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PREFACE

Cartan geometry provides a uniform treatment of diverse geomet-
ric structures and in the case of parabolic geometries we even have an
equivalence of categories between manifolds endowed with the respec-
tive structure and the corresponding (regular, normal) Cartan geome-
tries.

In this text we will consider several homogeneous geometric spaces and
explicitly construct the corresponding (normalized) Cartan geometries.
In Chapter [[l we recall basic facts and notions of (principal) bundles.
In Chapter Pl we discuss the geometry of homogeneous spaces, introduce
homogeneous principal bundles and motivate the extension of Klein ge-
ometry to Cartan geometry.

In Chapter Bl we recall general facts of Cartan geometry, discuss in
particular how reductions of structure groups can be described as re-
ductive Cartan geometries and recall induced connections.

In Chapter Bl we discuss invariant connections on homogeneous prin-
cipal bundles: homogeneous principal connections and homogeneous
Cartan connections are classified, explicit formulas for the curvatures
derived and applications to invariant connections given.

In Chapter [l we treat homogeneous Riemannian spaces and derive the
Levi-Civita connection in this picture.

In Chapter [l we recall basic notions of parabolic geometries resp. their
underlying structures and discuss the relation of a parabolic geometry
with its induced infinitesimal flag structure in the homogeneous case.
In Chapter [l we show how a homogeneous conformal structure on a
manifold is prolonged to a parabolic geometry.

In Chapter B we introduce contact and CR structures and prolong a
family of CR structures on SU(Il + 2)/U(!) to Cartan geometries.






1. DIFFERENTIAL GEOMETRIC BACKGROUND ON BUNDLES

Here we recall basic facts about principal bundles and fix some no-
tations on the way. We mostly follow [9], where one can find more
details. In the following all manifolds and all maps between them are
smooth.

Definition 1.0.1. A fiber bundle with standard fiber S is a surjective
submersion £ % M such that for every x € M there is a neighbour-
hood U of z in M and a diffeomorphism ¢y : 7,/ (U) — U x S such
that 7y = pry o ¢y, where pry; : U x S is the projection to U.

FE is called total space and M is the base space.

(U, ¢u) is called a fiber bundle chart.

Thus all bundles we consider are locally trivial.
My

A morphism from a fiber bundle E; i M to a fiber bundle Fy —
My consists of maps f : Ey — FE, and f : My, — M, which satisfy
T, © f = fomy,. One says that f covers f. Equivalently we can say
that a morphism from F; to s is a map f : By — FE5 such that my, o f
factorizes to a map from M; to Ms.

We denote the sections of a fiber bundle £ — M by I'(E — M). The
fiber over a point x € M is written F,. The space of vector fields on a
manifold M will be denoted by X(M).

Observe that the transition function from a chart (Uy, ¢y,) to a chart
(Us, ¢u,), which is a diffeomorphism of U; N Uy x S, is of the form
(x,8) — (x,0(x,s)). An atlas of the fiber bundle F — M consists of a
family of fiber bundle charts (U,, ¢y,) such that U, cover M.

Now we introduce the notion of vector bundle. Consider a fiber bundle
E — M with standard fiber a vector bundle V. A fiber bundle atlas of
E — M whose transition functions are of the form (z,v) — (z,0(z)v),
where 6 is a map from U into GL(V), is called a vector bundle atlas.
Two vector bundle atlases are equivalent when their union is again a
vector bundle atlas.

Definition 1.0.2. A vector bundle is a fiber bundle £ — M with
standard fiber a vector space V together with an equivalence class of
vector bundle atlases.

Every fiber E, (for x € M) of a vector bundle (E — M, V) is (canon-
ically endowed with the structure of) a vector space which is isomorphic
(but not naturally so) to V.

A morphism from a vector bundle (E; — Mj, V}) to a vector bundle
(Ey — Ms,V3) is a morphism of fiber bundles (f : Fy — By, f: M; —
M) such that for every x € M; the map fg,, is linear.
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1.1. Principal bundles. Consider a fiber bundle G — M whose stan-
dard fiber is a Lie group P. A fiber bundle atlas of G whose transition
functions are of the form

(z,p) — (x,0(x)p)

for a (smooth) map 6 : Uy N Uy — P is called a principal bundle atlas
of (G — M, P). Two principal bundle atlases whose union is again a
principal bundle atlas are called equivalent.

Definition 1.1.1. A P-principal bundle is a fiber bundle (G — M, P)
together with an equivalence class of principal bundle atlases.

On a principal bundle (G — M, P) one has a natural right ac-
tion of P. In a principal bundle chart this right action is given by
(.T,p) 'p, = (l’,pp/).

Obviously the orbits of this action are exactly the fibers of the bundle
and in fact for every u € G the map p — u - p is an embedding of P
into G.

A morphism from a P-principal bundle G; — M to a P-principal bun-
dle Go — M is a morphism of fiber bundles (f : G; — gg,f My —
M,) such that f is P-equivariant, i.e., for every u €

Gz f(u-p)= f(u)-p.

More generally we can consider morphisms from a P;-principal bundle
G1 — M; to a P, principal bundle G, — M, when we have a homo-
morphism of Lie groups ¥ : P, — P,. Then we say that a morphism of
fiber bundles f : G; — G is a morphism between (Gy, P;) and (Gs, P,)
over W if f(u-p) = f(u)- - ¥(p) for all u € Gy,p € Py.

Let P’ < P be a Lie subgroup of P. A reduction of a principal bundle
G — M is a principal bundle G’ — M’ together with a morphism of
fiber bundles f : G’ — G covering the identity on M such that f is
P’-equivariant.

The most useful constructions one can do with a principal bundle are

1.1.1. Associated Bundles. Let (G — M, P) be some principal bundle
and S some manifold which is endowed with a left action of P. On
G x S we have a free action of P by

(U,S) P = (U 'pvp_l : S).
The orbits of this action are denoted
[[U, S]] = {(u 'pvp_l : 5)7p € P}

and regarded as equivalence classes.
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Theorem 1.1.2. GxpS is endowed with a unique structure of a smooth
manifold such that the natural surjection

QXSﬂgxpS,
(u, s) = [[u, s]]

18 a surjective submersion.
In fact (G x S % G xp S, P) is a P-principal bundle.
The natural surjection

GxpS— M,
[[u, s]] — ()

makes (G xp S — M, S) to a fiber bundle with standard fiber S.
There is a unique map

T:GXy(GxpS)— S
(where Xy is the fibered product) such that for my(u) = my(u')

[, (', [[w, s]D]] = [[u, s]]. (1)
Remark 1.1.3. Since
[up, T (up, [[u, s]])]] = [[u, s]]
by () and
([up, p~" - 7(u, [[u, s]]))]] = [[u, 7(u, [[u, s]])]

by definition of the equivalence relation on G x P we see that 7 satisfies

T(up, [[u, s]]) = p~" - 7(u, [[u, ]]) (2)
by uniqueness. g

Remark 1.1.4. When we have a representation ¥ : P — GL(V) of P
on a vector space V the associated bundle G xp V — M is a vector
bundle with modelling vector space V.

When ¥ : P — P’ is a homomorphism of Lie groups the associated
bundle G xp P’ — M is a P’-principal bundle over M, where the
P-principal action is given by

[[w, pl} - P" = [[u, pp']).

1.1.2. Factorizing equivariant maps and forms. Later we will often use
the following relations between functions and forms on the total- resp.
base- space of a principal bundle.

Here (G — M, P) is an arbitrary principal fiber bundle.
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Theorem 1.1.5. Let S be some manifold endowed with a left action
of P.

There is a 1:1-correspondence between P-equivariant maps f : G — S
and sections of G Xxp S — M.

Denote the set of all P-equivariant maps from G to S by C¥(G,S).
Then the bijection is: for a section

s: M — G xpS with mo s =1idyy;
the corresponding equivariant function f : G — S is given by

u— 7(u, s(mw(u))).

Proof. First consider a section s € I'(G xp S). We need to show that
u— 7(u, s(m(u)))
is P-equivariant. So take u € G,p € P. Then
7(up, s((up))) = 7(up, s(w(u)) = p~* - 7(u, s(7(u)))
by ().
Now we have to show how an equivariant f : G — S conversely de-

termines a section s : M — G xp S. But by equivariancy of f the
map

5:G—GxpS,
u— [[u, f(u)]]

is constant on the fibers of G. Thus it factorizes to a section M —
G xp S. That this section is really smooth simply follows from the
fact that G — M is a surjective submersion: this is equivalent to the
existence of smooth local sections o : M D U — G, by which one can
pullback § : G - GxpStos: =500 : M — G xpS. Since § is
constant on the fibers of G we see that s = 50 ¢ really doesn’t depend
on the particular local section o : U — G. [l

Now let V' be some finite dimensional vector space.

Definition 1.1.6. A V-valued ¢-form w on G is called horizontal if
w(Xy,...,Xy) =0 whenever some X; € VG ={X € TG : Tn(X) = 0}.

Denote by Qp(G, V)" the set of all P-equivariant, horizontal, V-
valued forms on G and by Q(M,G xp V) the set of all G x p V-valued
forms on M.

Theorem 1.1.7. A V-valued form ¢ on G factorizes to an G xp V-
valued form on M iff ¢ is horizontal and P-equivariant, i.e., if ¢ €
Qp(g’ V)hor_

Le., we have an isomorphism of vector spaces between Qp(G, V )er

and



Q(M, g Xp V)
Explicitly, for a ¢ € QY(M,G xp V) we define g% ¢ € Qp(G, V) by

G O(X1, ., Xp) = 7(u, p(Trn Xy, - T Xe))
for Xq,..., X, €T,G.
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2. INTRODUCTION TO KLEIN AND CARTAN GEOMETRIES

2.1. Homogeneous spaces. Define G/P := {gP,g € G}, the set of
all left cosets of P in G. G/P is called a homogeneous space and has a
unique smooth structure such that the natural surjection

G a/p
is a surjective submersion. (See for instance [9], Chapter II.) In fact,
G — G/ P is easily seen to be a P-principal bundle.

Additional structure on G — G/P comes from the left action: For
g € G we introduce the maps

)\g(gl) = ggla 5‘g(g/P) = gg,P

Obviously G acts thus on G/H by A and left-multiplication is a lift
of this action to an action of G on itself. Also, since left and right
multiplication commute, g € G acts thus by an automorphism of the
P-principal bundle G — G/ P covering 5\g. It is furthermore obvious,
that this action is transitive.

Thus we found the simplest example of a homogeneous principal
bundle:

Definition 2.1.1. Let H by a Lie group and K < H a closed subgroup.
A homogeneous P-principal bundle over H/K is a P-principal bundle
[N H/K together with a lift of the action of H on H/K to an
action on the principal bundle by automorphisms: we demand that for
alhe Hueg,pe P

i. w(h-u) = hm(u) and
ii. h-(u-p)=(h-u)-p.

Definition 2.1.2. Let G — H/K,Gy, — H/K be homogeneous P-
principal bundles. A map ® : G; — G is a homomorphism of homoge-
neous principal bundles if for all u € G; and p € P

L B(up) = D) - p
ii. ®(h-u)="h-d(u).

2.2. Klein Geometries or the Geometry of Homogeneous Spaces.
A pair (G, P) for a closed subgroup P < G, is called a Klein geome-
try. In the Klein geometric picture one regards the (left-)action of G
on G/P as automorphisms of a geometric structure, and G is the full
automorphism group.

Definition 2.2.1. A Klein geometry (G, P) is called reductive if there
is a P-invariant complement to p in g.i.e., if g = n@p as P-module for
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some vector-space-complement of p in g.
A Klein geometry (G, P) is called split if there is a complement of p in
g which is a Lie subalgebra.

The geometric study of the Klein geometry (G, P) means that we
find “invariants” of the G-action on the homogeneous space G/P.
We start by discussing invariant sections of appropriate (vector-) bun-
dles. We will be able to discuss some invariant differential operators,
namely connections on X(G/P), later in after having developed
the necessary background.

2.2.1. Homogeneous Bundles. In this section we follow [5]. Analo-
gously to LTl we introduce

Definition 2.2.2. A homogeneous fiber bundle over G/P is a fiber

bundle £ ™ G/P with standard fiber S together with a lift over my,
of the action of G on G/P to an action on E.

Definition 2.2.3. A homogeneous vector bundle over G/P is a vector

bundle £ ™ G/P with standard fiber a vector space V together with
a lift over my; of the action of G on G/P to an action on E by vector
bundle-automorphisms.

Like above for homogeneous principal bundles the morphisms of ho-
mogeneous fiber- resp. vector- bundles are morphisms of fiber- resp.
vector bundles which are also G-equivariant.

Theorem 2.2.4. Let E — G/P be a homogeneous fiber bundle with
standard fiber S. Then there is a left action of P on S such that
E — G/P is isomorphic to G xp S — G/P.

Proof. We give a brief sketch of the proof.

Since the restriction of the action to P lets o = P € G/P invariant
the fiber over o is invariant as well. But F, may be identified with S
and one thus obtains an action of P on S.

One has an obvious left action by G on {[[g, s]]} by ¢ - [lg,s]] =
[[¢'g, s]], and this is a lift of the action of G on G/P.

Now one completes the proof by verifying that the map
G Xp S — E,
g, 8]l —g-s

is a G-equivariant diffeomorphism covering the identity. O

For the special case of homogeneous vector bundles one has
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Theorem 2.2.5. Let E — G/P be a homogeneous vector bundle with
standard fiber V.. Then there is a representation of P on V' such that
(FE—G/P,V)=(GxpV —G/P,V).

Note that the general frame bundle GL'(E) of G xp V — G/P is
G xp GL(V) — G/P.

For the case of homogeneous principal bundles one has

Theorem 2.2.6. Let G — H/K be homogeneous P-principal bundle
over M = H/K and ug € G, some arbitrary point in the fiber over
o=KeM.

0.

0.

100

There is a unique homomorphism of Lie groups ¥ : K — P such
that

}IXKPHQ7
([, pl] = b~ (uo - p)

s an isomorphism of homogeneous principal bundles.
For ujy = ug - py the corresponding homomorphism is

¥’ = conj,,-1 0 V.

The isomorphism classes of homogeneous P-principal bundles over
H/K are the Ny(K) x P-conjugacy-classes of Hom(K, P): given
Uy, ¥y € Hom(K, P), the associated homogeneous principal bun-
dles are isomorphic iff there is an element hg in the normal-
isator Ng(H) of K in H and an element py in P such that
\IIQOconjha1 = conj,, o Vy,or equivalently, ¥ = conj, oWjoconj, .

Proof. i. Since the action of H on H/K lifts to an action on G we

see that its restriction to K leaves G, invariant, it commutes with
the right-action of P. Now the map p — ug - p embeds P into G
as G,, in particular, every element in G, my be uniquely written
as ug - p. Therefore the action by K on G, is already determined
by its action on wu,.: We have a map ¥ : K — P such that
k-uy = ug-V(k). Now, given k € K and p € P = G, we have
k-(ug-p)=(k-ug) -p=(up-V(k)) p=up-(V(k)p). And it is

easy to see that W is in fact a homomorphism of Lie groups:
ug - W(kK') = (kk') -ug =k - (K - up)

k- (ug- Psi(k')) = (k- ug) - V(K

ug - U(k)) - W(K') = ug - (W(k)U(K)).

Now one describes G as an associated (principal) bundle of H:
We show that G = H Xy P as homogeneous P-principal bundles.
We already remarked in [LT4 that H x¢ P naturally carries the
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structure of a P-principal-bundle:

(7] - 0" = [[h, o]

It is also clear that it is homogeneous in the sense of T Tkthe lift
of the action of H on H/K to an action on H X P is given by

- ([h, pl] = [[W'R, pl].
Now the map
HxgP— G,
(7, pl} = B~ (uo - p)

covers the identity on H/K and is both H- and P-equivariant.
Thus it is already an isomorphism of homogeneous principal bun-
dles.

What happens when we start with another point u(, = ug-py € P?
Then

ug - V(k)=k-uy =
= k- (ug - po) = o - (W(k)po) = ug - (po " ¥ (k)po).

Thus W' = conj, -1 o V.

We know that every homogeneous P—principal fiber bundle over
H/K is isomorphic to H xgy P — H for a homomorphism U :
K — P. Given two homomorphisms ¥, ¥y : K — P, when is
there an isomorphism

(I)ZHX\IJIP—>HX\1;2P?

Take an arbitrary representative (hg,po) of ®([[e, €]]w,). Since ®
commutes with the actions of 4 and P

([[h, pllw,) = @(h[[e, e]lw,p) = h[[ho, po]lw,p
= [[hho, pop]]w,-

Since [[e, €]y, = [[k, U1 (k™)]]w,

[[hOvaH‘I’Q = (I)(He7 e]]\lfl) =
O([[k, U1 (k™ )]w,) = [[kho, poW1(E™H)]]w,)-

So there is a k such that
(hol;, \112(];7_1)170) = (k:h07p0\111(k_1));

We see k = hy'kho and Wa(hg k=t ho) = oW1 (k1 )py
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So we described an arbitrary homogeneous P-principal bundle as a
quotient of the trivial bundle H x P. We have a K-principal bundle
whose base is a P-principal bundle:

HxP-——K

|

Hxg P<—P

|

H/K

2.2.2. Invariant Sections of Homogeneous Vector Bundles. Take some
vector space V' and a representation of P on V| i.e., the data defining
a homogeneous vector bundle of G/P. Then we ask whether there are
sections s : G/P — G xp V which are invariant under the action of G,
ie.

s(g'gP) =g - s(gP).
Given such an invariant section s it is obviously already completely
determined by its value at o = P € G/ P since then at g P by invariance
s(gP) = g - s(o). But by invariance under P it is necessary that for
peP
p-s(0) = s(0). (3)
Let s(0) be [[e, vg]]. Then (@) reads as

[[e; wo]] = s(0) = p - 5(0) = [[p, wo]] = [le, - vol]
which is equivalent to p - vy = vg; i.e.: vy is invariant under P.
Since one can conversely construct a (unique) invariant section s which
is given by [[e, vo]] at o we have shown

Theorem 2.2.7. G-invariant sections of the vector bundle (GxpV —
G/P,V) are in 1:1-correspondence with P-invariant elements of V.

(One can also employ Theorem to show this fact: sections of
G xpV — G/P correspond to P-equivariant functions from G to V;
now invariance of a section is easily seen to be equivalent to the cor-
responding function to be constant, and thus the criteria that it is
P-invariant simply means that its value is P-invariant.)

Ezxample 2.2.8. Consider some representation U : P — GL(V) Then
for i, € Ny

THGxpV):=(&'(GxpV)) @ (&(GxpV)) =
=G xp (V)@ (&V) =G xp TV
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and thus G-invariant (7, j)-tensors on the vector bundle G xp V —
G/ P are in 1:1-correspondence with P-invariant elements of (®iV*) ®

(®jV). g
Example 2.2.9. Since
T(G/K) =G xpg/p,

it follows from the previous example that invariant (pseudo-) Riemann-
ian metrics on G/ P are P-invariant (pseudo-) inner products (5 on g/p.
Every such # endows g/p with the structure of a euclidean space and
since ( is invariant under P we have in fact that ¥ : P — V has values
in O(V, ).

We can thus reduce the general frame bundle of this vector bundle to
the orthogonal frame bundle

G Xp O(VV,B)

2.3. From Klein to Cartan. When studying the geometry of homo-
geneous spaces one regards GG as the automorphism group of some geo-
metric structure on G/P. InZIl we already noted that (G — G/P, P)
is a P-principal bundle.

So far the choice of automorphism-group is a bit arbitrary and rather
extrinsic since not every principal-bundle automorphism of G — G/P
is a left-multiplication. We want to get intrinsic geometrical data of
the P-principal bundle (G — G/P, P):

2.3.1. Encoding the geometry as an explicit structure on the bundle.
What we want to do is to encode the (Klein-) geometric structure
into a form on G: i.e.: a form w on G such that those principal-bundle
automorphisms of G — G/ P which preserve this form are really exactly
left multiplications by elements in G. Once we have done this, we have
thus described the (Klein-) geometric structure on G/P by this form,
and this description of the structure as (G — G/P,w) we will then
generalize from homogeneous spaces G/ P to arbitrary spaces.

2.3.2. The Maurer-Cartan form. The answer to our problem is the
Maurer-Cartan form w™¢, which is a way to write the left-trivialization:

WwMT N X) := X or
wM(&) = (ToAn) & = Thdn-1&h.

So wM? is an g-valued 1-form on G, or wM¢ € QY(G, g). When we view
it as a diffeomorphism of T'G with G x b it is simply left-trivialization.
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Theorem 2.3.1. Consider a Klein geometry (G, P) with connected
G/P.
An automorphism ¥ of the P-principal bundle G — G/P preserves
wMC e,

\I/*wMC — wMC (4)

iff U is left-multiplication by some g € G.

Proof. In the following w = wM®. First take some ¢’ € G. We show
that A\j,w = w: This is equivalent to

wyg(TyAg€y) = we(&y)
for £, € TG,. By definition of w
wyg(TyAgy) = (T)‘gg/rng)‘g/gg-
Since Ayy = Ay 0 A\, we have )\g_,; = A;l o )\g_,l and thus
(TAgg) " Tyhg = TyAy ' (Tyghg ) ' Tyhgy = Ty,
Thus indeed
wyg(TyAgy) = Tg)‘g_lfg = Wy.
Now conversely consider an automorphism v of the P-principal bundle

G — P which satisfies ). For X € g and g € G we define Lx(g) :=
TN X, 1e., Ly is the unique left-invariant vector field with Lx (e) = X.

Now (Hl)
Wy (g) (TQ\II(Te)‘gX)) = Wg(Te)‘gX) = X,
reads

T,WLx(g) = Lx(¥(g)),

which just says that Ly is related to itself by W. Thus it follows for
the flow of Ly that

W(FI*(g)) = FL* (¥ (g)). ()

But F1/¥(g) = gexp(tX), and thus (@) is equivalent to
W(gexp(tX)) = ¥(g) exp(tX).

Every element of the identity component G, of G may be written
exp(Xy) - - -exp(Xy), and thus for gy € G,¢' € G, V(g19) = V(g1)g'
Since ¥ is assumed to be an automorphism of the P-principal bundle
G — G/P it is P-equivariant.
But that G/P is connected is equivalent to P intersecting every con-
nected component of GG, and thus every element g of G may be written

g = ¢'p’ with some ¢ € G,,p’ € P. Thus ¥(g19) = ¥(g1)g, and thus
one has
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i.e., ¥ is simply left-multiplication by ¥(e) € G. O

Thus the Maurer-Cartan-form solves our problem of describing the
(Klein geometric) automorphism group G intrinsically: The automor-
phisms of a Klein geometry ((G, P),w™) are the principal-bundle au-
tomorphisms of G — G/P which preserve w?¢
Our next aim is to generalize the Klein geometric notion of geomet-
ric structure to general, not necessarily homogeneous, manifolds. For
this we want to find properties of w™¢ € Q(G, g) as strong as possi-
ble which still make sense in the general setting. Writing M = G/P,
G =G, w=wM these properties are

i. w is P-equivariant
ii. w(%ltzou exp(tX)) =X forallue g, X €p
iii. w, : T,G — g is an isomorphism for all u € G.

Now we use these properties to generalize Klein geometries to

2.4. Cartan Geometries.

Definition 2.4.1. A P-principal bundle G — M together with a form
w € NG, g) is called a Cartan geometry of type (G, P) if w satisfies
@),([@) and (). w is called a Cartan connection.

Definition 2.4.2. Let (G; — Mj,w) and (Go — Ms,ws) be Cartan
geometries of type (G, P). A morphism of Cartan geometries of type
(G, P) from (G — M;,w;) to (Go — Ms,ws) is a morphism of principal
bundles which pulls back ws to w;.

We will regard a Cartan geometry of type (G, P) to be modeled on
the Klein geometry (G, P), and we call (G, P) equipped with w™¢ the
homogeneous model of Cartan geometries of type (G, P).

If w = wM® is the Maurer-Cartan form on G it is well known that it
satisfies the Maurer-Cartan-equation

dw(&,m) + [w(§), w(n)] = 0.

Definition 2.4.3. The curvature K € Q?(G, g) of a Cartan geometry
(G — M,w) of type (G, P) is the failure of w to satisfy the Maurer-
Cartan-equation:

K(&,m) = dw(&,n) + [w(&),w(n)].

The picture that a Cartan geometry of type (G, P) is a ’curved anal-
ogon’ of the Klein geometry (G, P) is based on the following

Theorem 2.4.4. A Cartan geometry (G — M,w) is locally isomorphic
(as Cartan geometry) to the homogeneous model (G — G/P,wM) iff
its curvature vanishes.
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(For a proof see for instance [5] or [12]).

2.5. The general setting of this text. There are two general geo-
metric problems related to Cartan geometries: First: Interpret the
geometric structure described by a Cartan connection. and Second:
Given some geometric structure on a manifold M, can one prolong it
(uniquely) to a Cartan geometry?

We will mostly be concerned with the problem of prolonging a given
geometric structure to a Cartan geometry. This we will do for cases of
homogeneous Cartan geometries:

Definition 2.5.1. Let M = H/K be a homogeneous space. We
define the notion of a homogeneous Cartan geometry on H/K: Let
(G — H/K,w) be a Cartan geometry (of some type (G, P)) on the
homogeneous space H/K. It is called homogeneous if H acts on G by
automorphisms Ay, of the Cartan geometry (G — H/K,w) which cover
A

In this simpler setting we will be able to explicitly describe several
prolongations.
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3. SOME BACKGROUND ON PRINCIPAL AND CARTAN
CONNECTIONS

3.1. Principal connections. Let 7, : P — M be a P-principal bun-
dle and denote the principal right action of an element p € P on P by
r?; e rP(u) = uw-p for u € P. The fundamental vector fields on P
are

d
Cy(u) == %\t:ou -exp(tY)

for Y € p.

Definition 3.1.1. A p-valued 1 form v on P is called a principal con-
nection on P if the following two conditions hold:

i (rf)y=Ad(p~") o

ii. 7(%|t:0u ~exp(tX)) = X for all w € P and X € p.

L.e.: v is P-equivariant and reproduces the generators of fundamen-
tal vector fields.
The kernel of a principal connection v € Q(P,p) is a smooth subbun-
dle of TP, called the horizontal bundle HP. HP is complementary
to the wvertical bundle VP = ker T'my and both subbundles are P-
invariant.
By definition, ker T,,my, = V'P,, thus T, 7, is an isomorphism of HP,
with T, (M. This allows us to lift vector fields { on M uniquely to
horizontal fields £"" on P.
For a principal connection we have a natural notion of curvature,
namely the failure of the horizontal bundle to be integrable; this we
encode in the principal curvature form

p(§7 77) = _7([§hor7 nhor]) for 5777 € %<P)

where subscripts denote projections to the respective subbundles.
p is in fact a two-form; take u € P: that p,(£,n) really depends only
on &(u),n(u) is equivalent for the map

X(P) x X(P) — »p,
§n—y(€m)

&,n— v(&n) to be linear not only over R, but also over C*°(P). For
this, take a f € C(P); note that (fn)ror = f(1)ner since horizontal
projection is algebraic and thus

[ghora f/r/hor] = f[ghora 77/7,07"] + (ghor : f)nhm"'

But the latter term is horizontal, and thus lies in the kernel of ~.
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By definition,
p<§7 77) = d7(£ - Cv(ﬁ)v n-— Cw(n))'

Lets calculate dy(Cy, &) for Y in p. For this, note that FI& (u) =
uexp(tY). So

(ECYV)(&J = dt\t 0’}/<TF]§Y§U) =

d d
= aht:o,y(f_z"rexp tY)fu) = @‘t:OAd(eXp(_tY))'Y(Su) —
= —ad(Y)y(&u).

But since also Lovy = icvdy + d(v(¢(Y))) = dy(Cy,-) + 0, we have
dy(Cy, &) = =7 (Y),v(&)]. Therefore

d’7<§_<'y TI—ny )Z
= dy(&§,n) — dv(Cye)sm) + dY(Gmys §) + dv(Ce) Gy )
= dv(&§n) + [Y( )] = [v(), v(E)] = [v(E), v(m)] = dv(§;m) + [v(€), v(n)].

So
p(&,n) = dy(&n) + v (), v(n)].

3.2. Induced linear connections. Let ® : P — GL(V) be a rep-
resentation of P on V. Then we can construct the associated vector
bundle P x p V. We induce a linear connection (a covariant derivative)
on PxpV: given a vector fields £ € X(M) and a section s € ['(PxpV),
let g be the P-equivariant function from P — V' corresponding to s;
then we define the section V¢n of P xp V' as the section corresponding
to the P-equivariant function £797- ¢. It’s easy to check that this defines
indeed a linear connection.

In fact one automatically has a linear connection on every tensor power
of Px pV in the same way: for some section s € I'(Pxp(@'V*)®(®V))
take the corresponding P-invariant function f: P — (®'V*) @ (&7V).
Then Vs is the section of P Xp (®'V*) ® (V) corresponding to
fhor . f

Lets calculate the curvature of the induced connection: Take &1 €

X(M) and ¢ € I'(P xp V). Then the curvature of V is defined as
R(&n)¢ = VeVy( =V Ve = Vig Q.

R is skew-symmetric, bilinear and has values in End(P xp V); ie.,
R € Q*(P xp V,End(P xp V)). It is the failure of the map £ — V,
from X(M) — End(I'(PxpV)) to be a homomorphism of Lie-Algebras.
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Lets calculate it: let g be the function P — V corresponding to (; then
R(&,1)C corresponds to

fhor . (nhor . g) o 77hor . (ghor . g> o [f’n]hor g = [é:hm"7 nhor]vert g =

= —(y(ehor grory - g = P (p(€"", ")) 0 g.
Thus

R(&,m)¢ = @' (p(&" "))

But p is horizontal, thus one may take arbitrary lifts; and since it is
also P-equivariant we have

®’ o p induces R.

Especially, for injective ®’, flatness of the induced linear connection is
equivalent to flatness of the principal connection.

3.3. Reductive Cartan geometries. Let (G — M,w) be a Cartan
geometry of type (G, P), with g = n®p as P-module. To u € G we as-
sociate the isomorphism ©(u) := T, wo (u)u)‘;1 :n— T M. We have
wup(Tur?(€,)) = Ad(p~)wu(&,) by equivariancy of w. Thus, for X €
n, w(X) = TyrPw, ' (Ad(p)X). Since %lt:oﬁ(c(t)p) = %lt:ow(c(t)),
Tupm o Tr? = T,m. Thus ©(up) = O(u) o Ad(p). Therefore the map
(u, X) — O(u) X
gxn—TM

factorizes to an isomorphism G xXp n = T M. This shows that a reduc-
tive Cartan geometry of type (G, P) over M is a Cartan connection on
a reduction of structure group of TM to P. By composing w with the
projection to p we get a principal connection v = w, on the reduction
of structure group G — M. The projection of w to n is the soldering
form 0 = w,,.

Now ~ induces a linear connection on T'M. From above we know that
the curvature of the induced linear connection is p € Q*(M, End(TM)).
From above we know that p(£,n) = dy(&,n)+[(£), v(n)]; Now K (£, 1), =
dy(&,m) + [v(€), v(m)] + [0(£), 0(n)]p; Thus

(&) = K (& n)p — [0(S), 0(n)]p-

Since this is a linear connection on T'M itself, we also have the notion
of torsion: It is defined by

T e N*(TM*)®TM,
T(&,n) = Ven — V6 = €],

where £, € I'(T'M). To calculate it we first note that the function
f G — n which corresponds to a vector field & on M is given by
0 o ¢hor. For equivariance of f note that 6(£"" (up)) = O(T,rPEhor) =
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Ad(p~H)0(£""(u)),where we first used invariance of the horizontal sub-
bundle and then equivariance of #. That f induces £ follows directly
from the definition of the isomorphism G xp n = TM: it is induced
by (u, X) = Tup w (X)), so (u,0(§""(u))) — Tup w1 (0(£"" (u))) =
Tymyr €M7 (u) = &(mpr(u)). Now let f,g : G — n be the functions
corresponding to £ respectively 1. Then the function corresponding to
T(&,m) is
g =" f = 0([&,m)"")

Note that 0([¢, n)"") = §([¢"", n**"]), since both arguments of 6 project

to [£,n] and thus only differ by a vertical field. But so by definition of
the exterior derivative

ghor . 9<nhor> —n- 9<§hor> . 9([517,07"7 nhor]) —
= (™", ") = dO(E = Cye) = Cy) =
= df(&, ) — db(Cye),m) + dO(Cym) €);

Now

d9(Cyie),m) = Sy -1 — 0= 0([Gye0, ])-
By equivariancy L¢_ 0 = —ad,)of. But since also L 0 = i¢ ., df+0
we see df(Cy(¢),n) = —[(¢), n]. Thus

do(&", ") = do(&, n) + [1(€), 0(n)] — [v(n), 0(€)] = K (& n)n — [0(), ()]

So the failure of the induced linear connection on T'M to be torsion
free is

T(g, 77) = K(g, 77)11 - [0(5), e(n)]n

Theorem 3.3.1. Let (G — M,w) be a reductive Cartan geometry of
type (G, P), where g =n @ p as K-module and w = 0 & v = w, S wy.
Then

i. G — M s a reduction of structure group of TM to P for which 6
1s the soldering form.
1. vy 18 a principal connection with principal curvature form

(&) = K (& n)p — [0(5), 0()]p-

iti. The curvature of the induced linear connection on T'M is obtained

by factorizing
R=ado P
and
w. The torsion of the induced connection on T'M s obtained by fac-
torizing

T(g, 77) = K(g, 77)11 - [0(5), e(n)]n

Before we discuss an exemplary situation we briefly discuss
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3.3.1. Affine extensions of linear automorphisms. Given a vector space
V and a subgroup P of GL(V) we have the standard representation
® of P on the abelian Lie Group V. Thus we can extend P affinely
to the semidirect product V x¢ P (or V X,¢r P), where the com-
position is given by (v,p)(v',p') = (v + ®(p)v',pp’). Of course this
is the composition of (v,p) and (v/,p') regarded as affine maps from

V +— V, where (v,p) corresponds to the map = — px + v. The inverse
of (v,p) is (—p~'v,p~") and we see conj, ) (v') = (v, p) (v, €)(v,p) ' =

(v+pv',p)(—=ptv,p7t) = (v+pv' —pp~tu,e) = (pv',e) € V<(V x P).

conj, ) ((exp(tX),exp(tY))) =
= (v,p)(tX,exp(tY))(v,p) " = (v + tpX, pexp(tY))(—p 'v,p~ ') =
= (v+tpX —pexp(tY )p~'v, pexp(tY)p ")

Ad((v,p))(X,Y) =

= %toconj(u,m((exp(tX ),exp(tY)) = (pX — (Ad(p)Y)v, Ad(p)Y),

and

([(X5 Y1), (X, Y)] = ad((X", V) (X, Y) =

_ %tZOAd((tX’, exp(tY”)))(X,Y) =

= %to(exp(tY’)X — (Ad(exp(tY")Y)tX', Ad(exp(tY"))Y) =
= (Y/X -YX', [Y’, Y]),

ie.
[(X7 Y)? (Xla Y/)] = (YX, -Y'X, D/v Y,])
All of the above works identically for coverings P of a virtual subgroup

of GL(V).

Example 3.3.2. It G — M is a P-principal bundle describing a reduction
of structure group of TM to P by a soldering form 6 : G — n (,where
n is some modeling vector space), we can affinely extend p to n x p
(see B3] above), and any principal connection v on G puts us into
the situation of theorem B3l with w = 6§ @ . Since n is abelian, the
curvature and torsion of the induced linear connection correspond to
the p, respectively n,-parts of the curvature of w. g

Example 3.3.3. Take a reductive Klein geometry: that is, Lie Groups G
and P < G, such that p has a P-invariant complement n, i.e. g =n®dp
as P-module. Then the Maurer-Cartan-form w™¢ is a Cartan connec-

tion on GG, and by the Maurer-Cartan equation this Cartan geometry
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is flat. Thus by theorem B3] we have: at o = P € G/P the curvature
of the induced linear connection on TH/K is
0 x 1 — gl(p),
(X,Y) = —ad([X, Y],
and its torsion is
nxn—n,
(X,Y) > —[X, Y]

|

In the special case of homogeneous spaces H/K we will explicitly
calculate R and T also in the situation of the first example. (See

Corollary EEZ41)
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4. CONNECTIONS ON HOMOGENEOUS PRINCIPAL BUNDLES

We describe invariant principal and Cartan- connections on homo-
geneous principal bundles. As an application we will get a complete
description of invariant connections on homogeneous vector bundles in
section

4.1. Invariant principal connections. Now we ask what invariant
principal connections on H X x P — H/K look like: let y be a principal
connection form on H xx P — H/K which is invariant under the
action of H. We lift v to a one form 4 on H x P by <(h(t), p(t)) —
Y(L[[h(t),p(®)]]). (Le., when one denotes the natural surjection from
H x P to H xgx P by q, ¥ = ¢*v, the pullback of v under ¢). We
have 3(<(h,p) exp(tY) = v(%[[h,p]]exp(tY)) =Y, so 4 reproduces
fundamental vector fields. Since

SR, p(0F) = (o [h(2). D)) =

= A B, p(]) = AdG A (), p(0)

it is also p-equivariant, which shows that it is a principal connection on
H x P — H. H-invariance is shown analogously. So % is an invariant
principal connection on H x P. We left trivialize

T(HxP)=HXxPxbhxp.

Since 4 reproduces fundamental vector fields (h,p,0,Y) — Y. By
H-invariance 4(h, p, X,0) = (e, p, X,0). We have

(6,0, X,0) = (S {fexp(tX),pl)) = Ad(p™ (- {[exp(tX), e]]) =

— A (e e, X, 0).

So, 7 is given by
(h,p, X,Y) — Ad(p~)a(X) +V

where a(X) = j(e,e, X,0). In fact, for any linear a : h — p this
formula defines an invariant principal connection on the trivial bundle
H x P — H, and any such connection is of this form. However, for
arbitrary « the resulting connection need not factorize to H x g P.
But recall from [T that the form 4 factorizes over the K-principal
bundle H x P — H x g K iff 4 is horizontal and K-invariant, which
means that for Z € € and X € hh we must have

’3/(6,6, Z, _\II,(Z)) = Oé(Z) — \D,(Z) =0
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and
a(X) =A(e,e, X,0) = Ale, e, X,0) - k =
Ak, U (k™), Ad(E™ 1 X, 0) = Ad(V(k))a(T(E~HX).

So « : h — p must be a K-equivariant extension of W' : ¢ — p. Lets
calculate the curvature form of the principal connection 7. It’s defined
by

pu(X7 Y) = _f}/([fhom nhor]>7

where &, and 7y, are the horizontal projections of arbitrary vector
fields £, € X(H x gk P) which extend X, and Y,,.

The left action of H on H/K gives vector fields Ry (hK) = 4 exp(tX)hK
for X € . They are related to the fields R)g(h,p) = (h,p, Ad(h™1)X,0)
on T(H x P). The horizontal projection Hx of Ry is related to

Hy = (h,p) = (b, p, Ad(h™)X, —Ad(p™)a(Ad(h ™)) X)).
By definition of the principal curvature form
p(RX’ RX’) = _7([HX7 HY])

Since [Hx, Hy] is related to [Hy, Hy| we have v([Hx, Hy]) = 4([Hx, Hy)).
But to we can take arbitrary horizontal fields which coincide with Hx
and Hy at (e, e) to calculate p(Hx (e, e), Hy (e, e)), we better take fields

of the form

Hx(h,p) = (h,p, X, =Ad(p")a(X)).
We see [Hy, Hy](e, ) = (e, e, [X, Y], —[a(X), a(Y)]), so
P[[e@ﬂ(ﬁx, HY) = ﬁ(e,e)(HXyHY) =
= e ([Hx, Hy]) = [a(X), a(Y)] — a([X, Y]).

Since p is horizontal and P-equivariant it factorizes to a (invariant)
G xp p-valued 2-form p on H/K. Over o = K € H/K we have a
distinguished point in G,, namely [[e, e]], and thus we may regard p, as
an element of A%(h/€* p). It is given by

Po(X +8Y +8) = [a(X),a(Y)] — a([X,Y])).

We proved

Theorem 4.1.1. (1) Invariant principal connections on H X i P —

H/K are in 1:1-correspondence with invariant principal connections on
H x P — H of the form

A(h,p, X,Y) = Ad(p™ )a(X) +Y
where a1 h — p is a K-equivariant extension of W' : ¢ — p, i.e.,

i. a(Z)=V'(Z) for Z € &,
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it. o Ad(k) = Ad(¥(k)) o a.

If there is such a connection, the resulting space of connections is affine

and modeled on Homg (h/€,p).

(2) The curvature of such a connection is the failure of a to be a
homomorphism of Lie algebras. The curvature form p is invariant and
P-equivariant.

It factorizes to an invariant, G X p p-valued 2-form p on H/K. At
o=K € H/K it is given by

Po(X1 + € Xz +8) = [a(X1), a(X2)] — ([ X7, X3]).

4.1.1. Transformation of connections under isomorphisms. Given a con-
nection on H xx P — H/K, how does it transform under an isomor-
phism? We know from above that the isomorphism is given by a map
(h,p) — (hho, pop), for some pg € P and hg € Ng(K). On the tangent
bundle (h, p, X,Y) +— (hho, pop, Ad(hy ") X, Y), and thus, if the connec-
tion is induced by « : h — p, the pullback of this connection over the
isomorphism at the identity is (e, e, X,Y) = (ho, po, Ad(hy ') X,Y) —
Ad(pyHa(Ad(hy')X)+Y; ie, the pullback of a is Ad(py ' )ocvoAd(hy ).

4.1.2. Invariant connections on homogeneous vector bundles. As we
saw in Theorem every homogeneous vector bundle F with mod-
eling vector space V over H/K is of the form H xx V — H/K for a
representation ¥ : K — GL(V).

Then the frame bundle of H xx V — H/K is H xx GL(V) — H/K.
Recall from B2 that every principal connection on H X g GL(V') induces
a linear connection on H Xx V' in the following way: for £ € X(M),
s € T(H xx V), take the horizontal lift £ and the K-equivariant func-
tion f : H — V corresponding to s. (For this correspondence see
Theorem [CTH) Then Vs corresponds to the function é - f.

Now it’s easy to see

Lemma 4.1.2. For an invariant principal connection v on H X g P and
a representation of K on V' the induced linear connection on H Xx V'
18 tnvariant:

(Any)'V = V. (6)

Proof. We check that then (A\n,)*V = V for hy € H. Since s(hK) =
(7, £ ()]
(Ano)*s(hK) = Angs(hy 'hK) =
Anollho h, £(hg "W} = [[A, f o Aya]].
Thus the function correspondmg to (Ap)*s is f o )\h_ Now take c(t)
with £ c(t) = £(hg h), L K = €(e(0)K) and 7 (2 ,_c(t)) —

at |t=0°¢ : E|t 0¢ ot
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0, which is horizontality. By invariance of the horizontal bundle (or in-

variance of 7), also %‘ +_oloc(t) is horizontal. Therefore, since %I _ohoc(t) K =

(Ano)*€(h), the horizontal lift of (A, )*€ is )\;‘mé. Now
(Nio€(R) - (f o Nys1)(h) =

d . _ _
- &%u:of<h° hoc(t)) = ggﬁzof(CUJ)——

— (€ N)(hg"h) = (€- 1) 0 A1 (D)

this can be rewritten

V (ang)7e(Ano)™s = (Ang)"(Ves),
which is (5. O

Now, if the representation is infinitesimally injective, all linear con-
nections are induced by principal connections on the frame bundle. So
Theorem EET Tl tells us that for injective W’ invariant linear connections
on H xxV — H/K are in 1:1-correspondence with K-equivariant lin-
ear maps « from h — gl(V) which extend V. And in this case (as
we saw in section BJl) the resulting linear connection is flat iff the cor-
responding principal connection ~ is flat; and from theorem EETT] we
know that this is the case iff a : h — gl(h) is a homomorphism of Lie
algebras.

If the vector bundle is endowed with some additional (H-invariant)
structure we can ask for special (invariant) connections compatible with
this structure:

Namely, take some invariant (i, j)-tensor © on H x V' — H/K; then,
as discussed in example the tensor © is induced by a (unique)
K-invariant 6 € (®'V*) @ (&7V).

From our discussion above we know that every invariant linear connec-
tion on H xx V — H/K is induced by a K-equivariant extension of
Ut — gl(V) to amap bh — gl(V).

Now we ask for which « the resulting linear connection satisfies

Vo =0.
Now © corresponds to the function
H xx GL(V) = T}V,
([, g]] = g0
This function lifts to
fHXxGL(V)—=T;V,h,g— g '0.

Now take the horizontal vector (e,e, X, —«a(X)) € T(H x GL(V)).
Then (e,e, X, —a(X)) - f = —a(X)f. Thus we see that VO = 0 iff
a : b — gl(V) has in fact values in the Lie algebra p of P, where



29

P = GL(V)y is the isotropy group of # for the action of GL(V) on
TV.
j

We summarize our findings in

Theorem 4.1.3. Consider a representation ¥V : K — GL(V) with ¥’
mjective.

1. Bvery invariant connection on H X gV is induced by a K -equivariant
extension o : h — gl(V') of V.

it. Let 6 € TjV be K-invariant. Denote the invariant tensor on
H xx V' corresponding to 6 by ©.
There is a canonical action of GL(V') on the tensor power T;V of
V. Define

P:=GL(V)y={9eGL(V):g-0=20}

the isotropy subgroup of 60 under this action.
Then an invariant connection V which s induced by a map o :
h — gl(V) respects © in the sense that

VO =0

iff a has in fact values in p. Le., iff a defines in fact a principal
connection on the reduction H xx P — H/K of GLY(E).

Example 4.1.4. Let © be an invariant Riemannian metric on H XV —
H/K which is induced by a K-invariant inner product € on h/¢. Then
6 endows V with the structure of a Euclidean space and that 6 is
invariant under K simply means that ¥ : K — GL(V) has in fact
values in O(V, 6).

We say that a connection is Fuclidean if it satisfies

Vo =

T o

¢ O(&1, &) = O(Ve&i, &) + O(61, Vel
V(e X(H/K), &, & e T(E).

~—

Now Theorem tells us that invariant, linear connections cor-
respond to K-equivariant extensions of ¢ : ¢ — so(V,0) to maps
a:h—so(V,0). 3

4.2. Invariant Cartan connections. Let w be an invariant Cartan
connection of type (G, P)on H xx P — H/K;i.e.: G, P are Lie groups
with P < G and w is an H-invariant g-valued one form which satisfies

i. w is P-equivariant
ii. w(%uzouexp(tX)) =Xforallue Hxg P, X cp
iii. wy, : Ty(H X P) — g is an isomorphism for all u € H x g P.
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Obviously its lift @ is of the form
(h,p. X,Y) — Ad(p™)a(X) +Y

for a linear map a : h — g. Exactly as in the case of invariant principal
connection one sees that for a linear map « : h — g the resulting two-
form w factorizes to a form on H xxg P iff @« = ¥ on € and « is
K-equivariant.

But we also need that w is an absolute parallelism, i.e., that w, is an
isomorphism of T,,(H X i P) with b for any w. But since w is invariant,
it suffices to check this at u = [[e, €]].

We know that wie is an isomorphism of VG = {X € TG :
Trfe,epX = 0} with p. Thus it only remains to check that 7y, 0 Wy o
is surjective and has kernel Vi qG; here 7/, : g — g/ is the natural
surjection. Recall the natural surjection Tq : T(H x P) = H X P x h x
p—TG. B :=mgpowoT(ee)q vanishes on €@ p. The restriction of 3 to
b is myp 0 . That 3 is surjective means that my/, 0 o is surjective, and
that the kernel of 7y, 0 wie) is no more than Vi, G means that for
X € b\t we have 3(X) # 0; i.e., the condition on « is that it factorizes
to an isomorphism of h/¢ with g/p.

The curvature K of a Cartan connection w is its failure to satisfy the
Maurer-Cartan-equation; i.e., for X, Y € T,,(H xx P):

K, (X,Y) :=dw(X,Y) + [w(X),w(Y)].

Since the exterior differential is compatible with pullbacks the pullback
of K is given by

K(X,Y) = do(X, V) + [0(X),0(Y)].
We want to calculate K for the tangent vectors

oK )

at the point [[e, e]]. For these we may take arbitrary lifts, and we choose
fields of the form

[[exp(tY) K e]]

Lx(h,p) := (h,p, X, 0).
Now &(Ly (h, p)) = w((h, Y 0)) = Ad(p~)a(Y), So Lx-&(Ly)(h, p) =
0. Thus dw(Lx, Ly)(e, e) = —w([[Lx, Ly](e, €)]) = —a([X,Y]). There-
fore K(X,Y) = [a(X),a(Y)] — «([X,Y]). Thus, factorizing K to a
(invariant) G x p p-valued 2-form K on H/K, we have

Ko(X +8Y 48 = [o(X),a(Y)] — a([X,Y]).

We summarize

Theorem 4.2.1. Let H X P — H/K be the homogeneous P-principal
bundle induced by a homomorphism ¥V : K — P.
Let G be a Lie group which contains P as a subgroup.
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Then invariant Cartan connections of type (G, P) on H xx P — H/K
are induced by maps « : h — g which satisfy

1. Ajg = \I’I,

ii. a(Ad(k)X) = Ad(V(k))a(X)
iii. « factorizes to an isomorphism of b /€ with g/p.

For such an «, the corresponding (lift of ) the Cartan connection is

@((h,p, X,Y)) = Ad(p~Ha(X) +Y.

Its curvature form K € QUH x i P, p) is H-invariant and P-equivariant.
So it factorizes to an invariant G X i g-valued 2-form K on H/ K, which
15 given by

Ko( X1+ 8 Xy +8) = [a(X1), a(Xo)] — a([Xy, Xa])
ato=K e H/K.

Given such an «, the space of all connections inducing the same isomor-
phism between b/ and g/p is affine and is modeled on Homg (h/¥€, p).

Remark 4.2.2. Thus a homogeneous Cartan geometry of type (G, P)
over (H/K) is equivalent to a pair (U : K — P,«a : h — g) satisfying
of theorem 21
Now let (H X P,w) be the Cartan geometry corresponding to a pair
(U, a): Then we have a morphism of principal bundles over ¥ from
H — H/K to H xg P — H/K, namely

j c:H— H XK P,

h— [[(h, e)]].

This allows us to pull pack the Cartan connection w on H X P to a
1-form on H: one calculates

d
(- X)) =
Jw(dt‘tzohexp(t )

=0(h,e, X,0) = a(X) = aowM?(X)
with wM¢ the Maurer-Cartan form on H. Thus
J*w = aowMC,

But this equation already determines w by equivariancy of w under P.
In fact we can generalize this picture:

Theorem 4.2.3. Let (V: K — P,a: h — g) satisfy [Huzd of theorem

and let (G,w) be a Cartan connection of type (H,K). Now consider
the P-principal bundle G' :== G Xy P: Then the map

j:G—GxgP, (7)
u— [[u, €] (8)
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1s @ homomorphism of principal bundles over U covering the identity
and there is a unique Cartan connection w' € QY (G, g) satisfying

JW =aow. (9)

(G,w) — F(G,w) = (G',w') is a functor from the category of Cartan
geometries of type (H, K) to the category of Cartan geometries of type
(G, P).

Proof. Tts clear that G’ := G X P is a P-principal fiber bundle over
M. The Cartan connection w € Q'(G, h) and the Maurer-Cartan form
wMC e QY(P,p) allow us to trivialize

GXPxhxp=T(GxP),
(u,p, X, Y) — (w7 (X), wMCTH(Y).

u YD

On G x P we define the g-valued form
o' e QNH x P,g),
(,p, X,Y) = Ad(p~)a(X) + Y.

Then one sees exactly as above in 22 that horizontality of &’ is equiva-
lent to ap = ¥ ({l), K-invariance of &' is equivalent to K-equivariance
of a (). Thus &’ factorizes to a g-valued 1-form w’ on G" and [ implies
that ' is a Cartan connection on G’ — M. ({)) holds.

A morphism f : (G,w;) — (G2,ws) of Cartan geometries of type
(1, K),

f:glﬁg%
flu-k)=f(u)-k YueG,kekK,
[fws = wy

is of course mapped to
F(f): 61— G,
[w, p] = [f (u), p]

by the functor F. F(f) is P-equivariant. With j; : G; — G/ we defined
by by (@) for i = 1,2 we have the commutative diagram

F(f)
g1 —= G,

G L Go
and thus
J(F () (wy) = fr(55(wy)) =

= f(aowy) = ao f*(ws) = aow; = aoj(w),
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which shows F(f)*(w)) = w] by uniqueness of w] with jfw| = o owy.
Thus F(f) is indeed a morphism of Cartan geometries of type (G, P).
Functoriality of F'is clear. O

We can apply Theorem EE2T] to connections on reductions of struc-
ture groups of homogeneous spaces: (Recall also B:32).

Corollary 4.2.4. Let W : K — P be a homomorphism to a covering
of a virtual subgroup P of GL(§/®), i.e., a reduction of structure group
of H/K to P.

Let o, : h — p describe a principal connection on H X P. Then the
natural surjection g extends o, to o, = Ty © o, which induces a
Cartan geometry of type (h/€ x P,P) on H xx P — H/K.

The curvature of the principal connection 7y s

Po(X +8Y +8) = [a)(X), ay (V)] — oy ([X, Y]).
The curvature function k of this Cartan connection factorizes to an
invariant G x p A*(h /€, g)-valued function & on H/K and
k(o) =T, D p,-

For the linear connection induced by v on TH/K the curvature and
torsion are

R, (X+¢Y+¢E) = ad([ozy(X),ozq/(Y)] — oy ([X, Y]))

and
T,(X+6Y +¢8) =
ad(ay (X)) (Y +€) —ad(a, (Y))(X +8) — (X, Y]+ ¢).
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5. RIEMANNIAN GEOMETRY ON HOMOGENEOUS SPACES

In this chapter we discuss the frame bundle- (or Cartan-) picture of
Riemannian geometries. This is in fact a prolongation of a given geo-
metric data on M = H/K, namely a (invariant) Riemannian metric to
a connection on a principal bundle over M. In the case of Riemann-
ian geometries discussed in section we simply get the Levi-Civita
connection on the orthonormal frame bundle O'(M). Later in the case
of a conformal geometry discussed in section [ we will get a Cartan
connection on a certain principal bundle over M.

5.1. Prologue to homogeneous (pseudo-)Riemannian spaces.
Let (M, gy) be a (pseudo-)Riemannian space: i.e., we have a section
gm € T(TM*®T M*) which is bilinear, symmetric and non-degenerate.

Definition 5.1.1. Let (M, ¢1),(Ms, g2) be (pseudo-)Riemannian man-
ifolds. An isometry between M; and Ms is diffeomorphism of M; with
My which pulls back gs to g;.

By the theorem of Myers-Steenrod ([8]) the isometry group Isom(M, gyr)
of (M, gy) is a Lie group We say that (M, gys) is homogeneous if its
isometry-group acts transitively. In this case (M, gn) = (H/K, gu/k)
with H = Isom(M, gys) and K the isotropy-subgroup of some point = €
M. But we know from theorem 227 that such an H-invariant (pseudo-

) Riemannian metric on H/K is induced by a unique K-invariant
(pseudo-)inner product g on h/€. Thus we write (H/K, gu/x) = (H/K, g).
When (M, gjs) is Riemannian, i.e., when g, is positive definite at every
point of M, gy it induces a metric d on M, namely

d(x1,x9) == inf /\/gM(c'(t),c'(t))dt.

ceC>®(R,M):c(0)=x1,c(1)=x2

In the Riemannian case it follows from the theorem of Arzela-Ascoli
that the isotropy subgroup K of Isom(M, ga) is compact (for any point
x € M). Since compact representations are completely reducible there
is thus a K-invariant complement n to € in h; and by n = h/¢ as K-
modules (or directly by T'(H/K) = H X gn) we have a K-invariant inner
product g on n which induces the H-invariant Riemannian metric gy;.
However in the general, pseudo-Riemannian case, we cannot expect b
to be reductive.

5.2. Prolongations of (pseudo-)Riemannian geometries. We just
saw that every homogeneous pseudo-Riemannian space is isometric to
(H/K,g) with g being a K-invariant inner product of signature (p, q)
on h/e.

Recall from Riemannian geometry:
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Theorem 5.2.1. On a (pseudo-)Riemannian manifold there is a unique
linear connection which is compatible with the Riemannian metric and
1s torsion free. This connection is called the Levi-Civita connection.

We construct the Levi-Civita connection on T'(H/K) in the frame
bundle picture.
Denote by O'(H/K) the orthonormal frame bundle of H/K; We have
OY(H/K) = HxxqO(h/¥). InEET A we saw that an invariant linear con-
nection on H/K is compatible with the Riemannian metric on T'(H/K)
iff it is induced by a K-equivariant extension of ad : ¢ — so(h/¢, g) to

amap o :h —so(h/t g).

Now, given such a K-equivariant extension «, we saw in corollary EL24
that the torsion of the induced linear connection on 7'(H/K) vanishes
ift T, = 0, where

T, € L(A*(h),b/b),
T,(X,Y) = a(X)(Y +€) — a(Y)(X + ) — ([X,Y] +©).

We know from Theorem B2 that there is a unique « such that the
T, vanishes. (We use the theorem only as a motivation, both existence
and uniqueness of such an « will be shown directly).

Lets solve the equation (in «)

T(X,Y)=a(X)(Y +8) —a(Y)(X +8& — ([X,Y] +€) =0V X,Y € b;
(10)

Consider ¢(T,(X,Y),(Z 4+ ¢)) for X,Y,Z € b and notice that if (IT)
holds

0=g(To(X,Y), Z+8) — g(T,(Y, Z), X + &) + g(To(Z, X),Y +¥) =
ga(X)Y+8),Z+8) —glaY)( X +8),Z24+8) —g([X,)Y]+E,Z2+8)
—g(aY)(Z+8, X +8) +g(a(2)(Y +8),X+8)+g([Y, Z] + &, X +¢)
+g(a(Z2)(X+8),Y +8) —g(a(X)(Z+8).,Y +8) —g([Z,X]|+EY +¢) =
=29(a(X)(Y +¢),Z+¥)
—g([(XY]+6,Z24+8) +g(Y, Z]+ 6, X +8) —g([Z, X]+EY +¥)

since a has values in so(h/€, g). This is equivalent to
gla(X)(Y +¥¢),Z+¢) (11)

= (XY e Z 1)~ g(X, 2]+ Y 8~ gV, Z] (X 4 B)).

Thus, if we have an « satisfying () it is already uniquely determined
by () since g is non-degenerate.

In lemma we show that this equation conversely determines a K-
equivariant « : h — so(h/¢, g) extending ad and satisfying ([0). For
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() to uniquely define a linear map « : h — gl(h/€) we need to check
that

g([X,) Y]+ Z2+8) —g([X,Z]+8,Y +8) —g([Y,Z] + €, X + £)

doesn’t depend on the representatives of Y + € and Z + €. But this is
easily seen: Let W € & then

g(X,) Y +W]+6Z+¢) —g([X, Z]+6,Y + W +¥)
—g(Y+W, Z]+8, X +¢) =
=g([X,)Y]+6Z2+8) —g((X, Z] + &Y+ W +8) —g([Y. Z] + £, X + §)
— (gladw (X +8),Z+¢) + g(adw(Z + €), X +8));

But g(adw (X +¢),Z + ) + g(adw(Z + £), X + £) = 0 since ady €
s0(h/€ g). The case of Z + W instead of Z is done analogously.

Lemma 5.2.2. For the map defined by ([0 we have

e

(X)=ady forall X € ¢

. a(Ad(k)X) = Ad(k) o a(X) o Ad(k™1)

ii1. o(X) is skew symmetric for all X € §

. a(X)(Y+8) —aY)(X+8) —([X,Y]+8 =0.

Proof. For (fl), let X € ¢ and Y, Z € b; then

gla(X)(Y +48),Z+¢) =

g([X, Y] _'_EvZ + E) - g([Xv Z] + ?,Y) - g([Yv Z]70+E)) =

(
(g(adX(Y+E)7Z+E) _g(adX(Z+E)7Y+E)) =
(

gladx(Y +€),Z +€) + g(Z,adx (Y + £))) = g(adx (Y +8), Z + ),

1
2
1
2
1
2

since adx € s04(h/¥).
For () take k € K and X, Y, Z € h. Note first that projection to h/¢
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commutes with Ad(k). Using Ad(k)* = Ad(k)™! we see

gla(Ad(k)X)(Y +¢),Z+¢) =

%(g([Ad(k)X, Y+¢Z+%¢) —g([AdR)X, Z]+8Y +¢)

—g([Y, Z] + &, Ad(k)X + ) =
; (9(Ad(R)[X, Ad(k™)Y] + ¢ Z +¢)

— g(Ad(k)[X,Ad(k ) Z] + &Y + ) — g(Ad(k )Y, Z] + £, X + ¢)) =
_ %( (X, Ad(k)Y] + & Ad(k ) Z + 8)
—g([X,Ad(k™ " Z] + &, Ad(k" )Y +§)
—g([Ad(k Y, Ad(k ™) Z] + 6, X +8) =
g(a(X)Ad(K™ Y + &, Ad(k 1) Z +8) =
g(Ad(E D a(X)(AAEHY 4+ 8), Z + 8).
For () we need to check g(a(X)(Y +8),Y +¢) =0:
gla(X)(Y +¢8),Y +¢) =

= (X Y]+ EY 0 g([X, Y]+ 8 Y 48— g([V,Y], X +1) =0,

Finally we need (), which is torsion-freeness. For this, let X, Y € b,
then

ga(X)(Y +8) —a(Y)(X +¥),2) =
= %(g([X, Y+62)—g([X,Z] + €Y +8) —g([Y, Z] + €, X +8)
— gV, X]+6Z+8) +g([Y. 2]+ &, X + &) + g([X, Z] + &Y +8)) =
=g([X,)Y]+¢Z+8).
O

By Theorem B33 R, = p,. So by Theorem EETT or Corollary EE24]

Ry(X+86Y +8) =p,(X,Y) = ad([a(X), a(Y)] — a([X,Y])

for X +¢Y +teh+t="T,(H/K).
For XY, Z € b/t we write

(Ro(X,Y)Z)" = Ry,'; X°Y" Z7.

The Ricci-curvature is defined as

. %
R = Ry';.
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For an orthonormalbasis vy ... v, € h/¢
Ry ;Y77 = Zg (0, Y)Z,0;) =
Zg(—R(Y, — R(Z,v,)Y,v;) Zg (v, 2)Y,v;) =

= R AL

ij oy
by the Bianchi-identity, which we proof below in Lemma B2Z3 so the
Ricci-curvature R is symmetric. The scalar curvature is defined as

R:= g”RTj.
Lemma 5.2.3. With o defined by ([[dl) and X1, X5, X3 € b,
D R(X1, X2) (X5 + ) = 0.

Proof.

> R(X1, X0)(Xs +8) =

cyclic

= (a(X1)((X2) (X3 + £) — a(Xa) (a(X1) (X5 + ) — o[ X1, Xo)) (X5 + 8)) =
cyclic

=2 ((X0) (@ X2) (X +8) — a(X1) ((X3)(Xo +8)) — ([ X1, Xa) (X3 + )

by cyclic permutation. And by using torsion-freeness resp. (I0) and
more cyclic permutations we thus see

D R(X1, X0)(Xs +8) =

cyclic
= > (a(X1)([Xa, X5] + &) — a([X1, Xo]) (X3 + 1)) =
cyclic
= (o[ Xz, Xs]) (X1 +8) + [X1, [Xo, X3]] + & — a([X1, Xo]) (X5 + £)) =0,
cyclic
where we used the Jacobi-identity in the last step. U

Remark 5.2.4. In tensor-notation
1

asij = 2 (Tij - gilgisTlij - gilgijﬁis),

where for X,Y, 7 € §
((X,Y]+¥8)" =7, X°Y" and
(a(X)(Z+¥) =a,'; X5(Z+¢).

We summarize our discussion in
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Theorem 5.2.5. Every homogeneous (pseudo-)Riemannian space is
isometric to (H/K,g), where g is some K-invariant (pseudo-)inner
product on b /¢.

There is a unique invariant Cartan connection of type

(h/€ xasr Og(h/€), Og(h/¥))

on OY(H/K) such that the induced linear connection on T(H/K) is
torsion free and compatible with the metric; i.e, the Levi-Civita con-
nection.

The unique K -equivariant extension of ad : € — so,(h/€) which induces
this principal connection is defined by ([III).

The curvature of the induced linear connection R is invariant,

and at o

Ro(X +8Y + ) =ad([a(X), (V)] — a([X,Y])
for X +eY +ech/e=T,H/K.

Remark 5.2.6. As we saw in we can regard principal connections
on reductions of the frame bundle equivalently as reductive Cartan
connections by affinely extending the structure group by the modeling
vector space of the underlying manifold. In our Riemannian situation
we get a Cartan geometry of type (R™ x O(n) = Euc(n),O(n)). The
curvature function x of the Cartan connection corresponding to a,, =
Tn @ ay is just K, = 0D R,.

But instead of this affine extension of O(n) we could also extend to
O(n +1). Its Lie algebra is of the form R" @ so(n) as K-module: it
consists of matrices of the form

0 —X"\ . n
(X A )WlthXGR and A € so(n).

But so(n + 1) is not a semidirect product, the R"-component brackets
into so(n): for X, X5 in R* C so(n + 1) we have

0 —xt\ /0 —x\]1_ /(o 0
X, 0 J\x, o )] T \0 xoxt—Xxxt)

We can take the same . as calculated above, since by Theorem B3]
the resulting torsion is the same (namely 0), (and of course the induced
Riemannian curvature doesn’t change), but the curvature of the Cartan
connection is different: it is

g
>
=
I
=
2
=
|
2
=
s
+
I
=
I

Ezxample 5.2.7. Consider the Riemannian Sphere O(n + 1)/O(n). In
our terminology H = O(n+ 1), K = O(n).
Per definition the standard metric on n = R" is K = O(n)-invariant.
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Of course the induced invariant Riemannian metric on the sphere is just
the standard metric: in fact every O(n)-invariant symmetric bilinear
forms on R” is a positive scalar multiple of the standard inner product:
let such an invariant form be given by a matrix B, then B has to be a
multiple of the identity since it commutes with all orthogonal matrices
O, and it has to be a positive multiple since B is positive definite.
First note that as noted in Remark BE2.0, we can model this Riemann-
ian space as a Cartan geometry of type (O(n + 1),0(n)) - but the
homogeneous model of this type is itself the sphere O(n + 1)/O(n).
Thus our construction above must yield a vanishing Cartan curvature.
Since the adjoint action of O(n) on R™ C so(n+1) is just the standard
representation we can regard Adp,) simply as the identity on O(n);
therefore H xxq O(n) = O(n + 1) xp@wm) O(n) = O(n+ 1). And by
formula ([J) o, vanishes on n. Thus the resulting «,, = idgn @ idso(n)
is just the identity, and therefore the induced Cartan connection has
zero curvature; of course it is just the Maurer-Cartan-form, since both
forms are invariant and coincide at the identity.

Now we model the Euclidean sphere on the Euclidean plane, i.e, we
describe the sphere as a Cartan geometry of type (Euc(n),O(n)).

As before formula ([[T]) tells us to extend ad = idse(, trivially, and
thus the map so(n + 1) = R" @ so(n) — R X,ss 50(n) is simply the
identity. But these two spaces have a different Lie algebra structure,
which is measured by the curvature x, = —[X,Y]. The Riemannian
curvature at o is

Ry(X,Y)=—-ad(X,Y)=XY"-Y X"
In tensor-notation
Rijrs = 5;93‘5 - 5;91‘3-
The Ricci-curvature at o is
Ry’ =6lgjs — 5;913 = (m — 1)gjs

and the scalar curvature is m(m — 1). a
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6. INFINITESIMAL FLAG STRUCTURES AND PARABOLIC
GEOMETRIES

In this chapter we consider the relation between homogeneous para-
bolic geometries and their underlying geometric structures.
We give a short exposition of filtered manifolds and associated no-
tions since this is the type of geometric structure naturally obtained
from a parabolic geometry. For a more in-depth treatment confer to
10, 13, 7).
Since the basic notions get no simpler in the homogeneous case we
introduce them for general manifolds in section Bl Also the notion
of a parabolic geometry is introduced in general in sections and

6.1. Filtrations, the associated graded and the Levi-bracket.
Let V' be a finite-dimensional vector space. A filtration of V is given
by subspaces V' C V,i € Z, such that V¢ D Vi*! such that there are
[ <reZwithVi=V fori<land V= {0} fori>r.

Given such a filtered vector space V we can construct its associated

graded gr(V): denote gr,(V) := V1 /V% and
a(V):=V)yv* e oV /vt =
gr(V)@®...®gr.(V).

It’s clear how these notions extend to filtrations of vector bundles by
smooth subbundles and their associated gradeds.

Now, given a manifold M together with a filtration of its tangent bun-
dle, we can demand that this filtration is compatible with the Lie-
bracket on X(M); Denote by X(M,T°M) the space of T"M-valued
vector-fields on M.

Definition 6.1.1. A filtered manifold is a manifold M together with
a filtration TM = T'M > ... T"M = M such that for sections & €
X(M,T'M), & € X(M, TIM)

&1, &) € X(M, T M).
Now, for a filtered manifold M, x € M and i,j € Z consider the
map
(M, T'M) x X(M,T/M) = gr,,,(TM),,
&1, & = (€1, oo + TTHIM,.
Since for a f € C>®(M)
[§1, f&] = [, &) + (& )&
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the map &;,& — [&1, &)y + TP M, is in fact bilinear over C*°(M) and
thus only depends on the values of &1,&, in .

And again by our condition on the Lie-bracket of a filtered manifold
this map factorizes in fact to a skew-symmetric bilinear map

gr,(TM), x grj(TM)x — griH(TM)JC.
These maps, for all relevant (7, ) € Z?, define a map
L€ N (gr(TM)*) ® gr(TM)

the Levi-bracket. One can check that L satisfies the Jacobi-identity
and thus gr(T'M), is endowed with the structure of a nilpotent graded
Lie algebra for every x € M. le., we have a (not necessarily locally
trivial) bundle of nilpotent graded Lie algebras gr(7T'M).

6.2. Basic facts about |k|-graded Lie algebras.

Definition 6.2.1. Let g be a semisimple Lie algebra. A grading g =
grD...DgoD...D g, which is compatible with the Lie-bracket in
the sense that for X € g;, X’ € g; [X, X'] € gi; is called a |k|-grading
on g.

For an element X € g we denote the projection of X to g; by Xj,.
The projection to g_ will simply be denoted by X_.
The filtration which comes from this grading is g' = g; © ... ® gs.
For such a g, we have nilpotent subalgebras g_ :=g_,®... D g_ 1 and
P i=0g1B...Bgk. ps is an ideal in the Lie subalgebra p = go®. .. Bgx.
Note that p respects the filtration under its adjoint action.

6.2.1. Grading element. We have grading element E € g, in the sense
that the eigenspace of adg to the eigenvalue ¢ is g;: For this consider
the derivation D on g which is defined by D(X) := iX for X € g;; it
is a derivation, since for X € g;, X' € g; D([X, X']) = (i +j)[X, X'] =
[iX, X'|+[X,jX'] = [DX, X'|+[X, DX']. By semisimplicity of g there
is an element ' € g for which adg = D; To see that in fact £ € gy write
E=FE ;®...®FE with E; € g;. Then 0 = [E,E] =" _[E, E)] =
S L iE;, which shows that E; = 0 for i # 0. (Note that since for
Xo € go [F, Xo] = 0Xy = 0 the grading element E lies in the center of

9o-)

6.2.2. Duality. Fix any non-degenerate invariant bilinear form B on
g. Then for X € g;,, X' € g; B([E, X],X') = —B(X, [E, X']) by in-
variance, and thus by definition of E B(iX,X') = —B(X,jX’), or
(1 + 7)B(X,X’) = 0. But B is non-degenerate. Thus for X € g; there
is a X’ € g with B(X, X’) # 0; but from (i + j)B(X, X') = 0 it follows
that the pairing of g, with any g; with j # —i is trivial. Thus the
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pairing of g_; with g; under B must be non-degenerate; i.e., once we
fix such a form B the subspaces g_; and g, are dual. By invariance of
B this is a duality of go-modules. (Also note that it follows that B is
non-degenerate on gg.)

Since g™ has the canonical complement g_, @®...®Hg_; we can identify
g/g"™ with g @ ... ®g_;. (This is an identification of go-modules).
Also note that since the dual space of g/p is the annihilator of p, which
is p, under B, we have a duality of p-modules between g/p and p,.

6.2.3. Group-level. For some Lie group GG which has Lie algebra g the
Lie subgroup P defined as the group of all elements in G which respect
the filtration (g%) has Lie algebra p. The Lie subgroup of all elements
of G which respect the grading is denoted Gy and has Lie algebra gg.
The exponential map on g restricts to a diffeomorphism of p, with its
corresponding Lie subgroup P, which is formed by all elements p € G
which satisfy Ad(p)g’ C g™ for all i € Z. We even have: the map
(g0, Z) — goexp(Z) is a diffeomorphism between Gy x p, and P.

P, is a normal subgroup of P and P/P, = Gj.

6.2.4. The associated graded. If we regard g as filtered, then the asso-
ciated graded gr(g) is of course canonically isomorphic to g as vector
space. Since P respects the filtration-components it descends to an
action on gr(P). As Gy modules g = gr(g). However the P, actions
differ: it acts trivially on gr(g).

6.3. Parabolic Cartan Geometries. Let GG be a semisimple Lie group
whose Lie algebra g is |k| — graded and let P be the subgroup of GG
formed by all elements which preserve the filtration of g under their
adjoint action. Then a Cartan geometry (G — M, w) of type (G, P) on
a manifold M is called a parabolic geometry.

We have TM = G xp g/p, and so the P-invariant filtration of g/p in-
duces a filtration of TM. Furthermore gr(TM) = G xp gr(g/p). But
P, acts trivially on gr(g/p) and is a normal Lie-Subgroup of P with
P/P, = Gp; we have P = Go x P,. Thus we can factor out the
action of P,: gr(TM) = (G/P.) X¢, gr(g/p). But as a Gy-module
gr(g/p) = g_, and with Gy := G/P, we have gr(TM) = Gy X¢g, 9—-
This makes gr(7'M) into a bundle of nilpotent graded Lie algebras,
and Gy — M is a reduction of structure group of this bundle to Gy.
Now, if the induced filtration of T'M makes M to a filtered manifold,
we have two brackets on gr(7T'M): the Levi-bracket defined in section
and the bracket induced by the Cartan-structure. In this case, if
these brackets coincide, the parabolic geometry is called regular.

The general theory of parabolic geometries (J5]) provides us with a sim-
ple condition on the curvature of a Cartan connection for the induced
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geometry to be regular: (g;, g;) C g"™/*!. Under this condition TM
is filtered and the two brackets coincide.

Let M be a filtered manifold M such that some regular parabolic ge-
ometry of type (G, P) on M induces the same filtration as the given
one. Then we say that we have an infinitesimal flag structure of type
G/P on M.

There are different (non-isomorphic) regular parabolic geometries in-
ducing the same infinitesimal flag structure on M. Thus for being
able to (naturally) prolong infinitesimal flag structures to parabolic ge-
ometries we need a normalization condition on the geometry. This is
provided by the Kostant-codifferential 0*,

o N(g/p)®g— AN g/p") @4
Since the curvature function £ of a Cartan connection has values in

A?(g/p*)®g it makes sense to consider 9*k and we say that a parabolic
geometry is normal if

9"k = 0. (12)

An equivalent condition to 0*k = 0 is shown in [4]:
Take a basis Xi,...,X,, of g_ and its dual basis Zi,...,7,, of p,.
Then we demand that for every X € g_.

23 [Zi k(X X0)] = ) k([ Zi, X]g—, Xi) = 0. (13)

i=1 i=1

(Here [Z;, X4 is the projection of [Z;, X] to g—). We will use this
condition in our calculations below in chapters[and 8 Now we restrict
ourselves to the homogeneous case.

6.4. Homogeneous Infinitesimal Flag Structures. Denote M =
H/K and let TM =T *M D> T M > ...>2T M >T°M =M
be an H-invariant filtration of the tangent bundle; i.e.: T, .M =
Thx ATy M.

Then the filtration is of course determined by its filtration of the tan-
gent space at o = K € H/K, which we write as h/¢ = F7F > ... D
F° = {0}. This filtration of h/€ must be K-invariant; and it is clear
that any K-invariant filtration of h/€ extends to an H-invariant filtra-
tion of T(H/K).

We further demand compatibility of the Lie-bracket with this filtration;
i.e., we want H/K to be a filtered manifold, as defined in BTl

What is the condition on the filtration of h/€, such that the resulting
filtration of the tangent bundle is compatible with the bracket? We
help ourselves by considering the (invariant) filtration of T'H which
one gets by extending F' := W;/eFia or TpH = (Tpympk) 'TigM.

(Since F° = ¢, there is one more filtration-component, and F* = {0}).

Then %uzoh exp(tX) e T'H & %\t:oh exp(tX)K € T'H/K. We claim
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that H/K is filtered iff H is filtered. First note that compatibleness
with the brackets is a local claim, and by invariance it may be checked
as well around o = eK. Now fix some complement [ of £ in h. Then for

some neighborhood W = Wi x W of {0,0} € [ x ¢ the map
- W —H
(X,Y) = exp(X) exp(Y)

is a chart of some neighborhood U of e; The map my/x o 0 is a chart
of Uo=UK C H/K.

s = expo(my Kk 0 0)) " is a local section of H — H/K. Less formally,
around some neighborhood of o every hK can be uniquely written as
IK with | € exp(W)).

Now take some field ¢ which is defined on the neighborhood Uo of o,
e, e l(T(Uo)). With

EWi— 1,
§(X) = Tho(x,0)& (mayx (0((X,0))))
we have
Elexp(X)K) = & Tespli(X)K
Define £ € T'(TU),
é(exp(X) exp(Y)) : = %uo exp(X) exp(té(X)) exp(Y) =

= TeAexp(x) exp(v) Ad(exp(=Y))€(exp(X)).

This is a lift of & and most importantly & € T'(Uo, T'(Uo)) iff £ €
(U, T%U). (In the same way we can extend any X € b to a projectable
field around e, and if X € F*, this field will lie in T'(7T7H).) Now take
some fields £ € T(T"H/K),n € T(T?H/K); these we can lift to fields
é , Hon U C H, which lie in the i-th and j-th filtration-components of
H by definition. Now [€, 7] is related to [€, 7], and thus [¢,7] lies in the
i+ j-th filtration component iff [€, 5] does. This proves our claim, since
from above we also know that there are local frames of projectable
fields of a filtration component. But the condition for the filtration Fi
to make H into a filtered manifold is easy: we need that h with the
filiration £ is a filtered Lie algebra:

Definition 6.4.1. A Lie algebra h together with a filtration Fiis called
filtered if for for all i, 5 € Z

B, ) © B
This is easily translated into a condition on the filtration F* of /¢

for X+t e F', X'+€ € FJ it is necessary that [X, X'| +¢ € F'*. Now
if H/K is filtered we have the Levi-bracket on the associated graded.
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Lets calculate it. Let X +¢ € F, X'+ € FY. Then L,(X + Fi X'+
Fitl)y =€, n](0) + F" T+ where £, n are arbitrary extensions of X, X’
into the same filtration components. Let é , 1 be local lifts as above.
Then by relatedness [€,7](0) = [€,7](e)+E, and thus [£, n](0)+ F7H+! =
[€,7](e) + F™t1. Since gr_,(TH) & ---gr_,(TH) is just the pullback
™ (gr(T'M)) of gr(T/H) under 7 : H — H/K, this means that also the
Lie algebra-structure on this part of the grading (i.e., its Levi-Bracket)
is pulled back. But [€,7](e) + F"7t! only depends on the values of £, 7)
at e, and we may take arbitrary extensions to fields which stay in the
respective filtration components. Thus

Lo(X + FL X+ FI) = [€il(e) + B+ =
[Lx, Ly/)(e) + FHH = ([X, X'] 4 €) + FHtL,
Summarizing, we see

Theorem 6.4.2.  i. Every invariant infinitesimal flag structure on
H/K is described by a K -invariant filtration F* of h/t.

i. This makes H/K into a filtered manifold iff for X +t € F,
X' +te FI[X,X'|+¥€e F*. This is equivalent to b together
with the filtration Fi= W;/EFi s a filtered Lie algebra.

ii1. In this case the Levi-bracket equips the associated graded gr(T(H/K))
with the structure of a nilpotent graded Lie algebra. Since T(H/K) =
H X b/t the associated graded is gr(TM) = H xg gr(h/¢), and
the Lie algebraic structure on gr(h/¥), resp. the Levi-bracket at
o=K € H/K, is given by:

Lo(X 48X +8) = ([X,X']+¢) + F'*J (14)
for X +te F', X'+te I,

When is this a regular infinitesimal flag structure of type (G, P)?
Consider a homomorphism ¥ : K — P and a map « : h — g describing
a Cartan connection. Especially, & : h/¢ — g/p is an isomorphism
of vector spaces. For the filtration of /¢ to be induced by (G —
M,w) we need to have F" = a~!(g' + p) = a'(g"). Now & induces
an isomorphism of K-modules between gr(h/€) and g_ which is given
simply by (X +8)+F™! — a(X),, for X+t € F". Take an X'+t € F7;
The Levi-bracket of (X +8)+ F* and (X'+€)+ F7 is a([X, X']);+; under
this isomorphism. it has to coincide with [a(X);, «(X");]. Since « :
f — g is filtration-preserving a(X) € g', o(X’) € ¢/ and since [X, X']+
t e " also a([X, X']) € g'*. Thus the condition that the Levi-
bracket coincides with the bracket induced by the Cartan geometry
on M is that (X, X’) € g7 ™! for X € g’ and X’ € g/. Of course
this follows immediately from the condition mentioned earlier without
proof for the general (non-homogeneous) case.

Assume now that we have a K-invariant complement n of h and that



47

U has values in Gy. Then an « : h — g describing a Cartan connection
induces a K-invariant isomorphism n = h/€ = g/p = g_, where we use
that g/p = g_ as a Gy-module. Now n becomes a graded Gy-module

by the isomorphism n = g_ and conversely g_ becomes a K < G-

module. By equivariance Ad : K — GL(n) has in fact values in Gy

and we can now regard ¥ simply as Ad : K — Gy. « may be written

oo + ¢ o ap, where ¢ : g_ — g is of positive homogeneity.

In fact, in the examples below, we will start with an identification
«@Q

~Y

n = g_ and under this identification Adjx will have values in Gy.
Regularity means that [ag(X), ao(X")] — ao([X, X']i1;) =0 for X € F*
and X’ € FJ. All of this data will come from a geometric structure on
H/K.

Our problem will be to find a change of o to a map a : h — g which
induces the same regular parabolic geometry as «g and satisfies ([2).
From the general theory we know that such an « exists and is unique
up to equivalency. Cf. [ H.
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7. CONFORMAL STRUCTURES

We start with the same situation as in chapter B we have a K-
invariant (pseudo-)inner product g on n := h/¢. But now we consider
the induced conformal class of (pseudo-)Riemannian metrics on H/K.
We will prolong this structure to a Cartan geometry of type

00 1
PSO [Ra@n@R, [0 g 0f ], P
100

Here P is the stabilizer of the isotropic line through e; := (1,0,0) € R®
n®R. We first describe the Lie algebra of G = PSO(R@&n@&R) and see
below (in [CT2) that the underlying structure of a parabolic geometry
of type (G, P) is in fact simply a conformal class of Riemannian metrics.

7.1. PSO(R @ n @ R). Let n be a real vector space equipped with a

pseudo-inner product g. We extend g to a (pseudo-)inner product
0 01

g=10 g 0] on R@ndR. If g has signature (p,q) then § has
100

signature (p+1,q + 1).

Theorem 7.1.1. i. g=s0(R&ndR, ) is a |1|-graded Lie algebra:
g=01Dgo® g1 withg 1 =ng =n* and go = co(n,g). (Thus
g1 and g, are abelian.) We will write

g={X®(q,A)®Z'X,Z en, aeR, Aecso,(n)}.

For an element X of g we will denote the projection of X to g; by
X

gi*
The nontrivial brackets are

[(r, A), (o, A)] = (0, [A, A7)
(e, A), (A+a)X

] =

X] =
(0, 4), 2] = =Z"(A+ a)
(X, 2" = (9(X, 2),XZ" — ZX");

especially, the central part of the pairing g_1 X g1 — @o establishes
a duality between g_1 and g;.

1. The subalgebra go ® g1 < g we denote by p. It is the stabilizer
of the isotropic line {(t,0,0)|t € R} and the Lie algebra of P =
Na(p) <G.

iii. go is the Lie algebra of Go = CO(n) < G.

Remark 7.1.2. Since g is 1-graded the filtration induced on TM =
T(H/K) by a parabolic geometry (G — M, w) of type (G, P) is trivial
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and gr(TM) =TM. In we saw that (G — M, w) induces a reduc-
tion of structure group of gr(TM) =TM =T to Gy = CO(h/¢). But
this is the same as a conformal class of a metric on T'(H/K). J

7.2. Conformal normalization. Take some orthonormal basis X; of
n. Then its dual basis is Z; := ; X}, where ¢; = g(X;, X;) is 1 or —1.
Then 0"k = 0 is equivalent to (recall [3))
23 [Zi k(X X0)] = ) k([ Zi, X]g—, Xi) = 0. (15)
i=1 i=1
(Here [Z;, X]4— is the projection of [Z;, X] to g_).
Recall that so(R & n @ R) is n @ co(n)  n*, and in this case g_ =n
and p, = n*. Since [g_,p.]| C go the second sum always vanishes.
Thus the normalization condition is

D alXL KX, X)) ] =0and Y &[X], 5(X, X;)g] = 0.
=1

i=1

Since the adjoint action of gg = co(n) on g_ = n is just the dual of the
standard action, the second equation is equivalent to

Z Ei/{(X, Xi)goXi =0.
i=1

Pairing this term with X’ and using that go = co,(n) we see that this
is equivalent to

D gleiXi w(X, Xi)g X') =0

i=1
for all X’ € n. But this just says that for all X, X’ € n the map
n—n,
X — (X, X1)X
is trace-free. l.e., the Ricci type contraction of the go-part of the cur-

vature function vanishes. In tensor-notation, with R := kg,

R;j', = 0.

The first equation is more subtle. Recall that for X, Y € n the bracket
of X with Y7 lies in go = co(n) = R @ so(n) and is given by [X,Y"] =
(g(X,Y), XY" — YX?"). Thus we have (especially), with X = X;,

m

Soeik(Xj, Xi)- X! — e Xik(X;, X;)t = 0. Now pair this expression
i=1

with X0 > er(X;, Xi)-9(X;, Xi) — e Xig(r(X;, X;)—, X;) = 0. Since
i=1
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X, are orthonormal, the first part of this sum is simply ~(X;, X;)- =
i £:Xig(k(X;, Xi)—, X;). Thus, since the X; are linearly independent,
ZV;el see g(k(X;, X1)—, Xi) = g(k(X;, X;)—,X;). But since x is skew-
symmetric, this is equivalent to vanishing of x_:

9(k(X;, Xi)—, X;) = —g(r(X1, Xj) -, Xi) =

= —9(r(X), Xi)—, Xj) = g(s(X, Xi) -, Xj) =

= 9(s(Xi, X;) -, Xi) = —g(r(X;, Xi) -, Xi) = —g(k(X;, Xi) -, X5).
Thus we see 0"k =0 &

r has values in p and (16)

the Ricci type contraction of kg, vanishes. (17)

7.3. The prolongation. Since (the restriction of) Ade has values in
O(n), we can construct the P-principal bundle H x,q P. (Note that
(H xaqaP) /Py = H x54COy(n), so the conformal geometry we started
with appears as a reduction of structure group to CO(n)). Now every
Cartan connection w on H Xaq P is obtained from a K-equivariant
extension o :h — g=g_1 D go D g1 =nDgo D n* of ady.

By (@) the curvature of the normalized Cartan connection has values

in p. Let A:bh — b/t be some K-equivariant map which vanishes on
t. Let o, defined by equation ([Il) of theorem BZ2ZH We define

oy, =Ta®a, A
h—g=ndcoy(n) d&n";

Lets calculate the curvature of the Cartan connection induced by an «
of this form:

(X, X') = o (X)), au(X')] — au([X, X']) =

= [(X +8) +a,(X) + AX), (X + &) + o, (X') + A(X")]

— (([X, X+ 8) + oy ([X, X)) + A([X, XT])) =

= 0@ ([or (X), (X)) = 0 ([X, X)) + [X + 8, A(X’)] — [X'+ € A(X)))
@ (—AX, X)) + [0y (X), AXT)] = [an (X7), A(X))]).

So

(X, X g =

= [ (X), 0y (X)] = ([X, X)) + [X + 6, A(X)] = [X' + & AX)] =
= ((A(X’)(X+E) — AX) (X' +¥),

0ty (X) oy (X) = oy (X )y (X) — oy ([X, X))

+ (X +0AX) - AX) (X +8)' — (X' +BAX) + AX)(X' +8)")).
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We need to find a K-equivariant map A : h/€ — h/€ such that for all
X17X2 S b

X = K,gO(Xl,X)XQ
is trace-free. If A =0,

go (X, X') = oy (X) oy (X') = a3 (X ")y (X) — oy ([X, X7)).

The change due to A is
0A = (A(X')Xn —A(X)X',,
(X +0AX) — AX)(X +8) — (X +AX) + AX)(X' + ).
In index-notation
8Aijrs = 5§(Aij - Aji) + (55143]' - 5;/151‘) + (ngAligsj - gerljgis)-
So the change in trace is
0Ay', = (Agj — Ajs) + (mAy — Ay) + (9" Augsy — Ayy) =
—Ajs+ (m — 1) Ag; + ¢" Aiigs;.
So if A;; is symmetric and trace-free the change in trace is (m —2)A4;; If
A;j = cgi;, the change in trace is 2(m —1)cg;;. If A;; is skew-symmetric
the change in trace is —mA,;;. Thus the unique A for which the trace
of the go-component of the curvature of the Cartan connection induced
by oy, = m, ® ay @ A vanishes is
1 R 1

Rii — —gi;) — ————Rg;; =
(i = 2395) = 3 1y R0
(m —2) 1 B
2(m —1) m)g”) B
(m—2)—2m+2

i) =
2m(m — 1)

1 R
(Rij — mgij)

Ay = ————
J m— 2

1

1

m — 2

where R;; = Ry“; is the Ricci-curvature and R = g R;; is the scalar-
curvature. Since m, and a, are already known to be K-equivariant,
only K-equivariancy of A remains to be seen. But this is clear, since
both the (Riemannian) curvature R and the (pseudo-)inner product
are K-equivariant, and thus also the Ricci-type contraction of R and
the scalar-curvature are K-equivariant.

The change of the go-component of the curvature is

OA;;" = (6] A — 67 Ag) + (9" Auigs; — 9" Aijgis ) -

So, recalling B.2Z4] the curvature of w is
(0, Rij", + (6; Asj — 67 Agi) + (9" Augs; — 9" A1 gis)
— Riamij” + Raic®; — Rajou®y).
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Ezample 7.3.1. For the Riemannian sphere already discussed above (so
H = 0O(n+1) and K = O(n)) we have a,, = 0; i.e., a, = ad o,
where 7 : s0(n+1) = h — € = s0(n) is the projection to so(n). Notice
that since both 7 and « vanish, the Cartan curvature has values in
go- We calculated the curvature tensor R;;", = 47 g;s — 0] gis, the Ricci-
curvature R;; = (m — 1)g;; and the scalar curvature R = m(m — 1).
Thus

1 R
A= =3 = g %) =
S S N Gl VAV
T om— 2((m b 2(m—1) )g” N
1 m 1
= ooy e = g

Therefore
T T ]' T
gl Aligsj = gl gli(—§gsj) =9, Asj-

Thus the go-component of the Cartan curvature is R;;", — (5{953» —
5}-"952‘) = 0. i.e: The Cartan curvature is zero. This reflects the fact
that the Fuclidean sphere is locally conformally flat. J
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8. CoNTACT AND CR STRUCTURES

In [2] D. Alekseevsky and A. Spiro classified all compact simply
connected homogeneous CR manifolds of hypersurface type with non-
degenerate Levi-bracket.

One result of this chapter will be an explicit prolongation one such
family of CR manifolds to Cartan geometries; We calculate the Cartan
curvature and find out which of these CR manifolds are spherical.

We begin by introducing contact structures in B CR structures in
and discuss the relation of CR structures with the corresponding
parabolic geometries in and BTl

8.1. Contact structures. Consider a manifold M endowed with a
co-dimension 1-distribution D of TM. Then T2M = TM,T'M =
D, T°M = M makes M into a filtered manifold (cf. EZ]). Thus we have
the Levi-bracket £ on the associated graded of TM. The nontrivial part
of L is an element of

A (D*) ® TM/D.

At every point © € M the Levi-bracket is a skew-symmetric bilinear
form, and when this form is non-degenerate we say that D is a contact
distribution on T'M or that we have a contact structure on M.

(Since non-degenerate skew-symmetric bilinear forms only exist on
even-dimension vector spaces it follows that M is odd-dimensional.)
For U C M open consider a one-form © € Q'(U) which vanishes on
D and is not zero at any point of U. O defines a local trivialization
of gr_o(T'M). One can check that non-degeneracy of the (trivialized)
Levi-bracket

L, :ker(0), x ker(0), — R,
(X1, X5) = O([61, &) for & € X(U, D), &i(x) = X;

is equivalent to

O A (dO) #£0, (18)
where j is half the dimension of D. A nowhere vanishing form © sat-
isfying (I8) is called a (local) contact form. Note that a co-dimension
one distribution D of T'M is a contact distribution iff there are local
contact forms with kernel D. Of course every global contact form de-
scribes a contact distribution.

Two contact manifolds (M, D) and (Ms, Dy) are equivalent when
there is a diffeomorphism f : M; — M, which satisfies T'f(D;) = Ds.

8.1.1. Inwvariant Contact Structures. We now consider invariant con-
tact structures on a homogeneous space H/K. Invariant co-dimension
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one subbundles D of T'(H/K) are exactly the extensions of K-invariant
co-dimension one subspaces D of n.

We know from theorem B4 2 that the Levi-bracket on the induced co-
dimension 1-distribution of T'(H/K) is non-degenerate iff the bracket

[,:]: D x D — n/D is non — degenerate. (19)

If this holds we say that D is a contact subspace of n and in this case
we have an invariant contact structure D on H/K.

Assume that we have a non-degenerate K-invariant bilinear form 6 on
n. Then a K-invariant element Z € n whose orthogonal complement
(in n) is a contact subspace is called contact element. The K-invariant
1-form 0(Z,-) on n induces an invariant 1 form © on H/K. In fact,
since ker() = D this is a (global) invariant contact form.

Also note that having chosen such a contact element Z we may regard
the associated graded gr(T(H/K) as H xx (RZ® D); here RZ® D is a
nilpotent graded Lie algebra with (RZ& D)_y = RZ, (RZ& D), = D;
The only nontrivial bracket being the Levi-bracket D x D — RZ, which
is given by

L,:DxD—RZ,
X1,X2 — [X17X2]]RZ7

where [X1, X5|rz is the projection of X1, X5] + € to RZ.

8.2. CR structures. Let D be an even-dimensional, co-dimension 1
distribution of the tangent bundle of a manifold M, which shall be en-
dowed with an almost complex structure J € D* ® D; i.e., J? = —idp.
(The existence of such an anti-involution on D implies that M is odd-
dimensional.)

Then we say that (D, J) is an almost CR structure of hypersurface type
on M. When D is also a contact distribution, i.e., when the induced
Levi-bracket £ € A?(D) ® TM/D is non-degenerate, we say that this
almost CR structure is non-degenerate.

Definition 8.2.1.  i. An almost CR structure (D, J) on a manifold
M is partially integrable if for &1,&, € X(M, D)

[JE&1, & + (€1, J&a] € X(M, D).

This is equivalent to the Levi-bracket D x D — T'M /D being the
imaginary part of an hermitian form on D for every trivialization
of TM/D. Non-degeneracy of the CR structure is equivalent to
non-degeneracy of the hermitian form. If T'M/D is oriented we
can define the signature of a partially integrable almost CR struc-
ture as the signature of the induced hermitian form(s). If the
hermitian form is positive definite (for an orientation of TM /D)
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we say that the partially integrable almost CR structure is strictly
pseudoconver.

ii. When (M, D, J) is a partially integrable almost CR structure one
has the Nijenhuis-tensor N; € A*(D*) ® D. It is defined

N(&1,8) = [&1,&] — [J&, J&] + J([J&1, &) + [&1, J&)) (20)

for &,& € X(M, D).

iii. An almost CR structure (D, J) on a manifold M is integrable if
it is partially integrable and its Nijenhuis-tensor N vanishes. We
then say that (D, J) is a CR structure on M.

Remark 8.2.2. That (E0) really defines a tensor follows from N being
bilinear over C*(M).
Note that

N(J&1,&2) = [J&1, 6] + (61, J&] — J([&1, &) — [J&1, JEa]) =
= —J([&1, &] — [J&, J&] + J([J&1, &) + (&, J&))) =

= —JN (&1, &)
and N(gl,Jgg) = —N(ng,gl) = J(gg,gl) = _J(€1a§2)- Thus N is
anti-complex linear in both arguments. J

Definition 8.2.3. Two almost CR manifolds (M;, Dy, J;) and (Msy, Dy, J3)
are equivalent if there is a diffeomorphism f : M; — M, which satisfies
TfDl = DQ and Tf Jl(X) = J2 TfX for all X € Dl.

8.2.1. Inwvariant almost CR structures. As above for contact structures
consider a homogeneous space H/K and denote its Lie algebra by n =
h/¢. The data on n defining an almost CR structure are:

i. a contact subspace D of n,
ii. a K-invariant complex structure J on D.

The Levi-bracket is given by
L,:DxD—n/D,
X1, Xy = ([X1, Xo] +8) + D;

it is skew-symmetric and non-degenerate.
Partial integrability of an invariant almost CR structure means that

O - £0(JX17X2> + ‘CO(Xlu JX?) - ([JXhXQ] + [Xlu JX?] + E) + D

(21)

In this case the Levi-bracket is the imaginary part of a unique hermitian
inner product on D.

Integrability of a invariant partially integrable almost CR structure
reads:

(X1, Xo] — [JX1, TXo] + J([TX1, Xo] + [X1, JXo]) €8 (22)
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for all X1, X5 € D.

Lets discuss the Lie-group and -algebra of the parabolic geometry mod-
eling non-degenerate partially integrable almost CR structures of hy-
persurface type:

8.3. PSU(C®m® C). Let m = C? @ C? and denote

I, 0
L, = (5 _Hq). (23)

Then we regard m with the standard hermitian form g = I, , of signa-
ture (p,q). For a vector v € m its dual vector g(v,-) = v*9 € m* may
be also be written as the row matrix

g(v,) = o9 =0T, , (24)
and the dual matrix of an A € u(m) with respect to g is

A®9 = AT, . (25)

We endow C & m ¢ C with the form g

—_ o O

o O

S O =
—~
[\
[«
N—

If ¢ has signature (p, q) then ¢ has signature (p+1,q¢+ 1).
Theorem 8.3.1.  i. Elements of
g=su(ComaC,yg)
are of the form
—a Z'L,, iz
X A -7 (27)

) N -
w —X'L,, o

with A e u(m), X, Z em, a € C and z,z € R such that tr(A) —
a+a=0.

g is a |2|-graded Lie algebra whose components are: g_o = RX o,
go = RX,, where

X,Q -

s o o
coo
oo o

a

I
coo
coo
O O .
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0 0 0
g1={X 0 0]:XecC}
0 —X*T,, 0
—a 0 0
g={,A)= 0 A 0|:acC,Acu(C a®C @C) with tr(A) = 2iIma},
0 0 &
0 2L, 0
m={|l0 0 —Z|:zZeCY.
0 0 0

Thus g_o =2 Ri C C, g_; =m, go = s(C & suy(m)), g = m* and
go = Re C C, and we will write
g={1i o XD (0, )@ Z2"9 3 zi|X,Zcm, acC,z,2 € R, Acu,(m)
with tr(A) = 2Im(«)i.}.

1. In this notation the nontrivial brackets are

(o, A),zi ® X @ (o/, A) © Z™9 @ iz] =

— 2Re(a)zi ® (A4 a)X @ (0,[A, A]) @ (A+ a)Z2)*9 @& —2Re(a)zi;
X 9, 2X5] = (—x2,0);

2X0,00 X 00000 =0000 0@ (2iX)"9 @0,

X 5,000000 259 @0 =0®2iZ®03 0@ 0;
00X®00000,000008 2" @®0] =

—000® (9(Z2,X), X259 — ZX®9) 500,

06X, 800000,00 X008 06 0] = —2Img(X7, X2)X _o;
0000082 60,0000 0a 25" ¢ 0] = —2Img(Zy, Z2) Xs.

[
[
[
[

iii. We can naturally regard u(m, g) as a Lie subalgebra of g by using
the embedding

emby, s u(m, (,)@i+1)) — Go,
—tr(A)/2 0 0
A— 0 A 0
0 0 —tr(A)/2

We will thus simply write A for emby(A). Using this embedding
we have go = R @ u(m, g).

w. go 15 reductive; a decomposition of go into a semisimple part g’
and its center gg s

go =su(m) @ C
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where su(m) embeds into go by emby gy my and C embeds by

T — S5yl 0 0
T 0 niﬁyi 0
0 0 —T — 5yl

This is an isomorphism of representations of the standard repre-
sentation of su(m) ® C on m and the adjoint representation of go

onm—=—g_j.
2.
0 01 0 0 1
suComaoC, [0 g 0))Zsu(ComadC, [0 —g 0])
1 00 1 0 0
by
—a Z'L,, 12 -a 2°L,, —iz
X A 7]l =l X A A
iv —X*L,, @ —iz X*L,, &

Denote g = g_o®g_1. The subalgebra go®g; go < g we denote by
p. We have the standard representation of both g and G on Com @ C.
We denote by P the stabilizer of the isotropic line {(c,0,0)|c € C} C
CodmeC. P is a Lie subgroup of G and its Lie algebra is p.
Another characterization of P is P = Ng(p) = {p € G : Ad(p)p C
p}: Ng(p) is a closed subgroup of G, and thus a Lie subgroup. Its
Lie algebra is Ny(p) = {X € g : ad(X)p C p}, and obviously Ny(p)
contains p. But for X € g with X # 0 there is always some element
Y in go C p with [Y, X] & p. Thus indeed Ny(p) = p.

Theorem 8.3.2. FEvery automorphism ¢ of the nilpotent graded Lie
subalgebra g_ which satisfies ®(iX) = i®P(X) on g1 = m, i.e., which
1s also complex-linear on m, is in fact the restriction of the adjoint
action of some element gy € Go to g_.

Proof. Consider an automorphism ¢ of the graded Lie algebra g_. On
the real, one-dimensional vector space g_o = R: the map ¢ acts by
multiplication with some real non-zero scalar; But every such action
on g o can be realized as the adjoint action of some element in Gj.
Thus, by composing ¢ with an appropriate element we may assume
that it is the identity on g_s.

Then, for elements Xy, Xo € m = g_, we have

o([X1, Xz]) = ¢(—2Img (X1, X2)) = —2Img (X, Xy)
but also

O([X1, Xa]) = [9(X1), ¢(X2)] = —2Img(d(X1), ¢(X2)).
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Thus, since we assumed that ¢ is complex-linear, it follows that it is
unitary on m. But since Gy contains (a two-fold covering of) U(m) the
automorphism ¢ may indeed be realized by the adjoint action of some
element in Gj. [

8.4. The homogeneous model of non-degenerate partially in-
tegrable almost CR structures of hypersurface type.

Regard m = CP®C? endowed with the standard hermitian form g =1, ,
of signature p,q. Then we have the hermitian form ¢ of signature
(p+1,g+1) on CHmeC, which is given by

0 01
g=10 g O
1 00

Let G =PSU(C@m @ C) and P < G the stabilizer of the isotropic
complex line C(1,0,0) C Cdma C. Recall that the Lie algebra of P is
p=g"=go®g ®go. We will show how G/P becomes a homogeneous
CR manifold.

As we saw in theorem B3l g is 2-graded and g_; = m. Now by BTl
an invariant contact structure on G/P is obtained by a P-invariant
co-dimension one subspace D C n:= g/p such that the Levi-bracket

L,:DxD—n/D

is non-degenerate. We check that the subspace D (=g ;1 +p = m +
p C g/p satisfies this non-degeneracy condition. First recall that the
restriction of the Lie bracket to m x m is

[, ]:mxm—go=RZ, (28)
[X,Y] = —2Im(g(X,Y)). (29)
Therefore, according to BRIl the Levi-bracket is given by
L,:DxD—n/D, (30)
(X,Y) — —2Im(g(X, V) X_o+ g . (31)

Thus, since g is a non-degenerate hermitian form, we see that D = m-+p
is a contact subspace of g/p.

Now by this invariant contact structure on G/P may be ex-
tended to an invariant almost CR structure by specifying a P-invariant
complex structure J on D. But since D = g_; = m = C? ® C? we have
a canonical complex structure. For invariance of this complex structure
under P just note that p, = g' acts trivially on g/p and that gy acts
on g_; = m by maps of the form aid,, + A with & € R and A € u(m).

Thus we have an invariant non-degenerate almost CR structure on
G/P. From ([B) we immediately see that condition (EII) of partial



60

integrability of this almost CR structure is satisfied. Also (22), the
integrability condition, follows at once from (28). Thus we have indeed
an invariant CR structure of signature (p,¢q) on G/P.

A more explicit realization of this homogeneous CR manifold may
be obtained as follows: Consider the light cone C' C C@®m @ C formed
by all isotropic non-zero vectors v € CPT42 g(v,v) = 0. This is a
co-dimension one submanifold of CP++2,

On C' we have a natural right action of C* by multiplication. Denote
by p : C — C/C* =: M the natural surjection to the orbit space.
The action by C* on C' is smooth and free and C' — M is thus a C*
principal bundle. Since G = PSU(CP™4*2) = SU(CP+7+2) /A, with A a
finite subgroup of diagonal matrices, G' acts on M = C'/C*. Obviously
SU(CPT972) acts transitively on C, and thus also G acts transitively
on M. Let ¢y := (1,0,0) € C@&m @ C € C. The isotropy group of
Cey € M is (by definition) P < G, and thus M = C/C* = G/P.

M has a simpler description as M = C/C* = (S%11 x S%+1) /U(1):
take an orthonormal basis vy, ... vy 1, w1, ... wep of CPTIT2 where
g(vi,v;) = 1,g(w;, w;) = —1. Denote by V, resp. W, the subspaces
spanned by the vectors v;, resp. the vectors w;. Then g is the stan-
dard, positive definite, hermitian form on V' = CP*! and the negative of
the standard hermitian form on W =2 C?™!. Denote the standard norms
on V = CPttand W = C?™ simply by || - ||. Writing CPT42 =V & W
we have

C={zeweVeW:|:]=|wl}
and the map
S2p+l o g2a+l DWW = Cp+q+2’
(z,w) — z@w

obviously has values in C' and hits every C*-orbit; It factorizes to an
injective map

(S%+1 x §2at1) /U(1) — M = C/C*,
and thus indeed M 2 (S2P+1 x §2¢+1) /U(1).
Now the G-equivariant diffeomorphism
©:G/P>M,
gP — Cgeg

induces an invariant CR structure on M. To find an explicit description
it is enough to calculate the tangent map of © at o = P € G/P. First
note that the tangent space at a point v € C' is

T,C = {w € CP*2 : Re(j(v,w)) = 0}.
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Now

17,0 :g/p — Tce, M,
Y+p = Teop<Y60>'

Thus the contact subspace m +p = g_; + p of g/p is mapped to
Teop({((0,X,0) e COm e C}) (32)

under ©. Denoting the contact subbundle of 7'M induced by © by D,
we thus find by using (B2) and G-invariance that

Dp(v) = Tvp(vL) c T,C.
And (BZ) also shows that the complex structure of Dy, is simply
JTp(U)X = Tp(U)ZX

Thus the homogeneous model of partially integrable non-degenerate
almost CR structures of signature (p, ¢) is an (invariant) CR structure
on (5?1 x §2+t1) /U(1). An (almost) CR manifold of signature (p, q)
which is locally isomorphic to the CR manifold (S?P*! x S2¢+1) /U(1)
is called spherical. Note that with ¢ = 0 we thus see that the homoge-
neous models for strictly pseudoconvex almost CR structures are the
CR-spheres S%*! c CP*!,

Remark 8.4.1. Let (G — H/K,w) be a homogeneous regular parabolic
geometry of type (G, P) as in above, which is induced by some
a : bh — g. Then we saw in chapter B that a induces a filtration on n =
h/¢ and further endows gr(n) with the structure of a nilpotent graded
Lie algebra by an isomorphism of gr(n) = g_. Since g is a 2-graded
Lie algebra and g_, is one-dimensional the induced filtration is just
some K-invariant co-dimension 1 subspace D of n. The isomorphism
« restricts to an isomorphism of D with m, and we can thus pull back
the complex structure on m to a complex structure J on D. From K32
it follows that J is K-invariant. Furthermore, by regularity of a, one
sees that the Levi-bracket D x D — n/D is non-degenerate.

Thus (G — H/K,w) endows H/K with an invariant non-degenerate
almost CR structure of hypersurface type, and by using regularity of
a one sees that this almost CR structure is partially integrable. J

We now come to an example of invariant CR structures. In we
introduce the underlying homogeneous space, in we discuss an in-
variant contact structure on this space and in B we endow this contact
distribution with a (family of) complex structures and show that we
thus get a (family of) integrable, invariant CR structures.

In this family of CR structures will be prolonged to Cartan geome-
tries.
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8.5. SU(l+2)/U(l). Consider H = SU(l + 2) resp. h = su(l + 2). We

will write elements in § as

b —v* v
v A w],
—y —w* ¢

where b, ¢ are purely imaginary, A € u(l) and b+ tr(A) +c¢=0. In b
we have the subalgebra £ consisting of elements of the form

—a 0 O
0 A 0| = (a4 (33)
0 0 —a

with a = #. Of course, £ = u(l). The corresponding virtual Lie

subgroup K is in fact closed and thus a Lie subgroup, and one sees
immediately that K is a two-fold covering of U(I).
Elements of K are of the form

0
k=10 C 0
0

with ¢ € U(1) and C' € U(l) such that ¢~2det(C) = 1.

8.6. The contact structure on SU(l + 2)/U(l). The standard her-
mitian inner product on h C C+2? is K-invariant, and by restricting
it to n := £+, the orthogonal complement of £, we can use the notion
of a contact element as discussed in BTl

Lemma 8.6.1.

o O

7 =

SO =
o O O

s a contact element and thus defines an invariant contact structure on
SU(+2)/U(1).

Proof. Since K is connected it suffices to check ¢-invariance of Z:

—a 0 O 0
0 A O 0
0 0 '

—a
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For non-degeneracy of the Levi-bracket we calculate

0 —vi m 0 —v3 72
V1 0 w1 , V9 0 wo =
-y —wi O —¥2 —w3 0

—viv2—271 —v1w3 —vjwa —v301 =172 —Y2w} —v3 w1
= ( —Y2w1 71}12);7111110; Y2v1 ) — ( —y1w2 71)22}1‘711}2101‘ Y1v2 ) =
—wjve v —Y172—wiws —w3v1 v —F2m1 —wiwi
V3 U1 —VIv2+Y1Y2— V271 Y2wi—mw3 vy w1 —viwe
= ( A1 w2 —F2w1 v2v] —v1v5 Fwawi —wiws Y2U1 —Y1V2 ) .
w3 v —wiv2 F1v3 =207 F2y1 =12 twiwi —wi w2

Thus the RZ-part of [(v1, w1, V1), (v2, wa, Y2)] 18
(Im((w1, wa)) — Im({vy, v2)) + 2Im(§172)) Z. (34)

Especially, the Levi-bracket is non-degenerate. 0

For later use we note that

0 Yow] —y1ws viwi—viws
* * ook = ok )
wivi—wive Y105 —20;

[(Ul, w1, "}/1), (UQ, Wa, ’yg)]D = ( Y1w2 —Y2w1 0 Y21 —Y1V2

[(v1,w1,7), (V2, w2, 72)]e = (36)

—Im({(v1 Pwi,v2Pw2))i 0 0
= 0 v2v] —V1v5 Fwaw] —wiws 0 .

0 0 —Im({(v1 Bw1,v2Dw2))i

The orthogonal complement of RZ in n is the real subspace D which
is formed by elements

0 —v* v
v 0 w
-y —w* 0

We will often write (v, w, ) or v @ w &  for elements of D.
We have n = ¢t = RZ @ D.

8.7. A family of CR Structures on SU(l+2)/U(l). Our family of
CR structures on H will be parametrized by t € {z € C : |z| < 1}.

8.7.1. The complex structure on D. Denote Dy := {v@&0&0}, Dy :=
(0@ w0}, D= {0& 0@},

0 01 0 0 ¢
E=10 00)andF:=10 0 0
-1 0 0 ¢ 0 0
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The complex structure J; leaves Dy, Dy, Dr invariant and doesn’t
depend on the parameter t on Dy and Dyy: here it is given simply by

Jwdwd0) :=wdiwa0.

The complex structure on Dr depends on the parameter ¢ and is given

by

JE = BxF — oE,
JF = —BrE + oF

where
~ 2Im(t)
I
Im(t)? + (Re(t) — 1)?
Bp = 1— [t ;
Im(t)* + (Re(t) + 1)?
S T

Lemma 8.7.1. For everyt € D

1. Jy 18 an anti-involution on D
1. Jy 1s K-invariant
ii. The Levi-bracket £ € A*(D) @ RZ is —2Img, where

g1 ®w DTE ® 51F, 05 ®wy ®roE @ soF) = (37)
- %(vl,v2> - %<w1,w2> —r17r9fe — $1820F — r18a(a + i) — rasi(a —9).

Proof. 1. Lets first check that J is indeed an anti-involution on Dr =
RE ®RE":

J(JE) = PBgJF —aJE = Bp(—0rE + aF) — a(BgF — aF) =
= —BpBrE + BpaF — afgF + o°E = (042 — Befr)E

J(JF) = —BpJE + aJF = —Bp(BpF — aE) + a(—BrE + oF) =
= —BrBpF + afrE — afpE + o*F = (o® — Bpfp)F.
Thus we need to check that o? — Bgf8r = —

(Im(t)? + (Re(t) — 1))? * (Im(¢)® + (Re(t) + 1)) =
m(t)* + Im(t)*(Re(t) + 1)* + Im(t)?(Re(t) — 1)® + (Re(t)? — 1)? =
m(t)* + Im(t)*(Re(t)® + 2Re(t) + 1)
+ Im(t)*(Re(t)®* — 2Re(t) + 1) + Re(t)* — 2Re(t)* + 1 =

= Re(t)* + Im(t)* + 2Re(t)?Im(t)? + 2Im(¢)? — 2Re(t)? + 1 =
= (Re(t)? +Im(t)?)? + 2Im(t)* — 2Re(t)* + 1;

=1
=1
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Thus
9 2Im(t)% + 2Re(t)? — 1 — (Re(t)? + Im(t)?)?
o — Befr = 2 =
1 — ¢
I T
S Ta-ppr
a 0 0 0 —v 7
0 A O0f,| v 0 w =
0 0 a -y —w* 0
0 —av* ay 0 —v'A ay
=\ Av 0 Aw]| -1 av 0 aw | =
—ay —aw* 0 —ay —w*A 0
0 —v*(A + aid) 0
= | (A+aid)v 0 (A + aid)w
0 —w*(A + aid) 0

So an element (a, A) of € acts by
[(a,A),(vOwDY)] = (A+a)v & (A+a)wd0. (38)

But now K-equivariance is clear: both J and (ad(,,4))|p respect
the decomposition of D into C"@C" @ (REGREF). But (ad(q,4))p
acts by complex-linear maps on the C"-parts, and it acts trivially
on RE @ RF'; thus it indeed commutes with J.

The Z-part of the Lie-bracket, [-,:|gz : D x D — RZ, is skew-
symmetric and non-degenerate. Thus, for it being the imaginary
part of an hermitian form on the complex vector space (D, J) it
remains to check that [J X7, Xo|rz+[X1, JXo|rz = 0 for all X7, X5
in D. This is exactly the partial integrability of the almost CR
structure induced by (D, J).

Since

[v1 ® w1 B Y1, V2 D we D Yalrz = (39)
= (Im((wl, ws)) — Im({vy, v9)) + ZIm(ﬁwg))Z
the only nontrivial equation for partial integrability is
[Jv1,72lrz + (71, Jyelrz = 0;
But for 71 = 7, this expression vanishes by skew-symmetry of the
Lie-bracket and for v; = E, v, = F we have
[JE,F)+ [E,JF] = [—aE,F|+ [E,aF] = 0.

Now we check (Bd). Since J leaves Dy, Dy and Dr invariant (B9)
implies that Dy, Dy, and Dr are orthogonal with respect to the
unique hermitian form g on D with Img = —2[-, -|gz.
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Since J is the standard complex structure on Dy = C!, Dy, = C

wee see that

1
g1 ®0® 0,02 0D 0) = §<U1,U2>7

1
g(o@wl @0,0@'LUQ@O) - _§<w1aw2>a

where (-, ) is the standard hermitian inner product on C'.

l

Thus we only need to calculate the real part of g for elements

060E7%,0608H v €I From

—2Im(g(0 D 0B 71,0 B 0@ 72)) = 2Im(0 B 0 B 110 B 0 B 72);

it follows that
—2Re(g(0 0D 71,0 D 0@ 12))
=Im(Jg(0® 0B 1,00 B ) =
=Im(g(0@ 0@, JOB 0D 7)) =
=2Im(0 S 0D 7,000 Jys).

So on Dr
9(F, F) = —fp;

g

Thus (D, J;) endows SU(l + 2)/U(l) with an invariant, partially in-

tegrable almost CR structure.

Remark 8.7.2. We have (g, O > 0; Also Og, Br < 0 and appropriate

« would define a complex structure on Dr, but

VPWBTr+is— wdvPd —r+is,
x4 — —xl,

T

is an automorphism (in fact, an involution) of su(l + 2) and an iso-
morphism of the (almost) CR structures induced by (g, O, resp.

_ﬁEa _ﬁFa .

IfIm(t):0a:O,ﬁE=1—:;andﬁF:g-

|

Lemma 8.7.3. This is a CR structure: the partially integrable invari-
ant almost CR structure (D, J;) on SU(142)/U(l) is in fact integrable.

Proof. We already showed partial integrability in [ of lemma

This meant that
[J X1, Xo|rz + [X1, JXo]rz =0
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for X;, Xy € D. But in fact one can directly see from (B6) that
([JXl,XQ] + [Xl,JXQ])E = 0, and thus [JXl,XQ] + [Xl,JXQ] e D.
Replacing X; by JX; we see that the Nijenhuis-tensor NV has in fact
values in D:

N € A*(D*)® D,
N(Xy, Xo) = [ Xy, Xo] — [J Xy, JXo] + J([J X1, Xo] + [X1, JXo).

Since N is anti-complex linear in both arguments and skew-symmetric
we immediately see that N vanishes on Dr x Dr. Furthermore

[1 @ w1 ©0,v2 & wy ® 0] — [Jvr & Jwy @O0, Jvy © Jws B O] =

vy V1 —v]v2 0 vy w1 —viwa
= 0 vV} —v1 V3 twawi —wiw; 0

wiv1 —wive 0 wiw —wi w2
v3v1 —v] v2 0 V3 W1 —v] w2
— 0 vov] —v1v3 twawi —wiw; 0 =0.
wivy —wive 0 wiw —wiws
Replacing v & w; @ 0 by Jv; @ Jw; @ 0 this implies that also
[Jl)l D le,’l}g D ’wg] + [’Ul ) w1, J’Uz D J’wg] =0.
Now

[Ul EBwl @O,E] — [JUl D le EBO,JE]

0 wi 0 0 (Be+ai)w; 0
= —wp; 0 v — —(Bg—ai)w1 0 —(Be+ai)vi
0 —vf o0 0 (Be—ai)v} 0

0 (1-Bp—ai)w; 0
= ((51510!@')1111 0 (Bet+1+ai)vr ) ,
0 —(Be+1l—ai)v} 0
and thus, replacing vy & wy & 0 by Jv; & Jw; & 0,
[Juy ® Jw @0, E] + [v; ®w; &0, JE] =

0 (—a+(BE—1)i)w] 0
= (a+(Be—1)i)w1 0 (—a+(14+Br)i)v1 | .
0 (a+(Be+1)i)vy 0

Thus
[v1 @ wy, E] — [Jv, @ Jwy, JE] + J([Jvy @ Jwy, E] + [v1 ® wy, JE]) = 0.

Analogously one shows this for F instead of E. So our CR structure is
indeed integrable. O

8.8. The prolongation of the above family of CR structures to
Cartan geometries. The hermitian form on D has signature (I, [+1);
Denote by m the complex vector space C' @ C' @ C endowed with
the standard hermitian form the standard hermitian form I ;) of
signature (1,1 + 1),

I, O 0
Tlggyy=10 =L 0O
0 0 -1
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One calculates

Theorem 8.8.1. u(C' ® C' ® C, (1,1 + 1)) consists of matrices of the
form

Ay B by

B* Ay bw

by, by yt
with Ay, Aw being unitary and y € R.

The Cartan geometry corresponding to our CR structures on SU (I +
2)/U(1) is of type (G, P), where G = PSU(C @ (m,L41)), ®C) and P
the stabilizer of the isotropic line C(1,0,0) C Ca (C'® C'® C) @ C.
By B3l and elements of g are of the form

—a (00 —0* —9) zi
[ AV B bv v
w B* AW bW — <U~J y
gl by —by i gl
xi -t w* 1) Q

where Ay, Ay € u(l);v,w, 0, w, by, by € Cix,y,2 € R;v,7 € C.
Since the matrices above contain much redundancy we will simply write
them

—Q (>x< —%  —x 21

(% AV B bV v

w * AW bW — | w y
Y o=k Yl v

xi (= = %) *

Theorem 8.8.2.  i. The map

i —ai —U* r+ st
ap( v A w )=

—r+s —w" —x1— a1

a 0 0

1 1
E'U A—ma 0 0

— i 0 A—-a 0 0

2l+3
2(142)
v Pe + ﬁ ﬁ 0 0 — g @
xi (—* * *)

2(14+2)
T 2143
(40)

induces an isomorphism between the graded (nilpotent) Lie alge-
bras gr(g_) and gr(n) = RZ @ D endowed with the Levi-bracket;
The restriction of ag to D is complex linear; here the complex
structure on D is the anti-involution J; corresponding to parame-

ters a, Bg, Br with Bpfr —a® =1 as discussed in[871)
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1. The map

\I] . K — Go, (41)
U(k) :=apo Ad(k) o Ozal

s a homomorphism of Lie groups and under the induced action of
K on g the map o : h — g is K-equivariant.

iii. Bvery other map of which satisfies properties @ and ld is of the
form Ad(go) o ag for some gy € Gy.

iv. The map o = ap + ¢ o o, prolongs the CR structure on SU(l +
2)/U(l) induced by (D, J;) to a regular, normal Cartan geometry.
i.e.: the curvature k of the Cartan connection induced by o satis-
fies 0"k = 0.

Here

dEidWBWwDY)) =

—sx(atl(cy+ew))i (x = —x) zci
_ (8) mc*vi (Re('y)zE+Ir§(“/)ZF)Hz ﬂ;vww _( va‘;fu >
0 xi":z ‘;Va‘;v PgRe(v)+PrIm(y)
0 (000) —sz(a+l(cv+ew))i
(42)

where Byw, Bwv, 2, 2r, PE, PF are complex constants and Py, Py, a, ¢, ¢y, ey
are real constants. Fxplicitly,

ﬁvwzﬁ—ﬁam), By = BE+\/%(1+M), (43)

2p = \/%-i‘ﬁvw, ZFI—\/%—E-F(ﬁVW— VBe)i;

_ 28p(1+1) - B%(3420) — (3+2)(1 + o?)

v 285(3 + 5l + 212 ! (44)
o 2814 1) = BEB3 +20) — 3+ 2)(1+?)
v 285(3 + 51 + 212) :

(1+20)(1 + 3% + a?)
26(1+1) ’
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1
PV:—§(2+a+(l+2)Cv+lCW)> (45)
1
Py = =5 (=2+a+lev + (1 +2)ew),
) 1 20
Pr=——-Ba+llcy +cw)) — =—1,
1 22
Pp=—-Ba+(cy +cw))i +2(0e + a_)i - _a’
2 B BE

¢ = (1662(1 + 1)>(1 + 21)(3 + 20)?) -

(—B5(3 +20)*(15 4 21(15 + 81))

— (34 20)*(15 + 20(15 4 81))(1 + a?)?)-
(—285(—153 — 21(383 + 21(347 + 21(145 + 8I(7 + 1))))
+ (34 20)*(15 + 21(15 + 81))a?)).

v. For the resulting family of Cartan geometries on SU(l + 2)/U(1)
the following holds:
When | = 0 this is a family of CR structures on SU(2) = S and
fort =0 it’s the standard CR structure on S3.
Fort # 0 orl > 0 this structure is not locally isomorphic to the
homogeneous model of partially integrable almost CR structures of
hypersurface type of signature (1,1 + 1); i.e., it is not spherical.
vi. The curvature function k, € L(A*(g_),g) of the Cartan connec-
tion has values in g° = p. It is given by

K(X_ 2,0 ®w D 7)g = (46)
(ilcy —ew)BE—20) 2 —22F Re(
) ,
0 i pr cy —a—1 W
( Z(CV*cw)ﬁBEE*Q(GQJrﬁ%)Im(,y) ) ( Vv )BVW
* 0 (cw — a+ 1) Bwyiv
* — % 0

’%(X—Qa vOwd 7)91 =

0 (x —x —x) 0
(my +1)Py +c)iv
0 ((mw — )Py +¢)i w
0 0 — | mr i(peRe(y) +ppIm(fy)2) +c iy
0 —2pp(5=Re(y) = (B + §-)Im(7))
—77 (Re(7) — alm(y))
0 (0 0 0) 0

(47)
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with
my — %(a + (1 + 2)ev + lew)) (48)
muw = 5(a-+ley + L+ 2)ew)

1
mp = 5(3& +ley + lew)).

/{(X_Q,U@w@v)gg = 07 (49)

K(v1 © Wy © Y1, Vg D wa B Ya)g, =
R(v1 @ wy @Y1, v2 B wa B Y2)g — K(va ® we @ Y2, v1 B wi B Y1) gos

where

F(v1 @ w1 @ 71,02 ® w2 B Ya)gy =
2((Re(PV)+1)v1v§+w1w§)

+ (ﬁlm((m Dw1,v2Pws))
+cyIm(vi w1 By,

UQEBwQEB’Y2>)Hli

+2_azE;-EzF_Im((Ulyw2>) (Pvyi+PeRe(y1)+Prlm(y1))vz )

+5VW0451(71)U2

( +2vBrzERe((v1,w2)) ) (
—(Pv+Pw)viw;
2 ((Re(PW)—l)w1w§+U1U§)

(%) +(ﬁ1m(<v1@w1,v2@w2>) <(PWW+PER€(“/1)+PFIIH(“/1))W2)
—Bwvag (1)ws

+Cwlm(yl Dwi D1,
”2@1"2@“{2)) I

+ 202 (01 @w1,v2@ws))

Falm (v Qw1 Sy1,02 Qw2 Sv2)

(50)

2Im (71 (Re(y2) Pe+Im(v2) Pr))
(%) (=) ( > ‘

k(v @ wy @ Y1, V2 D wa O Ya)g, =
= K01 ® w1 @ 71,02 O Wa B Y2)g — K(V2 & wa 72,01 B wr Y1)y,

where

F(v1 @ w1 @ 71,02 ® w2 ®Ya)g, =
0 (>x< —k —>x<) 0
(Bvw (PeRe(v2) + Prlm(y2)) + Prog ' (v2))wy
+(Re(71)ze + Im(y1)2r) Pwws
)

0 (Bwv (PgRe(72) + PrIm(v2)) — Piog ' (72)) v
0 0 — +(Re(m)zE + Im(y1)ZF) Pyvg ;

0 (2pev/BrRe((v1, w))

A ) ({on )

+Py Byw (wi, v2) — P By (v1, w2))
0 (0 0 0) 0

(51)
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K(v1 © Wy @ Y1, va D wa B Ya)g, =
(c = PHIm({v1, v2)) — (¢ — Pi)Im({wr, wy))
2 —cIm(7172) Xy (52)
+Im((Re(v1) P + Re(71) Pr)(Re(v2) Pe + Re(y2) Pr))

Proof:
i
glvewdy) = (53)
— V30 @ VW \/15—ER6(”) () + VBelm(3)i, 0" (X-a) = 2.
(54)
Note that writing r + si = v,
a6(0® 0 @) = 0® 0@ 2v/Fn((1+ ——(1 - ai))y + (1 — (1 - ai))7).
2 BE BE

Lets check that the isomorphism oy : n = RZ & D = g_ induces an
isomorphism of the associated graded Lie algebras: We have

[(01,101,71), (U2>w2772)]—2 =
= —2Img((v1, wy, M), (v2, w2, 72)) =
= —Im(vy, vo) + Im(wy, wa) + 2ImFry,

QQ

~2 (—Im(vy, va) 4 Im(wy, wa) + 2Im772) X
and

[Oéo(vhwla’h)a040(“27’6027’72)] =

— fvl, L wn, v/BeRes + St + ﬁlmm,
(\/7 2, —= \/— \/EER@% + \/(;—Elm% + \/%Im’yzi)] =
— —21m<(\/,v1, —wy, @Reyl + \/%Imfyl + \/%Imfyli),

« 1
; 2,V BeReys + —=Imvy, + —=Im2i)) 1,141) =
(\/— 2 \/— E 2 \/E \/E (L,1+1)
= —Im(vy, ve) + Im(wq, wy) — 2(ReyImy; — ReyImys) =
= —Im(vy, v9) + Im(wy, wa) + 2Im717s.

Thus «q is indeed regular.
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ii. Adjg, induces an embedding of Gy as a closed subgroup into
GL(g_). We need to show that the homomorphism of Lie groups

U: K — GL(g_),
U(k):=agoAd(k)oay’
has values in Gq. Since the exponential map exp : £ — K is surjective
this is equivalent to W’ : ¢ — gl(g_) having values in go. Once we have
shown this it is tautological that ag, is K-equivariant; and on € we
simply defined age := ¥
We have: Z is invariant under ¢ and recall from (BY]) that

(0, 4), (0w @) = (A+a)v & (A+ w0

(here we use notation (B3)).
Now one sees that for X € g_ and A € ¢

a(ad((a, 4))(eg " (X)) =

~ i 0 0
A-glza 0 0
= ad 0 ( 0 A—glsa 0 ) 0 (X)’
0o 0 -EE,
0 0 A7

Thus ag o ad((a, A)) o ay* does indeed have values in go.

iii. The assertion that every other solution ¢ is of the form Ad(gg)o
oy for some gy € G follows from B3

iv. Now we need to show that 0*x = 0. According to theorem 2T
the curvature function k € C*®(SU(l + 2) xx P,L(A*(g_),g)) of the
Cartan connection induced by the map « is SU(l + 2)-invariant and P-
equivariant and thus factorizes to an invariant section of SU(l +2) X g

L(A%*(g_),9). At o= K it is
Fo(X1, X2) = [X1 + 0(X1), Xo + 6(Xa)] — e[ ' (X1), g ' (X2))).

It is straightforward to calculate (HQ)-(B2).
The explicit equations in ¢ for 0*x = 0 are obtained as follows: Let e,
denote the j-th standard-basis-vector of C'.

ijzej@o@oeg_l,
€Wj:0@€j€906971;

As a real basis of g_; we take

B = (€V1, s EVL YT, - L8V, EW L, - - -5 EWEL LWL, - - - LEW L,

000®1,0D0D ).
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X_o completes it to a basis of g_ whose dual basis is (—X3, €) with

~x ~% e~ % L~k ~x% ~x .~ * .~ *
¢ = (em,...,ew,zem ye BBV —Epys e —Cpps —(Ew1) T, - L (i8w)T,

— (0081, —(0®0di)).
Now, as we discussed in [[3, 0*k = 0 is equivalent to:

D € R(X,B)] — [Xo, /(X, X 2)] = 0 (55)

i=1
and

> w1, X]-B) — wlfay ! (X2), a0 (X)), X2) =0 (56)

=1

for all X € g_. (Recall that for an element B € g we denote the
projection of B to g_ by By or simply by B_.)

Note that [X5, X]_ = 0 on the whole of g_ and [€;, X]_ =0 for X €
g_1. Thus equation (BH) reduces to

4142

D r([€, X o], By) =0,

i=1

but on can show that this is already implied by (B3).
Next one calculates that (BH) does hold for

X=X,,X=0v0000,X=00wa0,X=FE X=F

This task consist only of taking commutators and summing up.

Remark on how we found the solution. From the general theory of
parabolic geometries we know that there is a unique (up to equivalency)
regular normal Cartan connection on H xg P inducing the same CR
structure on M = H/K. Now we saw in fl that our oy is regular and in
il we saw that any other regular map ¢ differs by an isomorphism of
g from ag. Thus, in our search for an a with 0*x = 0, we may restrict
ourselves to maps «ag + ¢ o a for K-equivariant maps ¢ : g — g of
homogeneity greater zero.

We found the solution for ¢ by making an ansatz for a K-equivariant
map of homogeneity greater one. We describe the decomposition of g
as a K-module: under ¥ an element A € su(l) < & < h acts on an
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element of g by

0 0 0 —a (or —w* —2) Bi
A 0 O v AV B bv v
0 0 0 z by —by oz (2
0 0 0 i (—v* w* z) o7
0 ((Az? * —(Aw)* 0 0
Av (A, Ay [A, B| Aby (Av)*
= Aw [A, B]*  [A Aw]| Abw — | (Aw)*
0 (Aby)* —(Abw)* 0 0
0 (—(Av*)  (Aw)* 0) 0

Thus we get the following decomposition of g into irreducible K-modules:
the grading-components g; of g are K-invariant, thus we describe their
decomposition: g_s and g, are already 1-dimensional, real spaces.

g1 =C' @ C'® C decomposes into C' & C' & (R & R) as K-module.
The representation of K on g; is the dual representation of K on g_;
and thus similarly g; = (C' @ C' @ (R ® R))*.

The decomposition of go is given as follows: go = R @ u(l,l + 1) as
K-module (recall theorem B3l ) and u(l,!+ 1) decomposes into 9
irreducible subrepresentations; these are

R: 0O C!
CleC'eoReReR=| 0 Ri C'],

su(l) @ su(l)

12

o

n
£
=

coo

©

=

o

su(l) @ su(l)

1%
o % o

We then used this decomposition to make an equivariant ansatz for ¢.
The map ¢ decomposes into ¢ = ¢y B @9 D P3 B ¢4, Where ¢; is a map
of homogeneity 1.

Then, since higher homogeneities of ¢ don’t contribute to lower homo-
geneities of 0%k one can solve ¢ one homogeneity after the other.

One furthermore knows from the general theory (cf. [5]) that the cur-
vature of the Cartan connection corresponding to an integrable CR
structure has in fact values in p.

Using a K-equivariant ansatz for ¢ we first found and verified the
solution for finitely many dimensions [ € Ny by using Mathematica.
Then we saw what the general solution for arbitrary [ € Ny is and
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checked (BH) by hand; here computer algebra was still very helpful for
simplifying expressions. g

Remark 8.8.3. Let us briefly consider the special case [ = 0. Here, with
a=0,0g=AeRA>0

_ 14220 Re(ABA?=5)+Tm(7)(5A?=3)i ~15344+34)2—15
4 Ir 16)2
ARe(7)+Im(v)i 1422 Re()A(BX2 —5)—Im(y) (522 —3)i
Vi o a3
i Re(y)A—Im(y)i P ED S
NON 4\
The map

EFE——-FEF—F/Z— -7

is an automorphism of su(2) and an isomorphism of the CR structure
of signature (0, 1) induced by

c=(( % o)

and the CR structure of signature (1,0) induced by

(C%{(S _0’7)}.

By taking the composition of this isomorphism, «, and the isomorphism
given in B3m one sees that our result here is the same as the one in
Bl. 5
Remark 8.8.4. In [T] D. Alekseevsky and A. Spiro classified all compact
homogeneous non-degenerate CR manifolds of hypersurface type and
found for the above example in particular that for 1, ¢ in the unit disc

of C the CR structures on SU(l + 2)/U(L) induced by (D, J;,) and
(D, Ji,) are isomorphic iff |t1] = |ta]. 4
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