lie group.

Theorem 3.6. Let M be a smooth manifold endowed with an action of a compact
Lie group G. Then the inclusions of invariant forms into all differential forms induces
an isomorphism Hk

G(M) ∼= Hk(M) for all k.

Sketch of proof. For α ∈ Zk(M)G, we have dα = 0, so we can form the class
[α] ∈ Hk(M). By definition, this factorizes to a linear map i∗ : Hk

G(M)→ Hk(M). On
the other hand, since G is compact, there is the the map I : Ωk(M)→ Ωk(M)G.

From now on, we specialize to the case of a homogeneous space M = G/H, the
analogous results in the general case are proved using properties of integration along
the fiber. For M = G/H, the operator I is induced by averaging the functions g · f :
G→ Λk(g/h)∗ over g ∈ G. As in Section 3.5, the function f corresponding to a form α
is explicitly given by

f(g̃)(X1 + h, . . . , Xk + h) = p∗α(LX1 , . . . , LXk)(g̃).

Using this it is easy to directly compute the function corresponding to dα in terms of
f and its derivatives with respect to left invariant vector fields. Using this, one in turn
easily verifies that dI(α) = I(dα) holds for all forms α. Hence for a closed form α, also
I(α) ∈ Ωk(M)G, so we can map α to the class [I(α)] ∈ Hk

G(M). As above, it is easy to
see that this descends to a well defined linear map I∗ : Hk(M)→ Hk

G(M).
By construction I is the identity on invariant forms, so I∗ ◦ i∗ is the identity on

Hk
G(M). Hence the proof can be completed by showing that i∗ ◦ I∗ is the identity on

Hk(M), which implies that the two maps are inverse isomorphisms. To do this, one
constructs a so–called chain homotopy h : Ωk(M)→ Ωk−1(M), which has the property
that for all α ∈ Ωk(M) one has α − I(α) = dh(α) + h(dα). This readily implies that
for α ∈ Zk(M), one has α = I(α) + dh(α), so α and I(α) represent the same class in
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Hk(M). The construction of h is beyond the scope of this course, it needs several facts
on integration on manifolds and on de Rham cohomology. �

In some cases, this result can be used to determine the de Rham cohomology of a
manifold almost without computation. For example, consider the sphere Sn as a homo-
geneous space of the compact Lie group SO(n+ 1). Then g/h ∼= Rn as a representation
of H = SO(n). Now Λ0Rn∗ and ΛnRn∗ are trivial representations, but it is well known
(and not difficult to prove directly) that for 1 ≤ k < n, there are no H–invariant ele-
ments in the ΛkRn∗. Hence invariant forms are only available in degree 0 and n, so we
readily see that Hk(Sn) = Hk

G(Sn) is isomorphic to R for k = 0, n and zero for all other
degrees.

The results on invariant cohomology are also interesting in the case of a compact Lie
group G viewed as a homogeneous space G = G/{e} where one deals with left invariant
forms. There is a second very interesting way to view a compact Lie group G as a
homogeneous space, however. Namely, consider G × G acting on G by multiplications
from both sides, i.e. (g, h) · g̃ := gg̃h−1. Evidently, this action is transitive and the
stabilizer of e is G∆ := {(g, g) : g ∈ G} ∼= G. Hence we can realize G as (G × G)/G∆,
and this leads to the concept of bi–invariant forms, i.e. Ωk(G)G×G consists of those
forms ϕ ∈ Ωk(G), for which both (λg)

∗ϕ and (ρg)∗ϕ coincide with ϕ for all g ∈ G.
Of course, the Lie algebra of G × G is g ⊕ g with component–wise operations and

the Lie algebra of the isotropy group is identified with {(X,X) : X ∈ g} =: g∆.
The quotient (g ⊕ g)/g∆ is linearly isomorphic to g with an isomorphism induced by
(X, Y ) 7→ X − Y . Moreover, the adjoint action of G×G on g⊕ g is of course given by
Ad(g, h)(X, Y ) = (Ad(g)(X),Ad(h)(Y )). This easily shows that under the isomorphism
with g, the action Ad of G∆ on (g ⊕ g)/g∆ simply corresponds to the adjoint action
of G on g. Hence Theorem 3.3 tells us that bi–invariant k–forms on G are in bijective
correspondence with elements in (Λkg∗)G, with the G–action being induced by the
adjoint action of G on g.

To formulate the next result, we just need one more concept. Recall that the map
∂ : Λkg∗ → Λk+1g∗ has the property that ∂ ◦ ∂ = 0. Hence for each k, the space
Bk(g) := ∂(Λk−1g∗) is a subspace of Zk(g) := {α ∈ Λkg∗ : ∂α = 0}. The quotient space
Hk(g) := Zk(g)/Bk(g) is called the kth Lie algebra cohomology group (or Chevalley–
Eilenberg cohomology group) of g (with coefficients in the trivial representation). This
is computable (in principle) by linear algebra. Using this, we now formulate:

Corollary 3.6. Let G be a compact Lie group with Lie algebra g. Then
(1) The de Rham cohomology H∗(G) is isomorphic to the Lie algebra cohomology

H∗(g).
(2) The de Rham cohomology Hk(G) is isomorphic to the space Ωk(G)G×G of bi–

invariant k–forms on G.

Proof. (1) View G as the homogeneous space G/{e}. Then by Theorem 3.3,
Ωk(G)G ∼= Λkg∗, and the exterior derivative on left invariant forms is induced by ∂.
Thus the result is an immediate consequence of theorem 3.6.

(2) We view G as the homogeneous space (G×G)/G∆ and we claim that the exterior
derivative is trivial on bi–invariant differential forms. In the quotient (g ⊕ g)/g∆, an
element (X, Y ) is congruent to 1

2
(X − Y, Y −X) and hence to an element of the form

(Z,−Z). But for two such elements the bracket is given by [(Z,−Z), (W,−W )] =
([Z,W ], [Z,W ]) ∈ g∆. This already implies that ∂ has to descend to the zero map on
(Λk((g⊕ g)/g∆)∗)G. �
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3.7. Example: Special Riemannian structures on spheres. Let us illustrate
the applications of Theorem 3.3 by discussing various ways to make spheres into ho-
mogeneous spaces and discuss some related examples. This gives rise to several special
geometries on spheres of appropriate dimensions, which all include the round Riemann-
ian metric as part of the structure. It is interesting to observe that from the point of
view of these special structures, the sphere is different from Euclidean and hyperbolic
space as discussed in Example 3.4 (1).

To start the discussion, we remark that the presentation of Sn as the homogeneous
space O(n + 1)/O(n) is equivalent to the round Riemannian metric. This can be seen
from the fact that O(n) coincides with the group of isometries of the metric. More
generally, one may even consider two connected open subsets U, V ⊂ Sn with the
induced Riemannian metrics. Then it turns out that any isometry f : U → V of these
Riemannian metrics is the restriction of the actions of a unique element of O(n + 1).
We will discuss this in more detail when having invariant connections at hand.

Now suppose that G ⊂ O(n + 1) is a subgroup such that the restriction of the
O(n + 1)–action on Sn to G is still transitive. Then we can define H := G ∩ O(n)
and get an identification Sn ∼= G/H. We will interpret this as specifying an additional
geometric structure to the round metric such that G consists exactly of those isometries
of Sn which preserve this additional structure, although we will not always prove this
fact.

At the first glance, it may look like there could be lots of appropriate subgroups
G ⊂ O(n + 1) which act transitively on Sn. However, it turns out that the groups
with these properties can be completely classified, and that the list is not too long.
The first step towards this is that transitivity of the action on Sn implies that Rn+1

is an irreducible representation of G, which already strongly restricts the structure of
G. The most obvious choice for G is SO(n + 1), and for this it is also easy to see the
structure that is preserved: As a submanifold of Rn+1 with a global unit normal field,
Sn is orientable, and the actions of elements of SO(n+ 1) are exactly the orientation–
preserving isometries of Sn.

The Sasakian sphere. The next obvious choice for G only exists for odd values
of n. Putting n = 2m − 1, we can view S2m−1 as the unit sphere in Cm and the
standard inner product on that space as the real part of the standard Hermitian inner
product. This leads to an inclusion U(m) ↪→ SO(2m) and linear algebra shows that
U(m) acts transitively on the unit sphere S2m−1. Since U(m) consists of complex
linear maps, an element A ∈ U(m) which stabilizes a unit vector, say em, acts as the
identity on the whole complex line spanned by that vector. Linear algebra then tells
us that the stabilizer of em is identified with U(m − 1) via the action on the complex
orthocomplement of em. Hence we get a presentation of S2m−1 as the homogeneous
space U(m)/U(m− 1).

Now the tangent space TemS
2m−1 is the real orthocomplement of em, so as a rep-

resentation of U(m − 1), this is isomorphic to a trivial representation on R (spanned
by iem) and the standard representation Cm−1. In particular, the U(m − 1)–invariant
element iem gives rise to a U(m)–invariant vector field ξ ∈ X(S2m−1)U(m) of length 1.
Likewise, the subspace Cm−1 corresponds to a smooth subbundle H ⊂ TS2m−1 with
fibers of real codimension one, which is invariant under the action of U(m). The fact
that this is indeed a complex vector subbundle can be most easily encoded as follows:
Multiplication by i defines a U(m−1)–invariant element in LR(Cm−1,Cm−1). This gives
rise to a U(m)–invariant section of L(H,H), which can be equivalently interpreted as
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a U(m)–invariant bundle map J : H → H such that J ◦ J = − idH . Finally, the prop-
erty that the standard inner product is Hermitian with respect to J implies that the
same holds for the round metric, i.e. g(Jη1, Jη2) = g(η1, η2) for all η1, η2 ∈ H. We can
uniquely extend J to a

(
1
1

)
–tensor field J̃ on S2m−1 by requiring J̃(ξ) = 0.

To understand the subbundle H better, let us pass from the invariant vector field
ξ to the dual one–form α ∈ Ω1(S2m−1)U(m). This corresponds to the linear functional
v 7→ Re(〈v, iem〉) on the real orthocomplement of em. In particular, H is the (point–
wise) kernel of α. To compute the exterior derivative dα, we have to make the description
of h ⊂ g more explicit. In terms of complex matrices, g consists of all matrices of the

form

(
X v
−v∗ ir

)
, where X ∈Mm−1(C) satisfies X∗ = −X, v ∈ Cm−1 is any vector, and

r is any real number. The subalgebra h corresponds to the elements with v = 0 and
r = 0, which readily shows that g/h ∼= R⊕Cm. Using this, we can directly compute that
the function inducing dα vanishes if one of its entries is from the R–factor and coincides
with the imaginary part of the standard inner product on Cm−1, so it is non–degenerate
there. This shows that dα restricts to a non–degenerate bilinear form on H = ker(α),
so α is a so–called contact form and H ⊂ TS2m−1 is a contact distribution.

Now one can turn things around and view the one–form α and the
(

1
1

)
–tensor field

J̃ (which satisfy appropriate compatibility conditions) as the main ingredients of the
geometry. From these ingredients, the remaining data can be recovered as follows: The
distribution H is the kernel of α and the compatibility conditions mentioned above
imply that J̃ can be restricted to J : H → H such that J ◦ J = − id. Next, it turns out
that ξ is uniquely determined by that facts that α(ξ) = 1 and iξdα = 0. Finally, the
(round) Riemannian metric on S2m−1 can be recovered as a combination of α ∨ α and
(η1, η2) 7→ dα(η1, J̃(η2)). This structure is called the canonical Sasaki structure on an
odd dimensional sphere.

As a small variation, we can also use G = SU(m) ⊂ SO(2m) and then obtain
H = SU(m − 1) and hence S2m−1 ∼= SU(m)/SU(m − 1). Geometrically, this can be
understood as the canonical Sasaki structure plus an additional choice of a “complex
volume form”. Since H is a complex vector bundle (with respect to J), we can form the
top complex exterior power Λm−1

C H. This is a complex line bundle induced by the one–
dimensional representation Λm−1Cm−1 of U(m), which is via the complex determinant.
Hence we see that, up to a constant complex multiple, there is a unique SU(m)–invariant
section of Λm−1

C H, and SU(m) ⊂ U(m) can be characterized as those automorphisms
of the Sasaki structure which in addition preserve this section.

The Fubini Study metric. Viewing S2m−1 as a homogeneous space of U(m) re-
spectively SU(m) is closely related to a structure on complex projective space CPm−1,
which is of fundamental importance for several areas in mathematics. We start directly
from SU(m), since in contrast to U(m), this leads to an effective action on CPm−1. As
above, consider the standard representation of G = SU(m) on Cm, but now let K ⊂ G
be the stabilizer of the complex line spanned by the unit vector em. Then any element
of K also stabilizes the complex orthocomplement of em and linear algebra shows that
the action on the orthocomplement induces an isomorphism K ∼= U(m−1). (The action
on the distinguished line is determined by the action on the orthocomplement, since the
overall transformation is required to have complex determinant one.) Denoting by H
the stabilizer of em, we get H ∼= SU(m− 1) and H ⊂ K and K/H ∼= U(1).

The quotient G/K can be identified with the space CPm−1 of one–dimensional
complex subspaces in Cm. The obvious projection p : S2m−1 → CPm−1 mapping any
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unit vector to the complex line it spans is called the Hopf fibration. It is a SU(m)–
equivariant map G/H → G/K.

It is easy to see that the representation g/k of K = U(m − 1) now is exactly the
standard representation Cm−1 of U(m− 1). In particular, the tangent bundle TCPm−1

now is a complex vector bundle, so one has an invariant
(

1
1

)
–tensor field J such that

J ◦ J = − id. Moreover, the (real part of the) standard inner product on Cm−1 induces
an SU(m)–invariant Riemannian metric g on CPm−1 which is Hermitian with respect
to J . This is called the Fubini Study metric on CPm−1. This can also be constructed
from the round metric on S2m−1 via the Hopf fibration.

Now the imaginary part of the standard inner product defines a U(m−1)–invariant,
skew symmetric bilinear map Cm−1×Cm−1 → R, so this gives rise to a SU(m)–invariant
two–form ω on CPm−1. Up to a factor, this can be written as ω(ξ, η) = g(ξ, Jη), so
it is called the fundamental two–form of the Hermitian metric g. More generally, for
k = 2, . . . ,m−1 the k–fold wedge product ωk defines a non–zero element of Ω2k(CPm−1)
and up to a multiple, these are the only invariant forms on CPm−1, so in particular
dωk = 0 for all k. For k = 1, this shows that g is a Kähler metric on CPm−1. This also
implies that J is really induced from the structure of a complex manifold on CPm−1,
i.e. there are local charts with values in open subsets of Cm−1 for which the chart
changes are holomorphic maps. On the other hand, since there are no invariant forms
of odd degree, we can readily read of the invariant cohomology and hence by Theorem
3.6 the de Rham cohomology of CPm−1. Namely, Hk(CPm−1) is isomorphic to R
for k = 0, 2, 4, . . . , 2m − 2 and zero in all other degrees, so CPm−1 is topologically
significantly more complicated than a sphere.

The 3–Sasakian sphere. Let H be the skew–field of quaternions. The simplest

construction of H is as the space of all complex 2× 2–matrices of the form

(
z −w
w z

)
for z, w ∈ C. One immediately verifies that this subspace is closed under matrix mul-
tiplication, so it is a unital associative algebra. Moreover, a non–zero matrix of this
form has determinant |z|2 + |w|2 6= 0 and the inverse is of the same form. Hence each
element of H admits a multiplicative inverse, so H is a skew–field (it has all properties
of a field except of commutativity of multiplication). In fact, for such a matrix A, the
inverse is given by A−1 = 1

det(A)
A∗, and this equation is equivalent to the defining form

for non–zero matrices.
It is easy to see that one can choose a basis of the real vector space H of the form

I =: 1, i, j, k such that i2 = j2 = k2 = −1 and ij = −ji = k (from which all other
multiplicative relations between these elements follow). This is the classical definition
of the quaternions, for which associativity of the multiplication needs a non–trivial
verification, however. Similarly as for C, one can define a real part and a (three–
dimensional) imaginary part of a quaternion, and a quaternionic version of conjugation.
This satisfies q1q2 = q̄2q̄1 and q−1 = 1

|q|2 q̄ for the obvious Euclidean norm.

The basics of linear algebra extend to skew–fields. However, one has to decide from
which side scalars are multiplied onto vectors and to obtain the usual conventions for
matrix multiplication, one has to view Hn as a right vector space over H. Doing this,
H–linear maps Hn → Hn can be described via multiplication by quaternionic n × n–
matrices, with composition corresponding to the usual matrix multiplication. Moreover,
there is a quaternionic version of (positive definite) Hermitian forms, and there is a
unique (up to isomorphism) form of this type on Hn. This is defined by

〈(p1, . . . , pn), (q1, . . . , qn)〉 =
∑

` p̄`q`,
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and its real part is just the standard Euclidean inner product on R4n. Hence the group
Sp(n) of quaternionically linear isomorphisms of Hn, which in addition preserve the
quaternionic Hermitian form, is naturally a subgroup of SO(4n) and it is easy to see
that SP (n) acts transitively on the unit sphere S4n−1 ⊂ Hn. Any map which stabilizes a
unit vector acts as the identity on the quaternionic line spanned by the unit vector. Via
the action on the quaternionic orthocomplement, the stabilizer of such a vector is then
identified with Sp(n − 1), so one gets an isomorphism S4n−1 ∼= Sp(n)/Sp(n − 1). For
n = 1, Sp(1) is simply the set of quaternions of unit length, which clearly is isomorphic
to S3.

This now leads to a similar but slightly more complicated picture as in the complex
case above. The tangent bundle TS4n−1 decomposes into a direct sum of a subbundle H
of corank three and a three–dimensional trivial bundle spanned by three invariant vector
fields corresponding to eni, enj and enk. There is a corresponding three–dimensional
space of invariant one–forms, whose common kernel equals H. The exterior derivatives
of these forms can be computed similarly as above to give the (three–dimensional)
imaginary part of the quaternionic Hermitian form. This shows that H is maximally
non–integrable in a certain sense. Moreover, one gets three bundle maps I, J,K : H →
H which satisfy the quaternion relations, so H defines a so–called quaternionic contact
structure. Similarly as above, these can be extended to

(
1
1

)
–tensor fields Ĩ, J̃ , and

K̃, which together with the three invariant one–forms can be viewed as an equivalent
encoding of the whole structure. This is called the standard 3–Sasakian structure on
S4n−1.

Quaternionic projective space. Quaternionic projective space HP n−1 is defined
as the space of 1–dimensional quaternionic subspaces of Hn. There is an evident tran-
sitive action of G := Sp(n) on HP n−1, which identifies HP n−1 with G/K, where
K = Sp(n − 1) × Sp(1), thus making it into a smooth manifold. (This is slightly
simpler than in the complex case, since there is no quaternionic determinant.) More-
over, there is an obvious Sp(n)–equivariant projection π : S4n−1 → HP n−1, which maps
any unit vector to the quaternionic line it spans. This map is called the quaternionic
Hopf fibration and it turns out to be a principal fiber bundle with structure group
Sp(1) ∼= SU(2), so as a manifold, this is diffeomorphic to S3. The simplest case is
n = 2, where it is easy to show that HP 1 ∼= S4 so one obtains a quaternionic Hopf
fibration π : S7 → S4 with fiber S3.

Working with matrices, one obtains g/k ∼= Hn−1. The action of K on this space is
built up from Sp(1) acting by quaternionic scalar multiplications and Sp(n− 1) acting
by quaternionically linear maps. (Observe that non–comutativity of H implies that
quaternionic scalar multiplications are not quaternionically linear.) This shows that
the tangent spaces of HP n−1 are not quite quaternionic vector spaces, because of the
presence of the Sp(1)–factor. There is a more complicated description of the resulting
structure which is called the standard (almost) quaternionic structure on quaternionic
projective space. Still the K–action preserves the standard (real) inner product on
Hn−1, so one obtains a Riemannian metric on HP n−1 which is nicely compatible with
the quaternionic structure. This is called the standard quaternion–Kähler metric.

The subgroups of O(n+ 1) acting transitively on Sn that we have met so far almost
exhaust the list of all such subgroups. In addition to Sp(n) ⊂ SO(4n), this list also
contains the group Sp(n)Sp(1) that we have met in the discussion of quaternionic pro-
jective space. However, this does not give rise to a “new” homogeneous geometry on Sn,
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since the whole Sp(1)–factor is contained in the isotropy subgroup of a point in S4n−1,
so the resulting homogeneous space can be naturally identified with Sp(n)/Sp(n− 1).

The rest of the list consists only of three isolated examples, each of which exists in
only one dimension. The simplest of these examples is a group G ⊂ SO(7) whose Lie
algebra is the compact real form of the exceptional Lie algebra of type G2. This is related
to the fact that beyond the quaternions, there is also a division algebra O in dimension 8
called the octonions, which however is not associative. Still the automorphism of O is a
Lie group, and it turns out that any automorphism is determined by its restriction to the
7–dimensional subspace of purely imaginary octonions. This leads to the group G used
above. Correspondingly, one can make the sphere S6 into a homogeneous space G/H.
The resulting structure on S6 is called the canonical nearly Kähler structure. Apart
from the round metric, this includes an almost complex structure on S6, which however
does not come from the structure of a complex manifold. (The problem, whether S6 can
be made into a complex manifolds, was open for a long time. Recently, it was claimed
that there is a proof that this is impossible, but it seems that this proof is not generally
accepted so far.)

The remaining two groups in the list are the spin groups Spin(7) and Spin(9),
i.e. the universal covering groups of SO(7) and SO(9), respectively. All spin groups
have a special representation, called the spin–representation, which does not descend
to SO. In these two examples, the spin representations have dimension 8 and 16,
respectively, and carry an invariant inner product. It turns out that these two spin
groups act transitively on the unit spheres of the spin representations, which gives an
additional homogeneous geometry on S7 and S15, respectively.

3.8. Example: The conformal sphere and the CR–sphere. To contrast the
last examples, we discuss to representations of spheres as homogeneous spaces which
do not carry invariant Riemannian metrics but only a weaker structure, which has
important geometric applications.

For n ≥ 3 consider the space Rn+2 endowed with the Lorentzian inner product

〈(x0, . . . , xn+1), (y0, . . . , yn+1)〉 :=
∑n

i=0 xiyi − xn+1yn+1.

For a vector x and λ ∈ R, we get 〈λx, λx〉 = λ2〈x, x〉, so we see that the restriction of
〈 , 〉 to a line can be either positive definite, or negative definite or zero. In the last
case, the line is called isotropic. Now writing x = (x′, t) with x′ ∈ Rn+1 we see that
〈x, x〉 = |x′|2 − t2 with the Euclidean norm in the first summand. This shows that for
any isotropic vector x, the t–coordinate has to be non–zero, and any isotropic line in
Rn+2 contains a unique point of the form (x′, 1) with x′ ∈ Sn ⊂ Rn+1. This shows that
we can identify Sn with the space of isotropic lines in Rn+2.

Now let G := SO0(n + 1, 1) ⊂ GL(n + 2,R) be the connected component of the
identity of the (pseudo–) orthogonal group of 〈 , 〉. Clearly, for any isotropic line ` and
A ∈ G, also A(`) is an isotropic line, so one obtains an action of G on Sn. Moreover,
SO(n+ 1) sits as a subgroup in G (as those maps fixing the last basis vector) and the
restriction of the G–action to this subgroup leads to the standard action of O(n+ 1) on
Sn. Hence G acts transitively on Sn, so Sn = G/H, where H is the isotropy group of a
point in Sn.

This isotropy group can be determined explicitly using some basic linear algebra.
For an isotropic line ` ⊂ Rn+2 the orthogonal space `⊥ = {y : ∀x ∈ `〈x, y〉 = 0} is a
codimension–one subspace of Rn+2 which contains `. The restriction of 〈 , 〉 to `⊥ is
degenerate with null–space ` ⊂ `⊥. Hence there is an induced inner product on `⊥/`,
which is easily seen to be positive definite and thus non–degenerate. Now for A ∈ H, we
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must have A(`) ⊂ ` and A(`⊥) ⊂ `⊥. It turns out that A can act by multiplication by
any non–zero factor a on `, but then for any x ∈ Rn+2, one must have Ax− a−1x ∈ `⊥.
Finally, the automorphism of `⊥/` induced by A must be orthogonal.

On the level of Lie algebras g consists of all linear maps X on Rn+2, which are skew
symmetric with respect to 〈 , 〉, and h consists of those skew symmetric maps which
preserve `. Now for X ∈ g, skew symmetry implies that X(`) ⊂ `⊥. Composing with
the quotient projection, we can associate to X the linear map `→ `⊥/` induced by X.
This defines a linear map g → L(`, `⊥/`) which vanishes on h by construction. One
verifies that this actually induces a linear isomorphism g/h → L(`, `⊥/`). Fixing an
element of `, we can identify that space with `⊥/` and one can describe the action of
A ∈ H on that space explicitly. In the notation from above, it is given by a−1 times the
orthogonal endomorphism of `⊥/` induced by A. This easily implies that one obtains a
surjection from H onto the group CSO(`⊥/`) of all endomorphisms B of `⊥/` such that
B∗B is a positive multiple of the the identity. This is the conformal group of `⊥/` ∼= Rn.
The kernel of this homomorphism is a normal subgroup of H isomorphic to the additive
group Rn (essentially given by linear maps Rn+2/`⊥ → `⊥/` respectively `⊥/`→ `).

The group CO(n) evidently contains all multiples of the identity, so it is not compact.
Thus Example (1) of 3.4 shows that there is no Riemannian metric on Sn which is
invariant under the action of SO(n+ 1, 1). It turns out that the left actions of elements
of SO(n + 1, 1) are exactly the conformal diffeomorphisms of the round metric of Sn.
Here a diffeomorphism ϕ : Sn → Sn is called conformal iff there is a positive smooth
function f : Sn → R+ such that ϕ∗g = fg. There is another “new” phenomenon
showing up in this case, namely that the representation Ad : H → GL(g/h) is not
injective. This corresponds to the fact that there exist conformal diffeomorphisms of
Sn which fix a point x0 ∈ Sn to first order, i.e. they satisfy ϕ(x0) = x0 and Tx0ϕ = id.
For an isometry of a Riemannian metric on a connected manifold, these two properties
already imply that it coincides with the identity, but this is no more true for conformal
diffeomorphisms. The presentation of Sn as a homogeneous space of SO(n+ 1, 1) is one
of the basic ingredients of conformal differential geometry.

One of the reasons why the conformal geometry of Sn is interesting is the relation
to hyperbolic space Hn+1 as discussed in Example 3.4. There we viewed Hn+1 as {x ∈
Rn+2 : 〈x, x〉 = −1}, thus exhibiting it as a homogeneous space of G = SO0(n + 1, 1),
which is the isometry group of the hyperbolic metric on Hn+1. Now each x ∈ Hn+1

spans a line which is negative for 〈 , 〉, and it is easy to see that an element of G that
preserves that negative line already preserves the vector x. Hence we can also view
Hn+1 as the space of negative lines in Rn+2. As above, any vector in a negative line
has to have non–zero last coordinate, so any negative linear contains a unique point
of the form (x′, 1). In contrast to above, we must have ‖x′‖ < 1 here, so we see that
Hn+1 is diffeomorphic to the open unit disk in Rn+1 and the sphere Sn from above
can be naturally identified with the boundary of that disk. However, from the point
of view of Riemannian geometry, Hn+1 is infinitely large, since the hyperbolic metric is
complete. Hence one can view Sn as a “boundary at infinity” attached to Hn+1 and any
isometry of Hn+1 “extends” uniquely to a conformal diffeomorphism of the boundary
at infinity. This is a fundamental example of a conformally compact metric and of a
compactification of a symmetric space.

Again there is a complex analog of this construction, which is very interesting. Here
one starts from Cn+2 endowed with a Lorentzian Hermitian form

〈(z0, . . . , zn+1), (w0, . . . , wn+1)〉 :=
∑n

j=0 zjw̄j − zn+1w̄n+1.
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Again the restriction of this form to a complex subspace of dimension one can be positive
definite, negative definite, or zero, and we consider the space of isotropic complex lines
in Cn+2. As above, this can be identified with the unit sphere S2n+1 ⊂ Cn+1, since any
isotropic complex line contains a unique point of the form (z′, 1) with |z′| = 1. This
leads to a transitive action of the special unitary group SU(n+ 1, 1) on S2n+1.

The description of the isotropy group is parallel to the real case, but slightly more
complicated. For a complex isotropic line ` ⊂ Cn+2, we have to consider the real
orthocomplement `⊥R (i.e. the orthocomplement with respect to the real part of 〈 , 〉),
which of course contains the complex orthocomplement `⊥, that in turn contains `.
Now for a point z ∈ S2n+1 corresponding to an isotropic line `, one obtains a natural
identification of TzS

2n+1 with the quotient space `perpR/`. This naturally contains `⊥/`,
which is a complex vector space of dimension n. The resulting spaces together with
their complex structure coincide with the contact distribution H ⊂ TS2n+1 which we
have met in the description of the canonical Sasaki structure on the sphere in 3.7.

An element A ∈ SU(n + 1, 1), which stabilizes `, also stabilizes `⊥R and `⊥, so it
induces a (complex) linear automorphism of the space `⊥/`, on which 〈 , 〉 induces a
positive definite Hermitian form. This defines a surjective homomorphism from the sta-
bilizer of ` to the conformal unitary group CU(n) of this form (i.e. the group generated
by U(n) and multiples of the identity). The kernel of this homomorphism turns out to
be a nilpotent normal subgroup isomorphic to Cn⊕R with Lie algebra coming from the
imaginary part of the standard positive definite Hermitian form on Cn. This is called a
complex Heisenberg group.

Using the description of the stabilizer, one easily verifies that in this case, there
is no SU(n + 1, 1)–invariant complement to H ⊂ TS2n+1. Indeed, it turns out that
all the geometry preserved by SU(n + 1, 1) on S2n+1 can be recovers from the contact
distribution H ⊂ TS2n+1 and its complex structure J : H → H. The pair (H, J)
is called the standard CR–structure on S2n+1, with “CR” being an abbreviation for
“Cauchy–Riemann”. This structure is strictly pseudoconvex, which means that for any
choice of α ∈ Ω1(S2n+1) the restriction of the exterior derivative dα to H × H is the
imaginary part of a positive definite Hermitian form.

The name “Cauchy–Riemann” suggests a relation to complex analysis, and this is
indeed the reason why CR structures are important. This is connected on the complex
analog of the relation to hyperbolic space. As in the real case, we can consider the
space of negative complex lines in Cn+2 and each such line contains a unique point
of the form (z′, 1) with |z′| < 1, so this space is identified with the open unit ball
Dn+1 ⊂ Cn+1 and the sphere S2n+1 is the boundary this domain. The CR structure on
S2n+1 can be directly obtained from this description, since the tangent space TzS

2n+1 is
a real hyperplane in Cn+1 and Hz is exactly the maximal complex subspace in this real
hyperplane. In the language of complex analysis, the condition on positive definiteness of
the exterior derivative of a contact form is equivalent to the fact that the domain Dn+1 is
strictly pseudoconvex. As for the sphere we get a natural action of SU(n+1, 1) on Dn+1

from the interpretation as negative lines. It turns out that the resulting transformations
are exactly the biholomorphisms ofDn+1, i.e. the holomorphic diffeomorphisms for which
also the inverse is holomorphic. So biholomorphisms of the domain Dn+1 are equivalent
to CR–diffeomorphisms of its boundary S2n+1.

Indeed, for any strictly pseudoconvex domain U ⊂ Cn+1 with smooth boundary M =
∂U , the boundary inherits a CR–structure (H ⊂ TM, J) in a similar way. Studying the
relation between properties of the domain and the CR geometry of its boundary is an
important topic in complex analysis.
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Let us finally mention that there is also a complex version of the hyperbolic metric
and the interpretation of the sphere as a boundary at infinity. The space of negative
lines in Cn+2 naturally inherits a Riemannian metric g which is Hermitian with respect
to the standard complex structure. This can be viewed as a metric on Dn+1 (called
the Bergmann metric in complex analysis), but this metric is complete, so the space is
infinitely large from the metric point of view. In this picture, it is usually called complex
hyperbolic space Hn+1

C and the metric is called the complex hyperbolic metric. This is
an example of a Kähler–Einstein metric, and the CR structure on S2n+1 can also be
viewed as a complex version of the conformal infinity. Again, the study of boundaries
at infinity for complete Kähler–Einstein metrics is an active area of current research.

Let us remark that there is also a quaternionic version of this construction, i.e. a
transitive action of Sp(n + 1, 1) on the unit sphere S4n+3 ⊂ Hn+1. It turns out that
the geometric structure preserved by this action is exactly the quaternionic contact
structure H ⊂ TS4n+3 from the discussion of the 3–Sasakian sphere in Section 3.7.
This is a model for the quaternionic contact structure which the boundary at infinity
of a quaternion–Kähler metrics inherits.

4. Connections

In this chapter, we briefly discuss the concept of connections in the language of
linear connections on vector bundles and in the language of principal connections. Any
connection has a basic invariant called its curvature, for linear connections on the tan-
gent bundle of a manifold, there is an additional invariant called the torsion. In the
case of a homogeneous space G/H, we then discuss existence of a G–invariant principal
connection on G → G/H, which leads to invariant connections on all associated bun-
dles. In the case such a connection does not exist, we briefly discuss the classification
of G–invariant linear connections on homogeneous vector bundles.

4.1. Linear connections and their curvature. Let M be a smooth manifold
and let p : E → M be a vector bundle over M . Then a linear connection on E is a
bilinear operator ∇ : X(M) × Γ(E) → Γ(E) written as (ξ, s) 7→ ∇ξs such that for any
smooth function f : M → R, one has ∇fξs = f∇ξs and ∇ξ(fs) = (ξ · f)s+ f∇ξs.

The intuitive idea for such a connection is to define an analog of a directional de-
rivative for sections of E. The direction is determined by the vector field ξ, and the
property that ∇fξs = f∇ξs implies that ∇ξs(x) depends only on the value of ξ in x.
On the other hand, the Leibniz rule in s shows that s is differentiated once.

Theorem 4.1. On any smooth vector bundle p : E → M , there exists a linear
connection ∇ and the space of all linear connections is an affine space modeled on the
(infinite dimensional) vector space Γ(T ∗M ⊗ L(E,E)) of one–forms on M with values
in L(E,E).

Proof. A smooth section A of the bundle T ∗M ⊗ L(E,E) can be equivalently
interpreted as defining a bilinear operator A : X(M) × Γ(E) → Γ(E), which is linear
over smooth functions in both variables. This shows that for a linear connection ∇ on
E, also ∇̂ξs = ∇ξs + A(ξ, s) defines a linear connection on E. Conversely, if ∇ and ∇̂
are linear connections on E, the define A(ξ, s) := ∇̂ξs − ∇ξs. Evidently, this is linear
over smooth functions in the first variable, but since the Leibnitz rule is the same for
both connections, it is also linear over smooth functions in the second variable. Hence
A defines a smooth section of T ∗M ⊗ L(E,E), and it only remains to prove existence
of one linear connection.
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To do this, let us first consider the case that E = M × Rn. Then a section of E
is a smooth function s = (s1, . . . , sn) : M → Rn and we can simply define ∇ξs :=
(ξ · s1, . . . , ξ · sn). One immediately verifies that this defines a linear connection on E.
In the general case, take a vector bundle atlas (Uα, ϕα) for E and for sections s ∈ Γ(E)
with support in Uα and x ∈ Uα define ∇α

ξ s(x) := (ϕα)−1(x, (ξ · s1(x), . . . , ξ · sn(x))),
where ϕα ◦ s(x) = (x, (s1(x), . . . , sn(x))). Further define ∇α

ξ s(y) = 0 for y /∈ Uα. As
before, this is linear over smooth maps and satisfies ∇α

ξ (fs) = (ξ · f)s + f∇α
ξ s on all

of M (if s has support in Uα). Now take a partition (fα) of unity subordinate to the
covering Uα of M and define ∇ξs :=

∑
α∇α

ξ (fαs). Then this is smooth since the sum is
locally finite and one immediately verifies that it defines a linear connection on E. �

The defining properties of a linear connection show that there is a way to construct
a tensorial quantity out of a connection, which is called its curvature. This turns out
to be a fundamental invariant of a linear connection.

Proposition 4.1. Let p : E →M be a vector bundle and ∇ be a linear connection
on E. Then there is a unique sections R ∈ Γ(Λ2T ∗M ⊗L(E,E)) which is characterized
by the fact that for ξ, η ∈ X(M) and s ∈ Γ(E), one has

R(ξ, η)(s) = ∇ξ∇ηs−∇η∇ξs−∇[ξ,η]s.

Proof. The defining expression for R evidently is trilinear over R and skew sym-
metric in ξ and η, so the complete the proof we only have to shows that, viewed as an
operator X(M) × X(M) × Γ(E) → Γ(E), it is linear over smooth functions in all vari-
ables. By skew symmetry, it suffices to check this for η and s. Now for f ∈ C∞(M,R),
we get [ξ, fη] = (ξ · f)η + f [ξ, η]. Using this and the defining properties of ∇, we
conclude that R(ξ, fη)(s)− fR(ξ, η)(s) is given by (ξ · f)∇ηs−∇(ξ·f)ηs = 0.

On the other hand, ∇ξ∇η(fs) = ∇ξ(f∇ηs+(η ·f)s), which implies that ∇ξ∇η(fs)−
f∇ξ∇ηs can be written as

(ξ · f)∇ηs+ (η · f)∇ξs+ (ξ · (η · f))s

Subtracting the same expression with ξ and η exchanged, the first two summands cancel,
and then subtracting ∇[ξ,η]fs − f∇[ξ,η]s = ([ξ, η] · f)s we get zero by definition of the
Lie bracket. �

Giving a detailed geometric interpretation of the curvature of a connection is beyond
the scope of this course, since it would require to develop quite a bit of theory on concepts
like parallel transport.

4.2. Affine connections and their torsion. An affine connection on a smooth
manifold M is just a linear connection ∇ on the tangent bundle p : TM → TM , so
this is like an abstract version of directional derivative for vector fields. Apart from the
curvature R of ∇, which in this case can be interpreted as a

(
1
3

)
–tensor field on M , there

is a second fundamental invariant of a such a connection, which is called the torsion of
∇ and which is even simpler than the curvature.

Proposition 4.2. Let M be a smooth manifold and let ∇ be an affine connection
on M . Then there is a smooth section T of the bundle Λ2T ∗M ⊗ TM characterized by
the fact that for ξ, η ∈ X(M), we have

T (ξ, η) = ∇ξη −∇ηξ − [ξ, η].

Proof. The defining equation for T is evidently bilinear over R and skew–symmetric
in ξ and η, so by Proposition 2.3 it suffices to verify that it is linear over C∞(M,R) in
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η to complete the proof. But this follows readily from the defining properties of ∇ and
the fact that [ξ, fη] = (ξ · f)η + f [ξ, η]. �

An affine connection ∇ on M is called torsion–free if its torsion vanishes identically.
It is easy to see that on any smooth manifold there exist torsion–free affine connections.
Indeed, starting from an arbitrary affine connection ∇̂ with torsion T , one may simply
define ∇ξη := ∇̂ξη − 1

2
T (ξ, η). This is a linear connection on TM by Theorem 4.1 and

one immediately verifies that its torsion vanishes identically.
A fundamental result of Riemannian geometry is that given a Riemannian metric γ

on M , there is a unique torsion–free affine connection ∇ on TM which is compatible
with the metric γ in the sense that ξ ·γ(η, ζ) = γ(∇ξη, ζ)+γ(η,∇ξζ) for all vector fields
ξ, η, ζ ∈ X(M). This is called the Levi–Civita connection of the metric γ.

4.3. Connections and constructions with vector bundles. Given a linear
connection on a vector bundle p : E →ME, there are corresponding linear connections
on bundles obtained by natural constructions from E. Likewise, this works with con-
structions involving several bundles. We only sketch this briefly, because it all can be
deduced via principal connections and induced connections.

As a simple example, consider the dual bundle E∗. Fix a section λ ∈ Γ(E∗) and a
vector field ξ ∈ X(M). Then for a section s ∈ Γ(E) we can form λ(s) ∈ C∞(M,R) and
consider the operator Γ(E)→ C∞(M,R) defined by s 7→ ξ · (λ(s))− λ(∇ξs), where ∇
is the given linear connection on E. Then this is immediately seen to be linear over
smooth functions, thus defining a section ∇∗ξλ ∈ Γ(E∗). From the definitions, one then
verifies that ∇∗ indeed defines a linear connection on E∗.

Similarly, suppose we have given two bundles E and F over the same manifold M
and linear connections ∇E and ∇F on the bundles. Then we can define connections
∇E⊕F on E ⊕ F and ∇E⊗F on E ⊗ F characterized by ∇E⊕F

ξ (s1, s2) = (∇E
ξ s1,∇F

ξ s2)

and by ∇E⊗F
ξ (s1 ⊗ s2) = (∇E

ξ s1) ⊗ s2 + s1 ⊗ (∇F
ξ s2), respectively. Together with the

above, we can use the isomorphism L(E,F ) ∼= E∗ ⊗ F to obtain a linear connection

∇L(E,F ) which is characterized by (∇L(E,F )
ξ f)(s1) = ∇F

ξ (f(s1))− f(∇E
ξ s1), and so on.

In all these cases, it is also possibly to directly compute the action of the curvature.
For example, for the curvature R∗ of the dual connection ∇∗ corresponding to ∇ on E,
one obtains (R∗(ξ, η)(λ))(s) = −λ(R(ξ, η)(s)), where R is the curvature of ∇.

4.4. Principal connections. Let p : E → M be any fiber bundle. Then in the
tangent bundle TE, there is a natural subbundle V E, called the vertical subbundle. This
is defined by VyE := ker(Typ) ⊂ TyE, so intuitively, it consists of those tangent vectors
at y which are tangent to the fiber Ex, where x = p(y). Correspondingly, one calls a
vector field ξ ∈ X(E) vertical if its values always lie in the vertical subbundle. Dually
to the concept of vertical vector fields, there is the concept of horizontal differential
forms on a fiber bundle. Here we call a form horizontal if and only if it vanishes upon
insertion of any vertical vector field.

Since the bundle projection p : E → M is a submersion, Typ induces a linear
isomorphism TyE/VyE → Tp(y)M . Now a (general) connection on the fiber bundle
p : E →M is given by the choice of a distribution H ⊂ TE, the horizontal distribution
of the connection, which is complementary to V E. In the case of a principal fiber
bundle, one in addition requires that this distribution is invariant under the principal
right action:

Definition 4.4. Let p : P → M be a principal fiber bundle with structure group
G. Then a principal connection is given by a smooth distribution H ⊂ TP such that
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TuP = Hu⊕VuP and Tur
g ·Hu = Hu·g hold for all u ∈ P and all g ∈ G, with rg denoting

the principal right action by g.

A principal connection can be equivalently encoded as the so–called vertical pro-
jection, which is a smooth section Π ∈ Γ(L(TP, V P )) such that Π restricts to the
identity on V P ⊂ TP . Given H, one defines Π(u) as the projection onto the second
summand in TuP = Hu ⊕ VuP . Conversely, given Π, one defines Hu := ker(Π(u)).
The condition of equivariancy can also be phrased in the language of the vertical pro-
jection. Since p ◦ rg = p, we see that Tu(r

g)(VuP ) = Vu·gP holds for all u ∈ P and
g ∈ G, so one may simply require that (rg)∗Π = Π for all g ∈ G, in the sense that
Π(u · g) ◦ Turg = Tur

g ◦ Π(u).
From this description, we can already deduce a fundamental technical result about

principal connections:

Lemma 4.4. Let p : P →M be a principal fiber bundle with structure group G and
let H ⊂ TP be a principal connection on P .

Then for each vector field ξ ∈ X(M), there is a unique vector field ξh ∈ X(P ) such
that for all u ∈ P we have ξh(u) ∈ Hu ⊂ TuP and Tup · ξh(u) = ξ(p(u)), so ξh is
p–related to ξ. Moreover, ξ is G–invariant in the sense that (rg)∗ξh = ξh for all g ∈ G.

Proof. For u ∈ P , we know that by definition Hu is complementary to VuP =
ker(Tup) in TuP , so Tup restricts to a linear isomorphism Hu → Tp(u)M . Thus given
a vector field ξ ∈ X(M), we get for each x ∈ M and u ∈ P with p(u) = x a unique
tangent vector ξh(u) ∈ Hu ⊂ TuP which projects onto ξ(x). Moreover, for g ∈ G, we
get p ◦ rg = p, so Tu·gp · Turg · ξh(u) = ξ(x). Moreover, since Tur

g maps Hu to Hu·g,
so we conclude that Tur

g · ξh(u) = ξh(u · g). To complete the proof, it thus remains to
show that these tangent vectors fit together smoothly.

This may be proved locally on M , so choose a principal bundle chart (U,ϕ) with
x ∈ U . Then ϕ is a diffeomorphism p−1(U) → U × G with pr1 ◦ ϕ = p. Hence also
Tϕ : TP |p−1(U) → T (U×G) ∼= TM |U×TG is a diffeomorphism and the first component

of Tϕ coincides with Tp. This shows that ξ̃(u) := (Tϕ)−1(ξ(p(u)), 0) is a smooth vector

field on p−1(U) such that Tup · ξ̃(u) = ξ(p(u)) for all u ∈ p−1(U).
Now let Π be the vertical projection associated to the principal connections. Since

this a smooth bundle map, also u 7→ ξ̃(u)−Π(u)(ξ̃(u)) is a smooth vector field on p−1(U).
But since Π(u) has values in VuP , this still projects onto ξ(p(u)) and by construction
it lies in HuP , so it coincides with ξh(u). �

The operation described in the Lemma is called the horizontal lift. From the proof
it is clear that the horizontal lift is defined both for tangent vectors and for smooth
vector fields.

To get to the simplest description of a principal connection, one more step is needed.
Let g be the Lie algebra of the structure group G. For u ∈ P , the map g 7→ u · g defines
a diffeomorphism from G to the fiber Pp(u) of P through u. Differentiating this defines
a map g → VuP , which is easily seen to be a linear isomorphism. Explicitly, this map
X ∈ g to ζX(u) := d

dt
|t=0u · exp(tX). It turns out that for each X ∈ g, this gives rise to

a smooth vector field ζX ∈ X(P ), called the fundamental vector field generated by X.
This easily follows from the fact that in a principal bundle chart ζX corresponds to the
left invariant vector field LX generated by X.

Using this on can now encode a principal connection on P as a connection form
γ ∈ Ω1(P, g). This is characterized by the fact that the vertical projection is given by
Π(u)(ξ) = ζγ(ξ)(u). So by definition, we must have γ(u)(ζX(u)) = X for any X ∈ g,
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so γ “reproduces the generators of fundamental vector fields”. On the other hand, we
have to see what equivariancy of Π means for γ. This easily follows from the fact that
g−1 exp(tX)g = exp(tAd(g−1)(X)) and hence ζAd(g−1)(X)(u · g) = Tur

g · ζu(X). This
implies that equivariancy of Π is equivalent to the fact that (rg)∗γ = Ad(g−1) ◦ γ for all
g ∈ G, which is referred to as γ being G–equivariant.

Summing up, we see that a principal connection on P can be equivalently encoded by
a G–equivariant one–form γ ∈ Ω1(P, g) which reproduces the generators of fundamental
vector fields. This is the standard definition of a principal connection. The horizontal
distribution defined by γ is then simply given by Hu = ker(γ(u)), where we view γ(u)
as a linear map TuP → g.

In the language of connection forms, it is easy to prove existence of principal con-
nections and also to describe all such connections on a given principal bundle:

Proposition 4.4. Let p : P → M be a principal fiber bundle with structure group
G. Then there is a principal connection form γ ∈ Ω1(P, g). Moreover, the space of
all such forms is an affine space modeled on the space Ω1

hor(P, g)G of horizontal, G–
equivariant one–forms. The latter space is isomorphic to the space of sections of the
vector bundle T ∗M ⊗ (P ×G g)→M .

Proof. Consider the trivial bundle M × G → M and let ω ∈ Ω1(G, g) the left
Maurer–Cartan form on G. Then by definition ω(ξ) = Tgλg−1 ·ξ for ξ ∈ TgG. This easily
implies that for the right translation ρg : G→ G by g one obtains (ρg)∗ω = Ad(g−1)◦ω,
see Proposition 2.7 of [LG]. This readily implies that (pr2)∗ω ∈ Ω1(M × G, g) is a
principal connection form on M ×G.

For a general principal fiber bundle p : P → M consider a principal bundle atlas
(Uα, ϕα). For each α, consider γα ∈ Ω1(p−1(Uα), g) defined as ϕ∗α((pr2)∗ω). Since
ϕα : p−1(Uα) → Uα × G is an isomorphism of principal bundles, it follows readily
that γα is a connection form on p−1(Uα). Now choose a partition (fα) on M which is
subordinate to the covering Uα and define γ :=

∑
α(fα ◦ p)γα ∈ Ω1(P, g). Then for

X ∈ g, we get γ(ζX(u)) =
∑

α fα(p(u))X = X. Similarly, since (fα ◦ p) is G–invariant,
one easily verifies that γ is G–equivariant and thus a connection form.

Suppose that γ is a connection form and ϕ ∈ Ω1(P, g) is horizontal andG–equivariant.
Then of course, γ+ϕ is G–equivariant and since ϕ vanishes on fundamental vector fields,
it is again a connection form. Conversely, for connection forms γ1 and γ2, the difference
γ2−γ1 is G–equivariant and vanishes on fundamental vector fields and thus is horizontal.

To obtain the last isomorphism, consider ϕ ∈ Ω1(P, g)G and for a vector field ξ ∈
X(M). Let ξh be the horizontal lift of ξ from Lemma 4.4 and consider the function
f := ϕ(ξh) : G → g. From Lemma 4.4, we know that ξh(u · g) = Tur

g · ξh(u), which
shows that f(u · g) = ((rg)∗ϕ)(ξh)(u) = Ad(g−1)(f(u)). Hence f is G–equivariant, thus
corresponding to a smooth section of P ×G g by Corollary 2.8. Hence we have obtained
an operator X(M)→ Γ(P ×G g), but the construction readily implies that this is linear
over C∞(M,R), thus defining a section of the bundle T ∗M ⊗P ×G g. It is easy to verify
that this construction actually gives rise to an isomorphism. �

4.5. The curvature of a principal connection. The curvature of a principal
connection defined by γ ∈ Ω1(P, g) is then the form Ω ∈ Ω2(P, g) defined by Ω(ξ, η) :=
dγ(ξ, η)+[γ(ξ), γ(η)] where the last bracket is in g. We can easily deduce basic properties
of the curvature:

Proposition 4.5. Let p : P → M be a principal fiber bundle with structure group
G and let γ ∈ Ω1(P, g) be a principal connection form with curvature Ω ∈ Ω2(P, g).
Then we have:
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(1) The curvature form Ω is horizontal and G–equivariant, i.e. for ξ ∈ Γ(V P ) we
have iξΩ = 0 and for g ∈ G, we have (rg)∗Ω = Ad(g−1)◦Ω. Hence Ω can be interpreted
as a section of the vector bundle Λ2T ∗M ⊗ (P ×G g) over M .

(2) The curvature form Ω vanishes identically if and only if the horizontal distribu-
tion H ⊂ TP determined by γ is involutive and hence integrable.

Proof. (1) Using (rg)∗γ = Ad(g−1) ◦ γ one easily verifies that (rg)∗dγ = Ad(g−1) ◦
dγ. Using that Ad(g−1) is a homomorphism of Lie algebras, this together with a simple
direct computation proves equivariancy of Ω. On the other hand, for X ∈ g, equiv-
ariancy of γ shows that (rexp(tX))∗γ = Ad(exp(−tX)) ◦ γ. Now in the left hand side,
rexp(tX) is the flow of the fundamental vector field ζX up to time t. Hence differentiating
the left hand side with respect to t at t = 0, we get the Lie derivative LζXγ. Using
Cartan’s formula we may write this as iζXdγ+ diζXγ, and since iζXγ is constant, we are
left with iζXdγ. For the right hand side, we simply get − ad(X) ◦ γ. Hence we obtain
dγ(ζX , η) = −[X, γ(η)], and since γ(ζX) = X, this exactly says that Ω(ζX , η) = 0. Since
the fundamental vector fields span VuP , this shows that Ω is horizontal.

The interpretation as a section of a bundle over M works similarly as in the proof
of Proposition 4.4: Given vector fields ξ and η on M , Ω(ξh, ηh) defines a G–equivariant
functions P → g and thus a smooth section of P ×G g. Viewed as an operator, this is
bilinear over smooth functions on M , thus defining a section as claimed.

(2) Since Ω is horizontal by part (1), vanishing of Ω is equivalent to the fact that
Ω(ξh, ηh) = 0 for all vector fields ξ, η ∈ X(M). But since γ vanishes on horizontal lifts,
the formula for Ω simplifies in this case to Ω(ξh, ηh) = dγ(ξh, ηh) = −γ([ξh, ηh]). So
vanishing of Ω is equivalent to the fact that the Lie bracket [ξh, ηh] is horizontal for all
ξ, η ∈ X(M). Since H admits local frames consisting of horizontal lifts, this implies the
claim. �

4.6. Induced connections. The key feature of principal connections is that a
single principal connection on the bundle p : P →M gives rise to linear connections on
all vector bundles associated to P .

Theorem 4.6. Let p : P → M be a principal fiber bundle with structure group G
and consider a representation of G on V . Then a principal connection on P defines a
linear connection ∇V on the associated bundle P ×G V . These connections are compat-
ible (in the sensed discussed in Section 4.3) with all natural constructions arising from
constructions with representations. Moreover, the bundle map between two associated
bundles induced by a G–equivariant linear map between the corresponding representa-
tions is preserved by the induced connections.

Proof. By Corollary 2.8, sections of P ×G V are in bijective correspondence with
smooth functions f : P → V such that f(u · g) = g−1 · f(u), where in the right hand
side the action is via the given representation of G on V . Now given a vector field
ξ ∈ X(M), we can consider the horizontal lift ξh with respect to the given principal
connection on P . For a smooth section s ∈ Γ(P ×G V ) consider the corresponding
function f and the derivative ξh · f : P → V . Now from Proposition 4.4 we know
that ξh(u · g) = Tu(r

g) · ξ(u). Using this to differentiate f , we obtain the derivative
of f ◦ rg in direction ξ(u). But by equivariancy f ◦ rg = ρ(g−1) ◦ f , where we denote
the representation G → GL(V ) by ρ. Since ρ(g−1) is a linear map, we can simply
differentiate through it and obtain (ξh · f)(u · g) = ρ(g−1)(ξh · f(u)). Hence the function
ξh · f is again equivariant, thus corresponding to a section ∇V

ξ s ∈ Γ(P ×G V ).
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So we have defined an operator ∇V : X(M)× Γ(P ×G V )→ Γ(P ×G V ) and we can
verify its compatibility with multiplication by a smooth function ϕ : M → R. From the
definition of the horizontal lift, we immediately see that (ϕξ)h = (ϕ◦p)ξh. Likewise, if a
section s corresponds to f : P → V , then ϕs corresponds to (ϕ◦p)f . Hence the function
corresponding to ∇V

ϕξs is ((ϕ ◦ p)ξh) · f = (ϕ ◦ p)(ξh · f), which in turn corresponds to

ϕ∇V
ξ s. Likewise, ∇V

ξ (ϕs) corresponds to ξh · (ϕ◦p)f = ((Tp · ξh) ·ϕ)◦p)f +(ϕ◦p)ξh ·f .

This exactly shows that ∇V
ξ (ϕs) = (ξ · ϕ)s+ ϕ∇V

ξ s.
The compatibility with natural constructions is easy to verify directly. For example,

consider the dual representation V ∗ corresponding to V . By definition (g · λ)(v) =
λ(g−1 · v) for λ ∈ V ∗ and v ∈ V , which is equivalent to (g · λ)(g · v) = λ(v). Now
consider sections s ∈ Γ(P ×G V ) corresponding to f : P → V and σ ∈ Γ(P ×G V ∗)
corresponding to ϕ : P → V ∗. From above we see that the function u 7→ ϕ(u)(f(u)) is
G–invariant, so it descends to M and of course, this equals the pairing σ(s). This shows
that ξ · (σ(s)) can be computed as ξh · (ϕ(f)) = (ξh · ϕ)(f) + ϕ(ξh · f), where we have
used that the evaluation map V × V ∗ → R is bilinear. But the right hand side clearly
represents (∇V ∗

ξ σ)(s) + σ(∇V
ξ s), which is exactly the property used in Section 4.3.

Likewise, a tensor product of sections of two associated bundles corresponds to the
point–wise tensor product of the corresponding functions, which leads to the compati-
bility of the connections ∇V , ∇W and ∇V⊗W from Section 4.3.

For the last statement, let ϕ : V → W be a morphism of representations of G, so
as an element of L(V,W ), the map ϕ satisfies g · ϕ = ϕ for all g ∈ G. Let E and F be
the associated bundles defined by V and W , and put Φ := P [ϕ] : P ×G V → P ×G W
as in Section 2.12. Then Φ defines a smooth section of the bundle L(E,F ) and the
corresponding smooth map P → L(V,W ) of course is the constant map ϕ. Hence by

definition∇L(V,W )
ξ Φ = 0 for any ξ ∈ X(M). By compatibility with natural constructions,

this means that for any s ∈ Γ(E), we get ∇W
ξ (Φ(s)) = Φ(∇V

ξ s). �

Usually, one simply denotes all the induced connections simply by the symbol ∇.
This is justified by the compatibility proved in the Proposition. It is also easy to compute
the curvature of induced connections. Recall the curvature of a principal connection γ
on P is a two–form Ω ∈ Ω2(P, g). Given a representation of G on V , the infinitesimal
representation defines a bilinear map · : g× V → V .

Proposition 4.6. Let p : P →M be a principal G–bundle and let γ be a principal
connection on P with curvature Ω ∈ Ω2(P, g). Let ∇ be the induced linear connection
on the bundle E := P ×G V and let R be its curvature. Then for a section s ∈ Γ(E)
corresponding to the equivariant function f : P → V and ξ, η ∈ X(M), the section
R(ξ, η)(s) ∈ Γ(E) corresponds to the function 7→ Ω(ξh(u), ηh(u)) · f(u), where the dot
denotes the infinitesimal action of g on V .

Proof. By definition of the curvature of a linear connection, the function corre-
sponding to R(ξ, η)(s) is given by

ξh · (ηh · f)− ηh · (ξh · f)− [ξ, η]h · f = ([ξh, ηh]− [ξ, η]h) · f.
Since ξh is p–related to ξ and ηh is p–related to η, we have Tup · [ξh, ηh](u) = [ξ, η](u).
This shows that [ξh, ηh] − [ξ, η]h is a vertical vector field on P and since [ξ, η]h is hor-
izontal, it can be computed as the vertical projection of [ξh, ηh]. By definition of the
connection form, this equals ζγ([ξh,ηh]) · f and the infinitesimal version of equivariancy of

f says that in a point u ∈ P , this equals −[γ([ξh, ηh])(u), f(u)].
But since γ(ξh) = γ(ηh) = 0, we can compute γ([ξh, ηh]) as−dγ(ξh, ηh) = −Ω(ξh, ηh),

where we have used horizontality in the second equality once more. �
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Using the affine structures on the spaces of connections, one easily shows that any
linear connection ∇ on a vector bundle p : E → M is induced from a principal con-
nection on the frame bundle p : P → M of E (with structure group G = GL(n,R)).
Indeed, we can choose any principal connection on P , let γ̂ ∈ Ω1(P, g) be its connection

form and ∇̂ the induced linear connection on E = P ×G Rn. Then by Theorem 4.1,
A(ξ, s) := ∇̂ξs−∇ξs defines a smooth section A of the bundle T ∗M ⊗ L(E,E). Since
G = Gl(n,R), we get g = L(Rn,Rn) and hence L(E,E) = P ×G g. In Proposition 4.4,
we have seen that Γ(T ∗M ⊗ (P ×G g)) ∼= Ω1

hor(P, g), and we denote by Ã the one–form

corresponding to A. Again by Proposition 4.4 we know that γ := γ+ Ã is again a prin-
cipal connection form on P , and it is easy to verify that the linear connection induced
by γ coincides with ∇.

As discussed in Section 2, reductions of structure group of the frame bundle of
a vector bundle E can be interpreted as defining additional structures on E. Linear
connections on E induced from the resulting principal bundles can then be interpreted
as the linear connections on E which are compatible with the additional structures.
As the simplest example, consider the case of the frame bundle of a smooth manifold
M . Then a reduction of structure group to the orthogonal group is equivalent to a
Riemannian metric on M for which one obtains the orthonormal frame bundle. Now it
is easy to see that a linear connection on TM is induced by a principal connection on
the orthonormal frame bundle if and only if it is metric in the sense discussed in Section
4.2.

4.7. The case of homogeneous spaces. We first observe that there are simple
notions of invariance for connections. Let p : P → M be a principal fiber bundle and
F : P → P a principal bundle isomorphism (with any base map). Then equivariancy
of F readily implies that TuF · ζX(u) = ζZ(F (u)) for each X and u, so F ∗ζX = ζX .
For a principal connection form γ ∈ Ω1(P, g), this implies that (F ∗γ)(ζX) = ζX and
equivariancy of F and γ shows that F ∗γ is equivariant, too, so F ∗γ is a principal
connection form. In the language of horizontal distributions, this of course means
that TuF (Hu) = HF (u). In particular, having given a homogeneous space G/H and
a homogeneous principal bundle p : P → G/H, there is the notion of a G–invariant
principal connection on P .

In the case of linear connections, one can phrase things similarly, but for our purposes
it is easier to use the action of G on sections. Recall that for a homogeneous vector
bundle E = G×HV → G/H corresponding to a representation V of H, there is a natural
representation of G on the space Γ(E) of sections, see Section 3.3. This is defined by
(g · s)(g̃H) = g · (s(g−1g̃H)) and in the language of equivariant function corresponds to
(g ·f)(g̃) = f(g−1g). Since the tangent bundle T (G/H) is a homogeneous vector bundle,
too, we also have an action of g on vector fields. Now one calls a linear connection ∇
on E G–invariant if and only if for any g ∈ G, ξ ∈ X(G/H) and s ∈ Γ(E), we have
∇g·ξ(g · s) = g · (∇ξs).

The first result we discuss is the existence of an invariant principal connection on the
principal fiber bundle p : G→ G/H. In view of Theorems 3.3 and 4.6 such a connection
gives rise to linear connections on all homogeneous vector bundles over G/H, which are
compatible with all homomorphisms of homogeneous bundles.

Theorem 4.7. Let G be a Lie group and H ⊂ G a closed subgroup. Then G–
invariant principal connections on p : G → G/H are in bijective correspondence with
H–invariant linear subspaces m ⊂ g, which are complementary to h ⊂ g. In particular,
this always exists if H is compact.
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For a G–invariant principal connection on p : G→ H, the linear connections induced
on homogeneous vector bundles, are G–invariant, too, and they are compatible with all
homomorphisms of homogeneous vector bundles.

Proof. Of course, TeG = g and VeG = h ⊂ g, so for a principal connection on
p : G → G/H, the horizontal subspace He is a linear subspace of g which is comple-
mentary to h. Moreover, a linear subspace He ⊂ g uniquely extends to a G–invariant
distribution H ⊂ TG via Hg := Teλg(He). Since VgG = Teλg(h), we see that Hg is
always complementary to VgG, so we only have to analyze the condition that H defines
a principal connection.

This is clearly equivalent to Tgρ
h(Hg) = Hgh for all h ∈ H. Applied at g = e,

this says that Teρ
h(He) = Hh = Teλh(He) and bringing one of the translations to the

other side, we get Ad(h)(He) ⊂ He. Hence for a G–invariant connection, the subspace
m := He is H–invariant.

Conversely, suppose that He is H–invariant. Differentiating ρh ◦ λg = λgh conjh−1 at
e, we get Tgρ

h ◦ Teλg = Teλgh ◦ Ad(h−1). The image of He under the left hand side by
definition is Tgρ

h(Hg), while for the left hand side, invariance implies that we simply
get Hgh. Hence we obtain an invariant connection.

Invariance of the principal connection readily implies equivariancy of the horizontal
lift. For ξ ∈ X(G/H) let ξh ∈ X(G) be the horizontal lift. For g ∈ G we get Tg−1g̃λg ·
ξh(g−1g̃) ∈ Hgg̃ and projecting this tangent vector to G/H, we get Tg̃H`g · ξ(g−1g̃H) =
(g · ξ)(g̃H), so this describes the horizontal lift of (g · ξ). If f : G → V is a smooth
function, then we compute

(g · ξ)h · f(g−1g̃) = Tg−1g̃λg · ξh(g−1g̃) · f = (ξh · f)(g−1g̃),

which, for equivariant f , exactly is invariance of the induced linear connection on
E = G ×H V . The remaining claims then follows from the general results on induced
connections in Theorem 4.6. �

Having given an H–invariant complement m to h in g, one of course gets an isomor-
phism m ∼= g/h of H–modules. Hence the tangent bundle T (G/H) can be identified
with the associated bundle G×Hm. Moreover, we can restrict the Lie bracket on g to m,
and then decompose according to g = h⊕m to obtain H–equivariant, skew symmetric
bilinear maps [ , ]h : m × m → h and [ , ]m : m × m → m. It follows readily from
the definitions the the curvature of an invariant principal connection is an invariant
section of Λ2T ∗(G/H)⊗ (G×H h), so by Theorem 3.3, it corresponds to an H–invariant
element in Λ2m∗ ⊗ h. It is easy to verify directly, that this is exactly −[ , ]h. Likewise,
the torsion of the induced linear connection on T (G/H) is an invariant tensor field, thus
corresponding to an H–invariant element in Λ2m∗ ⊗ m. It turns out that this element
is exactly −[ , ]m.

Example 4.7. (1) Consider G = O(n+ 1) and H = O(n), so G/H ∼= Sn, compare
with example (1) of 3.4. There we have notices that g = h⊕ Rn as a representation of
H, so m = Rn is an H–invariant complement to h in g. In fact, it is easy to see that
this is the unique H–invariant complement as follows. Suppose that m′ ⊂ h ⊕ m is an
H–invariant complement, then the restriction to m′ of the second projection defines a
linear isomorphism m′ → m. Inverting this and composing with the restriction of the
first projection, we obtain a linear map m→ h, which by construction is H–equivariant.
But it is easy to see that there is no non–zero O(n)–equivariant map Rn → o(n).

It is also easy to see that in this case [m,m] ⊂ h, so the induced linear connection on
TSn is torsion free. Moreover, the G–invariant Riemannian metric on Sn is a natural
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section of S2T ∗Sn and hence parallel for the induced connection. Thus we obtain the
Levi–Civita connection of the round metric on Sn in this case.

(2) On the Sasaki sphere S2n+1 ∼= U(n+1)/U(n), we have also observed in Section 3.7
that we obtain an U(n)–invariant decomposition u(n+ 1) = u(n)⊕m with m ∼= Cn⊕R.
This again gives rise to an invariant principal connection on U(n + 1) → S2n+1, which
induces a linear connection on TS2n+1 which preserves the round metric on the sphere.
However, in this case, the restriction of the Lie bracket to m × m has a substantial
non–trivial part in m. Indeed, this vanishes on R×m and has values in R ⊂ m, but the
restriction to Cn × Cn is the imaginary part of the standard Hermitian inner product,
and thus non–degenerate. Hence we obtain a connection with torsion on TS2n+1, which
thus has to be different from the Levi–Civita connection.

This is not surprising, since the induced connection ∇ on TS2n+1 has to preserve
sections of the subbundle H ⊂ TS2n+1. For ξ, η ∈ Γ(H), we know that [ξ, η] /∈ Γ(H) in
general, since H is a contact distribution. But in such a case, ∇ξη − ∇ηξ ∈ Γ(H), so
the torsion cannot be trivial.

(3) It is easy to verify that in the case of the conformal sphere and the CR sphere
discussed in Example 3.8, there is no H–invariant complement to h in g, so there are
no G–invariant principal connections on G→ G/H in these cases.

4.8. Invariant linear connections. In the case that there is no invariant principal
connection on G→ G/H, one may still have invariant connections on some associated
vector bundles.

Theorem 4.8. Consider a Lie group G, a closed subgroup H ⊂ G and a repre-
sentation ρ : H → GL(V ) with derivative ρ′ : h → gl(V ). Then G–invariant linear
connections on the homogeneous vector bundle E := G×H V are in bijective correspon-
dence with H–equivariant maps α : g→ gl(V ) such that α|h = ρ′. Here H acts on g via
AdG and on gl(V ) via AdGL(V ) ◦ρ.

In particular, if non–empty, then the space of all G–invariant connections on E is
affine with modeling vector space HomH(g/h, gl(V )).

Proof. One can either prove this by passing through the frame bundle of E. This is
the associated bundle G×H GL(V ), where h ∈ H acts on GL(V ) via left multiplication
by ρ(h). The tangent space of this bundle in [e, idV ] is the quotient space of g× gl(V )
by the linear subspace {(X,−ρ′(X)) : X ∈ h}. The quotient projection restrict to an
injection on {0}×gl(V ) and the image of this subspace is the vertical subspace in [e, idV ].
Given a map α as in the theorem, one obtains an horizontal subspace as the image of
{(Y,−α(Y )) : Y ∈ g} in the quotient. This subspace is invariant under the action of H
given by Ad in the first component and AdGL(V ) ◦ρ in the second component.

Conversely, having given a horizontal subspace with this invariance property, we can
associate to Y ∈ g the horizontal projection of (Y, 0). This can be uniquely written as
the class of (Y,−α(Y )) for some linear map α : g → gl(V ) and one easily verifies that
this has the required property. The equivalence between horizontal subspace in [e, idV ]
with the given invariance property and G–invariant principal connections is then easily
verified directly.

Alternatively, there is a more direct description. Given anH–equivariant function f :
G→ V , consider the map ψ : G→ L(g, V ) defined by ψ̃(g)(X) = LX(g)·f+α(X)(f(g)).
Here LX denotes the left invariant vector field generated by X ∈ g. It is easy to verify
that this function is H–equivariant and equivariancy of f together with the properties
of α shows that ψ̃(g)(X) = 0 for X ∈ h. Therefore, ψ̃ descends to an H–equivariant
map G → L(g/h, V ), which corresponds to a smooth section of the bundle T ∗M ⊗ E.
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For the section s corresponding to f , on then defines ∇ξs as the evaluation of that
section on ξ. Again, this procedure can be reversed.

The affine structure is clear from the fact that the difference of two invariant linear
connections is an invariant tensorial object. �

Of course, the curvature of an invariant linear connection on E is a G–invariant
section of the bundle Λ2T ∗M ⊗L(E,E), thus corresponding to an H–equivariant, skew
symmetric bilinear map g/h× g/h→ gl(V ). Now assume that α : g→ gl(V ) is a map
as in Theorem 4.8, and consider the map (X, Y ) 7→ [α(X), α(Y )] − α([X, Y ]), where
the first bracket is in g and the second one in gl(V ). Then the infinitesimal version of
equivariancy of α is α ◦ ad(X) = ad(α(X)) ◦ α which shows that this descends to g/h.
It turns out that this descended map induces the curvature.

Likewise, taking ρ = Ad : H → GL(g/h) one gets E = TM , and then the torsion of
a G–invariant vector field is a G–invariant tensor field, hence corresponding to a skew
symmetric, bilinear map g/h × g/h → g/h. Given α : g → gl(g/h) as above, consider
the map g × g → g/h defined by (X, Y ) 7→ α(X)(Y + h) − α(Y )(X + h) − [X, Y ] + h.
Again this is easily seen to descend to g/h and it induces the torsion.

Finally, one can also describe the G–invariant linear connections induced by a G–
invariant principal connection on p : G → G/H in this picture. Given an H–invariant
decomposition g = h ⊕ m, we denote by πh the projection onto the first factor. Given
any representation ρ : H → GL(V ) with derivative ρ′ : h → gl(V ), we can define
α : g → gl(V ) by α := ρ′ ◦ πh. Of course, this coincides with ρ′ on h ⊂ g and is
H–equivariant by construction. It is easy to verify that this map α exactly corresponds
to the induced linear connection on G ×H V . This gives an alternative proof for the
description of the curvature and torsion of these induced linear connections from Section
4.7.
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