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This talk reports on joint work with C. Harrach (Vienna) and
P. Julg (Orleans).

The main motivation for this work comes from Julg’s program
for proving the Baum–Connes conjecture for discrete
subgroups of semi-simple Lie groups of real rank one. Details
of this motivation are not important, it all boils down to
constructing Poisson transforms with specific properties.

Our current results concern transform defined on the Rumin
complex of the CR sphere and hence concern the group
SU(n + 1, 1), but there are good chances that things carry
over to Sp(n + 1, 1) for which the conjecture is open.

Some of the results are valid in a much more general setting
and even have the potential for curved analogs. They fit into
the general framework of understanding geometric
compactifications, boundary asymptotics, etc.
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The idea to define Poisson transforms for differential forms goes
back to work of P.Y. Gaillard that aimed at constructing co-closed
harmonic differential forms on real hyperbolic space. Putting
G = SO0(n + 1, 1) hyperbolic space is G/K and the conformal
sphere is G/P, where K is maximally compact and P is parabolic.

Gaillard used the Poincaré ball model to geometrically define
G -invariant differential forms ϕk on G/K × G/P (a “Poisson
kernel”) of bi-degree (k , n − k) for k = 0, . . . , n. Such a form then
induces a G -equivariant transform Φk : Ωk(G/P)→ Ωk(G/K ) the
sends α to the integral over the fiber G/P of ϕk ∧ α. It is then
possible to analyze Φk ◦ dP , dK ◦ Φk and δK ◦ Φk and thus prove
that one indeed obtains co-closed, harmonic forms.

Using representation theory, Gaillard also analyzed the boundary
asymptotics of the values of the transform, which crucially depends
on the degree of forms. For low degrees, they are smooth up to the
boundary, while for high degrees they go to infinity.
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The behavior is particularly interesting in the case that n = 2m− 1
is odd (so the interior has even dimension) in the middle degree. It
turns out that is this case the values of
d ◦ Φm−1 : Ωm−1(G/P)→ Ωm(G/K ) are not bounded but L2.
This is remarkable since under weak assumptions L2-harmonic
forms can only occur in middle degree on non-compact, even
dimensional manifolds.

The subspace of L2-harmonic forms in Ωm(G/K ) is G -invariant,
thus providing a unitary representation of G . It turns out that this
splits into a direct sum of two irreducible components (SD and
ASD forms) which are exactly the two irreducible discrete series
representations of SO0(2m, 1) with trivial infinitesimal character.

Building on Gaillard’s work, J. Lott used the Poisson transform to
describe these discrete series representations as a space of
differential forms on the sphere of Sobolev regularity H−1/2.
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There were attempts to generalize Gaillard’s work to the complex
case, but it quickly turns out that the real case is deceivingly
simple. The algebraic tools that we will introduce next imply that
the forms used by Gaillard are essentially unique, which explains
why they are so nicely compatible with the available operations.

Already in the complex case, there are several possible choices for
Poisson kernels of fixed bi-degree and the resulting transforms do
not produce harmonic forms in general. Using the algebraic
approach described below, C. Harrach studied the available
transforms in the complex case in detail in his thesis.

Based on these results, a recent article of ours constructs a family
of transforms for the complex case that produces co-closed
harmonic values and descends to the Rumin complex in the sense
discussed below. However, this is heavy on computations, so the
possibility of generalizing to the quaternionic case is questionable
and more efficient methods are needed.
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Harmonic values and BGG (C. Harrach)

This works for general G and P, even after twisting with tractor
bundles. The filtration on T := T (G/P) gives rise to natural
bundle maps d∗ : ΛkT ∗ → Λk−1T ∗, the subquotient bundles
Hk := ker(d∗)/ im(d∗) (“homology bundles”) and tensorial
operations on Ω∗(G/P).

If Φ : Ωk(G/P)→ Ω`(G/K ) satisfies Φ ◦ d∗ = 0, then it descends
to Φ : Γ(Hk)→ Ω`(G/K ). BGG calculus shows that if in addition
Φ ◦ d ◦ d∗ = 0, then Φ is completely determined by Φ.

The Laplacian on G/K is closely related to the Casimir element of
G . On G/P, the relation of the Casimir to BGG is described in
joint work of V. Souček and myself. Using this, C. Harrach proved
that all the values of a Poisson transform Φ are harmonic if and
only if Φ ◦ d∗ = 0 and Φ ◦ d ◦ d∗ = 0.
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An algebraic approach

For any (G ,P), it is well known that K acts transitively on G/P.
Hence G/K ×G/P = G/M, where M = K ∩ P, so Poisson kernels
admit an algebraic description. The product structure leads to
(g/m)∗ = (g/k)∗⊕ (g/p)∗ and a splitting of Λr (g/m)∗ by bi-degree.

Poisson kernels of bi-degree (k , n − `) thus are in bijective
correspondence with the space of M-invariants
(Λ`,n−k(g/m)∗)M ∼= HomM(Λk(g/p)∗,Λ`(g/k)∗).
The isomorphisms follows since M is contained in the semisimple
part of the Levi factor G0 ⊂ P and hence acts trivially on Λn(g/p)∗.

Thus Poisson kernels can be completely described via
representation theory. In addition, the action of any G -invariant
differential operator on a G -invariant form admits an algebraic
description, which helps understanding the properties of Poisson
transforms.
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The relation to the BGG machinery can be nicely phrased in this
algebraic language. Since M ⊂ G0, Kostant’s harmonic theory
gives rise to an M-invariant decomposition
Λk(g/p)∗ = im(d)⊕ ker(�)⊕ im(d∗). We show that a transform
has harmonic values iff the corresponding M-equivariant map is
non-zero on the middle summand only.

If g has real rank one, then one directly gets a family of
distinguished homomorphisms with this property. Via the Killing
form of g, one gets (g/p)∗ ∼= p+ and (g/k)∗ = q, where g = k⊕ q
is the Cartan decomposition. For real rank one, a := q ∩ g0 is the
line spanned by the grading element, and via Z 7→ θ(Z )− Z ,
q ∼= a⊕ p+ as a representation of M.

This gives an M-homomorphism Λk(g/p)∗ → Λk(g/k)∗. Moreover,
it is well known that ker(�) is completely reducible as a
representation of G0, so it splits into a sum ⊕iEi

k of irreducibles.
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The distinguished transforms

By restriction, we obtain a homomorphism Ei
k → Λk(g/k)∗, which

induces a Poisson transform Φi
k : Ωk(G/P)→ Ωk(G/K ) that has

harmonic values. The induced transform on Γ(Hk) is non-zero on
one irreducible subbundle only. Further properties of these
transforms can be verified algebraically:

Theorem

For the distinguished transforms Φi
k from the above, the values are

co-closed (and harmonic). Moreover, there is a direct (simple)
description for the homomorphism inducing the composition
d ◦ Φi

k .

All these results work uniformly for all real rank one case, in
particular they also apply in the quaternionic case, in which the
Baum-Connes conjecture is still open.
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The setup

Here P ⊂ G is the stabilizer of an isotropic line in Cn+2 and
P ∼= CSU(n) o hn, where hn is the complex Heisenberg algebra of
dimension 2n + 1.G/P ∼= S2n+1 is naturally as CR manifold (from
embedding into Cn+1). Thus we have a complex rank n subbundle
H ⊂ T := T (G/P) and we put Q := T/H. In addition H is
contact, so the map L : H × H → Q induced by the Lie bracket of
vector fields is non-degenerate.

Putting Λ2
0H

∗ := ker(L), there is a canonical complementary line
subbundle in Λ2H∗, which gets identified with Q by L. Dualizing
the inverse map, one obtains a bundle map Λ2H∗ → Q∗. This
extends to a map ΛkH∗ → Λk−2H∗ ⊗ Q∗ which is surjective for
k ≤ n and injective for k ≥ n and defines d∗ : ΛkT ∗ → Λk−1T ∗.
This shows that Hk is isomorphic to Λk

0H
∗ for k ≤ n and to a

quotient of Λk−1H∗ ⊗ Q∗ for k > n.
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Passing to complex valued forms, the bundles ΛkH∗ decompose
and accordingly, we get Hk = ⊕p+q=kHp,q via (p, q)-types.
Moreover, it turns out that each of the bundles Hp,q is induced by
an irreducible representation of P. The BGG operators turn out to
decompose accordingly as D = D +D.

Our general construction thus provides us with Poisson transforms
Φp,q which map (p + q)-forms on G/P to co-closed harmonic
forms on G/K , which turn out to lie in Ω(p,q)(G/K ). Via the
algebraic methods I have discussed, one can analyze the
compositions ∂ ◦Φp,q and ∂ ◦Φp,q as well as Φp,q ◦D and Φp,q ◦D.

The first result that we obtain is that we can form appropriate
linear combinations Φk of the transforms Φp,q with p + q = k in
such a way that Φk sends real forms on G/P to real forms on
G/K and descends such that the induced maps on the real BGG
complex satisfy d ◦ Φk−1 = Φk ◦ D for all k ≤ n.
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The Poincaré ball model

This realizes G/K as the unit ball in Cn+1 (with the Bergmann
metric) and G/P as the unit sphere. (It is the model for adding a
boundary at infinity to a complete Kähler-Einstein metric.) In this
picture, one can then study the asymptotic behavior of the values
of the Poisson transforms we construct.

Using the polar decomposition of G/K , harmonic analysis for
K -irreducible components in the sections of the BGG complex, and
ODEs implied by forms being harmonic, we prove

For k ≤ n, any value of Φk allow a continuous extension to
the boundary. On the BGG bundles the boundary values
recover the initial form (up to a constant multiple).

The transform d ◦ Φn has values in L2-harmonic forms on
G/K (which exist only in this degree).
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Now it is again known that L2-harmonic forms on G/K realize the
direct sum of the discrete series representations of SU(n + 1, 1)
with trivial infinitesimal character. After complexification, this
decomposes into n + 2 irreducibles according to (p, q)-type. Using
this we arrive at our final result.

Theorem

The transform d ◦ Φn descends to an isomorphism from
Γ(Hn)/ im(Dn) onto a dense subspace of the space of L2-harmonic
forms on G/K . Hence the discrete series representations of
SU(n + 1, 1) with trivial infinitesimal character can be realized as a
completion of a space of differtial forms on G/P with respect to
an appropriate (explicitly computable) norm.

Using this to “cut off” the BGG complex, one obtains the complex
needed for the applications towards the Baum-Connes conjecture.
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