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Preface

Cartan geometry provides a uniform treatment of diverse geomet-
ric structures and in the case of parabolic geometries we even have an
equivalence of categories between manifolds endowed with the respec-
tive structure and the corresponding (regular, normal) Cartan geome-
tries.
In this text we will consider several homogeneous geometric spaces and
explicitly construct the corresponding (normalized) Cartan geometries.
In Chapter 1 we recall basic facts and notions of (principal) bundles.
In Chapter 2 we discuss the geometry of homogeneous spaces, introduce
homogeneous principal bundles and motivate the extension of Klein ge-
ometry to Cartan geometry.
In Chapter 3 we recall general facts of Cartan geometry, discuss in
particular how reductions of structure groups can be described as re-
ductive Cartan geometries and recall induced connections.
In Chapter 4 we discuss invariant connections on homogeneous prin-
cipal bundles: homogeneous principal connections and homogeneous
Cartan connections are classified, explicit formulas for the curvatures
derived and applications to invariant connections given.
In Chapter 5 we treat homogeneous Riemannian spaces and derive the
Levi-Civita connection in this picture.
In Chapter 6 we recall basic notions of parabolic geometries resp. their
underlying structures and discuss the relation of a parabolic geometry
with its induced infinitesimal flag structure in the homogeneous case.
In Chapter 7 we show how a homogeneous conformal structure on a
manifold is prolonged to a parabolic geometry.
In Chapter 8 we introduce contact and CR structures and prolong a
family of CR structures on SU(l + 2)/U(l) to Cartan geometries.
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1. Differential Geometric Background on Bundles

Here we recall basic facts about principal bundles and fix some no-
tations on the way. We mostly follow [9], where one can find more
details. In the following all manifolds and all maps between them are
smooth.

Definition 1.0.1. A fiber bundle with standard fiber S is a surjective

submersion E
πM→ M such that for every x ∈ M there is a neighbour-

hood U of x in M and a diffeomorphism φU : π−1
M (U) → U × S such

that πM = prU ◦ φU , where prU : U × S is the projection to U .
E is called total space and M is the base space.
(U, φU) is called a fiber bundle chart.

Thus all bundles we consider are locally trivial.

A morphism from a fiber bundle E1

πM1→ M1 to a fiber bundle E2

πM2→
M2 consists of maps f : E1 → E2 and f̌ : M1 → M2 which satisfy
πM2 ◦ f = f̌ ◦ πM1 . One says that f covers f̌ . Equivalently we can say
that a morphism from E1 to E2 is a map f : E1 → E2 such that πM2 ◦f
factorizes to a map from M1 to M2.
We denote the sections of a fiber bundle E → M by Γ(E → M). The
fiber over a point x ∈ M is written Ex. The space of vector fields on a
manifold M will be denoted by X(M).
Observe that the transition function from a chart (U1, φU1) to a chart
(U2, φU2), which is a diffeomorphism of U1 ∩ U2 × S, is of the form
(x, s) 7→ (x, θ(x, s)). An atlas of the fiber bundle E →M consists of a
family of fiber bundle charts (Uα, φUα) such that Uα cover M .
Now we introduce the notion of vector bundle. Consider a fiber bundle
E →M with standard fiber a vector bundle V . A fiber bundle atlas of
E →M whose transition functions are of the form (x, v) 7→ (x, θ(x)v),
where θ is a map from U into GL(V ), is called a vector bundle atlas.
Two vector bundle atlases are equivalent when their union is again a
vector bundle atlas.

Definition 1.0.2. A vector bundle is a fiber bundle E → M with
standard fiber a vector space V together with an equivalence class of
vector bundle atlases.

Every fiber Ex (for x ∈M) of a vector bundle (E →M,V ) is (canon-
ically endowed with the structure of) a vector space which is isomorphic
(but not naturally so) to V .
A morphism from a vector bundle (E1 → M1, V1) to a vector bundle
(E2 → M2, V2) is a morphism of fiber bundles (f : E1 → E2, f̌ : M1 →
M2) such that for every x ∈M1 the map f|E1x

is linear.
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1.1. Principal bundles. Consider a fiber bundle G → M whose stan-
dard fiber is a Lie group P . A fiber bundle atlas of G whose transition
functions are of the form

(x, p) 7→ (x, θ(x)p)

for a (smooth) map θ : U1 ∩ U2 → P is called a principal bundle atlas
of (G → M,P ). Two principal bundle atlases whose union is again a
principal bundle atlas are called equivalent.

Definition 1.1.1. A P -principal bundle is a fiber bundle (G →M,P )
together with an equivalence class of principal bundle atlases.

On a principal bundle (G → M,P ) one has a natural right ac-
tion of P . In a principal bundle chart this right action is given by
(x, p) · p′ = (x, pp′).
Obviously the orbits of this action are exactly the fibers of the bundle
and in fact for every u ∈ G the map p → u · p is an embedding of P
into G.
A morphism from a P -principal bundle G1 → M1 to a P -principal bun-
dle G2 → M2 is a morphism of fiber bundles (f : G1 → G2, f̌ : M1 →
M2) such that f is P -equivariant, i.e., for every u ∈
G1: f(u · p) = f(u) · p.
More generally we can consider morphisms from a P1-principal bundle
G1 → M1 to a P2 principal bundle G2 → M2 when we have a homo-
morphism of Lie groups Ψ : P1 → P2. Then we say that a morphism of
fiber bundles f : G1 → G1 is a morphism between (G1, P1) and (G2, P2)
over Ψ if f(u · p) = f(u) · Ψ(p) for all u ∈ G1, p ∈ P1.
Let P ′ < P be a Lie subgroup of P . A reduction of a principal bundle
G → M is a principal bundle G ′ → M ′ together with a morphism of
fiber bundles f : G′ → G covering the identity on M such that f is
P ′-equivariant.
The most useful constructions one can do with a principal bundle are

1.1.1. Associated Bundles. Let (G → M,P ) be some principal bundle
and S some manifold which is endowed with a left action of P . On
G × S we have a free action of P by

(u, s) · p := (u · p, p−1 · s).

The orbits of this action are denoted

[[u, s]] := {(u · p, p−1 · s), p ∈ P}

and regarded as equivalence classes.



7

Theorem 1.1.2. G×PS is endowed with a unique structure of a smooth
manifold such that the natural surjection

G × S
q→ G ×P S,

(u, s) 7→ [[u, s]]

is a surjective submersion.

In fact (G × S
q→ G ×P S, P ) is a P -principal bundle.

The natural surjection

G ×P S →M,

[[u, s]] 7→ π(u)

makes (G ×P S →M,S) to a fiber bundle with standard fiber S.
There is a unique map

τ : G ×M (G ×P S) → S

(where ×M is the fibered product) such that for πM (u) = πM (u′)

[[u′, τ(u′, [[u, s]])]] = [[u, s]]. (1)

Remark 1.1.3. Since

[[up, τ(up, [[u, s]])]] = [[u, s]]

by (1) and

[[up, p−1 · τ(u, [[u, s]])]] = [[u, τ(u, [[u, s]])]]

by definition of the equivalence relation on G×P we see that τ satisfies

τ(up, [[u, s]]) = p−1 · τ(u, [[u, s]]) (2)

by uniqueness. y

Remark 1.1.4. When we have a representation Ψ : P → GL(V ) of P
on a vector space V the associated bundle G ×P V → M is a vector
bundle with modelling vector space V .
When Ψ : P → P ′ is a homomorphism of Lie groups the associated
bundle G ×P P ′ → M is a P ′-principal bundle over M , where the
P -principal action is given by

[[u, p]] · p′ = [[u, pp′]].

y

1.1.2. Factorizing equivariant maps and forms. Later we will often use
the following relations between functions and forms on the total- resp.
base- space of a principal bundle.
Here (G →M,P ) is an arbitrary principal fiber bundle.
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Theorem 1.1.5. Let S be some manifold endowed with a left action
of P .
There is a 1:1-correspondence between P -equivariant maps f : G → S
and sections of G ×P S →M .
Denote the set of all P -equivariant maps from G to S by C∞

P (G, S).
Then the bijection is: for a section

s : M → G ×P S with π ◦ s = idM ;

the corresponding equivariant function f : G → S is given by

u 7→ τ(u, s(π(u))).

Proof. First consider a section s ∈ Γ(G ×P S). We need to show that

u 7→ τ(u, s(π(u)))

is P -equivariant. So take u ∈ G, p ∈ P . Then

τ(up, s(π(up))) = τ(up, s(π(u))) = p−1 · τ(u, s(π(u)))

by (2).
Now we have to show how an equivariant f : G → S conversely de-
termines a section s : M → G ×P S. But by equivariancy of f the
map

s̃ : G → G ×P S,

u 7→ [[u, f(u)]]

is constant on the fibers of G. Thus it factorizes to a section M →
G ×P S. That this section is really smooth simply follows from the
fact that G → M is a surjective submersion: this is equivalent to the
existence of smooth local sections σ : M ⊃ U → G, by which one can
pullback s̃ : G → G ×P S to s := s̃ ◦ σ : M → G ×P S. Since s̃ is
constant on the fibers of G we see that s = s̃ ◦ σ really doesn’t depend
on the particular local section σ : U → G. �

Now let V be some finite dimensional vector space.

Definition 1.1.6. A V -valued ℓ-form ω on G is called horizontal if
ω(X1, . . . , Xℓ) = 0 whenever some Xi ∈ V G = {X ∈ TG : Tπ(X) = 0}.

Denote by ΩP (G, V )hor the set of all P -equivariant, horizontal, V -
valued forms on G and by Ω(M,G ×P V ) the set of all G ×P V -valued
forms on M .

Theorem 1.1.7. A V -valued form φ on G factorizes to an G ×P V -
valued form on M iff φ is horizontal and P -equivariant, i.e., if φ ∈
ΩP (G, V )hor.
I.e., we have an isomorphism of vector spaces between ΩP (G, V )hor and
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Ω(M,G ×P V ).
Explicitly, for a φ ∈ Ωℓ(M,G ×P V ) we define q#φ ∈ ΩP (G, V )hor by

q#φ(X1, . . . , Xℓ) := τ(u, φ(TπMX1, . . . , TπMXℓ))

for X1, . . . , Xℓ ∈ TuG.
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2. Introduction to Klein and Cartan Geometries

2.1. Homogeneous spaces. Define G/P := {gP, g ∈ G}, the set of
all left cosets of P in G. G/P is called a homogeneous space and has a
unique smooth structure such that the natural surjection

G
πG/P→ G/P

is a surjective submersion. (See for instance [9], Chapter II.) In fact,
G→ G/P is easily seen to be a P -principal bundle.

Additional structure on G → G/P comes from the left action: For
g ∈ G we introduce the maps

λg(g
′) := gg′, λ̌g(g

′P ) := gg′P.

Obviously G acts thus on G/H by λ̌ and left-multiplication is a lift
of this action to an action of G on itself. Also, since left and right
multiplication commute, g ∈ G acts thus by an automorphism of the
P -principal bundle G → G/P covering λ̌g. It is furthermore obvious,
that this action is transitive.

Thus we found the simplest example of a homogeneous principal
bundle:

Definition 2.1.1. Let H by a Lie group andK < H a closed subgroup.
A homogeneous P -principal bundle over H/K is a P -principal bundle

G π−→ H/K together with a lift of the action of H on H/K to an
action on the principal bundle by automorphisms: we demand that for
all h ∈ H, u ∈ G, p ∈ P

i. π(h · u) = hπ(u) and
ii. h · (u · p) = (h · u) · p.

Definition 2.1.2. Let G1 → H/K,G2 → H/K be homogeneous P -
principal bundles. A map Φ : G1 → G2 is a homomorphism of homoge-
neous principal bundles if for all u ∈ G1 and p ∈ P

i. Φ(u · p) = Φ(u) · p
ii. Φ(h · u) = h · Φ(u).

2.2. Klein Geometries or the Geometry of Homogeneous Spaces.
A pair (G,P ) for a closed subgroup P < G, is called a Klein geome-
try. In the Klein geometric picture one regards the (left-)action of G
on G/P as automorphisms of a geometric structure, and G is the full
automorphism group.

Definition 2.2.1. A Klein geometry (G,P ) is called reductive if there
is a P -invariant complement to p in g,i.e., if g = n⊕ p as P -module for
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some vector-space-complement of p in g.
A Klein geometry (G,P ) is called split if there is a complement of p in
g which is a Lie subalgebra.

The geometric study of the Klein geometry (G,P ) means that we
find “invariants” of the G-action on the homogeneous space G/P .
We start by discussing invariant sections of appropriate (vector-) bun-
dles. We will be able to discuss some invariant differential operators,
namely connections on X(G/P ), later in 4.1.2 after having developed
the necessary background.

2.2.1. Homogeneous Bundles. In this section we follow [5]. Analo-
gously to 2.1.1 we introduce

Definition 2.2.2. A homogeneous fiber bundle over G/P is a fiber

bundle E
πM→ G/P with standard fiber S together with a lift over πM

of the action of G on G/P to an action on E.

Definition 2.2.3. A homogeneous vector bundle over G/P is a vector

bundle E
πM→ G/P with standard fiber a vector space V together with

a lift over πM of the action of G on G/P to an action on E by vector
bundle-automorphisms.

Like above for homogeneous principal bundles the morphisms of ho-
mogeneous fiber- resp. vector- bundles are morphisms of fiber- resp.
vector bundles which are also G-equivariant.

Theorem 2.2.4. Let E → G/P be a homogeneous fiber bundle with
standard fiber S. Then there is a left action of P on S such that
E → G/P is isomorphic to G×P S → G/P .

Proof. We give a brief sketch of the proof.

Since the restriction of the action to P lets o = P ∈ G/P invariant
the fiber over o is invariant as well. But Eo may be identified with S
and one thus obtains an action of P on S.

One has an obvious left action by G on {[[g, s]]} by g′ · [[g, s]] :=
[[g′g, s]], and this is a lift of the action of G on G/P .

Now one completes the proof by verifying that the map

G×P S → E,

[[g, s]] 7→ g · s
is a G-equivariant diffeomorphism covering the identity. �

For the special case of homogeneous vector bundles one has
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Theorem 2.2.5. Let E → G/P be a homogeneous vector bundle with
standard fiber V . Then there is a representation of P on V such that
(E → G/P, V ) ∼= (G×P V → G/P, V ).

Note that the general frame bundle GL1(E) of G ×P V → G/P is
G×P GL(V ) → G/P .
For the case of homogeneous principal bundles one has

Theorem 2.2.6. Let G → H/K be homogeneous P -principal bundle
over M = H/K and u0 ∈ Go some arbitrary point in the fiber over
o = K ∈M .

i. There is a unique homomorphism of Lie groups Ψ : K → P such
that

H ×K P → G,
[[h, p]] 7→ h · (u0 · p)

is an isomorphism of homogeneous principal bundles.
ii. For u′0 = u0 · p0 the corresponding homomorphism is

Ψ′ = conjp0
−1 ◦ Ψ.

iii. The isomorphism classes of homogeneous P -principal bundles over
H/K are the NH(K)×P -conjugacy-classes of Hom(K,P ): given
Ψ1,Ψ2 ∈ Hom(K,P ), the associated homogeneous principal bun-
dles are isomorphic iff there is an element h0 in the normal-
isator NK(H) of K in H and an element p0 in P such that
Ψ2◦conjh−1

0
= conjp0

◦Ψ1,or equivalently, Ψ2 = conjp0
◦Ψ1◦conjh0

.

Proof. i. Since the action of H on H/K lifts to an action on G we
see that its restriction to K leaves Go invariant, it commutes with
the right-action of P . Now the map p 7→ u0 · p embeds P into G
as Go, in particular, every element in Go my be uniquely written
as u0 · p. Therefore the action by K on Go is already determined
by its action on uo.: We have a map Ψ : K → P such that
k · u0 = u0 · Ψ(k). Now, given k ∈ K and p ∈ P = Go we have
k · (u0 · p) = (k · u0) · p = (u0 · Ψ(k)) · p = u0 · (Ψ(k)p). And it is
easy to see that Ψ is in fact a homomorphism of Lie groups:

u0 · Ψ(kk′) = (kk′) · u0 = k · (k′ · u0)

= k · (u0 · Psi(k′)) = (k · u0) · Ψ(k′)

= (u0 · Ψ(k)) · Ψ(k′) = u0 · (Ψ(k)Ψ(k′)).

Now one describes G as an associated (principal) bundle of H :
We show that G ∼= H ×Ψ P as homogeneous P -principal bundles.
We already remarked in 1.1.4 that H ×Ψ P naturally carries the
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structure of a P -principal-bundle:

[[h, p]] · p′ := [[h, pp′]]

It is also clear that it is homogeneous in the sense of 2.1.1:the lift
of the action of H on H/K to an action on H ×K P is given by

h′ · [[h, p]] := [[h′h, p]].

Now the map

H ×K P → G,
[[h, p]] 7→ h · (u0 · p)

covers the identity on H/K and is both H- and P -equivariant.
Thus it is already an isomorphism of homogeneous principal bun-
dles.

ii. What happens when we start with another point u′0 = u0 ·p0 ∈ P ?
Then

u′0 · Ψ′(k) = k · u′0 =

= k · (u0 · p0) = u0 · (Ψ(k)p0) = u′0 · (p−1
0 Ψ(k)p0).

Thus Ψ′ = conjp0
−1 ◦ Ψ.

iii. We know that every homogeneous P−principal fiber bundle over
H/K is isomorphic to H ×Ψ P → H for a homomorphism Ψ :
K → P . Given two homomorphisms Ψ1,Ψ2 : K → P , when is
there an isomorphism

Φ : H ×Ψ1 P → H ×Ψ2 P ?

Take an arbitrary representative (h0, p0) of Φ([[e, e]]Ψ1). Since Φ
commutes with the actions of H and P

Φ([[h, p]]Ψ1) = Φ(h[[e, e]]Ψ1p) = h[[h0, p0]]Ψ2p

= [[hh0, p0p]]Ψ2 .

Since [[e, e]]Ψ1 = [[k,Ψ1(k
−1)]]Ψ1

[[h0, p0]]Ψ2 = Φ([[e, e]]Ψ1) =

Φ([[k,Ψ1(k
−1)]]Ψ1) = [[kh0, p0Ψ1(k

−1)]]Ψ2).

So there is a k̃ such that

(h0k̃,Ψ2(k̃
−1)p0) = (kh0, p0Ψ1(k

−1));

We see k̃ = h−1
0 kh0 and Ψ2(h

−1
0 k−1h0) = p0Ψ1(k

−1)p−1
0 .

�
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So we described an arbitrary homogeneous P -principal bundle as a
quotient of the trivial bundle H × P . We have a K-principal bundle
whose base is a P -principal bundle:

H × P

��

Koo

H ×K P

��

Poo

H/K

2.2.2. Invariant Sections of Homogeneous Vector Bundles. Take some
vector space V and a representation of P on V , i.e., the data defining
a homogeneous vector bundle of G/P . Then we ask whether there are
sections s : G/P → G×P V which are invariant under the action of G,
i.e.:

s(g′gP ) = g′ · s(gP ).

Given such an invariant section s it is obviously already completely
determined by its value at o = P ∈ G/P since then at gP by invariance
s(gP ) = g · s(o). But by invariance under P it is necessary that for
p ∈ P

p · s(o) = s(o). (3)

Let s(o) be [[e, v0]]. Then (3) reads as

[[e, v0]] = s(o) = p · s(o) = [[p, v0]] = [[e, p · v0]]

which is equivalent to p · v0 = v0; i.e.: v0 is invariant under P .
Since one can conversely construct a (unique) invariant section s which
is given by [[e, v0]] at o we have shown

Theorem 2.2.7. G-invariant sections of the vector bundle (G×P V →
G/P, V ) are in 1:1-correspondence with P -invariant elements of V .

(One can also employ Theorem 1.1.5 to show this fact: sections of
G ×P V → G/P correspond to P -equivariant functions from G to V ;
now invariance of a section is easily seen to be equivalent to the cor-
responding function to be constant, and thus the criteria that it is
P -invariant simply means that its value is P -invariant.)

Example 2.2.8. Consider some representation Ψ : P → GL(V ) Then
for i, j ∈ N0

T i
j (G×P V ) : =

(

⊗i(G×P V )∗
)

⊗
(

⊗j(G×P V )
)

=

= G×P

(

⊗iV ∗)⊗
(

⊗jV
)

=: G×P T
i
jV
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and thus G-invariant (i, j)-tensors on the vector bundle G ×P V →
G/P are in 1:1-correspondence with P -invariant elements of

(

⊗iV ∗)⊗
(

⊗jV
)

. y

Example 2.2.9. Since

T (G/K) = G×P g/p,

it follows from the previous example that invariant (pseudo-) Riemann-
ian metrics on G/P are P -invariant (pseudo-) inner products β on g/p.
Every such β endows g/p with the structure of a euclidean space and
since β is invariant under P we have in fact that Ψ : P → V has values
in O(V, β).
We can thus reduce the general frame bundle of this vector bundle to
the orthogonal frame bundle

G×P O(V, β).

y

2.3. From Klein to Cartan. When studying the geometry of homo-
geneous spaces one regards G as the automorphism group of some geo-
metric structure on G/P . In 2.1 we already noted that (G→ G/P, P )
is a P -principal bundle.
So far the choice of automorphism-group is a bit arbitrary and rather
extrinsic since not every principal-bundle automorphism of G → G/P
is a left-multiplication. We want to get intrinsic geometrical data of
the P -principal bundle (G→ G/P, P ):

2.3.1. Encoding the geometry as an explicit structure on the bundle.
What we want to do is to encode the (Klein-) geometric structure
into a form on G: i.e.: a form ω on G such that those principal-bundle
automorphisms ofG→ G/P which preserve this form are really exactly
left multiplications by elements in G. Once we have done this, we have
thus described the (Klein-) geometric structure on G/P by this form,
and this description of the structure as (G → G/P, ω) we will then
generalize from homogeneous spaces G/P to arbitrary spaces.

2.3.2. The Maurer-Cartan form. The answer to our problem is the
Maurer-Cartan form ωMC , which is a way to write the left-trivialization:

ωMC(TeλhX) := X or

ωMC(ξh) = (Teλh)
−1ξh = Thλh−1ξh.

So ωMC is an g-valued 1-form on G, or ωMC ∈ Ω1(G, g). When we view
it as a diffeomorphism of TG with G×h it is simply left-trivialization.
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Theorem 2.3.1. Consider a Klein geometry (G,P ) with connected
G/P .
An automorphism Ψ of the P -principal bundle G → G/P preserves
ωMC, i.e.,

Ψ∗ωMC = ωMC (4)

iff Ψ is left-multiplication by some g ∈ G.

Proof. In the following ω = ωMC . First take some g′ ∈ G. We show
that λ∗g′ω = ω: This is equivalent to

ωg′g(Tgλg′ξg) = ωg(ξg)

for ξg ∈ TGg. By definition of ω

ωg′g(Tgλg′ξg) = (Tλgg′)
−1Tgλg′ξg.

Since λg′g = λg′ ◦ λg we have λ−1
g′g = λ−1

g ◦ λ−1
g′ and thus

(Tλg′g)
−1Tgλg′ = Tgλ

−1
g (Tg′gλg′)

−1Tgλg′ = Tgλ
−1
g .

Thus indeed

ωg′g(Tgλg′ξg) = Tgλ
−1
g ξg = ωg.

Now conversely consider an automorphism ψ of the P -principal bundle
G → P which satisfies (4). For X ∈ g and g ∈ G we define LX(g) :=
TeλgX, i.e., LX is the unique left-invariant vector field with LX(e) = X.
Now (4)

ωΨ(g)(TgΨ(TeλgX)) = ωg(TeλgX) = X,

reads

TgΨLX(g) = LX(Ψ(g)),

which just says that LX is related to itself by Ψ. Thus it follows for
the flow of LX that

Ψ(FlLX
t (g)) = FlLX

t (Ψ(g)). (5)

But FlLX
t (g) = g exp(tX), and thus (5) is equivalent to

Ψ(g exp(tX)) = Ψ(g) exp(tX).

Every element of the identity component Go of G may be written
exp(X1) · · · exp(Xk), and thus for g1 ∈ G, g′ ∈ Go Ψ(g1g) = Ψ(g1)g

′.
Since Ψ is assumed to be an automorphism of the P -principal bundle
G→ G/P it is P -equivariant.
But that G/P is connected is equivalent to P intersecting every con-
nected component of G, and thus every element g of G may be written
g = g′p′ with some g′ ∈ Go, p

′ ∈ P . Thus Ψ(g1g) = Ψ(g1)g, and thus
one has

Ψ(g) = Ψ(e)g;
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i.e., Ψ is simply left-multiplication by Ψ(e) ∈ G. �

Thus the Maurer-Cartan-form solves our problem of describing the
(Klein geometric) automorphism group G intrinsically: The automor-
phisms of a Klein geometry ((G,P ), ωMC) are the principal-bundle au-
tomorphisms of G→ G/P which preserve ωMC.
Our next aim is to generalize the Klein geometric notion of geomet-
ric structure to general, not necessarily homogeneous, manifolds. For
this we want to find properties of ωMC ∈ Ω(G, g) as strong as possi-
ble which still make sense in the general setting. Writing M = G/P ,
G = G, ω = ωMC , these properties are

i. ω is P -equivariant
ii. ω( d

dt |t=0
u exp(tX)) = X for all u ∈ G, X ∈ p

iii. ωu : TuG → g is an isomorphism for all u ∈ G.

Now we use these properties to generalize Klein geometries to

2.4. Cartan Geometries.

Definition 2.4.1. A P -principal bundle G →M together with a form
ω ∈ Ω1(G, g) is called a Cartan geometry of type (G,P ) if ω satisfies
(i),(ii) and (iii). ω is called a Cartan connection.

Definition 2.4.2. Let (G1 → M1, ω1) and (G2 → M2, ω2) be Cartan
geometries of type (G,P ). A morphism of Cartan geometries of type
(G,P ) from (G1 → M1, ω1) to (G2 →M2, ω2) is a morphism of principal
bundles which pulls back ω2 to ω1.

We will regard a Cartan geometry of type (G,P ) to be modeled on
the Klein geometry (G,P ), and we call (G,P ) equipped with ωMC the
homogeneous model of Cartan geometries of type (G,P ).
If ω = ωMC is the Maurer-Cartan form on G it is well known that it
satisfies the Maurer-Cartan-equation

dω(ξ, η) + [ω(ξ), ω(η)] = 0.

Definition 2.4.3. The curvature K ∈ Ω2(G, g) of a Cartan geometry
(G → M,ω) of type (G,P ) is the failure of ω to satisfy the Maurer-
Cartan-equation:

K(ξ, η) := dω(ξ, η) + [ω(ξ), ω(η)].

The picture that a Cartan geometry of type (G,P ) is a ’curved anal-
ogon’ of the Klein geometry (G,P ) is based on the following

Theorem 2.4.4. A Cartan geometry (G → M,ω) is locally isomorphic
(as Cartan geometry) to the homogeneous model (G → G/P, ωMC) iff
its curvature vanishes.



18

(For a proof see for instance [5] or [12]).

2.5. The general setting of this text. There are two general geo-
metric problems related to Cartan geometries: First: Interpret the
geometric structure described by a Cartan connection. and Second:
Given some geometric structure on a manifold M , can one prolong it
(uniquely) to a Cartan geometry?
We will mostly be concerned with the problem of prolonging a given
geometric structure to a Cartan geometry. This we will do for cases of
homogeneous Cartan geometries:

Definition 2.5.1. Let M = H/K be a homogeneous space. We
define the notion of a homogeneous Cartan geometry on H/K: Let
(G → H/K, ω) be a Cartan geometry (of some type (G,P )) on the
homogeneous space H/K. It is called homogeneous if H acts on G by
automorphisms λh of the Cartan geometry (G → H/K, ω) which cover
λ̌h.

In this simpler setting we will be able to explicitly describe several
prolongations.
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3. Some Background on Principal and Cartan

Connections

3.1. Principal connections. Let πM : P →M be a P -principal bun-
dle and denote the principal right action of an element p ∈ P on P by
rp; i.e.: rp(u) = u · p for u ∈ P. The fundamental vector fields on P
are

ζY (u) :=
d

dt |t=0
u · exp(tY )

for Y ∈ p.

Definition 3.1.1. A p-valued 1 form γ on P is called a principal con-
nection on P if the following two conditions hold:

i. (rp)∗γ = Ad(p−1) ◦ γ;
ii. γ( d

dt |t=0
u · exp(tX)) = X for all u ∈ P and X ∈ p.

I.e.: γ is P -equivariant and reproduces the generators of fundamen-
tal vector fields.
The kernel of a principal connection γ ∈ Ω1(P, p) is a smooth subbun-
dle of TP, called the horizontal bundle HP. HP is complementary
to the vertical bundle V P = ker TπM and both subbundles are P -
invariant.
By definition, ker TuπM = V Pu, thus TuπM is an isomorphism of HPu

with TπM (u)M . This allows us to lift vector fields ξ on M uniquely to
horizontal fields ξhor on P.
For a principal connection we have a natural notion of curvature,
namely the failure of the horizontal bundle to be integrable; this we
encode in the principal curvature form

ρ(ξ, η) := −γ([ξhor, ηhor]) for ξ, η ∈ X(P)

where subscripts denote projections to the respective subbundles.
ρ is in fact a two-form; take u ∈ P: that ρu(ξ, η) really depends only
on ξ(u), η(u) is equivalent for the map

X(P) × X(P) → p,

ξ, η 7→ γ(ξ, η)

ξ, η 7→ γ(ξ, η) to be linear not only over R, but also over C∞(P). For
this, take a f ∈ C∞(P); note that (fη)hor = f(η)hor since horizontal
projection is algebraic and thus

[ξhor, fηhor] = f [ξhor, ηhor] + (ξhor · f)ηhor.

But the latter term is horizontal, and thus lies in the kernel of γ.
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By definition,

ρ(ξ, η) = dγ(ξ − ζγ(ξ), η − ζγ(η)).

Lets calculate dγ(ζY , ξu) for Y in p. For this, note that FlζY
t (u) =

u exp(tY ). So

(LζY
γ)(ξu) =

d

dt |t=0
γ(TFlζY

t ξu) =

=
d

dt |t=0
γ(Trexp(tY )ξu) =

d

dt |t=0
Ad(exp(−tY ))γ(ξu) =

= −ad(Y )γ(ξu).

But since also LζY γ = iζY dγ + d(γ(ζ(Y ))) = dγ(ζY , ·) + 0, we have
dγ(ζY , ξu) = −[γ(Y ), γ(ξu)]. Therefore

dγ(ξ − ζγ(ξ), η − ζγ(η)) =

= dγ(ξ, η) − dγ(ζγ(ξ), η) + dγ(ζγ(η), ξ) + dγ(ζγ(ξ), ζγ(η)) =

= dγ(ξ, η) + [γ(ξ)γ(η)] − [γ(η), γ(ξ)]− [γ(ξ), γ(η)] = dγ(ξ, η) + [γ(ξ), γ(η)].

So

ρ(ξ, η) = dγ(ξ, η) + [γ(ξ), γ(η)].

3.2. Induced linear connections. Let Φ : P → GL(V ) be a rep-
resentation of P on V . Then we can construct the associated vector
bundle P ×P V . We induce a linear connection (a covariant derivative)
on P×P V : given a vector fields ξ ∈ X(M) and a section s ∈ Γ(P×P V ),
let g be the P -equivariant function from P → V corresponding to s;
then we define the section ∇ξη of P ×P V as the section corresponding
to the P -equivariant function ξhor ·g. It’s easy to check that this defines
indeed a linear connection.
In fact one automatically has a linear connection on every tensor power
of P×PV in the same way: for some section s ∈ Γ(P×P (⊗iV ∗)⊗(⊗jV ))
take the corresponding P -invariant function f : P → (⊗iV ∗)⊗ (⊗jV ).
Then ∇ξs is the section of P ×P (⊗iV ∗) ⊗ (⊗jV ) corresponding to
ξhor · f .
Lets calculate the curvature of the induced connection: Take ξ, η ∈
X(M) and ζ ∈ Γ(P ×P V ). Then the curvature of ∇ is defined as

R(ξ, η)ζ = ∇ξ∇ηζ −∇η∇ξζ −∇[ξ,η]ζ.

R is skew-symmetric, bilinear and has values in End(P ×P V ); i.e.,
R ∈ Ω2(P ×P V,End(P ×P V )). It is the failure of the map ξ 7→ ∇ξ

from X(M) → End(Γ(P×P V )) to be a homomorphism of Lie-Algebras.
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Lets calculate it: let g be the function P → V corresponding to ζ ; then
R(ξ, η)ζ corresponds to

ξhor · (ηhor · g) − ηhor · (ξhor · g) − [ξ, η]hor · g = [ξhor, ηhor]vert · g =

= −ζρ(ξhor ,ηhor) · g = Φ′(ρ(ξhor, ηhor)) ◦ g.
Thus

R(ξ, η)ζ = Φ′(ρ(ξhor, ηhor))ζ ;

But ρ is horizontal, thus one may take arbitrary lifts; and since it is
also P -equivariant we have

Φ′ ◦ ρ induces R.

Especially, for injective Φ′, flatness of the induced linear connection is
equivalent to flatness of the principal connection.

3.3. Reductive Cartan geometries. Let (G → M,ω) be a Cartan
geometry of type (G,P ), with g = n⊕p as P -module. To u ∈ G we as-
sociate the isomorphism Θ(u) := Tuπ◦(ωu)

−1
|n : n → TπM (u)M . We have

ωup(Tur
p(ξu)) = Ad(p−1)ωu(ξu) by equivariancy of ω. Thus, for X ∈

n, ω−1
up (X) = Tur

pω−1
u (Ad(p)X). Since d

dt |t=0
π(c(t)p) = d

dt |t=0
π(c(t)),

Tupπ ◦ Trp = Tuπ. Thus Θ(up) = Θ(u) ◦ Ad(p). Therefore the map

(u,X) 7→ Θ(u)X

G × n → TM

factorizes to an isomorphism G ×P n ∼= TM . This shows that a reduc-
tive Cartan geometry of type (G,P ) over M is a Cartan connection on
a reduction of structure group of TM to P . By composing ω with the
projection to p we get a principal connection γ = ωp on the reduction
of structure group G → M . The projection of ω to n is the soldering
form θ = ωn.
Now γ induces a linear connection on TM . From above we know that
the curvature of the induced linear connection is ρ̌ ∈ Ω2(M,End(TM)).
From above we know that ρ(ξ, η) = dγ(ξ, η)+[γ(ξ), γ(η)]; NowK(ξ, η)p =
dγ(ξ, η) + [γ(ξ), γ(η)] + [θ(ξ), θ(η)]p; Thus

ρ(ξ, η) = K(ξ, η)p − [θ(ξ), θ(η)]p.

Since this is a linear connection on TM itself, we also have the notion
of torsion: It is defined by

T ∈ Λ2(TM∗) ⊗ TM,

T (ξ, η) = ∇ξη −∇ηξ − [ξ, η],

where ξ, η ∈ Γ(TM). To calculate it we first note that the function
f : G → n which corresponds to a vector field ξ on M is given by
θ ◦ ξhor. For equivariance of f note that θ(ξhor(up)) = θ(Tur

pξhor) =
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Ad(p−1)θ(ξhor(u)),where we first used invariance of the horizontal sub-
bundle and then equivariance of θ. That f induces ξ follows directly
from the definition of the isomorphism G ×P n ∼= TM : it is induced
by (u,X) 7→ Tup ω

−1(X), so (u, θ(ξhor(u))) 7→ Tup ω
−1(θ(ξhor(u))) =

TuπM ξhor(u) = ξ(πM(u)). Now let f, g : G → n be the functions
corresponding to ξ respectively η. Then the function corresponding to
T (ξ, η) is

ξhor · g − ηhor · f − θ([ξ, η]hor)

Note that θ([ξ, η]hor) = θ([ξhor, ηhor]), since both arguments of θ project
to [ξ, η] and thus only differ by a vertical field. But so by definition of
the exterior derivative

ξhor · θ(ηhor) − η · θ(ξhor) − θ([ξhor, ηhor]) =

= dθ(ξhor, ηhor) = dθ(ξ − ζγ(ξ), η − ζγη) =

= dθ(ξ, η)− dθ(ζγ(ξ), η) + dθ(ζγ(η), ξ);

Now

dθ(ζγ(ξ), η) = ζγ(ξ) · η − 0 − θ([ζγ(ξ), η]).

By equivariancy Lζγ(ξ)
θ = −adγ(ξ)◦θ. But since also Lζγ(ξ)

θ = iζγ(ξ)
dθ+0

we see dθ(ζγ(ξ), η) = −[γ(ξ), η]. Thus

dθ(ξhor, ηhor) = dθ(ξ, η) + [γ(ξ), θ(η)] − [γ(η), θ(ξ)] = K(ξ, η)n − [θ(ξ), θ(η)]n.

So the failure of the induced linear connection on TM to be torsion
free is

T̂ (ξ, η) = K(ξ, η)n − [θ(ξ), θ(η)]n.

Theorem 3.3.1. Let (G → M,ω) be a reductive Cartan geometry of
type (G,P ), where g = n ⊕ p as K-module and ω = θ ⊕ γ = ωn ⊕ ωp.
Then

i. G →M is a reduction of structure group of TM to P for which θ
is the soldering form.

ii. γ is a principal connection with principal curvature form

ρ(ξ, η) = K(ξ, η)p − [θ(ξ), θ(η)]p.

iii. The curvature of the induced linear connection on TM is obtained
by factorizing

R̂ = ad ◦ ρ
and

iv. The torsion of the induced connection on TM is obtained by fac-
torizing

T̂ (ξ, η) = K(ξ, η)n − [θ(ξ), θ(η)]n.

Before we discuss an exemplary situation we briefly discuss
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3.3.1. Affine extensions of linear automorphisms. Given a vector space
V and a subgroup P of GL(V ) we have the standard representation
Φ of P on the abelian Lie Group V . Thus we can extend P affinely
to the semidirect product V ⋊Φ P (or V ⋊aff P ), where the com-
position is given by (v, p)(v′, p′) = (v + Φ(p)v′, pp′). Of course this
is the composition of (v, p) and (v′, p′) regarded as affine maps from
V 7→ V , where (v, p) corresponds to the map x 7→ px+ v. The inverse
of (v, p) is (−p−1v, p−1) and we see conj(v,p)(v

′) = (v, p)(v′, e)(v, p)−1 =

(v+pv′, p)(−p−1v, p−1) = (v+pv′−pp−1v, e) = (pv′, e) ∈ V ⊳ (V ⋊P ).

conj(v,p)((exp(tX), exp(tY ))) =

= (v, p)(tX, exp(tY ))(v, p)−1 = (v + tpX, p exp(tY ))(−p−1v, p−1) =

= (v + tpX − p exp(tY )p−1v, p exp(tY )p−1)

so

Ad((v, p))(X, Y ) =

=
d

dt |t=0
conj(v,p)((exp(tX), exp(tY )) = (pX − (Ad(p)Y )v,Ad(p)Y ),

and

([(X ′, Y ′), (X, Y )] = ad((X ′, Y ′))(X, Y ) =

=
d

dt |t=0
Ad((tX ′, exp(tY ′)))(X, Y ) =

=
d

dt |t=0
(exp(tY ′)X − (Ad(exp(tY ′))Y )tX ′,Ad(exp(tY ′))Y ) =

= (Y ′X − Y X ′, [Y ′, Y ]),

i.e.

[(X, Y ), (X ′, Y ′)] = (Y X ′ − Y ′X, [Y, Y ′]).

All of the above works identically for coverings P of a virtual subgroup
of GL(V ).

Example 3.3.2. If G → M is a P -principal bundle describing a reduction
of structure group of TM to P by a soldering form θ : G → n (,where
n is some modeling vector space), we can affinely extend p to n ⋊ p

(see 3.3.1 above), and any principal connection γ on G puts us into
the situation of theorem 3.3.1 with ω = θ ⊕ γ. Since n is abelian, the
curvature and torsion of the induced linear connection correspond to
the p, respectively n,-parts of the curvature of ω. y

Example 3.3.3. Take a reductive Klein geometry: that is, Lie Groups G
and P < G, such that p has a P -invariant complement n, i.e. g = n⊕p

as P -module. Then the Maurer-Cartan-form ωMC is a Cartan connec-
tion on G, and by the Maurer-Cartan equation this Cartan geometry
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is flat. Thus by theorem 3.3.1 we have: at o = P ∈ G/P the curvature
of the induced linear connection on TH/K is

n × n → gl(p),

(X, Y ) 7→ −ad([X, Y ]p)|n

and its torsion is

n × n → n,

(X, Y ) 7→ −[X, Y ]n.

y

In the special case of homogeneous spaces H/K we will explicitly
calculate R and T also in the situation of the first example. (See
Corollary 4.2.4.)
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4. Connections on Homogeneous Principal Bundles

We describe invariant principal and Cartan- connections on homo-
geneous principal bundles. As an application we will get a complete
description of invariant connections on homogeneous vector bundles in
section 4.1.2.

4.1. Invariant principal connections. Now we ask what invariant
principal connections on H×KP → H/K look like: let γ be a principal
connection form on H ×K P → H/K which is invariant under the
action of H . We lift γ to a one form γ̂ on H × P by d

dt
(h(t), p(t)) 7→

γ( d
dt

[[h(t), p(t)]]). (I.e., when one denotes the natural surjection from
H × P to H ×K P by q, γ̂ = q∗γ, the pullback of γ under q). We
have γ̂( d

dt
(h, p) exp(tY ) = γ( d

dt
[[h, p]] exp(tY )) = Y , so γ̂ reproduces

fundamental vector fields. Since

γ̂(
d

dt
(h(t), p(t)p′)) = γ(

d

dt
[[h(t), p(t)]]p′) =

= Ad(p′
−1

)γ(
d

dt
[[h(t), p(t)]]) = Ad(p′

−1
)γ̂(

d

dt
(h(t), p(t)))

it is also p-equivariant, which shows that it is a principal connection on
H × P → H . H-invariance is shown analogously. So γ̂ is an invariant
principal connection on H × P . We left trivialize

T (H × P ) = H × P × h × p.

Since γ̂ reproduces fundamental vector fields (h, p, 0, Y ) 7→ Y . By
H-invariance γ̂(h, p,X, 0) = γ̂(e, p,X, 0). We have

(e, p,X, 0) 7→ γ(
d

dt
[[exp(tX), p]]) = Ad(p−1)γ(

d

dt
[[exp(tX), e]]) =

= Ad(p−1)γ̂(e, e,X, 0).

So, γ̂ is given by

(h, p,X, Y ) → Ad(p−1)α(X) + Y

where α(X) = γ̂(e, e,X, 0). In fact, for any linear α : h → p this
formula defines an invariant principal connection on the trivial bundle
H × P → H , and any such connection is of this form. However, for
arbitrary α the resulting connection need not factorize to H ×K P .
But recall from 1.1.7 that the form γ̂ factorizes over the K-principal
bundle H × P → H ×K K iff γ̂ is horizontal and K-invariant, which
means that for Z ∈ k and X ∈ h we must have

γ̂(e, e, Z,−Ψ′(Z)) = α(Z) − Ψ′(Z) = 0
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and

α(X) = γ̂(e, e,X, 0)
!
= γ̂(e, e,X, 0) · k =

= γ̂(k,Ψ(k−1),Ad(k−1)X, 0) = Ad(Ψ(k))α(Ψ(k−1)X).

So α : h → p must be a K-equivariant extension of Ψ′ : k → p. Lets
calculate the curvature form of the principal connection γ. It’s defined
by

ρu(X, Y ) := −γ([ξhor, ηhor]),

where ξhor and ηhor are the horizontal projections of arbitrary vector
fields ξ, η ∈ X(H ×K P ) which extend Xu and Yu.
The left action ofH onH/K gives vector fields ŘX(hK) = d

dt
exp(tX)hK

forX ∈ h. They are related to the fields RX(h, p) = (h, p,Ad(h−1)X, 0)
on T (H × P ). The horizontal projection ȞX of ŘX is related to

HX = (h, p) 7→ (h, p,Ad(h−1)X,−Ad(p−1)α(Ad(h−1)X)).

By definition of the principal curvature form

ρ(ŘX , ŘX′) = −γ([ȞX , ȞY ]).

Since [HX , HY ] is related to [ȞX , ȞY ] we have γ([ȞX , ȞY ]) = γ̂([HX , HY ]).
But to we can take arbitrary horizontal fields which coincide with HX

and HY at (e, e) to calculate ρ̂(HX(e, e), HY (e, e)), we better take fields
of the form

H̃X(h, p) := (h, p,X,−Ad(p−1)α(X)).

We see [H̃X , H̃Y ](e, e) = (e, e, [X, Y ],−[α(X), α(Y )]), so

ρ[[e,e]](ȞX , ȞY ) = ρ̂(e,e)(HX , HY ) =

= −γ̂(e,e)([H̃X , H̃Y ]) = [α(X), α(Y )] − α([X, Y ]).

Since ρ is horizontal and P -equivariant it factorizes to a (invariant)
G ×P p-valued 2-form ρ̌ on H/K. Over o = K ∈ H/K we have a
distinguished point in Go, namely [[e, e]], and thus we may regard ρ̌o as
an element of Λ2(h/k∗, p). It is given by

ρ̌o(X + k, Y + k) = [α(X), α(Y )] − α([X, Y ]).

We proved

Theorem 4.1.1. (1) Invariant principal connections on H×KP →
H/K are in 1:1-correspondence with invariant principal connections on
H × P → H of the form

γ̂(h, p,X, Y ) = Ad(p−1)α(X) + Y

where α : h → p is a K-equivariant extension of Ψ′ : k → p, i.e.,

i. α(Z) = Ψ′(Z) for Z ∈ k,
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ii. α ◦ Ad(k) = Ad(Ψ(k)) ◦ α.

If there is such a connection, the resulting space of connections is affine
and modeled on HomK(h/k, p).

(2) The curvature of such a connection is the failure of α to be a
homomorphism of Lie algebras. The curvature form ρ is invariant and
P -equivariant.
It factorizes to an invariant, G ×P p-valued 2-form ρ̌ on H/K. At
o = K ∈ H/K it is given by

ρ̌o(X1 + k, X2 + k) = [α(X1), α(X2)] − α([X1, X2]).

4.1.1. Transformation of connections under isomorphisms. Given a con-
nection on H ×K P → H/K, how does it transform under an isomor-
phism? We know from above that the isomorphism is given by a map
(h, p) 7→ (hh0, p0p), for some p0 ∈ P and h0 ∈ NH(K). On the tangent
bundle (h, p,X, Y ) 7→ (hh0, p0p,Ad(h−1

0 )X, Y ), and thus, if the connec-
tion is induced by α : h → p, the pullback of this connection over the
isomorphism at the identity is (e, e,X, Y ) 7→ (h0, p0,Ad(h−1

0 )X, Y ) 7→
Ad(p−1

0 )α(Ad(h−1
0 )X)+Y ; i.e, the pullback of α is Ad(p−1

0 )◦α◦Ad(h−1
0 ).

4.1.2. Invariant connections on homogeneous vector bundles. As we
saw in Theorem 2.2.5 every homogeneous vector bundle E with mod-
eling vector space V over H/K is of the form H ×K V → H/K for a
representation Ψ : K → GL(V ).
Then the frame bundle of H ×K V → H/K is H ×K GL(V ) → H/K.
Recall from 3.2 that every principal connection onH×K GL(V ) induces
a linear connection on H ×K V in the following way: for ξ ∈ X(M),

s ∈ Γ(H ×K V ), take the horizontal lift ξ̂ and the K-equivariant func-
tion f : H → V corresponding to s. (For this correspondence see

Theorem 1.1.5.) Then ∇ξs corresponds to the function ξ̂ · f .
Now it’s easy to see

Lemma 4.1.2. For an invariant principal connection γ on H×KP and
a representation of K on V the induced linear connection on H ×K V
is invariant:

(λ̌h0)
∗∇ = ∇. (6)

Proof. We check that then (λ̌h0)
∗∇ = ∇ for h0 ∈ H . Since s(hK) =

[[h, f(h)]]

(λ̌h0)
∗s(hK) = λ̌h0s(h

−1
0 hK) =

λ̌h0 [[h
−1
0 h, f(h−1

0 h)]] = [[h, f ◦ λ̌h−1
0

]].

Thus the function corresponding to (λ̌h0)
∗s is f ◦ λ̌h−1

0
. Now take c(t)

with d
dt |t=0

c(t) = ξ̂(h−1
0 h), i.e. d

dt |t=0
c(t)K = ξ(c(0)K) and γ( d

dt |t=0
c(t)) =
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0, which is horizontality. By invariance of the horizontal bundle (or in-
variance of γ), also d

dt |t=0
h0c(t) is horizontal. Therefore, since d

dt |t=0
h0c(t)K =

(λ̌h0)
∗ξ(h), the horizontal lift of (λ̌h0)

∗ξ is λ∗h0
ξ̂. Now

(λ∗h0
ξ̂(h)) · (f ◦ λh−1

0
)(h) =

=
d

dt |t=0
f(h−1

0 h0c(t)) =
d

dt |t=0
f(c(t)) =

= (ξ̂ · f)(h−1
0 h) = (ξ̂ · f) ◦ λh−1

0
(h);

this can be rewritten

∇(λ̌h0
)∗ξ(λ̌h0)

∗s = (λ̌h0)
∗(∇ξs),

which is (6). �

Now, if the representation is infinitesimally injective, all linear con-
nections are induced by principal connections on the frame bundle. So
Theorem 4.1.1 tells us that for injective Ψ′ invariant linear connections
on H ×K V → H/K are in 1:1-correspondence with K-equivariant lin-
ear maps α from h → gl(V ) which extend Ψ′. And in this case (as
we saw in section 3.1) the resulting linear connection is flat iff the cor-
responding principal connection γ is flat; and from theorem 4.1.1 we
know that this is the case iff α : h → gl(h) is a homomorphism of Lie
algebras.
If the vector bundle is endowed with some additional (H-invariant)
structure we can ask for special (invariant) connections compatible with
this structure:
Namely, take some invariant (i, j)-tensor Θ on H ×K V → H/K; then,
as discussed in example 2.2.8 the tensor Θ is induced by a (unique)
K-invariant θ ∈ (⊗iV ∗) ⊗ (⊗jV ).
From our discussion above we know that every invariant linear connec-
tion on H ×K V → H/K is induced by a K-equivariant extension of
Ψ′ : k → gl(V ) to a map h → gl(V ).
Now we ask for which α the resulting linear connection satisfies

∇Θ = 0.

Now Θ corresponds to the function

H ×K GL(V ) → T i
jV,

[[h, g]] 7→ g−1θ.

This function lifts to

f : H × GL(V ) → T i
jV, h, g 7→ g−1θ.

Now take the horizontal vector (e, e,X,−α(X)) ∈ T (H × GL(V )).
Then (e, e,X,−α(X)) · f = −α(X)θ. Thus we see that ∇Θ = 0 iff
α : h → gl(V ) has in fact values in the Lie algebra p of P , where
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P = GL(V )θ is the isotropy group of θ for the action of GL(V ) on
T i

jV .
We summarize our findings in

Theorem 4.1.3. Consider a representation Ψ : K → GL(V ) with Ψ′

injective.

i. Every invariant connection on H×KV is induced by a K-equivariant
extension α : h → gl(V ) of Ψ′.

ii. Let θ ∈ T i
jV be K-invariant. Denote the invariant tensor on

H ×K V corresponding to θ by Θ.
There is a canonical action of GL(V ) on the tensor power T i

jV of
V . Define

P := GL(V )θ = {g ∈ GL(V ) : g · θ = θ}
the isotropy subgroup of θ under this action.
Then an invariant connection ∇ which is induced by a map α :
h → gl(V ) respects Θ in the sense that

∇Θ = 0

iff α has in fact values in p. I.e., iff α defines in fact a principal
connection on the reduction H ×K P → H/K of GL1(E).

Example 4.1.4. Let Θ be an invariant Riemannian metric on H×KV →
H/K which is induced by a K-invariant inner product θ on h/k. Then
θ endows V with the structure of a Euclidean space and that θ is
invariant under K simply means that Ψ : K → GL(V ) has in fact
values in O(V, θ).
We say that a connection is Euclidean if it satisfies

∇Θ = 0

⇔
ζ · Θ(ξ1, ξ2) = Θ(∇ζξ1, ξ2) + Θ(ξ1,∇ζξ2)

∀ζ ∈ X(H/K), ξ1, ξ2 ∈ Γ(E).

Now Theorem 4.1.3 tells us that invariant, linear connections cor-
respond to K-equivariant extensions of ψ : k → so(V, θ) to maps
α : h → so(V, θ). y

4.2. Invariant Cartan connections. Let ω be an invariant Cartan
connection of type (G,P ) on H×KP → H/K; i.e.: G,P are Lie groups
with P < G and ω is an H-invariant g-valued one form which satisfies

i. ω is P -equivariant
ii. ω( d

dt |t=0
u exp(tX)) = X for all u ∈ H ×K P , X ∈ p

iii. ωu : Tu(H ×K P ) → g is an isomorphism for all u ∈ H ×K P .
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Obviously its lift ω̂ is of the form

(h, p,X, Y ) → Ad(p−1)α(X) + Y

for a linear map α : h → g. Exactly as in the case of invariant principal
connection one sees that for a linear map α : h → g the resulting two-
form ω̂ factorizes to a form on H ×K P iff α = Ψ′ on k and α is
K-equivariant.
But we also need that ω is an absolute parallelism, i.e., that ωu is an
isomorphism of Tu(H×K P ) with h for any u. But since ω is invariant,
it suffices to check this at u = [[e, e]].
We know that ω[[e,e]] is an isomorphism of V[e,e]G = {X ∈ T[[e,e]]G :
Tπ[[e,e]]X = 0} with p. Thus it only remains to check that πg/p ◦ ω[[e,e]]

is surjective and has kernel V[e,e]G; here πg/p : g → g/p is the natural
surjection. Recall the natural surjection Tq : T (H×P ) = H×P ×h×
p → TG. β := πg/p◦ω ◦T(e,e)q vanishes on k⊕p. The restriction of β to
h is πg/p ◦α. That β is surjective means that πg/p ◦α is surjective, and
that the kernel of πg/p ◦ ω[[e,e]] is no more than V[e,e]G means that for
X ∈ h\k we have β(X) 6= 0; i.e., the condition on α is that it factorizes
to an isomorphism of h/k with g/p.
The curvature K of a Cartan connection ω is its failure to satisfy the
Maurer-Cartan-equation; i.e., for X, Y ∈ Tu(H ×K P ):

Ku(X, Y ) := dω(X, Y ) + [ω(X), ω(Y )].

Since the exterior differential is compatible with pullbacks the pullback
of K is given by

K̂(X̂, Ŷ ) = dω̂(X̂, Ŷ ) + [ω̂(X̂), ω̂(Ŷ )].

We want to calculate K for the tangent vectors

d

dt |t=0
[[exp(tX)K, e]],

d

dt |t=0
[[exp(tY )K, e]]

at the point [[e, e]]. For these we may take arbitrary lifts, and we choose
fields of the form

LX(h, p) := (h, p,X, 0).

Now ω̂(LY (h, p)) = ω̂((h, p, Y, 0)) = Ad(p−1)α(Y ), So LX ·ω̂(LY )(h, p) =
0. Thus dω̂(LX , LY )(e, e) = −ω̂([[LX , LY ](e, e)]) = −α([X, Y ]). There-

fore K̂(X, Y ) = [α(X), α(Y )] − α([X, Y ]). Thus, factorizing K to a
(invariant) G ×P p-valued 2-form Ǩ on H/K, we have

Ǩo(X + k, Y + k) = [α(X), α(Y )] − α([X, Y ]).

We summarize

Theorem 4.2.1. Let H×KP → H/K be the homogeneous P -principal
bundle induced by a homomorphism Ψ : K → P .
Let G be a Lie group which contains P as a subgroup.
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Then invariant Cartan connections of type (G,P ) on H×K P → H/K
are induced by maps α : h → g which satisfy

i. α|k = Ψ′,
ii. α(Ad(k)X) = Ad(Ψ(k))α(X)
iii. α factorizes to an isomorphism of h/k with g/p.

For such an α, the corresponding (lift of) the Cartan connection is

ω̂
(

(h, p,X, Y )
)

= Ad(p−1)α(X) + Y.

Its curvature form K ∈ Ω(H×KP, p) is H-invariant and P -equivariant.
So it factorizes to an invariant G×K g-valued 2-form Ǩ on H/K, which
is given by

Ǩo(X1 + k, X2 + k) = [α(X1), α(X2)] − α([X1, X2])

at o = K ∈ H/K.
Given such an α, the space of all connections inducing the same isomor-
phism between h/k and g/p is affine and is modeled on HomK(h/k, p).

Remark 4.2.2. Thus a homogeneous Cartan geometry of type (G,P )
over (H/K) is equivalent to a pair (Ψ : K → P, α : h → g) satisfying
i-iii of theorem 4.2.1.
Now let (H ×K P, ω) be the Cartan geometry corresponding to a pair
(Ψ, α): Then we have a morphism of principal bundles over Ψ from
H → H/K to H ×K P → H/K, namely

j : H → H ×K P,

h 7→ [[(h, e)]].

This allows us to pull pack the Cartan connection ω on H ×K P to a
1-form on H : one calculates

j∗ω(
d

dt |t=0
h exp(tX)) =

= ω̂(h, e,X, 0) = α(X) = α ◦ ωMC(X)

with ωMC the Maurer-Cartan form on H . Thus

j∗ω = α ◦ ωMC .

But this equation already determines ω by equivariancy of ω under P .
In fact we can generalize this picture:

Theorem 4.2.3. Let (Ψ : K → P, α : h → g) satisfy i-iii of theorem
4.2.1
and let (G, ω) be a Cartan connection of type (H,K). Now consider
the P -principal bundle G ′ := G×Ψ P : Then the map

j : G → G ×K P, (7)

u 7→ [[u, e]] (8)
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is a homomorphism of principal bundles over Ψ covering the identity
and there is a unique Cartan connection ω′ ∈ Ω1(G′, g) satisfying

j∗ω′ = α ◦ ω. (9)

(G, ω) 7→ F (G, ω) := (G ′, ω′) is a functor from the category of Cartan
geometries of type (H,K) to the category of Cartan geometries of type
(G,P ).

Proof. Its clear that G′ := G ×K P is a P -principal fiber bundle over
M . The Cartan connection ω ∈ Ω1(G, h) and the Maurer-Cartan form
ωMC ∈ Ω1(P, p) allow us to trivialize

G × P × h × p ∼= T (G × P ),

(u, p,X, Y ) 7→ (ω−1
u (X), ωMC

p

−1
(Y )).

On G × P we define the g-valued form

ω̂′ ∈ Ω1(H × P, g),

ω̂′(u, p,X, Y ) := Ad(p−1)α(X) + Y.

Then one sees exactly as above in 4.2 that horizontality of ω̂′ is equiva-
lent to α|k = Ψ′ (i), K-invariance of ω̂′ is equivalent to K-equivariance
of α (ii). Thus ω̂′ factorizes to a g-valued 1-form ω′ on G′ and iii implies
that ω′ is a Cartan connection on G ′ →M . (9) holds.
A morphism f : (G1, ω1) → (G2, ω2) of Cartan geometries of type
(H,K),

f : G1 → G2,

f(u · k) = f(u) · k ∀u ∈ G1, k ∈ K,

f ∗ω2 = ω1

is of course mapped to

F (f) : G′
1 → G′

2,

[u, p] 7→ [f(u), p]

by the functor F . F (f) is P -equivariant. With ji : Gi → G′
i we defined

by by (7) for i = 1, 2 we have the commutative diagram

G′
1

F (f)
// G′

2

G1

j1

OO

f // G2

j2

OO

and thus

j∗1(F (f)∗(ω′
2)) = f ∗(j∗2(ω

′
2)) =

= f ∗(α ◦ ω2) = α ◦ f ∗(ω2) = α ◦ ω1 = α ◦ j∗1(ω′
1),
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which shows F (f)∗(ω′
2) = ω′

1 by uniqueness of ω′
1 with j∗1ω

′
1 = α ◦ ω1.

Thus F (f) is indeed a morphism of Cartan geometries of type (G,P ).
Functoriality of F is clear. �

We can apply Theorem 4.2.1 to connections on reductions of struc-
ture groups of homogeneous spaces: (Recall also 3.3.2).

Corollary 4.2.4. Let Ψ : K → P be a homomorphism to a covering
of a virtual subgroup P of GL(h/k), i.e., a reduction of structure group
of H/K to P .
Let αγ : h → p describe a principal connection on H ×K P . Then the
natural surjection πh/k extends αγ to αω = πh/k ⊕ αγ, which induces a
Cartan geometry of type (h/k ⋊ P, P ) on H ×K P → H/K.
The curvature of the principal connection γ is

ρo(X + k, Y + k) = [αγ(X), αγ(Y )] − αγ([X, Y ]).

The curvature function κ of this Cartan connection factorizes to an
invariant G ×P Λ2(h/k∗, g)-valued function κ̌ on H/K and

κ̌(o) = To ⊕ ρo.

For the linear connection induced by γ on TH/K the curvature and
torsion are

Ro(X + k, Y + k) = ad
(

[αγ(X), αγ(Y )] − αγ([X, Y ])
)

and

To(X + k, Y + k) =

ad(αγ(X))(Y + k) − ad(αγ(Y ))(X + k) − ([X, Y ] + k).
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5. Riemannian Geometry on Homogeneous Spaces

In this chapter we discuss the frame bundle- (or Cartan-) picture of
Riemannian geometries. This is in fact a prolongation of a given geo-
metric data on M = H/K, namely a (invariant) Riemannian metric to
a connection on a principal bundle over M . In the case of Riemann-
ian geometries discussed in section 5.2 we simply get the Levi-Civita
connection on the orthonormal frame bundle O1(M). Later in the case
of a conformal geometry discussed in section 7 we will get a Cartan
connection on a certain principal bundle over M .

5.1. Prologue to homogeneous (pseudo-)Riemannian spaces.
Let (M, gM) be a (pseudo-)Riemannian space: i.e., we have a section
gM ∈ Γ(TM∗⊗TM∗) which is bilinear, symmetric and non-degenerate.

Definition 5.1.1. Let (M1, g1),(M2, g2) be (pseudo-)Riemannian man-
ifolds. An isometry between M1 and M2 is diffeomorphism of M1 with
M2 which pulls back g2 to g1.

By the theorem of Myers-Steenrod ([8]) the isometry group Isom(M, gM)
of (M, gM) is a Lie group We say that (M, gM) is homogeneous if its
isometry-group acts transitively. In this case (M, gM) ∼= (H/K, gH/K)
with H = Isom(M, gM) andK the isotropy-subgroup of some point x ∈
M . But we know from theorem 2.2.7 that such an H-invariant (pseudo-
) Riemannian metric on H/K is induced by a unique K-invariant
(pseudo-)inner product g on h/k. Thus we write (H/K, gH/K) = (H/K, g).
When (M, gM) is Riemannian, i.e., when gM is positive definite at every
point of M , gM it induces a metric d on M , namely

d(x1, x2) := inf
c∈C∞(R,M):c(0)=x1,c(1)=x2

1
∫

0

√

gM(ċ(t), ċ(t))dt.

In the Riemannian case it follows from the theorem of Arzelà-Ascoli
that the isotropy subgroup K of Isom(M, gM) is compact (for any point
x ∈M). Since compact representations are completely reducible there
is thus a K-invariant complement n to k in h; and by n ∼= h/k as K-
modules (or directly by T (H/K) = H×Kn) we have aK-invariant inner
product g on n which induces the H-invariant Riemannian metric gM .
However in the general, pseudo-Riemannian case, we cannot expect h

to be reductive.

5.2. Prolongations of (pseudo-)Riemannian geometries. We just
saw that every homogeneous pseudo-Riemannian space is isometric to
(H/K, g) with g being a K-invariant inner product of signature (p, q)
on h/k.
Recall from Riemannian geometry:
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Theorem 5.2.1. On a (pseudo-)Riemannian manifold there is a unique
linear connection which is compatible with the Riemannian metric and
is torsion free. This connection is called the Levi-Civita connection.

We construct the Levi-Civita connection on T (H/K) in the frame
bundle picture.
Denote by O1(H/K) the orthonormal frame bundle of H/K; We have
O1(H/K) = H×AdO(h/k). In 4.1.2 we saw that an invariant linear con-
nection on H/K is compatible with the Riemannian metric on T (H/K)
iff it is induced by a K-equivariant extension of ad : k → so(h/k, g) to
a map α : h → so(h/k, g).
Now, given such a K-equivariant extension α, we saw in corollary 4.2.4
that the torsion of the induced linear connection on T (H/K) vanishes
iff To = 0, where

To ∈ L(Λ2(h), h/k),

To(X, Y ) = α(X)(Y + k) − α(Y )(X + k) − ([X, Y ] + k).

We know from Theorem 5.2.1 that there is a unique α such that the
To vanishes. (We use the theorem only as a motivation, both existence
and uniqueness of such an α will be shown directly).
Lets solve the equation (in α)

To(X, Y ) = α(X)(Y + k) − α(Y )(X + k) − ([X, Y ] + k) = 0 ∀ X, Y ∈ h;
(10)

Consider g(To(X, Y ), (Z + k)) for X, Y, Z ∈ h and notice that if (10)
holds

0 = g(To(X, Y ), Z + k) − g(To(Y, Z), X + k) + g(To(Z,X), Y + k) =

= g(α(X)(Y + k), Z + k) − g(α(Y )(X + k), Z + k) − g([X, Y ] + k, Z + k)

− g(α(Y )(Z + k), X + k) + g(α(Z)(Y + k), X + k) + g([Y, Z] + k, X + k)

+ g(α(Z)(X + k), Y + k) − g(α(X)(Z + k), Y + k) − g([Z,X] + k, Y + k) =

= 2g(α(X)(Y + k), Z + k)

− g([X, Y ] + k, Z + k) + g([Y, Z] + k, X + k) − g([Z,X] + k, Y + k)

since α has values in so(h/k, g). This is equivalent to

g(α(X)(Y + k), Z + k) (11)

=
1

2

(

g([X, Y ] + k, Z + k) − g([X,Z] + k, Y + k) − g([Y, Z] + k, (X + k)
)

.

Thus, if we have an α satisfying (10) it is already uniquely determined
by (11) since g is non-degenerate.
In lemma 5.2.2 we show that this equation conversely determines a K-
equivariant α : h → so(h/k, g) extending ad and satisfying (10). For
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(10) to uniquely define a linear map α : h → gl(h/k) we need to check
that

g([X, Y ] + k, Z + k) − g([X,Z] + k, Y + k) − g([Y, Z] + k, X + k)

doesn’t depend on the representatives of Y + k and Z + k. But this is
easily seen: Let W ∈ k, then

g([X, Y +W ] + k, Z + k) − g([X,Z] + k, Y +W + k)

− g([Y +W,Z] + k, X + k) =

= g([X, Y ] + k, Z + k) − g([X,Z] + k, Y +W + k) − g([Y, Z] + k, X + k)

−
(

g(adW (X + k), Z + k) + g(adW (Z + k), X + k)
)

;

But g(adW (X + k), Z + k) + g(adW (Z + k), X + k) = 0 since adW ∈
so(h/k, g). The case of Z +W instead of Z is done analogously.

Lemma 5.2.2. For the map defined by (11) we have

i. α(X) = adX for all X ∈ k

ii. α(Ad(k)X) = Ad(k) ◦ α(X) ◦ Ad(k−1)
iii. α(X) is skew symmetric for all X ∈ h

iv. α(X)(Y + k) − α(Y )(X + k) − ([X, Y ] + k) = 0.

Proof. For (i), let X ∈ k and Y, Z ∈ h; then

g(α(X)(Y + k), Z + k) =

=
1

2

(

g([X, Y ] + k, Z + k) − g([X,Z] + k, Y ) − g([Y, Z], 0 + k)
)

=

=
1

2

(

g(adX(Y + k), Z + k) − g(adX(Z + k), Y + k)
)

=

=
1

2

(

g(adX(Y + k), Z + k) + g(Z, adX(Y + k))
)

= g(adX(Y + k), Z + k),

since adX ∈ sog(h/k).
For (ii) take k ∈ K and X, Y, Z ∈ h. Note first that projection to h/k
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commutes with Ad(k). Using Ad(k)∗ = Ad(k)−1 we see

g(α(Ad(k)X)(Y + k), Z + k) =

1

2

(

g([Ad(k)X, Y ] + k, Z + k) − g([Ad(k)X,Z] + k, Y + k)

− g([Y, Z] + k,Ad(k)X + k)
)

=

=
1

2

(

g(Ad(k)[X,Ad(k−1)Y ] + k, Z + k)

− g(Ad(k)[X,Ad(k−1)Z] + k, Y + k) − g(Ad(k−1)[Y, Z] + k, X + k)
)

=

=
1

2

(

g([X,Ad(k−1)Y ] + k,Ad(k−1)Z + k)

− g([X,Ad(k−1)Z] + k,Ad(k−1)Y + k)

− g([Ad(k−1)Y,Ad(k−1)Z] + k, X + k)
)

=

= g(α(X)Ad(k−1)Y + k,Ad(k−1)Z + k) =

= g(Ad(k−1)α(X)(Ad(k−1)Y + k), Z + k).

For (iii) we need to check g(α(X)(Y + k), Y + k) = 0:

g(α(X)(Y + k), Y + k) =

=
1

2

(

g([X, Y ] + k, Y + k) − g([X, Y ] + k, Y + k) − g([Y, Y ], X + k)
)

= 0.

Finally we need (iv), which is torsion-freeness. For this, let X, Y ∈ h,
then

g(α(X)(Y + k) − α(Y )(X + k), Z) =

=
1

2

(

g([X, Y ] + k, Z) − g([X,Z] + k, Y + k) − g([Y, Z] + k, X + k)

− g([Y,X] + k, Z + k) + g([Y, Z] + k, X + k) + g([X,Z] + k, Y + k)
)

=

= g([X, Y ] + k, Z + k).

�

By Theorem 3.3.1 Ro = ρ̌o. So by Theorem 4.1.1 or Corollary 4.2.4

Ro(X + k, Y + k) = ρ̌o(X, Y ) = ad
(

[α(X), α(Y )] − α([X, Y ]
)

for X + k, Y + k ∈ h + k = To(H/K).
For X, Y, Z ∈ h/k we write

(Ro(X, Y )Z)i = Rsr
i
jX

sY rZj.

The Ricci-curvature is defined as

Rrj := Rir
i
j .
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For an orthonormalbasis v1 . . . vm ∈ h/k

Rir
i
jY

rZj =
∑

i

g(R(vi, Y )Z, vi) =

∑

i

g(−R(Y, Z)vi − R(Z, vi)Y, vi) =
∑

i

g(R(vi, Z)Y, vi) =

= Rij
i
rZ

rY j

by the Bianchi-identity, which we proof below in Lemma 5.2.3; so the
Ricci-curvature Rrj is symmetric. The scalar curvature is defined as

R := grjRrj .

Lemma 5.2.3. With α defined by (11) and X1, X2, X3 ∈ h,
∑

cyclic

R(X1, X2)(X3 + k) = 0.

Proof.
∑

cyclic

R(X1, X2)(X3 + k) =

=
∑

cyclic

(

α(X1)(α(X2)(X3 + k) − α(X2)(α(X1)(X3 + k)) − α([X1, X2])(X3 + k)
)

=

=
∑

cyclic

(

α(X1)(α(X2)(X3 + k) − α(X1)(α(X3)(X2 + k)) − α([X1, X2])(X3 + k)
)

by cyclic permutation. And by using torsion-freeness resp. (10) and
more cyclic permutations we thus see
∑

cyclic

R(X1, X2)(X3 + k) =

=
∑

cyclic

(

α(X1)([X2, X3] + k) − α([X1, X2])(X3 + k)
)

=

=
∑

cyclic

(

α([X2, X3])(X1 + k) + [X1, [X2, X3]] + k − α([X1, X2])(X3 + k)
)

= 0,

where we used the Jacobi-identity in the last step. �

Remark 5.2.4. In tensor-notation

αs
i
j =

1

2

(

τ i
sj − gilgisτ

i
lj − gilgijτ

i
ls

)

,

where for X, Y, Z ∈ h

([X, Y ] + k)i = τ i
srX

sY r and

(α(X)(Z + k))i = αs
i
jX

s(Z + k)j .

y

We summarize our discussion in
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Theorem 5.2.5. Every homogeneous (pseudo-)Riemannian space is
isometric to (H/K, g), where g is some K-invariant (pseudo-)inner
product on h/k.
There is a unique invariant Cartan connection of type

(h/k ⋊aff Og(h/k), Og(h/k))

on O1(H/K) such that the induced linear connection on T (H/K) is
torsion free and compatible with the metric; i.e, the Levi-Civita con-
nection.
The unique K-equivariant extension of ad : k → sog(h/k) which induces
this principal connection is defined by (11).
The curvature of the induced linear connection R is invariant,
and at o

Ro(X + k, Y + k) = ad
(

[α(X), α(Y )] − α([X, Y ]
)

for X + k, Y + k ∈ h/k = ToH/K.

Remark 5.2.6. As we saw in 3.3.2 we can regard principal connections
on reductions of the frame bundle equivalently as reductive Cartan
connections by affinely extending the structure group by the modeling
vector space of the underlying manifold. In our Riemannian situation
we get a Cartan geometry of type (Rn ⋊ O(n) = Euc(n), O(n)). The
curvature function κ of the Cartan connection corresponding to αω =
πn ⊕ αγ is just κo = 0 ⊕ Ro.

But instead of this affine extension of O(n) we could also extend to
O(n + 1). Its Lie algebra is of the form Rn ⊕ so(n) as K-module: it
consists of matrices of the form

(

0 −X t

X A

)

with X ∈ R
n and A ∈ so(n).

But so(n+ 1) is not a semidirect product, the Rn-component brackets
into so(n): for X1, X2 in Rn ⊂ so(n + 1) we have

[(

0 −X t
1

X1 0

)

,

(

0 −X t
2

X2 0

)]

=

(

0 0
0 X2X

t
1 −X1X

t
2

)

.

We can take the same αγ as calculated above, since by Theorem 3.3.1
the resulting torsion is the same (namely 0), (and of course the induced
Riemannian curvature doesn’t change), but the curvature of the Cartan
connection is different: it is

κo(X, Y ) = [α(X), α(Y )] − α([X, Y ]) + [X, Y ]k =

[α(X), α(Y )] − α([X, Y ]n).

y

Example 5.2.7. Consider the Riemannian Sphere O(n + 1)/O(n). In
our terminology H = O(n+ 1), K = O(n).
Per definition the standard metric on n = Rn is K = O(n)-invariant.
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Of course the induced invariant Riemannian metric on the sphere is just
the standard metric: in fact every O(n)-invariant symmetric bilinear
forms on Rn is a positive scalar multiple of the standard inner product:
let such an invariant form be given by a matrix B, then B has to be a
multiple of the identity since it commutes with all orthogonal matrices
O, and it has to be a positive multiple since B is positive definite.
First note that as noted in Remark 5.2.6, we can model this Riemann-
ian space as a Cartan geometry of type (O(n + 1), O(n)) - but the
homogeneous model of this type is itself the sphere O(n + 1)/O(n).
Thus our construction above must yield a vanishing Cartan curvature.
Since the adjoint action of O(n) on Rn ⊂ so(n+1) is just the standard
representation we can regard AdO(n) simply as the identity on O(n);
therefore H ×Ad O(n) = O(n + 1) ×O(n) O(n) = O(n + 1). And by
formula (11) αγ vanishes on n. Thus the resulting αω = idRn ⊕ idso(n)

is just the identity, and therefore the induced Cartan connection has
zero curvature; of course it is just the Maurer-Cartan-form, since both
forms are invariant and coincide at the identity.
Now we model the Euclidean sphere on the Euclidean plane, i.e, we
describe the sphere as a Cartan geometry of type (Euc(n), O(n)).

As before formula (11) tells us to extend adk = idso(n) trivially, and
thus the map so(n + 1) = Rn ⊕ so(n) → Rn ⋊aff so(n) is simply the
identity. But these two spaces have a different Lie algebra structure,
which is measured by the curvature κo = −[X, Y ]. The Riemannian
curvature at o is

Ro(X, Y ) = −ad(X, Y ) = XY t − Y X t.

In tensor-notation

Rij
r
s = δr

i gjs − δr
jgis.

The Ricci-curvature at o is

Rij
i
s = δi

igjs − δi
jgis = (m− 1)gjs

and the scalar curvature is m(m− 1). y
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6. Infinitesimal Flag Structures and Parabolic

Geometries

In this chapter we consider the relation between homogeneous para-
bolic geometries and their underlying geometric structures.
We give a short exposition of filtered manifolds and associated no-
tions since this is the type of geometric structure naturally obtained
from a parabolic geometry. For a more in-depth treatment confer to
[10, 13, 4].
Since the basic notions get no simpler in the homogeneous case we
introduce them for general manifolds in section 6.1. Also the notion
of a parabolic geometry is introduced in general in sections 6.2 and 6.3.

6.1. Filtrations, the associated graded and the Levi-bracket.
Let V be a finite-dimensional vector space. A filtration of V is given
by subspaces V i ⊂ V, i ∈ Z, such that V i ⊃ V i+1 such that there are
l < r ∈ Z with V i = V for i ≤ l and V i = {0} for i > r.
Given such a filtered vector space V we can construct its associated
graded gr(V ): denote gri(V ) := V i+1/V i and

gr(V ) := V l/V l+1 ⊕ . . .⊕ V r/V r+1 =

grl(V ) ⊕ . . .⊕ grr(V ).

It’s clear how these notions extend to filtrations of vector bundles by
smooth subbundles and their associated gradeds.
Now, given a manifold M together with a filtration of its tangent bun-
dle, we can demand that this filtration is compatible with the Lie-
bracket on X(M); Denote by X(M,T iM) the space of T iM-valued
vector-fields on M .

Definition 6.1.1. A filtered manifold is a manifold M together with
a filtration TM = T lM ⊃ . . . T rM = M such that for sections ξ1 ∈
X(M,T iM), ξ2 ∈ X(M,T jM)

[ξ1, ξ2] ∈ X(M,T i+jM).

Now, for a filtered manifold M , x ∈ M and i, j ∈ Z consider the
map

X(M,T iM) × X(M,T jM) → gri+j(TM)x,

ξ1, ξ2 7→ [ξ1, ξ2]x + T i+j+1Mx.

Since for a f ∈ C∞(M)

[ξ1, fξ2] = f [ξ1, ξ2] + (ξ1 · f)ξ2
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the map ξ1, ξ2 7→ [ξ1, ξ2]x + T i+jMx is in fact bilinear over C∞(M) and
thus only depends on the values of ξ1, ξ2 in x.
And again by our condition on the Lie-bracket of a filtered manifold
this map factorizes in fact to a skew-symmetric bilinear map

gri(TM)x × grj(TM)x → gri+j(TM)x.

These maps, for all relevant (i, j) ∈ Z2, define a map

L ∈ Λ2(gr(TM)∗) ⊗ gr(TM)

the Levi-bracket. One can check that L satisfies the Jacobi-identity
and thus gr(TM)x is endowed with the structure of a nilpotent graded
Lie algebra for every x ∈ M . I.e., we have a (not necessarily locally
trivial) bundle of nilpotent graded Lie algebras gr(TM).

6.2. Basic facts about |k|-graded Lie algebras.

Definition 6.2.1. Let g be a semisimple Lie algebra. A grading g =
g−k ⊕ . . . ⊕ g0 ⊕ . . . ⊕ gk which is compatible with the Lie-bracket in
the sense that for X ∈ gi, X

′ ∈ gj [X,X ′] ∈ gi+j is called a |k|-grading
on g.

For an element X ∈ g we denote the projection of X to gi by Xgi
.

The projection to g− will simply be denoted by X−.
The filtration which comes from this grading is gi = gi ⊕ . . .⊕ gk.
For such a g, we have nilpotent subalgebras g− := g−k ⊕ . . .⊕ g−1 and
p+ := g1⊕. . .⊕gk. p+ is an ideal in the Lie subalgebra p = g0⊕. . .⊕gk.
Note that p respects the filtration under its adjoint action.

6.2.1. Grading element. We have grading element E ∈ g0, in the sense
that the eigenspace of adE to the eigenvalue i is gi: For this consider
the derivation D on g which is defined by D(X) := iX for X ∈ gi; it
is a derivation, since for X ∈ gi, X

′ ∈ gj D([X,X ′]) = (i+ j)[X,X ′] =
[iX,X ′]+[X, jX ′] = [DX,X ′]+[X,DX ′]. By semisimplicity of g there
is an element E ∈ g for which adE = D; To see that in fact E ∈ g0 write
E = E−i ⊕ . . .⊕ Ei with Ei ∈ gi. Then 0 = [E,E] =

∑k
i=−k[E,Ei] =

∑k
i=−k iEi, which shows that Ei = 0 for i 6= 0. (Note that since for

X0 ∈ g0 [E,X0] = 0X0 = 0 the grading element E lies in the center of
g0.)

6.2.2. Duality. Fix any non-degenerate invariant bilinear form B on
g. Then for X ∈ gi, X

′ ∈ gj B([E,X], X ′) = −B(X, [E,X ′]) by in-
variance, and thus by definition of E B(iX,X ′) = −B(X, jX ′), or
(i+ j)B(X,X ′) = 0. But B is non-degenerate. Thus for X ∈ gi there
is a X ′ ∈ g with B(X,X ′) 6= 0; but from (i+ j)B(X,X ′) = 0 it follows
that the pairing of gi with any gj with j 6= −i is trivial. Thus the
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pairing of g−i with gi under B must be non-degenerate; i.e., once we
fix such a form B the subspaces g−i and gi are dual. By invariance of
B this is a duality of g0-modules. (Also note that it follows that B is
non-degenerate on g0.)
Since gi+1 has the canonical complement g−k⊕ . . .⊕g−i we can identify
g/gi+1 with g−k ⊕ . . .⊕ g−i. (This is an identification of g0-modules).
Also note that since the dual space of g/p is the annihilator of p, which
is p+ under B, we have a duality of p-modules between g/p and p+.

6.2.3. Group-level. For some Lie group G which has Lie algebra g the
Lie subgroup P defined as the group of all elements in G which respect
the filtration (gi) has Lie algebra p. The Lie subgroup of all elements
of G which respect the grading is denoted G0 and has Lie algebra g0.
The exponential map on g restricts to a diffeomorphism of p+ with its
corresponding Lie subgroup P+ which is formed by all elements p ∈ G
which satisfy Ad(p)gi ⊂ gi+1 for all i ∈ Z. We even have: the map
(g0, Z) 7→ g0 exp(Z) is a diffeomorphism between G0 × p+ and P .
P+ is a normal subgroup of P and P/P+ = G0.

6.2.4. The associated graded. If we regard g as filtered, then the asso-
ciated graded gr(g) is of course canonically isomorphic to g as vector
space. Since P respects the filtration-components it descends to an
action on gr(P ). As G0 modules g ∼= gr(g). However the P+ actions
differ: it acts trivially on gr(g).

6.3. Parabolic Cartan Geometries. LetG be a semisimple Lie group
whose Lie algebra g is |k| − graded and let P be the subgroup of G
formed by all elements which preserve the filtration of g under their
adjoint action. Then a Cartan geometry (G → M,ω) of type (G,P ) on
a manifold M is called a parabolic geometry.
We have TM = G ×P g/p, and so the P -invariant filtration of g/p in-
duces a filtration of TM . Furthermore gr(TM) = G ×P gr(g/p). But
P+ acts trivially on gr(g/p) and is a normal Lie-Subgroup of P with
P/P+ = G0; we have P = G0 ⋊ P+. Thus we can factor out the
action of P+: gr(TM) = (G/P+) ×G0 gr(g/p). But as a G0-module
gr(g/p) = g−, and with G0 := G/P+ we have gr(TM) = G0 ×G0 g−.
This makes gr(TM) into a bundle of nilpotent graded Lie algebras,
and G0 →M is a reduction of structure group of this bundle to G0.
Now, if the induced filtration of TM makes M to a filtered manifold,
we have two brackets on gr(TM): the Levi-bracket defined in section
6.1 and the bracket induced by the Cartan-structure. In this case, if
these brackets coincide, the parabolic geometry is called regular.
The general theory of parabolic geometries ([5]) provides us with a sim-
ple condition on the curvature of a Cartan connection for the induced
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geometry to be regular: κ(gi, gj) ⊂ gi+j+1. Under this condition TM
is filtered and the two brackets coincide.
Let M be a filtered manifold M such that some regular parabolic ge-
ometry of type (G,P ) on M induces the same filtration as the given
one. Then we say that we have an infinitesimal flag structure of type
G/P on M .
There are different (non-isomorphic) regular parabolic geometries in-
ducing the same infinitesimal flag structure on M . Thus for being
able to (naturally) prolong infinitesimal flag structures to parabolic ge-
ometries we need a normalization condition on the geometry. This is
provided by the Kostant-codifferential ∂∗,

∂∗ : Λi(g/p∗) ⊗ g → Λi−1(g/p∗) ⊗ g.

Since the curvature function k of a Cartan connection has values in
Λ2(g/p∗)⊗g it makes sense to consider ∂∗κ and we say that a parabolic
geometry is normal if

∂∗κ = 0. (12)

An equivalent condition to ∂∗κ = 0 is shown in [4]:
Take a basis X1, . . . , Xm of g− and its dual basis Z1, . . . , Zm of p+.
Then we demand that for every X ∈ g−.

2
m
∑

i=1

[Zi, κ(X,Xi)] −
m
∑

i=1

κ([Zi, X]g−, Xi) = 0. (13)

(Here [Zi, X]g− is the projection of [Zi, X] to g−). We will use this
condition in our calculations below in chapters 7 and 8. Now we restrict
ourselves to the homogeneous case.

6.4. Homogeneous Infinitesimal Flag Structures. Denote M =
H/K and let TM = T−kM ⊃ T−k+1M ⊃ . . . ⊃ T−1M ⊃ T 0M = M
be an H-invariant filtration of the tangent bundle; i.e.: T−i

h′hKM =

ThKλ̌h′T−1
hKM .

Then the filtration is of course determined by its filtration of the tan-
gent space at o = K ∈ H/K, which we write as h/k = F−k ⊃ . . . ⊃
F 0 = {0}. This filtration of h/k must be K-invariant; and it is clear
that any K-invariant filtration of h/k extends to an H-invariant filtra-
tion of T (H/K).
We further demand compatibility of the Lie-bracket with this filtration;
i.e., we want H/K to be a filtered manifold, as defined in 6.1.1.
What is the condition on the filtration of h/k, such that the resulting
filtration of the tangent bundle is compatible with the bracket? We
help ourselves by considering the (invariant) filtration of TH which

one gets by extending F̂ i := π∗
h/k
F i, or T i

hH := (ThπH/K)−1T i
hKM .

(Since F̂ 0 = k, there is one more filtration-component, and F̂ 1 = {0}).
Then d

dt |t=0
h exp(tX) ∈ T iH ⇔ d

dt |t=0
h exp(tX)K ∈ T iH/K. We claim
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that H/K is filtered iff H is filtered. First note that compatibleness
with the brackets is a local claim, and by invariance it may be checked
as well around o = eK. Now fix some complement l of k in h. Then for
some neighborhood W = Wl ×Wk of {0, 0} ∈ l × k the map

θ : W → H

(X, Y ) 7→ exp(X) exp(Y )

is a chart of some neighborhood U of e; The map πH/K ◦ θ is a chart
of Uo = UK ⊂ H/K.
s = exp ◦(πH/K ◦ θ|l)−1 is a local section of H → H/K. Less formally,
around some neighborhood of o every hK can be uniquely written as
lK with l ∈ exp(Wl).
Now take some field ξ which is defined on the neighborhood Uo of o,
i.e., ξ ∈ Γ(T (Uo)). With

ξ̃ : Wl → l,

ξ̃(X) = T λ̌θ((X,0))ξ(πH/K(θ((X, 0))))

we have

ξ(exp(X)K) =
d

dt |t=0
l exp(tξ̃(X))K.

Define ξ̂ ∈ Γ(TU),

ξ̂(exp(X) exp(Y )) : =
d

dt |t=0
exp(X) exp(tξ̃(X)) exp(Y ) =

= Teλexp(X) exp(Y )Ad(exp(−Y ))ξ̃(exp(X)).

This is a lift of ξ and most importantly ξ ∈ Γ(Uo, T i(Uo)) iff ξ̂ ∈
Γ(U, T iU). (In the same way we can extend any X ∈ h to a projectable

field around e, and if X ∈ F̂ i, this field will lie in Γ(T iH).) Now take
some fields ξ ∈ Γ(T iH/K), η ∈ Γ(T jH/K); these we can lift to fields

ξ̂, η̂ on U ⊂ H , which lie in the i-th and j-th filtration-components of
H by definition. Now [ξ̂, η̂] is related to [ξ, η], and thus [ξ̂, η̂] lies in the
i+j-th filtration component iff [ξ, η] does. This proves our claim, since
from above we also know that there are local frames of projectable
fields of a filtration component. But the condition for the filtration F̂ i

to make H into a filtered manifold is easy: we need that h with the
filtration F̂ i is a filtered Lie algebra:

Definition 6.4.1. A Lie algebra h together with a filtration F̂ i is called
filtered if for for all i, j ∈ Z

[F̂ i, F̂ j] ⊂ F̂ i+j.

This is easily translated into a condition on the filtration F i of h/k:
for X+ k ∈ F i, X ′+ k ∈ F j it is necessary that [X,X ′]+ k ∈ F i+j. Now
if H/K is filtered we have the Levi-bracket on the associated graded.
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Lets calculate it. Let X+ k ∈ F i, X ′+ k ∈ F j. Then Lo(X+F i+1, X ′+
F j+1) = [ξ, η](o)+F i+j+1, where ξ, η are arbitrary extensions of X,X ′

into the same filtration components. Let ξ̂, η̂ be local lifts as above.
Then by relatedness [ξ, η](o) = [ξ̂, η̂](e)+k, and thus [ξ, η](o)+F i+j+1 =

[ξ̂, η̂](e) + F̂ i+j+1. Since gr−k(TH) ⊕ · · · gr−1(TH) is just the pullback
π∗(gr(TM)) of gr(T/H) under π : H → H/K, this means that also the
Lie algebra-structure on this part of the grading (i.e., its Levi-Bracket)

is pulled back. But [ξ̂, η̂](e)+ F̂ i+j+1 only depends on the values of ξ̂, η̂
at e, and we may take arbitrary extensions to fields which stay in the
respective filtration components. Thus

Lo(X + F i, X ′ + F j) = [ξ̂, η̂](e) + F̂ i+j+1 =

[LX , LX′ ](e) + F̂ i+j+1 = ([X,X ′] + k) + F i+j+1.

Summarizing, we see

Theorem 6.4.2. i. Every invariant infinitesimal flag structure on
H/K is described by a K-invariant filtration F i of h/k.

ii. This makes H/K into a filtered manifold iff for X + k ∈ F i,
X ′ + k ∈ F j [X,X ′] + k ∈ F i+j. This is equivalent to h together

with the filtration F̂ i := π∗
h/k
F i is a filtered Lie algebra.

iii. In this case the Levi-bracket equips the associated graded gr(T (H/K))
with the structure of a nilpotent graded Lie algebra. Since T (H/K) =
H ×K h/k the associated graded is gr(TM) = H ×K gr(h/k), and
the Lie algebraic structure on gr(h/k), resp. the Levi-bracket at
o = K ∈ H/K, is given by:

Lo(X + k, X ′ + k) = ([X,X ′] + k) + F i+j (14)

for X + k ∈ F i, X ′ + k ∈ F j.

When is this a regular infinitesimal flag structure of type (G,P )?
Consider a homomorphism Ψ : K → P and a map α : h → g describing
a Cartan connection. Especially, α̃ : h/k → g/p is an isomorphism
of vector spaces. For the filtration of h/k to be induced by (G →
M,ω) we need to have F i = α̃−1(gi + p) = α−1(gi). Now α̃ induces
an isomorphism of K-modules between gr(h/k) and g− which is given
simply by (X+k)+F i+1 → α(X)gi

for X+k ∈ F i. Take anX ′+k ∈ F j ;
The Levi-bracket of (X+k)+F i and (X ′+k)+F j is α([X,X ′])i+j under
this isomorphism. it has to coincide with [α(X)i, α(X ′)j]. Since α :
h → g is filtration-preserving α(X) ∈ gi, α(X ′) ∈ gj and since [X,X ′]+
k ∈ F i+j also α([X,X ′]) ∈ gi+j. Thus the condition that the Levi-
bracket coincides with the bracket induced by the Cartan geometry
on M is that κ(X,X ′) ∈ gi+j+1 for X ∈ gi and X ′ ∈ gj. Of course
this follows immediately from the condition mentioned earlier without
proof for the general (non-homogeneous) case.
Assume now that we have a K-invariant complement n of h and that
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Ψ has values in G0. Then an α : h → g describing a Cartan connection
induces a K-invariant isomorphism n = h/k ∼= g/p = g−, where we use
that g/p = g− as a G0-module. Now n becomes a graded G0-module

by the isomorphism n
α0∼= g− and conversely g− becomes a K < G0-

module. By equivariance Ad : K → GL(n) has in fact values in G0

and we can now regard Ψ simply as Ad : K → G0. α may be written
α0 + φ ◦ α0, where φ : g− → g is of positive homogeneity.
In fact, in the examples below, we will start with an identification

n
α0∼= g− and under this identification Ad|K will have values in G0.

Regularity means that [α0(X), α0(X
′)]−α0([X,X

′]i+j) = 0 for X ∈ F i

and X ′ ∈ F j . All of this data will come from a geometric structure on
H/K.
Our problem will be to find a change of α0 to a map α : h → g which
induces the same regular parabolic geometry as α0 and satisfies (12).
From the general theory we know that such an α exists and is unique
up to equivalency. Cf. [4, 5].
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7. Conformal Structures

We start with the same situation as in chapter 5: we have a K-
invariant (pseudo-)inner product g on n := h/k. But now we consider
the induced conformal class of (pseudo-)Riemannian metrics on H/K.
We will prolong this structure to a Cartan geometry of type



PSO



R ⊕ n ⊕ R,





0 0 1
0 g 0
1 0 0







 , P



 .

Here P is the stabilizer of the isotropic line through e1 := (1, 0, 0) ∈ R⊕
n⊕R. We first describe the Lie algebra of G = PSO(R⊕n⊕R) and see
below (in 7.1.2) that the underlying structure of a parabolic geometry
of type (G,P ) is in fact simply a conformal class of Riemannian metrics.

7.1. PSO(R ⊕ n ⊕ R). Let n be a real vector space equipped with a
pseudo-inner product g. We extend g to a (pseudo-)inner product

g̃ =





0 0 1
0 g 0
1 0 0



 on R ⊕ n ⊕ R. If g has signature (p, q) then g̃ has

signature (p+ 1, q + 1).

Theorem 7.1.1. i. g = so(R⊕n⊕R, g̃) is a |1|-graded Lie algebra:
g = g−1 ⊕ g0 ⊕ g1 with g−1 = n,g1 = n∗ and g0 = co(n, g). (Thus
g−1 and g1 are abelian.) We will write

g = {X ⊕ (α,A) ⊕ Zt|X,Z ∈ n, α ∈ R, A ∈ sog(n)}.
For an element X of g we will denote the projection of X to gi by
Xgi

.
The nontrivial brackets are

[(α,A), (α′, A′)] = (0, [A,A′])

[(α,A), X] = (A + α)X

[(α,A), Zt] = −Zt(A + α)

[X,Zt] = (g(X,Z), XZt − ZX t);

especially, the central part of the pairing g−1×g1 → g0 establishes
a duality between g−1 and g1.

ii. The subalgebra g0 ⊕ g1 < g we denote by p. It is the stabilizer
of the isotropic line {(t, 0, 0)|t ∈ R} and the Lie algebra of P =
NG(p) < G.

iii. g0 is the Lie algebra of G0 = CO(n) < G.

Remark 7.1.2. Since g is 1-graded the filtration induced on TM =
T (H/K) by a parabolic geometry (G →M,ω) of type (G,P ) is trivial
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and gr(TM) = TM . In 6.3 we saw that (G → M,ω) induces a reduc-
tion of structure group of gr(TM) = TM = T to G0 = CO(h/k). But
this is the same as a conformal class of a metric on T (H/K). y

7.2. Conformal normalization. Take some orthonormal basis Xi of
n. Then its dual basis is Zi := εiX

t
i , where εi = g(Xi, Xi) is 1 or −1.

Then ∂∗κ = 0 is equivalent to (recall 13)

2

m
∑

i=1

[Zi, κ(X,Xi)] −
m
∑

i=1

κ([Zi, X]g−, Xi) = 0. (15)

(Here [Zi, X]g− is the projection of [Zi, X] to g−).

Recall that so(R ⊕ n ⊕ R) is n ⊕ co(n) ⊕ n∗, and in this case g− = n

and p+ = n∗. Since [g−, p+] ⊂ g0 the second sum always vanishes.
Thus the normalization condition is

m
∑

i=1

εi[X
t
i , κ(X,Xi)−] = 0 and

m
∑

i=1

εi[X
t
i , κ(X,Xi)g0] = 0.

Since the adjoint action of g0 = co(n) on g− = n is just the dual of the
standard action, the second equation is equivalent to

m
∑

i=1

εiκ(X,Xi)g0Xi = 0.

Pairing this term with X ′ and using that g0 = cog(n) we see that this
is equivalent to

m
∑

i=1

g(εiXi, κ(X,Xi)g0X
′) = 0

for all X ′ ∈ n. But this just says that for all X,X ′ ∈ n the map

n → n,

X 7→ κ(X,X1)X2

is trace-free. I.e., the Ricci type contraction of the g0-part of the cur-
vature function vanishes. In tensor-notation, with R := κg0,

Rij
i
s = 0.

The first equation is more subtle. Recall that for X, Y ∈ n the bracket
of X with Y t lies in g0 = co(n) = R ⊕ so(n) and is given by [X, Y t] =
(g(X, Y ), XY t − Y X t). Thus we have (especially), with X = Xj ,
m
∑

i=1

εiκ(Xj, Xi)−X
t
i − εiXiκ(Xj , Xi)

t
− = 0. Now pair this expression

with Xl:
m
∑

i=1

εiκ(Xj , Xi)−g(Xi, Xl) − εiXig(κ(Xj, Xi)−, Xl) = 0. Since
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Xi are orthonormal, the first part of this sum is simply κ(Xj , Xl)− =
m
∑

i=1

εiXig(κ(Xj, Xl)−, Xi). Thus, since the Xi are linearly independent,

we see g(κ(Xj, Xl)−, Xi) = g(κ(Xj, Xi)−, Xl). But since κ is skew-
symmetric, this is equivalent to vanishing of κ−:

g(κ(Xj, Xl)−, Xi) = −g(κ(Xl, Xj)−, Xi) =

= −g(κ(Xl, Xi)−, Xj) = g(κ(Xi, Xl)−, Xj) =

= g(κ(Xi, Xj)−, Xl) = −g(κ(Xj, Xi)−, Xl) = −g(κ(Xj, Xl)−, Xi).

Thus we see ∂∗κ = 0 ⇔
κ has values in p and (16)

the Ricci type contraction of κg0 vanishes. (17)

7.3. The prolongation. Since (the restriction of) Adk has values in
O(n), we can construct the P -principal bundle H ×Ad P . (Note that
(

H×AdP
)

/P+ = H×AdCOg(n), so the conformal geometry we started
with appears as a reduction of structure group to CO(n)). Now every
Cartan connection ω on H ×Ad P is obtained from a K-equivariant
extension α : h → g = g−1 ⊕ g0 ⊕ g1 = n ⊕ g0 ⊕ n∗ of ad|k.
By (16) the curvature of the normalized Cartan connection has values
in p. Let A : h → h/k be some K-equivariant map which vanishes on
k. Let αγ defined by equation (11) of theorem 5.2.5. We define

αω = πn ⊕ αγ ⊕ A

h → g = n ⊕ cog(n) ⊕ n∗;

Lets calculate the curvature of the Cartan connection induced by an α
of this form:

κ(X,X ′) = [αω(X), αω(X ′)] − αω([X,X ′]) =

= [(X + k) + αγ(X) + A(X), (X ′ + k) + αγ(X
′) + A(X ′)]

− (([X,X ′] + k) + αγ([X,X
′]) + A([X,X ′])) =

= 0 ⊕
(

[αγ(X), αγ(X
′)] − αγ([X,X

′]) + [X + k, A(X ′)] − [X ′ + k, A(X)]
)

⊕
(

−A([X,X ′]) + [αγ(X), A(X ′)] − [αγ(X
′), A(X)]

)

.

So

κ(X,X ′)g0 =

= [αγ(X), αγ(X
′)] − αγ([X,X

′]) + [X + k, A(X ′)t] − [X ′ + k, A(X)t] =

=
((

A(X ′)(X + k) − A(X)(X ′ + k),

αγ(X)αγ(X
′) − αγ(X

′)αγ(X) − αγ([X,X
′])

+
(

(X + k)A(X ′) −A(X ′)t(X + k)t − (X ′ + k)A(X) + A(X)t(X ′ + k)t
))

.
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We need to find a K-equivariant map A : h/k → h/k such that for all
X1, X2 ∈ h

X 7→ κg0(X1, X)X2

is trace-free. If A = 0,

κg0(X,X
′) = αγ(X)αγ(X

′) − αγ(X
′)αγ(X) − αγ([X,X

′]).

The change due to A is

∂A =
(

A(X ′)Xn − A(X)X ′
n,

(X + k)A(X ′) − A(X ′)t(X + k)t − (X ′ + k)A(X) + A(X)t(X ′ + k)t
)

.

In index-notation

∂Aij
r
s = δr

s(Aij − Aji) +
(

δr
iAsj − δr

jAsi

)

+
(

glrAligsj − glrAljgis

)

.

So the change in trace is

∂Aij
i
s =

(

Asj − Ajs

)

+
(

mAsj − Asj

)

+
(

gliAligsj − Asj

)

=

−Ajs + (m− 1)Asj + gliAligsj.

So if Aij is symmetric and trace-free the change in trace is (m−2)Aij If
Aij = cgij, the change in trace is 2(m−1)cgij . If Aij is skew-symmetric
the change in trace is −mAij . Thus the unique A for which the trace
of the g0-component of the curvature of the Cartan connection induced
by αω = πn ⊕ αγ ⊕ A vanishes is

Aij = − 1

m− 2

(

Rij −
R

m
gij

)

− 1

2(m− 1)
Rgij =

= − 1

m− 2

(

Rij +R(
(m− 2)

2(m− 1)
− 1

m
)gij

)

=

= − 1

m− 2

(

Rij +R
(m− 2) − 2m+ 2

2m(m− 1)
gij

)

=

= − 1

m− 2

(

Rij −
R

2(m− 1)
gij

)

where Rij = Rai
a
j is the Ricci-curvature and R = gijRij is the scalar-

curvature. Since πn and αγ are already known to be K-equivariant,
only K-equivariancy of A remains to be seen. But this is clear, since
both the (Riemannian) curvature R and the (pseudo-)inner product
are K-equivariant, and thus also the Ricci-type contraction of R and
the scalar-curvature are K-equivariant.
The change of the g0-component of the curvature is

∂Aij
r
s =

(

δr
iAsj − δr

jAsi

)

+
(

glrAligsj − glrAljgis

)

.

So, recalling 5.2.4, the curvature of ω is

(0, Rij
r
s +
(

δr
iAsj − δr

jAsi

)

+
(

glrAligsj − glrAljgis

)

,

−Rlaτij
a +Raiαj

a
l − Rajαi

a
l).
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Example 7.3.1. For the Riemannian sphere already discussed above (so
H = O(n + 1) and K = O(n)) we have αγ |n = 0; i.e., αγ = ad ◦ πk,

where πk : so(n+1) = h → k = so(n) is the projection to so(n). Notice
that since both τ and α vanish, the Cartan curvature has values in
g0. We calculated the curvature tensor Rij

r
s = δr

i gjs − δr
jgis, the Ricci-

curvature Rij = (m − 1)gij and the scalar curvature R = m(m − 1).
Thus

Aij = − 1

m− 2

(

Rij −
R

2(m− 1)
gij

)

=

= − 1

m− 2

(

(m− 1) − m(m− 1)

2(m− 1)

)

gij =

= − 1

m− 2

(m

2
− 1
)

gij = −1

2
gij.

Therefore

glrAligsj = glrgli

(

−1

2
gsj

)

= δr
iAsj.

Thus the g0-component of the Cartan curvature is Rij
r
s −

(

δr
i gsj −

δr
jgsi

)

= 0. i.e: The Cartan curvature is zero. This reflects the fact
that the Euclidean sphere is locally conformally flat. y
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8. Contact and CR Structures

In [2] D. Alekseevsky and A. Spiro classified all compact simply
connected homogeneous CR manifolds of hypersurface type with non-
degenerate Levi-bracket.
One result of this chapter will be an explicit prolongation one such
family of CR manifolds to Cartan geometries; We calculate the Cartan
curvature and find out which of these CR manifolds are spherical.
We begin by introducing contact structures in 8.1, CR structures in
8.2 and discuss the relation of CR structures with the corresponding
parabolic geometries in 8.3.1 and 8.4.1.

8.1. Contact structures. Consider a manifold M endowed with a
co-dimension 1-distribution D of TM . Then T−2M = TM, T−1M =
D, T 0M = M makes M into a filtered manifold (cf. 6.4). Thus we have
the Levi-bracket L on the associated graded of TM . The nontrivial part
of L is an element of

Λ2(D∗) ⊗ TM/D.
At every point x ∈ M the Levi-bracket is a skew-symmetric bilinear
form, and when this form is non-degenerate we say that D is a contact
distribution on TM or that we have a contact structure on M .
(Since non-degenerate skew-symmetric bilinear forms only exist on
even-dimension vector spaces it follows that M is odd-dimensional.)
For U ⊂ M open consider a one-form Θ ∈ Ω1(U) which vanishes on
D and is not zero at any point of U . Θ defines a local trivialization
of gr−2(TM). One can check that non-degeneracy of the (trivialized)
Levi-bracket

Lx : ker(Θ)x × ker(Θ)x → R,

(X1, X2) 7→ Θ([ξ1, ξ2]) for ξi ∈ X(U,D), ξi(x) = Xi

is equivalent to

Θ ∧ (dΘ)j 6= 0, (18)

where j is half the dimension of D. A nowhere vanishing form Θ sat-
isfying (18) is called a (local) contact form. Note that a co-dimension
one distribution D of TM is a contact distribution iff there are local
contact forms with kernel D. Of course every global contact form de-
scribes a contact distribution.
Two contact manifolds (M1,D1) and (M2,D2) are equivalent when
there is a diffeomorphism f : M1 → M2 which satisfies Tf(D1) = D2.

8.1.1. Invariant Contact Structures. We now consider invariant con-
tact structures on a homogeneous space H/K. Invariant co-dimension
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one subbundles D of T (H/K) are exactly the extensions of K-invariant
co-dimension one subspaces D of n.

We know from theorem 6.4.2 that the Levi-bracket on the induced co-
dimension 1-distribution of T (H/K) is non-degenerate iff the bracket

[·, ·] : D ×D → n/D is non − degenerate. (19)

If this holds we say that D is a contact subspace of n and in this case
we have an invariant contact structure D on H/K.
Assume that we have a non-degenerate K-invariant bilinear form θ on
n. Then a K-invariant element Z ∈ n whose orthogonal complement
(in n) is a contact subspace is called contact element. The K-invariant
1-form θ(Z, ·) on n induces an invariant 1 form Θ on H/K. In fact,
since ker(θ) = D this is a (global) invariant contact form.
Also note that having chosen such a contact element Z we may regard
the associated graded gr(T (H/K) as H×K (RZ⊕D); here RZ⊕D is a
nilpotent graded Lie algebra with (RZ⊕D)−2 = RZ, (RZ⊕D)−1 = D;
The only nontrivial bracket being the Levi-bracket D×D → RZ, which
is given by

Lo : D ×D → RZ,

X1, X2 7→ [X1, X2]RZ ,

where [X1, X2]RZ is the projection of [X1, X2] + k to RZ.

8.2. CR structures. Let D be an even-dimensional, co-dimension 1
distribution of the tangent bundle of a manifold M , which shall be en-
dowed with an almost complex structure J ∈ D∗ ⊗D; i.e., J2 = −idD.
(The existence of such an anti-involution on D implies that M is odd-
dimensional.)
Then we say that (D, J) is an almost CR structure of hypersurface type
on M . When D is also a contact distribution, i.e., when the induced
Levi-bracket L ∈ Λ2(D) ⊗ TM/D is non-degenerate, we say that this
almost CR structure is non-degenerate.

Definition 8.2.1. i. An almost CR structure (D, J) on a manifold
M is partially integrable if for ξ1, ξ2 ∈ X(M,D)

[Jξ1, ξ2] + [ξ1, Jξ2] ∈ X(M,D).

This is equivalent to the Levi-bracket D×D → TM/D being the
imaginary part of an hermitian form on D for every trivialization
of TM/D. Non-degeneracy of the CR structure is equivalent to
non-degeneracy of the hermitian form. If TM/D is oriented we
can define the signature of a partially integrable almost CR struc-
ture as the signature of the induced hermitian form(s). If the
hermitian form is positive definite (for an orientation of TM/D)
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we say that the partially integrable almost CR structure is strictly
pseudoconvex.

ii. When (M,D, J) is a partially integrable almost CR structure one
has the Nijenhuis-tensor NJ ∈ Λ2(D∗) ⊗D. It is defined

N(ξ1, ξ2) := [ξ1, ξ2] − [Jξ1, Jξ2] + J([Jξ1, ξ2] + [ξ1, Jξ2]) (20)

for ξ1, ξ2 ∈ X(M,D).
iii. An almost CR structure (D, J) on a manifold M is integrable if

it is partially integrable and its Nijenhuis-tensor N vanishes. We
then say that (D, J) is a CR structure on M .

Remark 8.2.2. That (20) really defines a tensor follows from N being
bilinear over C∞(M).
Note that

N(Jξ1, ξ2) = [Jξ1, ξ2] + [ξ1, Jξ2] − J([ξ1, ξ2] − [Jξ1, Jξ2]) =

= −J
(

[ξ1, ξ2] − [Jξ1, Jξ2] + J([Jξ1, ξ2] + [ξ1, Jξ2])
)

=

= −JN(ξ1, ξ2)

and N(ξ1, Jξ2) = −N(Jξ2, ξ1) = J(ξ2, ξ1) = −J(ξ1, ξ2). Thus N is
anti-complex linear in both arguments. y

Definition 8.2.3. Two almost CR manifolds (M1,D1, J1) and (M2,D2, J2)
are equivalent if there is a diffeomorphism f : M1 →M2 which satisfies
TfD1 = D2 and Tf J1(X) = J2 TfX for all X ∈ D1.

8.2.1. Invariant almost CR structures. As above for contact structures
consider a homogeneous space H/K and denote its Lie algebra by n =
h/k. The data on n defining an almost CR structure are:

i. a contact subspace D of n,
ii. a K-invariant complex structure J on D.

The Levi-bracket is given by

Lo : D ×D → n/D,

X1, X2 7→ ([X1, X2] + k) +D;

it is skew-symmetric and non-degenerate.
Partial integrability of an invariant almost CR structure means that

0 = Lo(JX1, X2) + Lo(X1, JX2) = ([JX1, X2] + [X1, JX2] + k) +D.
(21)

In this case the Levi-bracket is the imaginary part of a unique hermitian
inner product on D.
Integrability of a invariant partially integrable almost CR structure
reads:

[X1, X2] − [JX1, JX2] + J([JX1, X2] + [X1, JX2]) ∈ k (22)
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for all X1, X2 ∈ D.
Lets discuss the Lie-group and -algebra of the parabolic geometry mod-
eling non-degenerate partially integrable almost CR structures of hy-
persurface type:

8.3. PSU(C ⊕ m ⊕ C). Let m = Cp ⊕ Cq and denote

Ip,q :=

(

Ip 0
0 −Iq

)

. (23)

Then we regard m with the standard hermitian form g = Ip,q of signa-
ture (p, q). For a vector v ∈ m its dual vector g(v, ·) = v(∗,g) ∈ m∗ may
be also be written as the row matrix

g(v, ·) = v(∗,g) = v∗Ip,q (24)

and the dual matrix of an A ∈ u(m) with respect to g is

A(∗,g) = A∗
Ip,q. (25)

We endow C ⊕ m ⊕ C with the form g̃





0 0 1
0 g 0
1 0 0



 . (26)

If g has signature (p, q) then g̃ has signature (p+ 1, q + 1).

Theorem 8.3.1. i. Elements of

g = su(C ⊕ m ⊕ C, g̃)

are of the form





−α Z∗
Ip,q iz

X A −Z
ix −X∗Ip,q ᾱ



 (27)

with A ∈ u(m), X,Z ∈ m, α ∈ C and x, z ∈ R such that tr(A) −
α + ᾱ = 0.
g is a |2|-graded Lie algebra whose components are: g−2 = RX−2,
g2 = RX2, where

X−2 =





0 0 0
0 0 0
i 0 0



 , X2 =





0 0 i
0 0 0
0 0 0



 ;
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g−1 = {





0 0 0
X 0 0
0 −X∗

Ip,q 0



 : X ∈ C
l}

g0 = {(α,A) =





−α 0 0
0 A 0
0 0 ᾱ



 : α ∈ C, A ∈ u(Cl ⊕ C
l ⊕ C) with tr(A) = 2iImα},

g1 = {





0 Z∗Ip,q 0
0 0 −Z
0 0 0



 : Z ∈ C
l}.

Thus g−2
∼= Ri ⊂ C, g−1

∼= m, g0
∼= s(C ⊕ sug(m)), g1

∼= m∗ and
g2

∼= Ri ⊂ C, and we will write

g = {xi⊕X ⊕ (α,A) ⊕ Z(∗,g) ⊕ zi|X,Z ∈ m, α ∈ C, x, z ∈ R, A ∈ ug(m)

with tr(A) = 2Im(α)i.}.

ii. In this notation the nontrivial brackets are

[(α,A), xi⊕X ⊕ (α′, A′) ⊕ Z(∗,g) ⊕ iz] =

= 2Re(α)xi⊕ (A+ α)X ⊕ (0, [A,A′]) ⊕ ((A+ α)Z)(∗,g) ⊕−2Re(α)zi;

[xX−2, zX2] = (−xz, 0);

[zX2, 0 ⊕X ⊕ 0 ⊕ 0 ⊕ 0] = 0 ⊕ 0 ⊕ 0 ⊕ (ziX)(∗,g) ⊕ 0;

[xX−2, 0 ⊕ 0 ⊕ 0 ⊕ Z(∗,g) ⊕ 0] = 0 ⊕ xiZ ⊕ 0 ⊕ 0 ⊕ 0;

[0 ⊕X ⊕ 0 ⊕ 0 ⊕ 0, 0 ⊕ 0 ⊕ 0 ⊕ Z∗ ⊕ 0] =

= 0 ⊕ 0 ⊕ (g(Z,X), XZ(∗,g) − ZX(∗,g)) ⊕ 0 ⊕ 0,

[0 ⊕X1 ⊕ 0 ⊕ 0 ⊕ 0, 0 ⊕X2 ⊕ 0 ⊕ 0 ⊕ 0] = −2Img(X1, X2)X−2;

[0 ⊕ 0 ⊕ 0 ⊕ Z
(∗,g)
1 ⊕ 0, 0 ⊕ 0 ⊕ 0 ⊕ Z

(∗,g)
2 ⊕ 0] = −2Img(Z1, Z2)X2.

iii. We can naturally regard u(m, g) as a Lie subalgebra of g by using
the embedding

embu : u(m, 〈, 〉(l,l+1)) → g0,

A 7→





−tr(A)/2 0 0
0 A 0
0 0 −tr(A)/2



 .

We will thus simply write A for embu(A). Using this embedding
we have g0 = R ⊕ u(m, g).

iv. g0 is reductive; a decomposition of g0 into a semisimple part gss
0

and its center gc
0 is

g0 = su(m) ⊕ C
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where su(m) embeds into g0 by embu|su(m) and C embeds by

x+ iy 7→





x− n
n+2

yi 0 0
0 2

n+2
yi 0

0 0 −x− n
n+2

yi



 .

This is an isomorphism of representations of the standard repre-
sentation of su(m) ⊕C on m and the adjoint representation of g0

on m = g−1.
v.

su(C ⊕ m ⊕ C,





0 0 1
0 g 0
1 0 0



) ∼= su(C ⊕ m ⊕ C,





0 0 1
0 −g 0
1 0 0



)

by




−α Z∗Ip,q iz
X A −Z
ix −X∗

Ip,q ᾱ



 7→





−α Z∗Ip,q −iz
X A Z
−ix X∗

Ip,q ᾱ



 .

Denote g− = g−2⊕g−1. The subalgebra g0⊕g1⊕g2 < g we denote by
p. We have the standard representation of both g and G on C⊕m⊕C.
We denote by P the stabilizer of the isotropic line {(c, 0, 0)|c ∈ C} ⊂
C ⊕ m ⊕ C. P is a Lie subgroup of G and its Lie algebra is p.
Another characterization of P is P = NG(p) = {p ∈ G : Ad(p)p ⊂
p}: NG(p) is a closed subgroup of G, and thus a Lie subgroup. Its
Lie algebra is Ng(p) = {X ∈ g : ad(X)p ⊂ p}, and obviously Ng(p)
contains p. But for X ∈ g− with X 6= 0 there is always some element
Y in g0 ⊂ p with [Y,X] 6∈ p. Thus indeed Ng(p) = p.

Theorem 8.3.2. Every automorphism φ of the nilpotent graded Lie
subalgebra g− which satisfies Φ(iX) = iΦ(X) on g−1 = m, i.e., which
is also complex-linear on m, is in fact the restriction of the adjoint
action of some element g0 ∈ G0 to g−.

Proof. Consider an automorphism φ of the graded Lie algebra g−. On
the real, one-dimensional vector space g−2 = Ri the map φ acts by
multiplication with some real non-zero scalar; But every such action
on g−2 can be realized as the adjoint action of some element in G0.
Thus, by composing φ with an appropriate element we may assume
that it is the identity on g−2.
Then, for elements X1, X2 ∈ m = g−1, we have

φ([X1, X2]) = φ(−2Img(X1, X2)) = −2Img(X1, X2)

but also

φ([X1, X2]) = [φ(X1), φ(X2)] = −2Img(φ(X1), φ(X2)).



59

Thus, since we assumed that φ is complex-linear, it follows that it is
unitary on m. But since G0 contains (a two-fold covering of) U(m) the
automorphism φ may indeed be realized by the adjoint action of some
element in G0. �

8.4. The homogeneous model of non-degenerate partially in-
tegrable almost CR structures of hypersurface type.
Regard m = Cp⊕Cq endowed with the standard hermitian form g = Ip,q

of signature p, q. Then we have the hermitian form g̃ of signature
(p+ 1, q + 1) on C ⊕ m ⊕ C, which is given by

g̃ =





0 0 1
0 g 0
1 0 0



 .

Let G = PSU(C ⊕ m ⊕ C) and P < G the stabilizer of the isotropic
complex line C(1, 0, 0) ⊂ C⊕m⊕C. Recall that the Lie algebra of P is
p = g0 = g0 ⊕g1 ⊕g2. We will show how G/P becomes a homogeneous
CR manifold.

As we saw in theorem 8.3.1 g is 2-graded and g−1 = m. Now by 8.1.1
an invariant contact structure on G/P is obtained by a P -invariant
co-dimension one subspace D ⊂ n := g/p such that the Levi-bracket

Lo : D ×D → n/D

is non-degenerate. We check that the subspace D := g−1 + p = m +
p ⊂ g/p satisfies this non-degeneracy condition. First recall that the
restriction of the Lie bracket to m × m is

[·, ·] : m × m → g−2 = RZ, (28)

[X, Y ] = −2Im(g(X, Y )). (29)

Therefore, according to 8.1.1, the Levi-bracket is given by

Lo : D ×D → n/D, (30)

(X, Y ) 7→ −2Im(g(X, Y ))X−2 + g−1. (31)

Thus, since g is a non-degenerate hermitian form, we see thatD = m+p

is a contact subspace of g/p.

Now by 8.2.1 this invariant contact structure on G/P may be ex-
tended to an invariant almost CR structure by specifying a P -invariant
complex structure J on D. But since D = g−1 = m = C

p ⊕C
q we have

a canonical complex structure. For invariance of this complex structure
under P just note that p+ = g1 acts trivially on g/p and that g0 acts
on g−1 = m by maps of the form αidm + A with α ∈ R and A ∈ u(m).

Thus we have an invariant non-degenerate almost CR structure on
G/P . From (30) we immediately see that condition (21) of partial
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integrability of this almost CR structure is satisfied. Also (22), the
integrability condition, follows at once from (28). Thus we have indeed
an invariant CR structure of signature (p, q) on G/P .

A more explicit realization of this homogeneous CR manifold may
be obtained as follows: Consider the light cone C ⊂ C⊕m⊕C formed
by all isotropic non-zero vectors v ∈ Cp+q+2, g̃(v, v) = 0. This is a
co-dimension one submanifold of Cp+q+2.

On C we have a natural right action of C∗ by multiplication. Denote
by p : C → C/C∗ =: M the natural surjection to the orbit space.
The action by C∗ on C is smooth and free and C → M is thus a C∗

principal bundle. Since G = PSU(Cp+q+2) = SU(Cp+q+2)/∆, with ∆ a
finite subgroup of diagonal matrices, G acts on M = C/C∗. Obviously
SU(Cp+q+2) acts transitively on C, and thus also G acts transitively
on M . Let e0 := (1, 0, 0) ∈ C ⊕ m ⊕ C ∈ C. The isotropy group of
Ce0 ∈M is (by definition) P < G, and thus M = C/C∗ = G/P .

M has a simpler description as M = C/C∗ = (S2p+1 × S2q+1)/U(1):
take an orthonormal basis v1, . . . vp+1, w1, . . . wq+1 of Cp+q+2, where
g̃(vi, vi) = 1, g̃(wi, wi) = −1. Denote by V , resp. W , the subspaces
spanned by the vectors vi, resp. the vectors wi. Then g̃ is the stan-
dard, positive definite, hermitian form on V ∼= Cp+1 and the negative of
the standard hermitian form onW ∼= Cq+1. Denote the standard norms
on V ∼= C

p+1 and W ∼= C
q+1 simply by || · ||. Writing C

p+q+2 = V ⊕W
we have

C = {z ⊕ w ∈ V ⊕W : ||z|| = ||w||},
and the map

S2p+1 × S2q+1 → V ⊕W = C
p+q+2,

(z, w) 7→ z ⊕ w

obviously has values in C and hits every C∗-orbit; It factorizes to an
injective map

(S2p+1 × S2q+1)/U(1) →M = C/C∗,

and thus indeed M ∼= (S2p+1 × S2q+1)/U(1).

Now the G-equivariant diffeomorphism

Θ : G/P ∼= M,

gP 7→ Cge0

induces an invariant CR structure onM . To find an explicit description
it is enough to calculate the tangent map of Θ at o = P ∈ G/P . First
note that the tangent space at a point v ∈ C is

TvC = {w ∈ C
p+q+2 : Re(g̃(v, w)) = 0}.
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Now

ToΘ : g/p → TCe0M,

Y + p 7→ Te0p(Y e0).

Thus the contact subspace m + p = g−1 + p of g/p is mapped to

Te0p({((0, X, 0) ∈ C ⊕ m ⊕ C}) (32)

under Θ. Denoting the contact subbundle of TM induced by Θ by D,
we thus find by using (32) and G-invariance that

Dp(v) = Tvp(v
⊥) ⊂ TvC.

And (32) also shows that the complex structure of Dp(v) is simply

JTp(v)X = Tp(v)iX.

Thus the homogeneous model of partially integrable non-degenerate
almost CR structures of signature (p, q) is an (invariant) CR structure
on (S2p+1 × S2q+1)/U(1). An (almost) CR manifold of signature (p, q)
which is locally isomorphic to the CR manifold (S2p+1 × S2q+1)/U(1)
is called spherical. Note that with q = 0 we thus see that the homoge-
neous models for strictly pseudoconvex almost CR structures are the
CR-spheres S2p+1 ⊂ Cp+1.

Remark 8.4.1. Let (G → H/K, ω) be a homogeneous regular parabolic
geometry of type (G,P ) as in 8.3.1 above, which is induced by some
α : h → g. Then we saw in chapter 6 that α induces a filtration on n =
h/k and further endows gr(n) with the structure of a nilpotent graded
Lie algebra by an isomorphism of gr(n) ∼= g−. Since g is a 2-graded
Lie algebra and g−2 is one-dimensional the induced filtration is just
some K-invariant co-dimension 1 subspace D of n. The isomorphism
α restricts to an isomorphism of D with m, and we can thus pull back
the complex structure on m to a complex structure J on D. From 8.3.2
it follows that J is K-invariant. Furthermore, by regularity of α, one
sees that the Levi-bracket D ×D → n/D is non-degenerate.
Thus (G → H/K, ω) endows H/K with an invariant non-degenerate
almost CR structure of hypersurface type, and by using regularity of
α one sees that this almost CR structure is partially integrable. y

We now come to an example of invariant CR structures. In 8.5 we
introduce the underlying homogeneous space, in 8.6 we discuss an in-
variant contact structure on this space and in 8.7 we endow this contact
distribution with a (family of) complex structures and show that we
thus get a (family of) integrable, invariant CR structures.
In 8.8 this family of CR structures will be prolonged to Cartan geome-
tries.
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8.5. SU(l + 2)/U(l). Consider H = SU(l + 2) resp. h = su(l + 2). We
will write elements in h as





b −v∗ γ
v A w
−γ̄ −w∗ c



 ,

where b, c are purely imaginary, A ∈ u(l) and b + tr(A) + c = 0. In h

we have the subalgebra k consisting of elements of the form





−a 0 0
0 A 0
0 0 −a



 =: (a, A) (33)

with a = tr(A)
2

. Of course, k = u(l). The corresponding virtual Lie
subgroup K is in fact closed and thus a Lie subgroup, and one sees
immediately that K is a two-fold covering of U(l).
Elements of K are of the form

k =





c−1 0 0
0 C 0
0 0 c−1





with c ∈ U(1) and C ∈ U(l) such that c−2det(C) = 1.

8.6. The contact structure on SU(l + 2)/U(l). The standard her-

mitian inner product on h ⊂ C(l+2)2 is K-invariant, and by restricting
it to n := k⊥, the orthogonal complement of k, we can use the notion
of a contact element as discussed in 8.1.1.

Lemma 8.6.1.

Z =





i 0 0
0 0 0
0 0 −i





is a contact element and thus defines an invariant contact structure on
SU(l + 2)/U(l).

Proof. Since K is connected it suffices to check k-invariance of Z:









−a 0 0
0 A 0
0 0 −a



 ,





i 0 0
0 0 0
0 0 −i







 = 0.
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For non-degeneracy of the Levi-bracket we calculate
[(

0 −v∗1 γ1

v1 0 w1
−γ̄1 −w∗

1 0

)

,

(

0 −v∗2 γ2

v2 0 w2
−γ̄2 −w∗

2 0

)]

=

=

( −v∗1v2−γ̄2γ1 −γ1w∗

2 −v∗1w2

−γ̄2w1 −v1v∗2−w1w∗

2 γ2v1

−w∗

1v2 γ̄1v∗2 −γ̄1γ2−w∗

1w2

)

−
( −v∗2v1−γ̄1γ2 −γ2w∗

1 −v∗2w1

−γ̄1w2 −v2v∗1−w2w∗

1 γ1v2

−w∗

2v1 γ̄2v∗1 −γ̄2γ1−w∗

2w1

)

=

=

(

v∗2v1−v∗1v2+γ̄1γ2−γ̄2γ1 γ2w∗

1−γ1w∗

2 v∗2w1−v∗1w2

γ̄1w2−γ̄2w1 v2v∗1−v1v∗2+w2w∗

1−w1w∗

2 γ2v1−γ1v2

w∗

2v1−w∗

1v2 γ̄1v∗2−γ̄2v∗1 γ̄2γ1−γ̄1γ2+w∗

2w1−w∗

1w2

)

.

Thus the RZ-part of [(v1, w1, γ1), (v2, w2, γ2)] is
(

Im(〈w1, w2〉) − Im(〈v1, v2〉) + 2Im(γ̄1γ2)
)

Z. (34)

Especially, the Levi-bracket is non-degenerate. �

For later use we note that

[(v1, w1, γ1), (v2, w2, γ2)]D =

(

0 γ2w∗

1−γ1w∗

2 v∗2w1−v∗1w2

γ̄1w2−γ̄2w1 0 γ2v1−γ1v2

w∗

2v1−w∗

1v2 γ̄1v∗2−γ̄2v∗1 0

)

, (35)

[(v1, w1, γ1), (v2, w2, γ2)]k = (36)

=

(

−Im(〈v1⊕w1,v2⊕w2〉)i 0 0
0 v2v∗1−v1v∗2+w2w∗

1−w1w∗

2 0

0 0 −Im(〈v1⊕w1,v2⊕w2〉)i

)

.

The orthogonal complement of RZ in n is the real subspace D which
is formed by elements





0 −v∗ γ
v 0 w
−γ̄ −w∗ 0





We will often write (v, w, γ) or v ⊕ w ⊕ γ for elements of D.
We have n = k⊥ = RZ ⊕D.

8.7. A family of CR Structures on SU(l+ 2)/U(l). Our family of
CR structures on H will be parametrized by t ∈ {z ∈ C : |z| < 1}.

8.7.1. The complex structure on D. Denote DV := {v⊕0⊕0}, DW :=
{0 ⊕ w ⊕ 0}, DΓ := {0 ⊕ 0 ⊕ γ},

E :=





0 0 1
0 0 0
−1 0 0



 and F :=





0 0 i
0 0 0
i 0 0



 .
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The complex structure Jt leaves DV , DW , DΓ invariant and doesn’t
depend on the parameter t on DV and DW : here it is given simply by

J(v ⊕ w ⊕ 0) := iv ⊕ iw ⊕ 0.

The complex structure on DΓ depends on the parameter t and is given
by

JE = βEF − αE,

JF = −βFE + αF

where

α :=
2Im(t)

1 − |t|2 ;

βE :=
Im(t)2 + (Re(t) − 1)2

1 − |t|2 ;

βF :=
Im(t)2 + (Re(t) + 1)2

1 − |t|2 .

Lemma 8.7.1. For every t ∈ D

i. Jt is an anti-involution on D
ii. Jt is K-invariant
iii. The Levi-bracket L ∈ Λ2(D) ⊗ RZ is −2Img, where

g(v1 ⊕ w1 ⊕ r1E ⊕ s1F, v2 ⊕ w2 ⊕ r2E ⊕ s2F ) = (37)

= 1
2
〈v1, v2〉 − 1

2
〈w1, w2〉 − r1r2βE − s1s2βF − r1s2(α + i) − r2s1(α− i).

Proof. i. Lets first check that J is indeed an anti-involution on DΓ =
RE ⊕ RF :

J(JE) = βEJF − αJE = βE(−βFE + αF ) − α(βEF − αE) =

= −βEβFE + βEαF − αβEF + α2E = (α2 − βEβF )E.

J(JF ) = −βFJE + αJF = −βF (βEF − αE) + α(−βFE + αF ) =

= −βFβEF + αβFE − αβFE + α2F = (α2 − βEβF )F.

Thus we need to check that α2 − βEβF = −1.

(Im(t)2 + (Re(t) − 1))2 ∗ (Im(t)2 + (Re(t) + 1)2) =

= Im(t)4 + Im(t)2(Re(t) + 1)2 + Im(t)2(Re(t) − 1)2 + (Re(t)2 − 1)2 =

= Im(t)4 + Im(t)2(Re(t)2 + 2Re(t) + 1)

+ Im(t)2(Re(t)2 − 2Re(t) + 1) + Re(t)4 − 2Re(t)2 + 1 =

= Re(t)4 + Im(t)4 + 2Re(t)2Im(t)2 + 2Im(t)2 − 2Re(t)2 + 1 =

= (Re(t)2 + Im(t)2)2 + 2Im(t)2 − 2Re(t)2 + 1;
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Thus

α2 − βEβF =
2Im(t)2 + 2Re(t)2 − 1 − (Re(t)2 + Im(t)2)2

1 − |t|2 =

=
2|t|2 − 1 − |t|4

(1 − |t|2)2
= −1.

ii.








a 0 0
0 A 0
0 0 a



 ,





0 −v∗ γ
v 0 w
−γ̄ −w∗ 0







 =

=





0 −av∗ aγ
Av 0 Aw
−aγ̄ −aw∗ 0



−





0 −v∗A aγ
av 0 aw
−aγ̄ −w∗A 0



 =

=





0 −v∗(A+ aid) 0
(A+ aid)v 0 (A+ aid)w

0 −w∗(A+ aid) 0



 .

So an element (a, A) of k acts by

[(a, A), (v ⊕ w ⊕ γ)] = (A + a)v ⊕ (A + a)w ⊕ 0. (38)

But now K-equivariance is clear: both J and (ad(a,A))|D respect
the decomposition of D into Cn⊕Cn⊕(RE⊕RF ). But (ad(a,A))|D
acts by complex-linear maps on the Cn-parts, and it acts trivially
on RE ⊕ RF ; thus it indeed commutes with J .

iii. The Z-part of the Lie-bracket, [·, ·]RZ : D × D → RZ, is skew-
symmetric and non-degenerate. Thus, for it being the imaginary
part of an hermitian form on the complex vector space (D, J) it
remains to check that [JX1, X2]RZ+[X1, JX2]RZ = 0 for allX1, X2

in D. This is exactly the partial integrability of the almost CR
structure induced by (D, J).
Since

[v1 ⊕ w1 ⊕ γ1, v2 ⊕ w2 ⊕ γ2]RZ = (39)

=
(

Im(〈w1, w2〉) − Im(〈v1, v2〉) + 2Im(γ̄1γ2)
)

Z

the only nontrivial equation for partial integrability is

[Jγ1, γ2]RZ + [γ1, Jγ2]RZ = 0;

But for γ1 = γ2 this expression vanishes by skew-symmetry of the
Lie-bracket and for γ1 = E, γ2 = F we have

[JE, F ] + [E, JF ] = [−αE, F ] + [E, αF ] = 0.

Now we check (37). Since J leaves DV , DW and DΓ invariant (39)
implies that DV , DW and DΓ are orthogonal with respect to the
unique hermitian form g on D with Img = −2[·, ·]RZ .
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Since J is the standard complex structure on DV
∼= Cl, DW

∼= Cl

wee see that

g(v1 ⊕ 0 ⊕ 0, v2 ⊕ 0 ⊕ 0) =
1

2
〈v1, v2〉,

g(0 ⊕ w1 ⊕ 0, 0 ⊕ w2 ⊕ 0) = −1

2
〈w1, w2〉,

where 〈·, ·〉 is the standard hermitian inner product on Cl.
Thus we only need to calculate the real part of g for elements
0 ⊕ 0 ⊕ γ1, 0 ⊕ 0 ⊕ γ2 ∈ Γ: From

−2Im(g(0 ⊕ 0 ⊕ γ1, 0 ⊕ 0 ⊕ γ2)) = 2Im(0̄ ⊕ 0 ⊕ γ10 ⊕ 0 ⊕ γ2);

it follows that

− 2Re(g(0 ⊕ 0 ⊕ γ1, 0 ⊕ 0 ⊕ γ2)) =

= Im(Jg(0 ⊕ 0 ⊕ γ1, 0 ⊕ 0 ⊕ γ2)) =

= Im(g(0 ⊕ 0 ⊕ γ1, J0 ⊕ 0 ⊕ γ2)) =

= 2Im(0 ⊕ 0 ⊕ γ1, 0 ⊕ 0 ⊕ Jγ2).

So on DΓ

g(E,E) = −βE ;

g(F, F ) = −βF ;

g(E,F ) = −α− i.

�

Thus (D, Jt) endows SU(l + 2)/U(l) with an invariant, partially in-
tegrable almost CR structure.

Remark 8.7.2. We have βE , βF > 0; Also βE , βF < 0 and appropriate
α would define a complex structure on DΓ, but

v ⊕ w ⊕ r + is 7→ w ⊕ v ⊕−r + is,

xZ 7→ −xZ,

k
id→ k

is an automorphism (in fact, an involution) of su(l + 2) and an iso-
morphism of the (almost) CR structures induced by βE , βF , α resp.
−βE ,−βF , α.
If Im(t) = 0 α = 0, βE = 1−t

1+t
and βF = 1+t

1−t
. y

Lemma 8.7.3. This is a CR structure: the partially integrable invari-
ant almost CR structure (D, Jt) on SU(l+2)/U(l) is in fact integrable.

Proof. We already showed partial integrability in iii of lemma 8.7.1.
This meant that

[JX1, X2]RZ + [X1, JX2]RZ = 0



67

for X1, X2 ∈ D. But in fact one can directly see from (36) that
([JX1, X2] + [X1, JX2])k = 0, and thus [JX1, X2] + [X1, JX2] ∈ D.
Replacing X1 by JX1 we see that the Nijenhuis-tensor N has in fact
values in D:

N ∈ Λ2(D∗) ⊗D,

N(X1, X2) = [X1, X2] − [JX1, JX2] + J([JX1, X2] + [X1, JX2].

Since N is anti-complex linear in both arguments and skew-symmetric
we immediately see that N vanishes on DΓ ×DΓ. Furthermore

[v1 ⊕ w1 ⊕ 0, v2 ⊕ w2 ⊕ 0] − [Jv1 ⊕ Jw1 ⊕ 0, Jv2 ⊕ Jw2 ⊕ 0] =

=

(

v∗2v1−v∗1v2 0 v∗2w1−v∗1w2

0 v2v∗1−v1v∗2+w2w∗

1−w1w∗

2 0
w∗

2v1−w∗

1v2 0 w∗

2w1−w∗

1w2

)

−
(

v∗2v1−v∗1v2 0 v∗2w1−v∗1w2

0 v2v∗1−v1v∗2+w2w∗

1−w1w∗

2 0
w∗

2v1−w∗

1v2 0 w∗

2w1−w∗

1w2

)

= 0.

Replacing v1 ⊕ w1 ⊕ 0 by Jv1 ⊕ Jw1 ⊕ 0 this implies that also

[Jv1 ⊕ Jw1, v2 ⊕ w2] + [v1 ⊕ w1, Jv2 ⊕ Jw2] = 0.

Now

[v1 ⊕ w1 ⊕ 0, E] − [Jv1 ⊕ Jw1 ⊕ 0, JE]

=

(

0 w∗

1 0
−w1 0 v1

0 −v∗1 0

)

−
(

0 (βE+αi)w∗

1 0

−(βE−αi)w1 0 −(βE+αi)v1

0 (βE−αi)v∗1 0

)

=

(

0 (1−βE−αi)w∗

1 0

(βE−1−αi)w1 0 (βe+1+αi)v1

0 −(βE+1−αi)v∗1 0

)

,

and thus, replacing v1 ⊕ w1 ⊕ 0 by Jv1 ⊕ Jw1 ⊕ 0,

[Jv1 ⊕ Jw1 ⊕ 0, E] + [v1 ⊕ w1 ⊕ 0, JE] =

=

(

0 (−α+(βE−1)i)w∗

1 0

(α+(βE−1)i)w1 0 (−α+(1+βE)i)v1

0 (α+(βE+1)i)v∗1 0

)

.

Thus

[v1 ⊕ w1, E] − [Jv1 ⊕ Jw1, JE] + J([Jv1 ⊕ Jw1, E] + [v1 ⊕ w1, JE]) = 0.

Analogously one shows this for F instead of E. So our CR structure is
indeed integrable. �

8.8. The prolongation of the above family of CR structures to
Cartan geometries. The hermitian form on D has signature (l, l+1);
Denote by m the complex vector space Cl ⊕ Cl ⊕ C endowed with
the standard hermitian form the standard hermitian form I(l,l+1) of
signature (l, l + 1),

I(l,l+1) =





Il 0 0
0 −Il 0
0 0 −1



 .
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One calculates

Theorem 8.8.1. u(Cl ⊕ C
l ⊕ C, (l, l + 1)) consists of matrices of the

form




AV B bV
B∗ AW bW
b∗V −b∗W yi





with AV , AW being unitary and y ∈ R.

The Cartan geometry corresponding to our CR structures on SU(l+
2)/U(l) is of type (G,P ), where G = PSU(C⊕ (m, I(l,l+1)),⊕C) and P
the stabilizer of the isotropic line C(1, 0, 0) ⊂ C ⊕ (Cl ⊕ Cl ⊕ C) ⊕ C.
By 8.3 and 8.8.1 elements of g are of the form













−α
(

ṽ∗ −w̃∗ −γ̃
)

zi




v
w
γ









AV B bV
B∗ AW bW
b∗V −b∗W yi



 −





ṽ
w̃
γ̃





xi
(

−v∗ w∗ γ̄
)

ᾱ













,

where AV , AW ∈ u(l); v, w, ṽ, w̃, bV , bW ∈ Cl; x, y, z ∈ R; γ, γ̃ ∈ C.
Since the matrices above contain much redundancy we will simply write
them













−α
(

∗ −∗ −∗
)

zi




v
w
γ









AV B bV
∗ AW bW
∗ −∗ yi



 −





ṽ
w̃
γ̃





xi
(

−∗ ∗ ∗
)

∗













,

Theorem 8.8.2. i. The map

α0(





xi− ai −v∗ r + si
v A w

−r + si −w∗ −xi − ai



) =

=















−2(l+2)
2l+3

a 0 0






1√
2
v

1√
2
w

r
√
βE + sα√

βE
+ s√

βE
i











A− 1
2l+3

a 0 0
0 A− 1

2l+3
a 0

0 0 −2(l+2)
2l+3

a



 0

xi
(

−∗ ∗ ∗
)

−2(l+2)
2l+3

a















(40)

induces an isomorphism between the graded (nilpotent) Lie alge-
bras gr(g−) and gr(n) = RZ ⊕ D endowed with the Levi-bracket;
The restriction of α0 to D is complex linear; here the complex
structure on D is the anti-involution Jt corresponding to parame-
ters α, βE, βF with βEβF − α2 = 1 as discussed in 8.7.1.
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ii. The map

Ψ : K → G0, (41)

Ψ(k) := α0 ◦ Ad(k) ◦ α−1
0

is a homomorphism of Lie groups and under the induced action of
K on g the map α0 : h → g is K-equivariant.

iii. Every other map α′
0 which satisfies properties i and ii is of the

form Ad(g0) ◦ α0 for some g0 ∈ G0.
iv. The map α = α0 + φ ◦ α0, prolongs the CR structure on SU(l +

2)/U(l) induced by (D, Jt) to a regular, normal Cartan geometry.
i.e.: the curvature κ of the Cartan connection induced by α satis-
fies ∂∗κ = 0.
Here

φ(xi⊕ (v ⊕ w ⊕ γ)) =

=







− 1
2
x(a+l(cV +cW ))i ( ∗ −∗ −∗ ) xci

„

0
0
0

«

0

@

xcV i
(

Re(γ)zE+Im(γ)zF

)

Il βV W w

∗ xcW i βWV v
∗ −∗ xai

1

A −
 

PV v
PW w

PERe(γ)+PF Im(γ)

!

0 ( 0 0 0 ) − 1
2
x(a+l(cV +cW ))i







(42)

where βV W , βWV , zE , zF , pE, pF are complex constants and PV , PW , a, c, cV , cW
are real constants. Explicitly,

βV W =
√

βE − 1√
βE

(1 + αi), βWV =
√

βE +
1√
βE

(1 + αi), (43)

zE =
1√
βE

+ βV W , zF = − α√
βE

+ (βV W −
√

βE)i;

cV =
2βE(1 + l) − β2

E(3 + 2l) − (3 + 2l)(1 + α2)

2βE(3 + 5l + 2l2)
, (44)

cW =
−2βE(1 + l) − β2

E(3 + 2l) − (3 + 2l)(1 + α2)

2βE(3 + 5l + 2l2)
,

a =
(1 + 2l)(1 + β2

E + α2)

2βE(1 + l)
,
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PV = −1

2
(2 + a+ (l + 2)cV + lcW ), (45)

PW = −1

2
(−2 + a+ lcV + (l + 2)cW ),

PE =
2

βE
− 1

2
(3a+ l(cV + cW )) − 2α

βE
i,

PF = −1

2
(3a+ l(cV + cW ))i+ 2(βE +

α2

βE

)i− 2α

βE

,

c =
(

16β2
E(1 + l)2(1 + 2l)(3 + 2l)2

)−1·
(

−β4
E(3 + 2l)2(15 + 2l(15 + 8l))

− (3 + 2l)2(15 + 2l(15 + 8l))(1 + α2)2
)

·
(

−2β2
E(−153 − 2l(383 + 2l(347 + 2l(145 + 8l(7 + l))))

+ (3 + 2l)2(15 + 2l(15 + 8l))α2)
)

.

v. For the resulting family of Cartan geometries on SU(l + 2)/U(l)
the following holds:
When l = 0 this is a family of CR structures on SU(2) = S3 and
for t = 0 it’s the standard CR structure on S3.
For t 6= 0 or l > 0 this structure is not locally isomorphic to the
homogeneous model of partially integrable almost CR structures of
hypersurface type of signature (l, l + 1); i.e., it is not spherical.

vi. The curvature function κo ∈ L(Λ2(g−), g) of the Cartan connec-
tion has values in g0 = p. It is given by

κ(X−2, v ⊕ w ⊕ γ)g0 = (46)










0

(

(i(cV −cW )βE−2α)zE−2zF

βE
Re(γ)

i(cV −cW )βE−2(α2+β2
E)

βE
Im(γ)

)

(cV − a− 1)βV W iw

∗ 0 (cW − a+ 1)βWV iv
∗ −∗ 0











,

κ(X−2, v ⊕ w ⊕ γ)g1 =






















0
(

∗ −∗ −∗
)

0





0
0
0



 0 −















((mV + 1)PV + c)i v

((mW − 1)PW + c)i w

mΓ i(pERe(γ) + pF Im(γ)) + c iγ

−2pE

(

α
βE

Re(γ) − (βE + α2

βE
)Im(γ)

)

−2pF

βE

(

Re(γ) − αIm(γ)
)















0
(

0 0 0
)

0























(47)
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with

mV =
1

2
(a+ (l + 2)cV + lcW )) (48)

mW =
1

2
(a+ lcV + (l + 2)cW ))

mΓ =
1

2
(3a+ lcV + lcW )).

κ(X−2, v ⊕ w ⊕ γ)g2 = 0; (49)

κ(v1 ⊕ w1 ⊕ γ1, v2 ⊕ w2 ⊕ γ2)g0 =

κ̃(v1 ⊕ w1 ⊕ γ1, v2 ⊕ w2 ⊕ γ2)g0 − κ̃(v2 ⊕ w2 ⊕ γ2, v1 ⊕ w1 ⊕ γ1)g0 ,

where

κ̃(v1 ⊕ w1 ⊕ γ1, v2 ⊕ w2 ⊕ γ2)g0 =
































0

B

B

B

B

B

@

2
(

(Re(PV )+1)v1v∗2+w1w∗

2

)

+
(

1
2l+3

Im(〈v1⊕w1,v2⊕w2〉)
+cV Im〈v1⊕w1⊕γ1,

v2⊕w2⊕γ2〉
)

Ili

1

C

C

C

C

C

A

0

B

@

+2
√

βEzERe(〈v1,w2〉)
+2

αzE+zF√
βE

Im(〈v1,w2〉)

−(PV +PW )v1w∗

2

1

C

A

„

(PV γ1+PERe(γ1)+PF Im(γ1))v2

+βV W α−1
0 (γ1)v2

«

( ∗ )

0

B

B

B

B

B

@

2
(

(Re(PW )−1)w1w∗

2+v1v∗2

)

+
(

1
2l+3

Im(〈v1⊕w1,v2⊕w2〉)
+cW Im〈v1⊕w1⊕γ1,

v2⊕w2⊕γ2〉
)

Ili

1

C

C

C

C

C

A

 

(PW γ1+PERe(γ1)+PF Im(γ1))w2

−βWV α−1
0 (γ1)w2

!

( ∗ ) (−∗ )

0

@

2Im(γ1(Re(γ2)PE+Im(γ2)PF ))

+
2(l+2)
2l+3

Im(〈v1⊕w1,v2⊕w2〉)
+aIm〈v1⊕w1⊕γ1,v2⊕w2⊕γ2〉

1

Ai

































.

(50)

κ(v1 ⊕ w1 ⊕ γ1, v2 ⊕ w2 ⊕ γ2)g1 =

= κ̃(v1 ⊕ w1 ⊕ γ1, v2 ⊕ w2 ⊕ γ2)g1 − κ̃(v2 ⊕ w2 ⊕ γ2, v1 ⊕ w1 ⊕ γ1)g1,

where

κ̃(v1 ⊕ w1 ⊕ γ1, v2 ⊕ w2 ⊕ γ2)g1 =
































0
(

∗ −∗ −∗
)

0





0
0
0



 0 −

























(

βV W (PERe(γ2) + PF Im(γ2)) + PV α
−1
0 (γ2)

)

w1

+(Re(γ1)zE + Im(γ1)zF )PWw2
(

βWV (PERe(γ2) + PF Im(γ2)) − PWα
−1
0 (γ2)

)

v1

+(Re(γ1)zE + Im(γ1)zF )PV v2
(

2pE

√
βERe(〈v1, w2〉)

+
(

αpE√
βE

+ 2pF√
βE

)

Im(〈v1, w2〉)
+PV βV W 〈w1, v2〉 − PWβWV 〈v1, w2〉

)

























0
(

0 0 0
)

0

































;

(51)
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κ(v1 ⊕ w1 ⊕ γ1, v2 ⊕ w2 ⊕ γ2)g2 =

2





(c− P 2
V )Im(〈v1, v2〉) − (c− P 2

W )Im(〈w1, w2〉)
−cIm(γ1γ2)

+Im((Re(γ1)PE + Re(γ1)PF )(Re(γ2)PE + Re(γ2)PF ))



X2. (52)

Proof:

i.

α−1
0 (v ⊕ w ⊕ γ) = (53)

=
√

2v ⊕
√

2w ⊕ 1√
βE

Re(γ) − α√
βE

Im(γ) +
√

βEIm(γ)i, α−1
0 (X−2) = Z.

(54)

Note that writing r + si = γ,

α0(0 ⊕ 0 ⊕ γ) = 0 ⊕ 0 ⊕ 1

2

√

βE

(

(1 +
1

βE
(1 − αi))γ + (1 − 1

βE
(1 − αi))γ

)

.

Lets check that the isomorphism α0 : n = RZ ⊕ D ∼= g− induces an
isomorphism of the associated graded Lie algebras: We have

[(v1, w1, γ1), (v2, w2, γ2)]−2 =

= −2Img((v1, w1, γ1), (v2, w2, γ2)) =

= −Im〈v1, v2〉 + Im〈w1, w2〉 + 2Imγ1γ2

α07→
(

−Im〈v1, v2〉 + Im〈w1, w2〉 + 2Imγ1γ2

)

X2

and

[α0(v1, w1, γ1), α0(v2, w2, γ2)] =

= [(
1√
2
v1,

1√
2
w1,
√

βEReγ1 +
α√
βE

Imγ1 +
1√
βE

Imγ1i),

(
1√
2
v2,

1√
2
w2,
√

βEReγ2 +
α√
βE

Imγ2 +
1√
βE

Imγ2i)] =

= −2Im〈( 1√
2
v1,

1√
2
w1,
√

βEReγ1 +
α√
βE

Imγ1 +
1√
βE

Imγ1i),

(
1√
2
v2,

1√
2
w2,
√

βEReγ2 +
α√
βE

Imγ2 +
1√
βE

Imγ2i)〉(l,l+1) =

= −Im〈v1, v2〉 + Im〈w1, w2〉 − 2(Reγ2Imγ1 − Reγ1Imγ2) =

= −Im〈v1, v2〉 + Im〈w1, w2〉 + 2Imγ1γ2.

Thus α0 is indeed regular.
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ii. Ad|G0 induces an embedding of G0 as a closed subgroup into
GL(g−). We need to show that the homomorphism of Lie groups

Ψ : K → GL(g−),

Ψ(k) := α0 ◦ Ad(k) ◦ α−1
0

has values in G0. Since the exponential map exp : k → K is surjective
this is equivalent to Ψ′ : k → gl(g−) having values in g0. Once we have
shown this it is tautological that α0|n is K-equivariant; and on k we
simply defined α0|k := ψ′.
We have: Z is invariant under k and recall from (38) that

[(a, A), (v ⊕ w ⊕ γ)] = (A+ a)v ⊕ (A+ a)w ⊕ 0

(here we use notation (33)).
Now one sees that for X ∈ g− and A ∈ k

α0(ad((a, A))(α−1
0 (X))) =

= ad





















− 2(l+2)
2l+3

a 0 0

0

0

B

B

@

A− 1
2l+3

a 0 0

0 A− 1
2l+3

a 0

0 0 − 2(l+2)
2l+3

a

1

C

C

A

0

0 0 − 2(l+2)
2l+3

a





















(X);

Thus α0 ◦ ad((a, A)) ◦ α−1
0 does indeed have values in g0.

iii. The assertion that every other solution α′
0 is of the form Ad(g0)◦

α0 for some g0 ∈ G0 follows from 8.3.2.

iv. Now we need to show that ∂∗κ = 0. According to theorem 4.2.1
the curvature function κ ∈ C∞(SU(l + 2) ×K P, L(Λ2(g−), g)) of the
Cartan connection induced by the map α is SU(l+2)-invariant and P -
equivariant and thus factorizes to an invariant section of SU(l+ 2)×K

L(Λ2(g−), g). At o = K it is

κo(X1, X2) = [X1 + φ(X1), X2 + φ(X2)] − α([α−1
0 (X1), α

−1
0 (X2)]).

It is straightforward to calculate (46)-(52).
The explicit equations in φ for ∂∗κ = 0 are obtained as follows: Let ej

denote the j-th standard-basis-vector of Cl.

eV j = ej ⊕ 0 ⊕ 0 ∈ g−1,

eWj = 0 ⊕ ej ⊕ 0 ∈ g−1;

As a real basis of g−1 we take

B :=
(

eV 1, . . . , eV l, ieV 1, . . . ieV l, eW1, . . . , eWl, ieW1, . . . ieWl,

0 ⊕ 0 ⊕ 1, 0 ⊕ 0 ⊕ i
)

.
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X−2 completes it to a basis of g− whose dual basis is (−X2,C) with

C =
(

ẽ∗V 1, . . . , ẽ
∗
V l, iẽV 1

∗, . . . iẽV l
∗,−ẽ∗W1, . . . ,−ẽ∗Wl,−(iẽW1)

∗, . . . (iẽWl)
∗,

− (0 ⊕ 0 ⊕ 1)∗,−(0 ⊕ 0 ⊕ i)∗
)

.

Now, as we discussed in 13, ∂∗κ = 0 is equivalent to:

4l+2
∑

i=1

[Ci, κ(X,Bi)] − [X2, κ(X,X−2)] = 0 (55)

and

4l+2
∑

i=1

κ([Ci, X]−,Bi) − κ([α−1
0 (X2), α

−1
0 (X)]−, X−2) = 0 (56)

for all X ∈ g−. (Recall that for an element B ∈ g we denote the
projection of B to g− by Bg− or simply by B−.)
Note that [X2, X]− = 0 on the whole of g− and [Ci, X]− = 0 for X ∈
g−1. Thus equation (56) reduces to

4l+2
∑

i=1

κ([Ci, X−2],Bi) = 0,

but on can show that this is already implied by (55).
Next one calculates that (55) does hold for

X = X−2, X = v ⊕ 0 ⊕ 0, X = 0 ⊕ w ⊕ 0, X = E,X = F.

This task consist only of taking commutators and summing up.

�

Remark on how we found the solution. From the general theory of
parabolic geometries we know that there is a unique (up to equivalency)
regular normal Cartan connection on H ×Ψ P inducing the same CR
structure on M = H/K. Now we saw in i that our α0 is regular and in
iii we saw that any other regular map α′

0 differs by an isomorphism of
g from α0. Thus, in our search for an α with ∂∗κ = 0, we may restrict
ourselves to maps α0 + φ ◦ α for K-equivariant maps φ : g− → g of
homogeneity greater zero.
We found the solution for φ by making an ansatz for a K-equivariant
map of homogeneity greater one. We describe the decomposition of g

as a K-module: under Ψ an element A ∈ su(l) < k < h acts on an
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element of g by
























0 0 0

0





A 0 0
0 A 0
0 0 0



 0

0 0 0













,













−α
(

ṽ∗ −w̃∗ −z̃
)

βi




v
w
z









AV B bV
B∗ AW bW
b∗V −b∗W z



 −





ṽ
w̃
z̃





γi
(

−v∗ w∗ z̄
)

ᾱ

























=

=













0
(

(Aṽ)∗ −(Aw̃)∗ 0
)

0




Av
Aw
0









[A,AV ] [A,B] AbV
[A,B]∗ [A,AW ] AbW
(AbV )∗ −(AbW )∗ 0



 −





(Aṽ)∗

(Aw̃)∗

0





0
(

−(Av∗) (Aw)∗ 0
)

0













.

Thus we get the following decomposition of g into irreducibleK-modules:
the grading-components gi of g are K-invariant, thus we describe their
decomposition: g−2 and g2 are already 1-dimensional, real spaces.
g−1 = Cl ⊕ Cl ⊕ C decomposes into Cl ⊕ Cl ⊕ (R ⊕ R) as K-module.
The representation of K on g1 is the dual representation of K on g−1

and thus similarly g1 = (Cl ⊕ Cl ⊕ (R ⊕ R))∗.
The decomposition of g0 is given as follows: g0 = R ⊕ u(l, l + 1) as
K-module (recall theorem 8.3.1, iii) and u(l, l + 1) decomposes into 9
irreducible subrepresentations; these are

C
l ⊕ C

l ⊕ R ⊕ R ⊕ R ∼=





Ri 0 Cl

0 Ri Cl

∗ (−∗) Ri



 ,

su(l) ⊕ su(l) ∼=





su(l) 0 0
0 su(l) 0
0 0 0



 and

su(l) ⊕ su(l) ∼=





0 su(l) ⊕ isu(l) 0
∗ 0 0
0 0 0



 .

We then used this decomposition to make an equivariant ansatz for φ.
The map φ decomposes into φ = φ1 ⊕ φ2 ⊕ φ3 ⊕ φ4, where φi is a map
of homogeneity i.
Then, since higher homogeneities of φ don’t contribute to lower homo-
geneities of ∂∗κ one can solve φ one homogeneity after the other.
One furthermore knows from the general theory (cf. [5]) that the cur-
vature of the Cartan connection corresponding to an integrable CR
structure has in fact values in p.

Using a K-equivariant ansatz for φ we first found and verified the
solution for finitely many dimensions l ∈ N0 by using Mathematica.
Then we saw what the general solution for arbitrary l ∈ N0 is and
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checked (55) by hand; here computer algebra was still very helpful for
simplifying expressions. y

Remark 8.8.3. Let us briefly consider the special case l = 0. Here, with
α = 0, βE = λ ∈ R, λ > 0

α(

(

ix γ
−γ̄ −ix

)

) =









−1+λ2

4λ
xi Re(γ)λ(3λ2−5)+Im(γ)(5λ2−3)i

4λ
3
2

−15λ4+34λ2−15
16λ2

λRe(γ)+Im(γ)i√
l

1+λ2

2λ
xi Re(γ)λ(3λ2−5)−Im(γ)(5λ2−3)i

4λ
3
2

ix Re(γ)λ−Im(γ)i√
λ

−1+λ2

4λ
xi









.

The map

E 7→ −E,F 7→ F, Z 7→ −Z
is an automorphism of su(2) and an isomorphism of the CR structure
of signature (0, 1) induced by

C ∼= {
(

0 γ
−γ̄ 0

)

}

and the CR structure of signature (1, 0) induced by

C ∼= {
(

0 −γ̄
γ 0

)

}.

By taking the composition of this isomorphism, α, and the isomorphism
given in 8.3,v one sees that our result here is the same as the one in
[3]. y

Remark 8.8.4. In [1] D. Alekseevsky and A. Spiro classified all compact
homogeneous non-degenerate CR manifolds of hypersurface type and
found for the above example in particular that for t1, t2 in the unit disc
of C the CR structures on SU(l + 2)/U(L) induced by (D, Jt1) and
(D, Jt2) are isomorphic iff |t1| = |t2|. y
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