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Preface

The notion of symmetry is one of the basic concepts in mathematics. A fundamental
feature of symmetries is that they form groups. If one deals with symmetries of objects
that carry some additional structure, one often gets an induced structure on the group of
symmetries. The case we are interested in is that symmetries act on geometric objects,
i.e. on smooth manifolds. In many situations of interest, the group of symmetries itself
then inherits the structure of a smooth manifold in a way compatible with the group
structure. A smooth manifold together with a compatible (i.e. smooth) group structure
is called a Lie group. The name is derived from the Norwegian mathematician Sophus
Lie (1842–1899), who first encountered Lie groups and the associated Lie algebras when
studying symmetries of partial differential equations.

Apart from the intrinsic interest, the theory of Lie groups and their representations
is used in various parts of mathematics. As groups of symmetries, Lie groups occur
for examples in differential geometry, harmonic analysis, dynamical systems, partial
differential equations, and in theoretical physics. Via the closely related concept of
algebraic groups, the theory of Lie groups also plays an important role in algebraic
geometry. Finally, via the concept of homogeneous spaces, Lie groups provide some of
the most important examples of smooth manifolds which are used in many areas.

As this basic definition suggests, the theory of Lie groups is located at the border
between algebra and differential geometry, and tools from both fields are used to study
Lie groups. A fundamental fact in the theory of Lie groups is that almost all of the
(rather complicated) structure of a Lie group is already encoded in its Lie algebra. This
is a much simple object, a finite dimensional vector space (the tangent space at the
neutral element) which is naturally endowed with a bilinear operation. Lie algebras
can then be studied using purely algebraic tools. This is the subject of the course “Lie
algebras and representation theory”, see the lecture notes [Cap:Liealg].

Here we concentrate on the study of Lie groups rather than Lie algebras. From
the place of the course in the curriculum it is natural to assume the basics of analysis
on manifolds and differential geometry as prerequisites. All the neccessary material is
contained in the lecture notes [AnaMf], mostly in the first two chapters there. On the
other hand, the course assumes very little background in algebra.

Let me briefly summarize the contents of the individual chapters. Chapter 1 quickly
develops the basic concepts and the fundamentals of the Lie group — Lie algebra cor-
respondence using differential geometry methods. Next, we study closed Lie subgroups,
proving in particular that any closed subgroup of a Lie group is a Lie subgroup and in
particular itself a Lie group. This also provides us with lots of examples, in particular
via matrix groups. Then we discuss the more general concept of virtual Lie subgroups,
developing the necessary material on initial submanifolds. Finally, we discuss actions
and show that the space of left cosets of any Lie group by a closed subgroup canoni-
cally is a smooth manifold. We show how to use this to make objects like the space of
k–dimensional linear subspaces in Rn into smooth manifolds.
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In chapter one, we mainly discuss passing from the Lie group level to the Lie algebra
level. For example, we associate the Lie algebra to a Lie group, show that Lie subgroups
correspond to Lie subalgebras and homomorphism of Lie groups induce homomorphisms
of Lie algebras. Chapter two focuses on results going the other way round. In particular,
we prove that any finite dimensional Lie algebra is obtained from a Lie group, classify
connections Lie groups with given Lie algebra and prove existence results on virtual Lie
subgroups and Lie group homomorphisms. In the end of the chapter, we discuss the
Maurer–Cartan form, and the fundamental theorem of calculus for smooth functions
with values in a Lie group. The basic tool for all these results is the Frobenius theorem,
for which we give a complete proof in 2.2.

As discussed above, many properties of Lie groups are captured by the Lie algebra.
A setting in which remaining at the group level has advantages is the theory of compact
Lie groups, which is discussed in chapter 3. The basic advantage here is that integration
over a compact group can be used to generate invariant objects. Using this, we prove
that compact groups are reductive and deduce the basic facts about representations of
compact groups. We show that such representations are always completely reducible,
discuss matrix coefficients and the Schur orthogonality relations. Next we move to the
theory of maximal tori. The basic conjugacy theorem is proved in 3.8 by computing a
mapping degree. Finally, we prove the Peter–Weyl theorem and give a short discussion
of infinite dimensional representations.

The material for this course is taken from various sources. Much of the basic material
is adapted from Peter Michor’s course on differential geometry, see e.g. Chapter II of
the book [Michor], which is available online. The part on the Maurer–Cartan form
and the fundamental theorem of calculus is adapted from R. Sharpe’s book [Sharpe].
For the other material, I in particular used [Knapp], [Greub–Halperin–Vanstone],
and [Adams].

The first version of these notes were prepared when I first taught this course in
spring term 2005. I would like to thank the participants of this course and the sequels
in fall terms 2006/07, 2009/10, 2012/13, 2013/14, 2015/16, and 2018/19 for corrections
and suggestions for improvements, which have been implemented step by step. Slightly
bigger changes have been implemented in the preparation of the version for fall term
2020/21. On the one hand, I changed the basic reference for analysis on manifolds and
differential geometry to my new lecture notes [AnaMf]. On the other hand, I took
some motivation for changes from a course on matrix groups I taught in spring term
2018. Lecture notes (in German) for that course are available online, see [Cap:Mgrp].
Finally, I have extended the discussion of the use of maximal tori in character theory
and added a discussion of the Weyl integration formula. This material is contained in
a new section 3.10.



CHAPTER 1

Lie groups and homogeneous spaces

The notion of symmetry is probably one of the most basic notions of mathematics.
A fundamental feature of symmetries is that they form groups. If one deals with symme-
tries of objects having an additional structure, then often one gets an induced structure
on the group of symmetries. In the special case of symmetries of geometric objects,
one often finds that the group of symmetries itself inherits a differentiable structure
such that multiplication and inversion are smooth maps. Such an object is called a Lie
group.

The background on differential geometry used in the chapter can be found in the
lecture notes [AnaMf] or the book [KMS], which both are available online.

Lie groups and their Lie algebras

One of the fascinating features of Lie groups is that most of the (rather complicated)
structure of a Lie group is encoded into the Lie algebra of the Lie group. This Lie algebra
is a much simpler object, a finite dimensional vector space with a certain algebraic
structure. Our first task is to develop the basics of the correspondence between Lie
groups and Lie algebras.

1.1. Lie groups.

Definition 1.1. (1) A Lie group is a smooth manifold G endowed with a group
structure with smooth multiplication. This means that we have a smooth multiplication
µ : G×G→ G, an inversion ν : G→ G and a unit element e ∈ G such that the usual
group axioms are satisfied. If there is no risk of confusion, we will write gh for µ(g, h),
and g−1 for ν(g) for g, h ∈ G.

(2) A homomorphism from a Lie group G to a Lie group H is a smooth map ϕ :
G→ H which is a group homomorphism.

Example 1.1. (1) R and C are evidently Lie groups under addition. More generally,
any finite dimensional real or complex vector space is a Lie group under addition.

(2) R \ {0}, R>0, and C \ {0} are all Lie groups under multiplication. Also U(1) :=
{z ∈ C : |z| = 1} is a Lie group under multiplication.

(3) If G and H are Lie groups then the product G × H is a Lie group with the
evident product structures. In view of (1) and (2) we conclude that for n ∈ N the torus
Tn := U(1)n is a Lie group. More generally, for m,n ∈ N we have a Lie group Rm×Tn.
It turns out that these exhaust all connected commutative Lie groups.

(4) The fundamental example of a Lie group is the group GL(V ) of invertible linear
maps on a finite dimensional real vector space V . Let us also use this example to see how
the interpretation as a group of symmetries leads to the additional structure of a smooth
manifold. Any linear map V → V is uniquely determined by its values on a basis of V .
Fixing a basis {v1, . . . , vn}, the map which sends a linear map f to (f(v1), . . . , f(vn))
induces a bijection from the space L(V, V ) of linear maps to V n. From linear algebra
one knows that f is invertible if and only if the elements f(v1),. . . ,f(vn) form a basis
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2 1. LIE GROUPS AND HOMOGENEOUS SPACES

of V . The set of all bases of V is easily seen to be open in V n (see also below). Hence
we obtain a bijection between GL(V ) and an open subset in the vector space V n, thus
making GL(V ) into a smooth manifold. Smoothness of the multiplication map in this
picture follows from the fact that (f, v) 7→ f(v) is a smooth map L(V, V )× V → V .

To make all that more explicit, let us consider the case V = Rn. For the standard
basis {e1, . . . , en}, the element f(ei) ∈ Rn is just the ith column of the matrix of
f . Hence the above construction simply maps f ∈ L(Rn,Rn) to its matrix, which is

considered as an element of Mn(R) := (Rn)n = Rn2
. The determinant defines a smooth

function det : Mn(R)→ R. In particular, GL(n,R) = det−1(R \ {0}) is an open subset

of Rn2
and thus a smooth manifold. The entries of the product of two matrices are

polynomials in the entries of the two matrices, which shows that matrix multiplication
defines a smooth map µ : GL(n,R)×GL(n,R)→ GL(n,R).

It is an easy exercise to show that the determinant function is regular in each point
of GL(n,R). In particular, the subgroup SL(n,R) of all matrices with determinant
equal to 1 is a smooth submanifold of Mn(R), so it is itself a Lie group. This is an
example of the concept of a Lie subgroup that will be discussed in detail later.

As a simple variation, we can consider the group GL(n,C) of invertible complex

n× n-matrices, which is an open subset of the vector space Mn(C) = Cn2
. Again there

is the closed subgroup SL(n,C) consisting of all matrices of (complex) determinant one,
which is easily seen to be a submanifold.

1.2. Translations. Let (G, µ, ν, e) be a Lie group. For any element g ∈ G we can
consider the left translation λg : G→ G defined by λg(h) := gh = µ(g, h). Smoothness
of µ immediately implies that λg is smooth, and λg ◦ λg−1 = λg−1 ◦ λg = idG. Hence
λg : G → G is a diffeomorphism with inverse λg−1 . Evidently, we have λg ◦ λh = λgh.
Similarly, we can consider the right translation by g, which we write as ρg : G → G.
Again this is a diffeomorphism with inverse ρg

−1
, but this time the compatibility with

the product reads as ρg ◦ ρh = ρhg. Many basic identities of group theory can be easily
rephrased in terms of the translation mappings. For example, the equation (gh)−1 =

h−1g−1 can be interpreted as ν ◦ λg = ρg
−1 ◦ ν or as ν ◦ ρh = λh−1 ◦ ν. The definition of

the neutral element can be recast as λe = ρe = idG.

Lemma 1.2. Let (G, µ, ν, e) be a Lie group.
(1) For g, h ∈ G, ξ ∈ TgG and η ∈ ThG we have

T(g,h)µ · (ξ, η) = Thλg · η + Tgρ
h · ξ.

(2) The inversion map ν : G→ G is smooth and for g ∈ G we have

Tgν = −Teρg
−1 ◦ Tgλg−1 = −Teλg−1 ◦ Tgρg

−1

.

In particular, Teν = − id.

Proof. (1) Since T(g,h)µ is linear, we get T(g,h)µ·(ξ, η) = T(g,h)µ·(ξ, 0)+T(g,h)µ·(0, η).
Choose a smooth curve c : (−ε, ε) → G with c(0) = g and c′(0) = ξ. Then the curve
t 7→ (c(t), h) represents the tangent vector (ξ, 0) and the composition of µ with this
curve equals ρh ◦ c. Hence we conclude that T(g,h)µ · (ξ, 0) = Tgρ

h · ξ, and likewise for
the other summand.

(2) Consider the function f : G × G → G × G defined by f(g, h) := (g, gh). From
part (1) and the fact the λe = ρe = idG we conclude that for ξ, η ∈ TeG we get
T(e,e)f · (ξ, η) = (ξ, ξ + η). Evidently, this is a linear isomorphism TeG × TeG →
TeG×TeG, so locally around (e, e), f admits a smooth inverse, f̃ : G×G→ G×G. By
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definition, f̃(g, e) = (g, ν(g)), which implies that ν is smooth locally around e. Since
ν ◦ λg−1 = ρg ◦ ν, we conclude that ν is smooth locally around any g ∈ G.

Differentiating the equation e = µ(g, ν(g)) and using part (1) we obtain

0 = T(g,g−1)µ · (ξ, Tgν · ξ) = Tgρ
g−1 · ξ + Tg−1λg · Tgν · ξ

for any ξ ∈ TgG. Since λg−1 is inverse to λg this shows that Tgν = −Teλg−1 ◦ Tgρg
−1

.
The second formula follows in the same way by differentiating e = µ(ν(g), g). �

1.3. Left invariant vector fields. We can use left translations to transport around
tangent vectors on G. Put g := TeG, the tangent space to G at the neutral element
e ∈ G. For X ∈ g and g ∈ G define LX(g) := Teλg ·X ∈ TgG.

Likewise, we can use left translations to pull back vector fields on G. Recall from
[AnaMf, Section 2.3] that for a local diffeomorphism f : M → N and a vector field
ξ on N , the pullback f ∗ξ ∈ X(M) is defined by f ∗ξ(x) := (Txf)−1 · ξ(f(x)). In the
case of a Lie group G, a vector field ξ ∈ X(G) and an element g ∈ G we thus have
(λg)

∗ξ ∈ X(G).

Definition 1.3. Let G be a Lie group. A vector field ξ ∈ X(G) is called left
invariant if and only if (λg)

∗ξ = ξ for all g ∈ G. The space of left invariant vector fields
is denoted by XL(G).

Proposition 1.3. Let G be a Lie group and put g = TeG. Then we have:
(1) The map G× g→ TG defined by (g,X) 7→ LX(g) is a diffeomorphism.
(2) For any X ∈ g, the map LX : G → TG is a vector field on G. The maps

X 7→ LX and ξ 7→ ξ(e) define inverse linear isomorphisms between g and XL(G).

Proof. (1) Consider the map ϕ : G×g→ TG×TG defined by ϕ(g,X) := (0g, X),
where 0g is the zero vector in TgG. Evidently ϕ is smooth, and by part (1) of Lemma
1.2 the smooth map Tµ ◦ ϕ is given by (g,X) 7→ LX(g). On the other hand, define
ψ : TG → TG× TG by ψ(ξg) := (0g−1 , ξg) which is smooth by part (2) of Lemma 1.2.
By part (1) of that lemma, we see that Tµ ◦ ψ has values in TeG = g and is given by
ξg 7→ Tλg−1 ·ξg. This shows that ξg 7→ (g, Tλg−1 ·ξg) defines a smooth map TG→ G×g,
which is evidently inverse to (g,X) 7→ LX(g).

(2) By definition LX(g) ∈ TgG and smoothness of LX follows immediately from (1),
so LX ∈ X(G). By definition,

((λg)
∗LX)(h) = Tghλg−1LX(gh) = Tghλg−1 · Teλgh ·X,

and using Teλgh = Thλg ◦ Teλh we see that this equals Teλh · X = LX(h). Since h is
arbitrary, LX ∈ XL(G) and we have linear maps between g and XL(G) as claimed. Of
course, LX(e) = X, so one composition is the identity. On the other hand, if ξ is left
invariant and X = ξ(e), then

ξ(g) = ((λg−1)∗ξ)(g) = Teλg · ξ(g−1g) = LX(g),

and thus ξ = LX . �

Remark 1.3. The diffeomorphism TG → G × g from part (1) of the Proposition
is called the left trivialization of the tangent bundle TG. For X ∈ g, the vector field
LX ∈ X(G) is called the left invariant vector field generated by X. Any of the vector
fields LX is nowhere vanishing and choosing a basis of g, the values of the corresponding
left invariant vector fields form a basis for each tangent space.
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This for example shows that no sphere of even dimension can be made into a Lie
group, since it does not admit any nowhere vanishing vector field. Indeed, the only
spheres with trivial tangent bundle are S1, S3, and S7.

1.4. The Lie algebra of a Lie group. Recall from [AnaMf, Theorem 2.5] that
the pull back operator on vector fields is compatible with the Lie bracket (see also
Lemma 1.5 below). In particular, for a Lie group G, left invariant vector fields ξ, η ∈
XL(G) and an element g ∈ G we obtain

λ∗g[ξ, η] = [λ∗gξ, λ
∗
gη] = [ξ, η],

so [ξ, η] is left invariant, too. Applying this to LX and LY for X, Y ∈ g := TeG we see
that [LX , LY ] is left invariant. Defining [X, Y ] ∈ g as [LX , LY ](e), part (2) of Proposition
1.3 show that that [LX , LY ] = L[X,Y ].

Definition 1.4. Let G be a Lie group. The Lie algebra of G is the tangent space
g := TeG together with the map [ , ] : g× g→ g defined by [X, Y ] := [LX , LY ](e).

From the corresponding properties of the Lie bracket of vector fields, it follows im-
mediately that the bracket [ , ] : g × g → g is bilinear, skew symmetric (i.e. [Y,X] =
−[X, Y ]) and satisfies the Jacobi identity [X, [Y, Z]] = [[X, Y ], Z] + [Y, [X,Z]]. In gen-
eral, one defines a Lie algebra as a real vector space together with a Lie bracket having
these three properties.

Example 1.4. (1) Consider a real vector space V viewed as a Lie group under
addition as in example (1) of 1.1. Then the trivialization of the tangent bundle TV
by left translations is just the usual trivialization TV = V × V . Hence left invariant
vector fields correspond to constant functions V → V . In particular, the Lie bracket of
two such vector fields always vanishes identically, so the Lie algebra of this Lie group is
simply the vector space V with the zero map as a Lie bracket. We shall see soon that
the bracket is always trivial for commutative groups. Lie algebras with the zero bracket
are usually called commutative.

(2) Let us consider a product G ×H of Lie groups as in example (3) of 1.1. Then
T (G ×H) = TG × TH so in particular Te(G ×H) = g ⊕ h. One immediately verifies
that taking left invariant vector fields in G and H, any vector field of the form (g, h) 7→
(LX(g), LY (h)) for X ∈ g and Y ∈ h is left invariant. These exhaust all the left invariant
vector fields and we easily conclude that the Lie bracket on g × h is component-wise,
i.e. [(X, Y ), (X ′, Y ′)] = ([X,X ′]g, [Y, Y

′]h). This construction is referred to as the direct
sum of the Lie algebras g and h.

(3) Let us consider the fundamental example G = GL(n,R). As a manifold, G is an
open subset in the vector space Mn(R), so in particular, g = Mn(R) as a vector space.
More generally, we can identify vector fields on G with functions G→Mn(R), but this
trivialization is different from the left trivialization. The crucial observation is that for
matrices A,B,C ∈ Mn(R) we have A(B + tC) = AB + tAC, so left translation by A
is a linear map. In particular, this implies that for A ∈ GL(n,R) and C ∈ Mn(R) =
TeGL(n,R) we obtain LC(A) = AC. Viewed as a function GL(n,R)→Mn(R), the left
invariant vector field LC is therefore given by right multiplication by C and thus extends
to all of Mn(R). Now viewing vector fields on an open subset of Rm as functions with
values in Rm, the Lie bracket is given by [ξ, η](x) = Dη(x)(ξ(x))−Dξ(x)(η(x)). Since
right multiplication by a fixed matrix is a linear map, we conclude that D(LC′)(e)(C) =
CC ′ for C,C ′ ∈ Mn(R). Hence we obtain [C,C ′] = [LC , LC′ ](e) = CC ′ − C ′C, and the
Lie bracket on Mn(R) is given by the commutator of matrices.
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1.5. The derivative of a homomorphism. Let G and H be Lie groups with
Lie algebras g and h, and let ϕ : G → H be a smooth group homomorphism. Then
ϕ(e) = e, so we have a linear map ϕ′ := Teϕ : g→ h. Our next task is to prove that this
is a homomorphism of Lie algebras, i.e. compatible with the Lie brackets. This needs a
bit of preparation.

Let f : M → N be a smooth map between smooth manifolds. Recall from [AnaMf,
Section 2.1] that two vector fields ξ ∈ X(M) and η ∈ X(N) are called f -related if
Txf · ξ(x) = η(f(x)) holds for all x ∈M . If this is the case, then we write ξ ∼f η. Note
that in general it is neither possible to find an f -related ξ for a given η nor to find an
f -related η for a given ξ. In the special case of a local diffeomorphism f , for any given
η ∈ X(N), there is a unique ξ ∈ X(M) such that ξ ∼f η, namely the pullback f ∗η.

Lemma 1.5. Let f : M → N be a smooth map, and let ξi ∈ X(M) and ηi ∈ X(N)
be vector fields for i = 1, 2. If ξi ∼f ηi for i = 1, 2 then [ξ1, ξ2] ∼f [η1, η2].

Proof. For a smooth map α : N → R we have (Tf ◦ ξ) ·α = ξ · (α◦f) by definition
of the tangent map. Hence ξ ∼f η is equivalent to ξ · (α ◦ f) = (η · α) ◦ f for all
α ∈ C∞(N,R). Now assuming that ξi ∼f ηi for i = 1, 2 we compute

ξ1 · (ξ2 · (α ◦ f)) = ξ1 · ((η2 · α) ◦ f) = (η1 · (η2 · α)) ◦ f.
Inserting into the definition of the Lie bracket, we immediately conclude that

[ξ1, ξ2] · (α ◦ f) = ([η1, η2] · α) ◦ f,
and thus [ξ1, ξ2] ∼f [η1, η2]. �

Using this, we can now prove

Proposition 1.5. Let G and H be Lie groups with Lie algebras g and h.
(1) If ϕ : G→ H is a smooth homomorphism then ϕ′ = Teϕ : g→ h is a homomor-

phism of Lie algebras, i.e. ϕ′([X, Y ]) = [ϕ′(X), ϕ′(Y )] for all X, Y ∈ g.
(2) If G is commutative, then the Lie bracket on g is identically zero.

Proof. (1) The equation ϕ(gh) = ϕ(g)ϕ(h) can be interpreted as ϕ◦λg = λϕ(g)◦ϕ.
Differentiating this equation in e ∈ G, we obtain Tgϕ ◦ Teλg = Teλϕ(g) ◦ ϕ′. Inserting
X ∈ TeG = g, we get Tgϕ·LX(g) = Lϕ′(X)(ϕ(g)), and hence the vector fields LX ∈ X(G)
and Lϕ′(X) ∈ X(H) are ϕ-related for each X ∈ g. From the lemma, we conclude that
for X, Y ∈ g we get Tϕ ◦ [LX , LY ] = [Lϕ′(X), Lϕ′(Y )] ◦ ϕ. Evaluated in e ∈ G this gives
ϕ′([X, Y ]) = [ϕ′(X), ϕ′(Y )].

(2) If G is commutative, then (gh)−1 = h−1g−1 = g−1h−1 so the inversion map
ν : G → G is a group homomorphism. Hence by part (1), ν ′ : g → g is a Lie algebra
homomorphism. By part (2) of Lemma 1.2 ν ′ = − id and we obtain

−[X, Y ] = ν ′([X, Y ]) = [ν ′(X), ν ′(Y )] = [−X,−Y ] = [X, Y ]

and thus [X, Y ] = 0 for all X, Y ∈ g. �

Example 1.5. We have noted in 1.1 that the subset SL(n,R) ⊂ GL(n,R) of matri-
ces of determinant 1 is a smooth submanifold, since the determinant function is regular
in each matrix A with det(A) 6= 0. As a vector space, we can therefore view the Lie
algebra sl(n,R) of SL(n,R) as the kernel of D(det)(I), where I denotes the identity ma-
trix. It is a nice exercise to show that this coincides with the space of tracefree matrices.
Since the inclusion i : SL(n,R) → GL(n,R) is a homomorphism with derivative the
inclusion sl(n,R)→Mn(R), we conclude from part (1) of the Proposition and example
(3) of 1.4 that the Lie bracket on sl(n,R) is also given by the commutator of matrices.
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This example also shows that compatibility with the Lie bracket can impose strong
restrictions on a linear map between Lie algebras. Indeed, for any Lie algebra h, any
non-zero homomorphism f : sl(n,R) → h is injective. We prove this only for n = 2
here, the general case will be done in the exercises. There is an obvious basis of sl(2,R)
consisting of E := ( 0 1

0 0 ), H =: ( 1 0
0 −1 ) and F := ( 0 0

1 0 ). The bracket satisfies [H,E] = 2E,
[H,F ] = −2F and [E,F ] = H while the bracket of each element with itself vanishes.
Now suppose we take X = aE + bH + cF 6= 0 such that f(X) = 0. Then of course
f([H,X]) = [f(H), f(X)] = 0 and [H,X] = 2aE − 2cF and similarly for [H, [H,X]] =
4aE+ 4cF . Using these three equations, it is elementary to verify that one of the three
basis elements has to be in the kernel of f . If H ∈ ker(f), then the same holds for
[H,E] = 2E and [H,F ] = −2F so f = 0. If f(E) = 0 or f(F ) = 0 then the same holds
for [E,F ] = H, so again f = 0.

1.6. Right invariant vector fields. It was a matter of choice that we have used
left translations to trivialize the tangent bundle of a Lie group G in 1.3. In the same way,
one can consider the right trivialization TG→ G×g defined by ξg 7→ (g, Tgρ

g−1 ·ξ). The
inverse of this map is denoted by (g,X) 7→ RX(g), and RX is called the right invariant
vector field generated by X ∈ g. In general, a vector field ξ ∈ X(G) is called right
invariant if (ρg)∗ξ = ξ for all g ∈ G. The space of right invariant vector fields (which is
a Lie subalgebra of X(G)) is denoted by XR(G). As in Proposition 1.3 one shows that
ξ 7→ ξ(e) and X 7→ RX are inverse bijections between g and XR(G).

Proposition 1.6. Let G be a Lie group with Lie algebra g and inversion ν : G→ G.
Then we have

(1) RX = ν∗(L−X) for all X ∈ g.
(2) For X, Y ∈ g, we have [RX , RY ] = R−[X,Y ].
(3) For X, Y ∈ g, we have [LX , RY ] = 0.

Proof. (1) The equation (gh)−1 = h−1g−1 can be interpreted as ν ◦ ρh = λh−1 ◦ ν.
In particular, if ξ ∈ XL(G) then

(ρh)∗ν∗ξ = (ν ◦ ρh)∗ξ = (λh−1 ◦ ν)∗ξ = ν∗λ∗h−1ξ = ν∗ξ,

so ν∗ξ is right invariant. Since ν∗ξ(e) = Teν · ξ(e) = −ξ(e), the claim follows.
(2) Using part (1) we compute

[RX , RY ] = [ν∗L−X , ν
∗L−Y ] = ν∗[L−X , L−Y ] = ν∗L[X,Y ] = R−[X,Y ].

(3) Consider the vector field (0, LX) on G×G whose value in (g, h) is (0g, LX(h)). By
part (1) of Proposition 1.2, T(g,h)µ · (0g, LX(h)) = Thλg · LX(h) = LX(gh), which shows
that (0, LX) is µ-related to LX . Likewise, (RY , 0) is µ-related to RY , so by Lemma 1.5
the vector field 0 = [(0, LX), (RY , 0)] is µ-related to [LX , RY ]. Since µ is surjective, this
implies that [LX , RY ] = 0. �

The exponential mapping

1.7. One parameter subgroups. Our next aim is to study the flow lines of left
invariant and right invariant vector fields on G. Recall from [AnaMf, Sections 2.6 and
2.7] that for a vector field ξ on a smooth manifold M an integral curve is a smooth
curve c : I →M defined on an open interval in R such that c′(t) = ξ(c(t)) holds for all
t ∈ I. Fixing x ∈M , there is a maximal interval Ix containing 0 and a unique maximal
integral curve cx : Ix → M such that cx(0) = x. These maximal integral curves can be
put together to obtain the flow mapping: The set D(ξ) = {(x, t) : t ∈ Ix} is an open
neighborhood of of M × {0} in M ×R and one obtains a smooth map Flξ : D(ξ)→M
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such that t 7→ Flξt (x) is the maximal integral curve of ξ through x for each x ∈M . The

flow has the fundamental property that Flξt+s(x) = Flξt (Flξs(x)).
Suppose that f : M → N is a smooth map and ξ ∈ X(M) and η ∈ X(N) are

f -related vector fields. If c : I →M is an integral curve for ξ, i.e. c′(t) = ξ(c(t)) for all
t, then consider f ◦ c : I → N . We have (f ◦ c)′(t) = Tc(t)f · c′(t) = η(f(c(t))), so f ◦ c is
an integral curve of η. This immediately implies that the flows of ξ and η are f -related,
i.e. f ◦ Flξt = Flηt ◦f .

Recall from [AnaMf, Section 2.8] that a vector field ξ is called complete if Ix = R
for all x ∈ M , i.e. all flow lines can be extended to all times. Any vector field with
compact support (and hence any vector field on a compact manifold) is complete. If
there is some ε > 0 such that [−ε, ε] ⊂ Ix for all x ∈ M , then ξ is complete. The idea

about this is that t 7→ Flξt−ε(Flε(x)) is an integral curve defined on [0, 2ε], and similarly
one gets an extension to [−2ε, 0], so [−2ε, 2ε] ⊂ Ix for all x. Inductively, this implies
R ⊂ Ix for all x.

Now suppose that G is a Lie group and ξ ∈ XL(G) is left invariant. Then for
each g ∈ G, the vector field ξ is λg-related to itself. In particular, this implies that

Flξt (g) = g Flξt (e) for all g ∈ G, so it suffices to know the flow through e. Moreover, for
each g ∈ G we have Ie ⊂ Ig, and hence ξ is complete. Likewise, for a right invariant

vector field ξ ∈ XR(G), we get Flξt (g) = Flξt (e)g and any such vector field is complete.
We shall next show that the flows of invariant vector fields are nicely related to the
group structure of G.

Definition 1.7. Let G be a Lie group. A one parameter subgroup of G is a smooth
homomorphism α : (R,+) → G, i.e. a smooth curve α : R → G such that α(t + s) =
α(t)α(s) for all t, s ∈ R. In particular, this implies that α(0) = e.

Lemma 1.7. Let α : R→ G be a smooth curve with α(0) = e, and let X ∈ g be any
element. The the following are equivalent:

(1) α is a one parameter subgroup with X = α′(0).
(2) α(t) = FlLXt (e) for all t ∈ R.
(3) α(t) = FlRXt (e) for all t ∈ R.

Proof. (1) ⇒ (2): We compute:

α′(t) = d
ds
|s=0α(t+ s) = d

ds
|s=0(α(t)α(s)) = Teλα(t) · α′(0) = LX(α(t)).

Hence α is an integral curve of LX and since α(0) = e we must have α(t) = FlLXt (e).

(2)⇒ (1): α(t) = FlLXt (e) is a smooth curve in G with α(0) = e and α′(0) = LX(e) =
X. The basic flow property reads as FlLXt+s(e) = FlLXt (FlLXs (e)), and by left invariance

the last expression equals FlLXs (e) FlLXt (e). Hence α(t+ s) = α(s)α(t) = α(t)α(s).
The equivalence of (1) and (3) can be proved in the same way exchanging the roles

of s and t. �

1.8. The exponential mapping. Since we know that the flow of left invariant
vector fields is defined for all times, we can use it to define the exponential map.

Definition 1.8. Let G be a Lie group with Lie algebra g. Then we define exp :
g→ G by exp(X) := FlLX1 (e).

Theorem 1.8. Let G be a Lie group with Lie algebra g and let exp : g→ G be the
exponential mapping. Then we have:
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(1) The map exp is smooth, exp(0) = e and T0 exp = idg, so exp restricts to a
diffeomorphism from an open neighborhood of 0 in g to an open neighborhood of e in G.

(2) For each X ∈ g and each g ∈ G we have FlLXt (g) = g exp(tX).
(3) For each X ∈ g and each g ∈ G we have FlRXt (g) = exp(tX)g.

Proof. By part (1) of Proposition 1.3, the map g×G→ TG defined by (X, g) 7→
LX(g) is smooth. Hence (X, g) 7→ (0X , LX(g)) defines a smooth vector field on g × G.
Its integral curves are evidently given by t 7→ (X,FlLXt (g)). Smoothness of the flow
of this vector field in particular implies that (X, t) 7→ FlLXt (e) is a smooth map, so
smoothness of exp follows.

If c : I → G is an integral curve of LX , then clearly for a ∈ R the curve t 7→ c(at) is
an integral curve of aLX = LaX . But this implies FlLXt (e) = FlLtX1 (e) = exp(tX), so we
have proved (2) for g = e. Claim (3) for g = e follows in the same way, and the general
versions of (2) and (3) follow from 1.7.

Since the integral curves of the zero vector field are constant, we get exp(0) = e.
Hence the derivative T0 exp can be viewed as a map from T0g = g to TeG = g. Since g
is a vector space, we can compute T0 exp ·X as

d
dt
|t=0 exp(tX) = d

dt
|t=0 FlLXt (e) = LX(e) = X.

Hence T0 exp = idg and exp is a local diffeomorphism. �

Example 1.8. (1) The name exponential map goes back to the example of the
(commutative) Lie group R>0 under multiplication. Its Lie algebra is R with the trivial
bracket. Since multiplication is bilinear, the left invariant vector field generated by
s ∈ R is given by a 7→ as. To get the exponential map, we have to solve the equation
c′(t) = c(t)s with initial condition c(0) = 1. Of course, the solution is c(t) = est, so
exp : R→ R>0 is the usual exponential.

(2) This actually generalizes to G = GL(n,R). For X ∈ g = Mn(R) we have to
solve the equation c′(t) = c(t)X and its unique solution with intial condition c(0) = I,
the unit matrix, is given by the matrix exponential exp(tX) =

∑∞
k=0

tk

k!
Xk. (Note

that endowing Mn(R) with the operator norm, one has ‖Xk‖ ≤ ‖X‖k, so this power
series converges absolutely and uniformly on compact subsets.) Note however that
exp(X + Y ) 6= exp(X) exp(Y ) unless the matrices X and Y commute.

Remark 1.8. For a Lie group G with Lie algebra g, let V ⊂ g be an open neigh-
borhood of zero such that exp restricts to a diffeomorphism from V to exp(V ) =: U .
Then we can use (U, (exp |V )−1) as a local chart for G around e ∈ G. The corresponding
local coordinates are called canonical coordinates of the first kind. For any g ∈ G we
can then use (λg(U), (λg ◦ exp |V )−1) as a local chart for G around g.

There are also canonical coordinates of the second kind, which are obtained as follows:
Choose a basis X1, . . . , Xn of g and consider the map f : Rn → G defined by

f(t1, . . . , tn) := exp(t1X1) exp(t2X2) · · · exp(tnXn).

Evidently, ∂f
∂ti

(0) = Xi, so the tangent map T0f : Rn → g of f at 0 is given by
(a1, . . . , an) 7→ a1X1 + · · ·+ anXn. Hence f restricts to a diffeomorphism from a neigh-
borhood of 0 in Rn to a neighborhood of e in G. The inverse of such a restriction can
be used as a local chart which gives rise to canonical coordinates of the second kind.

A surprising application of the exponential map is the following result:

Corollary 1.8. Let ϕ : G → H be a continuous homomorphism between two Lie
groups. Then ϕ is smooth.
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Proof. We first show that a continuous one parameter subgroup α : R → G is
automatically smooth. By Theorem 1.8, we can find a real number r > 0 such that exp
restricts to a diffeomorphism from the ball B2r(0) ⊂ g onto an open neighborhood of
e ∈ G. Since α(0) = 0 and α is continuous, there is an ε > 0 such that α([−ε, ε]) ⊂
exp(Br(0)), and we define β : [−ε, ε] → Br(0) as β = (exp |Br(0))

−1 ◦ α. For |t| ≤ ε
2

we have exp(β(2t)) = α(2t) = α(t)2 = exp(2β(t)), and hence β(2t) = 2β(t). Hence
β( s

2
) = 1

2
β(s) for all s ∈ [−ε, ε]. Inductively, this implies that β( s

2k
) = 1

2k
β(s) for all

s ∈ [−ε, ε]. Using this, we now compute for k, n ∈ N

α(nε
2k

) = α( ε
2k

)n = exp(β( ε
2k

))n = exp( n
2k
β(ε)).

Together with the fact that α(−t) = α(t)−1 and exp(−X) = exp(X)−1, this implies that
α(t) = exp(t1

ε
β(ε)) holds for all t ∈ {nε

2k
: k ∈ N, n ∈ Z} ⊂ R. Since this set is dense in

R and both sides of the equation are continuous, it holds for all t, which implies that α
is smooth.

Now consider the general case ϕ : G → H. Let us use canonical coordinates
of the second kind on G, i.e. take a basis X1, . . . , Xn for g and use f(t1, . . . , tn) :=
exp(t1X1) · · · exp(tnXn) as the inverse of a chart. Then

(ϕ ◦ f)(t1, . . . , tn) = ϕ(exp(t1X1)) · · ·ϕ(exp(tnXn)).

Each factor in this product is a continuous one parameter subgroup in H and thus
smooth by the first part of the proof. Hence ϕ ◦ f is smooth, so ϕ is smooth locally
around e ∈ G. Since ϕ is a homomorphism, we have ϕ ◦λg−1 = λϕ(g)−1 ◦ϕ for all g ∈ G.
Since ϕ is smooth locally around e, the left hand side is smooth locally around g, and
hence ϕ is smooth locally around g, too. �

1.9. We can now use the exponential mapping to prove that smooth homomor-
phisms on connected Lie groups are uniquely determined by their derivative. For a Lie
group G let G0 ⊂ G be the connected component of G containing the neutral element
e. This is usually referred to as the connected component of the identity of G. Clearly,
G0 is a manifold and it is a subgroup of G: for g, h ∈ G0 there are continuous curves
connecting g and h to the unit element e. But then the pointwise product of these two
curves is a continuous curve connecting gh to e, so gh ∈ G0, and similarly the pointwise
inverse of the curve connects g−1 to e. In particular, G0 is itself a Lie group. Finally,
for g ∈ G0 and h ∈ G and a curve c connecting g to e, the curve t 7→ hc(t)h−1 shows
that hgh−1 ∈ G0, so G0 is even a normal subgroup in G. Hence the quotient G/G0 is a
(discrete) group, called the component group of G.

Theorem 1.9. Let G and H be Lie groups with Lie algebras g and h and exponential
mappings expG and expH . Then we have:

(1) For a smooth homomorphism ϕ : G → H with derivative ϕ′ : g → h we have
ϕ ◦ expG = expH ◦ϕ′.

(2) The subgroup of G generated by the image exp(g) of the exponential map coin-
cides with the connected component G0 of the identity.

(3) If ϕ, ψ : G→ H are smooth homomorphisms such that ϕ′ = ψ′ then the restric-
tions of ϕ and ψ to G0 coincide.

Proof. (1) In the proof of Proposition 1.5 we have seen that for X ∈ g the vector
fields LX ∈ X(G) and Lϕ′(X) ∈ X(H) are ϕ-related. Hence their flows are ϕ-related,
which in particular implies that

ϕ(exp(X)) = ϕ(FlLX1 (e)) = Fl
Lϕ′(X)

1 (ϕ(e)) = exp(ϕ′(X)).
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(2) Let G̃ be the subgroup of G generated by exp(g). Since t 7→ exp(tX) is a smooth
curve connecting e to exp(X) we see that the image of exp and hence G̃ is contained in
G0.

Conversely, since exp is a local diffeomorphism, there is an open neighborhood U
of e in G which is contained in exp(g) and hence in G̃. But then for g ∈ G̃, the set
{gh : h ∈ U} is an open neighborhood of g contained in G̃, so G̃ ⊂ G is open. On
the other hand, {h−1 : h ∈ U} is an open neighborhood of e in G. For g /∈ G̃ the set
{gh−1 : h ∈ U} must evidently have trivial intersection with G̃. Hence G̃ is closed, and
G̃ = G0 follows.

(3) By part (1) ϕ and ψ coincide on the image of expG, and since they both are
homomorphisms they therefore coincide on the subgroup generated by this image. Now
the result follows from (2). �

1.10. The adjoint representation. A representation of a Lie group G on a finite
dimensional vector space V is a smooth homomorphism ϕ : G→ GL(V ). A representa-
tion of a Lie algebra g on V is a Lie algebra homomorphism g→ L(V, V ). In particular,
for any representation ϕ : G → GL(V ) of a Lie group, one obtains a representation
ϕ′ : g→ L(V, V ) of its Lie algebra.

Now any Lie group G has a canonical representation on its Lie algebra, called the
adjoint representation. For g ∈ G, consider the conjugation by g, i.e. the map conjg :
G → G defined by conjg(h) := ghg−1. Evidently, conjg is a group homomorphism, so
we can form the derivative, which is a Lie algebra homomorphism Ad(g) : g→ g. Note

that conjg = λg ◦ρg
−1

= ρg
−1 ◦λg, and therefore Ad(g) = Tg−1λg ◦Teρg

−1
= Tgρ

g−1 ◦Teλg.
We clearly have conjgh = conjg ◦ conjh and differentiating this, we obtain Ad(gh) =

Ad(g) ◦ Ad(h). Likewise, conjg−1 = (conjg)
−1, and hence Ad(g−1) = Ad(g)−1, whence

Ad : G → GL(g) is a homomorphism. To see that the map Ad is smooth, it suffices
to show that (g,X) 7→ Ad(g)(X) is smooth. Consider the smooth map ϕ : G × g →
TG× TG× TG defined by ϕ(g,X) := (0g, X, 0g−1). By Lemma 1.2 we obtain

Tµ ◦ (idTG×Tµ)(ϕ(g,X)) = Tg−1λg ◦ Teρg
−1 ·X = Ad(g)(X),

and smoothness follows. The corresponding representation ad : g → L(g, g) is called
the adjoint representation of the Lie algebra g.

Example 1.10. Consider G = GL(n,R). Then the conjugation map conjA(B) :=
ABA−1 is linear in B, so its derivative is given by Ad(A)(X) = AXA−1 for each
X ∈Mn(R). As we shall see in the proposition below, the derivative ad of this is given
by ad(X)(Y ) = [X, Y ] = XY − Y X.

Proposition 1.10. Let G be a Lie group with Lie algebra g.
(1) For X ∈ g and g ∈ G we have LX(g) = RAd(g)(X)(g).
(2) For X, Y ∈ g we have ad(X)(Y ) = [X, Y ].
(3) For X ∈ g and g ∈ G we have exp(tAd(g)(X)) = g exp(tX)g−1.
(4) For X, Y ∈ g we have

Ad(exp(X))(Y ) = ead(X)(Y ) = Y + [X, Y ] + 1
2
[X, [X, Y ]] + 1

3!
[X, [X, [X, Y ]]] + . . .

Proof. (1) We have λg = ρg ◦ conjg and hence

LX(g) = Teλg ·X = Teρ
g · Te conjg ·X = RAd(g)(X)(g).

(2) Choosing a basis {v1, . . . , vn} of g, we can consider the matrix representation
(aij(g)) of Ad(g) and each aij : G→ R is smooth. For X ∈ g, the matrix representation
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of ad(X) is given by (X ·aij). We can compute X ·aij as (LX ·aij)(e). For Y =
∑
Yivi ∈ g

we get LY (g) = RAd(g)Y (g) =
∑

i,j aij(g)YjRvi . Forming the bracket with LX , we obtain

[LX , LY ] =
∑
i,j

Yj[LX , aijRvi ] =
∑
i,j

Yj(LX · aij)Rvi ,

where we have used that [LX , Rvi ] = 0. Evaluating in e, we get

[X, Y ] =
∑
i,j

(X · aij)Yjvi = ad(X)(Y ).

(3) This follows directly from applying part (1) of Theorem 1.9 to the homomorphism
conjg : G→ G and its derivative Ad(g) : g→ g.

(4) This is part (1) of Theorem 1.9 applied to the homomorphism Ad : G→ GL(g)
and its derivative ad : g→ L(g, g) together with the description of the exponential map
for matrix algebras in Example 1.8. �

(Virtual) Lie subgroups

1.11. Recall from [AnaMf, Section 1.16] that a subset N of a smooth manifold
M of dimension n is called a submanifold of dimension k if for each x ∈ N there is a
chart (U, u) for M with x ∈ U such that u(U ∩N) = u(U) ∩ Rk, where we view Rk as
a subspace of Rn in the obvious way. If N ⊂ M is a submanifold, then we can use the
restrictions of charts of the above form as an atlas on N , thus making N into a smooth
manifold.

Let us consider the case of a Lie group G and a subgroup H which at the same
time is a submanifold of G. Then H ⊂ G is called a Lie subgroup of G. Since the
multiplication on H is just the restriction of the multiplication of G it is smooth, so H
itself then is a Lie group. Hence the following result in particular provides us with a
huge number of examples of Lie groups.

Theorem 1.11. Let G be a Lie group and let H ⊂ G be a subgroup which is closed
in the topological space G. Then H is a Lie subgroup of G and in particular it is itself
a Lie group.

Proof. Let g be the Lie algebra of G and let h ⊂ g be the set of all c′(0), where
c : R → G is a smooth curve with c(0) = e which has values in H. If c1 and c2

are two such curves and a is a real number, then consider c(t) := c1(t)c2(at). Clearly
this is smooth and since H ⊂ G is a subgroup it has values in H, so c′(0) ∈ h. Now
c′(0) = T(e,e)µ · (c′1(0), ac′2(0)), which equals c′1(0) + ac′2(0) by Lemma 1.2. Thus h is a
linear subspace of g.

Claim 1: Let (Xn)n∈N be a sequence in g which converges to X ∈ g and let (tn)n∈N
be a sequence in R>0 converging to 0. If exp(tnXn) ∈ H for all n ∈ N, then exp(tX) ∈ H
for all t ∈ R.

Fix t ∈ R, and for n ∈ N let mn be the largest integer ≤ t
tn

. Then mntn ≤ t and
t−mntn < tn, and hence the sequence mntn converges to t. By continuity of exp we get

exp(tX) = lim
n

exp(mntnXn) = lim
n

(exp(tnXn)mn),

which lies in the closed subgroup H.
Claim 2: h = {X ∈ g : ∀t ∈ R : exp(tX) ∈ H}.
By definition, the right hand set is contained in h. Conversely, let c : R → G be a

smooth curve with values in H and put X = c′(0). On a neighborhood of 0, we obtain
a well defined smooth curve v with values in g such that c(t) = exp(v(t)) for sufficiently
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small t. Then X = c′(0) = d
dt
|t=0 exp(v(t)) = v′(0) = limn nv( 1

n
). Putting tn = 1

n
and

Xn = nv( 1
n
) for sufficiently large n, we obtain exp(tnXn) = c( 1

n
) ∈ H. Since Xn → X

in g, we obtain exp(tX) ∈ H for all t ∈ R from claim 1, and claim 2 follows.
Claim 3: Let k ⊂ g be a linear subspace which is complementary to h. Then there

is an open neighborhood W of zero in k such that exp(W ) ∩H = {e}.
If not, then we can find a sequence (Yn) of nonzero elements of k such that Yn → 0

and exp(Yn) ∈ H. Choose a norm | | on k and put Xn := 1
|Yn|Yn. Possibly passing to

a subsequence, we may assume that the sequence Xn converges to an element X ∈ k.
Then |X| = 1, so in particular X 6= 0, but putting tn = |Yn|, claim 1 implies that
exp(tX) ∈ H for all t ∈ R and hence X ∈ h. This is a contradiction, so claim 3 follows.

Now consider the map ϕ : h × k → G defined by ϕ(X, Y ) := exp(X) exp(Y ). This
evidently has invertible tangent map in (0, 0), so there are neighborhoods V and W
of zero in h respectively k such that ϕ induces a diffeomorphism from V ×W onto an
open neighborhood U of e in G. By claim 3, we may shrink W in such a way that
exp(W ) ∩H = {e}.

Since V ⊂ h we have exp(V ) ⊂ U ∩ H. Conversely, a point x ∈ U ∩ H can be
uniquely written as exp(X) exp(Y ) for X ∈ V and Y ∈ W . But then exp(−X) ∈ H
and hence exp(Y ) = exp(−X)x ∈ H. By construction, this implies Y = 0, so ϕ restricts
to a bijection between V ×{0} and U ∩H. Thus, (U, u := (ϕ|V×W )−1) is a submanifold
chart for H defined locally around e ∈ G. For h ∈ H we then obtain a submanifold
chart defined locally around h as (λh(U), u ◦ λh−1). �

Closedness of a subgroup is often very easy to verify. A typical example of this
situation is the center Z(G) of a Lie group G. By definition,

Z(G) = {g ∈ G : gh = hg ∀h ∈ G},
and this is evidently a subgroup of G. For fixed h, the map g 7→ g−1h−1gh is smooth
and hence continuous. The preimage of e under this map is {g ∈ G : gh = hg}, so this
set is closed. This represents Z(G) as an intersection of closed subsets of G. Hence
Z(G) is a closed subgroup and thus a Lie subgroup of G.

There are lots of variations of this construction. For example, for any subset A ⊂ G
we can consider the centralizer of A in G, which is defined as

ZG(A) := {g ∈ G : ga = ag ∀a ∈ A}.
As before, one shows that this is a closed subgroup of G.

Using these, we can formulate the following result that in particular clarifies the
consequences of injectivity of the derivative of a homomorphism between Lie groups.

Proposition 1.11. Let ϕ : G→ H be a homomorphism of Lie groups with deriva-
tive ϕ′ : g→ h. Then the kernel ker(ϕ) ⊂ G is a normal Lie subgroup of G, whose Lie
algebra coincides with ker(ϕ′) ⊂ g.

In particular, if ϕ′ is injective, then ker(ϕ) is a discrete subgroup of G, which in
addition is contained in the centralizer Z(G0) of the connected component of the identity
of G. So if in addition G is connected, then ker(ϕ) is contained in the center Z(G) of
G.

Proof. By definition ker(ϕ) = ϕ−1({e}), so continuity of ϕ readily implies that it
is a closed subset of G, while simple algebra implies that ker(ϕ) is a normal subgroup
of G. So by Theorem 1.11, ker(ϕ) is Lie subgroup and its Lie algebra is formed by
all X ∈ g such that exp(tX) ∈ ker(ϕ) for all t. By Theorem 1.9 this is equivalent to
exp(tϕ′(X)) = e for all t and hence to ϕ′(X) = 0, so the first claim follows.
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If ϕ′ is injective, then the Lie subgroup ker(ϕ) ⊂ G thus has Lie algebra {0}. So
claim 3 in the proof of Theorem 1.11 in this case says that there is a neighborhood W
of 0 in g such that exp(W ) ∩ ker(ϕ) = {e}. For g ∈ ker(ϕ), Ug := λg(exp(W )) ⊂ G
thus is open and evidently Ug ∩ ker(ϕ) = {g}. Hence we see that the induced topology
on ker(ϕ) is discrete. Finally, for X ∈ g and g ∈ ker(ϕ) consider the smooth curve
exp(tX)g exp(tX)−1. Since ker(ϕ) is normal, this must have values in ker(ϕ) so by
discreteness it must be constantly equal to g. Thus we have exp(tX)g = g exp(tX),
so g also commutes with all elements of the subgroup generated by all elements of the
form exp(X). By Theorem 1.9, this subgroup coincides with G0, so g ∈ Z(G0), which
coincides with Z(G) if G is connected. �

1.12. Example: Matrix groups. These are probably the most important exam-
ples of Lie groups.

Definition 1.12. A matrix group is a closed subgroup of the group GL(n,R) for
some n ∈ N.

By Theorem 1.11, any matrix group is a submanifold of GL(n,R) (and hence of
Mn(R)) and in particular a Lie group. For a matrix group H ⊂ GL(n,R), the proof of
Theorem 1.11 gives us two equivalent descriptions of the tangent space h at the identity.
Since the inclusion i : H ↪→ G is a Lie group homomorphism, the inclusion h ↪→Mn(R)
is a Lie algebra homomorphism. Using Example 1.4 we conclude that for any matrix
group the Lie bracket on h ⊂ Mn(R) is given by the commutator of matrices. By
part (1) of Theorem 1.9 and Example 1.8 we next see that for any matrix group the
exponential map is given by the matrix exponential. Finally, since the conjugation in
H is just the restriction of the conjugation in G, we see from Example 1.10 that in any
matrix group the adjoint representation is given by the conjugation.

Let us discuss some concrete examples of matrix groups. First one can take matrices
of special form. Consider the subset B(n,K) ⊂ GL(n,K) consisting of those invertible
matrices which are upper triangular, i.e. for which all entries below the main diagonal
are zero. This evidently is a closed subset and one easily verifies that it is a subgroup.
Thus, B(n,K) is a Lie subgroup of GL(n,K). Likewise, one can consider the subset
N(n,K) ⊂ B(n,K) of those matrices for which in addition all entries on the main
diagonal are equal to 1. This also is a closed subgroup of GL(n,K) and thus a Lie
group. The Lie algebras b(n,K) ⊃ n(n,K) of these groups clearly are the spaces of
upper triangular and strictly upper triangular matrices, respectively. Also, invertible
diagonal matrices form a closed subgroup of GL(n,K). Similarly, one can deal with
more general restrictions on the form of matrices, like block-diagonal or block-upper-
triangular ones.

Second, let b : Rn × Rn → R be a fixed bilinear map, and consider

H := {A ∈ GL(n,R) : b(Av,Aw) = b(v, w) ∀w, v ∈ Rn}.
For fixed v and w, the map A 7→ b(Av,Aw) − b(v, w) is continuous, and hence the
subset of invertible matrices satisfying the equation is closed. As an intersection of
closed subsets of GL(n,R), the subset H is closed, and one immediately verifies that it
is a subgroup. To determine the Lie algebra h of H, suppose that c : R→ GL(n,R) is
a smooth curve with values in H. Differentiating the equation b(c(t)v, c(t)w) = b(v, w)
at t = 0 we see that b(c′(0)v, w) + b(v, c′(0)w) = 0, so X := c′(0) is skew symmetric
with respect to b.

Conversely, suppose that X ∈Mn(R) is skew symmetric with respect to b. Then we
claim that exp(X) ∈ H, which together with the above implies that h = {X ∈Mn(R) :
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b(Xv,w)+b(v,Xw) = 0}. As a bilinear map, b is continuous and thus for fixed v and w
we get b(exp(X)v, exp(X)w) =

∑
i,j

1
i!j!
b(X iv,Xjw), and the sum converges absolutely.

Collecting the terms with i+ j = k > 0, we obtain

1
k!

∑k
`=0

(
k
`

)
b(Xk−`v,X`w) = 1

k!
b(Xkv, w)

∑k
`=0(−1)`

(
k
`

)
= 0,

and the claim follows.
More specifically, consider the case that b is the standard inner product 〈 , 〉 on

Rn. Then H = O(n), the group of orthogonal n× n-matrices, and A ∈ H is equivalent
to At = A−1. The Lie algebra h =: o(n) consists of all matrices X such that 0 =
〈Xv,w〉 + 〈v,Xw〉, which is equivalent to X t = −X. Hence we obtain matrices which

are skew symmetric in the usual sense. In particular, dim(O(n)) = dim(o(n)) = n(n−1)
2

.
Note that for an orthogonal matrix the columns form an orthonormal basis of Rn. In
particular, O(n) is a bounded and hence compact subset of Mn(R). Hence any closed
subgroup of O(n) is a compact Lie group.

As a slight variation, one may consider a non-degenerate symmetric bilinear form of
signature (p, q) with p+ q = n. (Recall from linear algebra that this form is essentially
unique.) This gives rise to the Lie group O(p, q), called the (pseudo)-orthogonal group of
signature (p, q). If both p and q are nonzero, then O(p, q) is not compact, since the unit
sphere of an inner product of indefinite signature is unbounded. To obtain an explicit
realization of O(p, q), let Ip,q be the diagonal n×n-matrix, whose first p entries are equal
to 1, while the other entries are equal to −1. Then (v, w) 7→ 〈v, Ip,qw〉 is non-degenerate
of signature (p, q). Using this form, we see that A ∈ O(p, q) if and only if AtIp,qA = Ip,q.
Since Itp,q = Ip,q we see that the Lie algebra o(p, q) consists of all matrices X such that

Ip,qX is skew symmetric. Hence dim(O(p, q)) = dim(O(p+ q)) = (p+q)(p+q−1)
2

.
For A ∈ O(p, q) the equation AtIp,qA = Ip,q implies that det(A)2 = 1, so det(A) =

±1. Hence we obtain a closed subgroup SO(p, q) := {A : det(A) = 1} ⊂ O(p, q).
Evidently, any continuous curve in O(p, q) which starts at the identity has to remain in
SO(p, q), so wee see that the connected component O0(p, q) of the identity in O(p, q) has
to be contained in SO(p, q). We shall see later that SO(n) coincides with the connected
component O0(n).

There are two ways to generalize this to the complex world. From linear algebra, one
knows that there is a unique (up to isomorphism) non degenerate symmetric bilinear
form b on Cn. As above, we obtain the Lie group O(n,C) of complex orthogonal matrices
and the subgroup SO(n,C). As in the real case, A ∈ O(n,C) if and only if At = A−1,
but the complex orthogonal groups are not compact. These are examples of complex
Lie groups, i.e. they are complex manifolds (with holomorphic chart changes) such that
multiplication and inversion are holomorphic maps. We will not go into this subject
during this course.

The more common complex generalization of orthogonal groups are provided by
using Hermitian inner products. Let 〈 , 〉 be the standard Hermitian inner product
on Cn. This leads to the Lie group U(n), the unitary group, whose elements can be
alternatively characterized by A∗ = A−1. Here A∗ is the conjugate transpose of A. For
n = 1, this reads as ā = a−1 and hence aā = |a|2 = 1, so we recover the group U(1) as
defined in 1.1. The Lie algebra u(n) of U(n) consists of all matrices X ∈Mn(C) which
are skew Hermitian, i.e. satisfy X∗ = −X. Note that u(n) is not a complex vector
space, since for example a id ∈ u(n) if and only if a ∈ iR ⊂ C. Since a skew Hermitian

n×n-matrix is determined by n(n−1)
2

arbitrary complex numbers (the entries above the
main diagonal) and n real numbers (the purely imaginary diagonal entries) we see that
dimR(U(n)) = dimR(u(n)) = n2.



(VIRTUAL) LIE SUBGROUPS 15

Considering (z, w) 7→ 〈z, Ip,qw〉, we obtain a Hermitian form of signature (p, q),
which is again essentially unique. This gives rise to the group U(p, q), which is called the
(pseudo)-unitary group of signature (p, q). A matrix A lies in U(p, q) if A∗Ip,qA = Ip,q.
Since I∗p,q = Ip,q, the Lie algebra u(p, q) of U(p, q) is formed by all matrices X such that
Ip,qX is skew Hermitian. Similarly to the real case, the group U(n) is compact, while for
p, q 6= 0 the group U(p, q) is non-compact. Similarly as before we have dim(U(p, q)) =
dim(U(p+ q)).

For a matrix A ∈ U(p, q) we obtain det(A) det(A∗) = | det(A)|2 = 1. Indeed,
the determinant defines a smooth homomorphism U(p, q) → U(1). The kernel of this
homomorphism is the closed normal subgroup SU(p, q) ⊂ U(p, q), the special unitary
group of signature (p, q). Of course, we have dimR(SU(p, q)) = (p+ q)2 − 1.

Let us finally mention that similar to bilinear forms, one can also deal with bilinear
operations on a vector space. As a simple example, consider an arbitrary Lie algebra
(g, [ , ]). Since g is a vector space, we have the Lie group GL(g) of linear automorphisms
of g. Now we can consider the subset

Aut(g) := {A ∈ GL(g) : [A(X), A(Y )] = A([X, Y ]) ∀X, Y ∈ g}.

This is immediately seen to be a subgroup of GL(g) called the automorphism group of
the Lie algebra g. Moreover, for fixed X, Y ∈ g the set of all A ∈ GL(g) such that
[A(X), A(Y )] = A([X, Y ]) is evidently closed. Hence Aut(g) is a closed subgroup of
GL(g) and thus a Lie group.

1.13. Initial submanifolds. For some purposes, the concept of a submanifold is
too restrictive. The simplest example of this situation actually comes from Lie groups.
Consider the group G := U(1)× U(1) = {(z, w) ∈ C2 : |z| = |w| = 1}. The Lie algebra
of this Lie group is R2 with the trivial bracket and the exponential map is given by
(t, s) 7→ (eit, eis). Apart from the trivial cases {0} and R2, a Lie subalgebra of R2 is
simply a one dimensional subspace. The coordinate axes correspond to the two factors
U(1) in the product. For any other one dimensional subspace, we can choose a generator
of the form (1, α) with α ∈ R\{0}. The image of this subalgebra under the exponential
map is Hα := {(eit, eiαt) : t ∈ R}, which is a subgroup of G. However, the nature of
this subgroup strongly depends on α. Note first that (eit, eiαt) = (eis, eiαs) if and only
if s = t + 2kπ and αs = αt + 2`π for some k, ` ∈ Z. Inserting the first equation into
the second, we see that existence of a solution with s 6= t implies αk = ` and hence
α = `

k
∈ Q.

Writing α = p
q

with p, q ∈ N without common factors, one immediately verifies that

eit 7→ (eiqt, eipt) induces a bijection U(1) → Hα. This bijection is evidently continuous
and hence a homeomorphism by compactness of U(1). Since Hα is compact it is closed
in G and thus a Lie subgroup by Theorem 1.11.

For irrational α, the evident map R→ Hα is injective, so as a group, Hα is isomorphic
to R. It turns out that this line winds densely around the torus. In particular, there is
a countable dense subset A ⊂ U(1) such that Hα ∩U(1)×{1} = A×{1}. This implies
that the topology on R induced from this inclusion is different from the usual topology:
Any neighborhood of (1, 1) contains infinitely many points from A× {1}. Hence in the
induced topology on R, any neighborhood of 0 contains arbitrarily large points. Also,
Hα cannot be a submanifold of G.

This example also shows how to obtain a solution to the problem: In an appropriate
chart around (1, 1), the subset Hα (for irrational α) consists of countably many parallel
line segments. While these segments come arbitrarily close to each other and hence
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inherit a strange topology, they are “disjoint” from the point of view of a smooth curve,
which can never move from one segment to another. This motivates the following
definitions:

Definition 1.13. (1) Let M be a smooth manifold, A ⊂M any subset and x0 ∈ A
a point. The we define Cx0(A) to be the set of all x ∈ A such that there is a smooth
path c : I →M with values in A, which joins x0 to x.

(2) Let M be a smooth manifold of dimension n. Then a subset N ⊂ M is called
an initial submanifold of M of dimension m if for any x ∈ N there exists a chart (U, u)
for M with x ∈ U and u(x) = 0 such that u(Cx(U ∩N)) = u(U) ∩ Rm × {0}.

For an initial submanifold N ⊂ M , one can take the subset N “out of M” and
endow it with a new topology. To distinguish this in the notation, let us write N# for
this set and i : N# → M for the obvious inclusion map. Now declare V ⊂ N# to be
open if u(i(V ) ∩ Cx(U ∩ N)) is open in Rm × {0} for a family of adapted charts as in
the definition. Then one can use the restrictions of adapted charts as charts on N#

and different charts obtained in that way are compatible by construction, so we obtain
a smooth atlas. The resulting topology is finer than the one on N and thus Hausdorff,
and if it is also second countable, then we have obtained the structure of a smooth
manifold on N# for which i : N ↪→M is smooth. By construction i even is an injective
immersion (see [AnaMf, Section1.19]).

Suppose now that X is any manifold and f : X → M is a smooth map such that
f(X) ⊂ N . Then there is a unique map f# : X → N# such that f = i ◦ f#. From
the construction above, we readily conclude that f# is smooth and conversely for a
smooth map g# : X → N# also i ◦ g# is smooth. This universal property implies that
the smooth structure on N# is uniquely determined and it explains the name “initial
submanifold”.

The difference between initial submanifolds and true submanifolds really lies in the
topology only: Let N ⊂ M be an initial submanifold and i : N# → M the injective
immersion as constructed above, and suppose that i is a homeomorphism onto its image.
Then for an adapted chart (U, u) around x ∈ N the set Cx(U∩N) is open in the topology
induced from M , so there is an open subset V ⊂ M such that Cx(U ∩ N) = V ∩ N .
But then (U ∩ V, u|U∩V ) is a submanifold chart for N containing x, so N ⊂M is a true
submanifold.

Conversely, one can show that for an injective immersion i : N → M which has
the above universal property, the image i(N) ⊂ M is an initial submanifold. Proofs
for these facts and more details about initial submanifolds can be found in [Michor,
Section 2].

1.14. Virtual Lie subgroups. Now for a Lie group G, one defines a virtual Lie
subgroup of G as the image of an injective smooth homomorphism from some Lie group
H to G. For injective homomorphism i : H → G, Proposition 1.11 shows that ker(i′) =
{0}, so i′ = Tei : h → g is injective. Since i = λi(h) ◦ i ◦ λh−1 , we conclude that Thi
is injective for each h ∈ H, so i is an injective immersion. We shall see in the next
chapter that i(H) even is an initial submanifold of G, see Section 2.3. We will often
suppress the injective map i′ : h → g, and simply view h as subspace of g. Since i′ is
a Lie algebra homomorphism, h ⊂ g is a Lie subalgebra, i.e. a subspace that is closed
under the Lie bracket.

As a further example of the Lie group – Lie algebra correspondence, let us discuss
the Lie algebraic characterization of normal subgroups.
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Definition 1.14. Let g be a Lie algebra. An ideal in g is a linear subspace h ⊂ g
such that [X, Y ] ∈ h for all X ∈ h and all Y ∈ g. (This implies that there is an induced
Lie algebra structure on the quotient g/h.)

Proposition 1.14. Let i : H → G be a connected virtual Lie subgroup of a con-
nected Lie group G. Then i(H) is a normal subgroup of G if and only if h is an ideal
in g.

Proof. Note first that i(H) is normal in G if and only if conjg(i(h)) ∈ i(H)
for all h ∈ H. If this condition is satisfied, then for X ∈ h and t ∈ R we get
conjg(exp(ti′(X))) = exp(tAd(g)(i′(X))) ∈ i(H), and differentiating this at t = 0
we conclude that Ad(g)(i′(h)) ⊂ i′(h) for all g ∈ G. Putting g = exp(tY ) for Y ∈ g and
differentiating again at t = 0, we get ad(Y )(i′(h)) ⊂ i′(h) for all Y ∈ g. This exactly
means that i′(h) is an ideal in g.

Conversely, if i′(h) is an ideal in g, then ad(Y )(i′(h)) ⊂ i′(h) for all Y ∈ g. Then
also Ad(exp(Y )) = ead(Y ) preserves the subspace i′(h). Since G is connected and Ad
is a homomorphism, part (2) of Theorem 1.9 implies that Ad(g)(i′(h)) ⊂ i′(h) for all
g ∈ G. Hence exp(Ad(g)(i′(X))) = conjg(i(exp(X))) ∈ i(H) for all X ∈ h. But since
H is connected and conjg is a homomorphism, this implies conjg(i(H)) ⊂ i(H) by part
(2) of Theorem 1.9. �

Actions and homogeneous spaces

1.15. Actions and related notions. A left action of a Lie group G on a set X is
a map ` : G×X → X such that `(e, x) = x and `(g, `(h, x)) = `(gh, x) for all g, h ∈ G
and all x ∈ X. Fixing g ∈ G, we obtain the map `g : X → X and fixing x ∈ X, we
obtain the map `x : G→ X, which are defined by `g(x) = `x(g) = `(g, x).

A right action of a Lie group G on a set X is a map r : X × G → X such that
r(x, e) = x and r(r(x, g), h) = r(x, gh) for all g, h ∈ G and all x ∈ X. Similarly as
above, there are the partial maps rg : X → X and rx : G→ X.

When there is no risk of confusion, we will denote actions simply by dots: A left
action will be written as (g, x) 7→ g · x. Then the defining properties read as e · x = x
and g · (h · x) = gh · x. Likewise, writing a right action as (x, g) 7→ x · g, the defining
properties read as x · e = x and (x · g) · h = x · gh.

For a left action ` of G on X we have `g ◦ `h = `gh which together with `e = idX
implies that the maps `g and `g−1 are inverse to each other. Hence we can view g 7→ `g
as a map from G to the set Bij(X) of bijective maps X → X. The bijections form
a group under compositions, and the defining properties exactly mean that ` defines a
group homomorphism G → Bij(X). For the case of a right action, we obtain rg

−1
=

(rg)−1, but for a right action we get rgh = rh ◦ rg, so we obtain an anti-homomorphism
G→ Bij(X) in this case.

It is no problem to convert between left and right actions. Given a left action `, we
can define a right action r by rg := `g−1 and vice versa. Nonetheless it will often be
important to distinguish between the two kinds of actions.

Given a left action ` of G on X and a point x ∈ X, we define the orbit G · x of x
as G · x = im(`x) = {g · x : g ∈ G}. One should think about an action as a way to use
elements of G to move points in X around, and the orbit of x consists of those points
that can be reached from x. If x, y ∈ X are two points such that G · x∩G · y 6= ∅, then
we find g, h ∈ G such that g · x = h · y and hence x = g−1h · y and g̃ · x = g̃g−1h · y.
Thus we obtain G · x ⊂ G · y and by symmetry the two orbits coincide. Hence lying in
the same orbit is an equivalence relation and X is the disjoint union of the G-orbits.
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The set of equivalence classes is called the orbit space of the action and is denoted by
X/G. An action is called transitive if there is only one orbit. Equivalently, this means
that for each pair x, y of points in X, there is an element g ∈ G such that y = g · x.
The notions of orbits and transitivity are defined analogously for right actions.

Consider again a left action ` of G on X and a point x ∈ X. Then we define the
stabilizer or the isotropy subgroup Gx of x by Gx := {g ∈ G : g · x = x}, so this consists
of all elements of G which do not move x. Evidently, Gx is a subgroup of G. For y ∈ G·x
consider the stabilizer Gy. If y = g · x, then h · y = y is equivalent to hg · x = g · x and
hence to g−1hg · x = x. Otherwise put, we have Gg·x = gGxg

−1 and hence the isotropy
subgroups of points in the same orbit are conjugated in G.

By definition, the map `x : G → X induces a surjection `x : G → G · x. Now for
g, h ∈ G we have g · x = h · x if and only if g−1h · x = x, i.e. g−1h ∈ Gx. But the latter
condition exactly means that h ∈ gGx and hence hGx = gGx, i.e. g and h represent the
same coset in G/Gx. Hence we conclude that `x induces a bijection between the space
G/Gx of left cosets and the orbit G · x. In particular, starting from a transitive action
of G on X, we obtain a bijection between X and G/Gx for any fixed point x ∈ X.
This can be used to identify X with the space G/Gx, which naturally carries a topology
and, as we shall see soon, under weak assumptions is a smooth manifold. All this works
similarly for right actions.

If the space X carries some additional structure, then we can require compatibility
conditions for that structure. For example, if X is a topological space, then we can
define a continuous left action of G on X by in addition requiring that ` : G×X → X
is continuous. This immediately implies that the maps `g and `x are continuous for all
g ∈ G and x ∈ X. Then `g even is a homeomorphism, since its inverse is `g−1 , and we
can consider the action as a homomorphism from G to the group of homeomorphisms
of X. Since we have an obvious surjection X → X/G the topology of X induces a
topology on the orbit space X/G. However, even for very nice X and G the space X/G
can be very badly behaved.

On the other hand, if X is Hausdorff, then continuity of `x implies that the isotropy
subgroup Gx is a closed subgroup of G and hence a Lie subgroup by Theorem 1.11.
In this case, we obtain a continuous bijection between G/Gx and the orbit G · x ⊂
X. However, this is not a homeomorphism in general: Consider the subgroup Hα ⊂
U(1)× U(1) and the corresponding homomorphism i : R→ U(1)× U(1) from 1.13 for
irrational α. Multiplying from the left defines a continuous (even smooth) left action of
R on U(1) × U(1) with trivial isotropy groups. Hence the map R → R · e from above
is simply the inclusion i : R → Hα ⊂ U(1) × U(1), and this is not a homeomorphism.
As in 1.13, one sees that each Hα-orbit is dense in U(1)× U(1). Thus the orbit spaces
carries the indiscrete topology, i.e. the only open subsets are the empty set and the
whole space.

Similarly, if M is a smooth manifold, then we define a smooth left action of G on M
by in addition requiring the ` is smooth. Then each `g is a diffeomorphism. Continuous
and smooth right actions are defined similarly as for left actions.

1.16. Homogeneous spaces. As we have seen above, any orbit of a G-action
looks like the space G/H of left cosets for a subgroup H ⊂ G. The obvious surjection
G→ G/H can be used to endow this space with a topology. The preimage of the base
point o := eH ∈ G/H under this map is the subgroup H, so if one requires the topology
on G/H to be Hausdorff, one must assume that the subgroup H ⊂ G is closed. For a
closed subgroup H ⊂ G, we call the space G/H of left cosets the homogeneous space of
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G with respect to H. Notice that the left translation by g ∈ G induces a continuous
map `g : G/H → G/H.

Recall from [AnaMf, Section 1.18] that a smooth map f : M → N between two
manifolds is called a submersion if each tangent map of f is surjective. In partic-
ular, dim(M) ≥ dim(N) and one shows that in appropriate charts f has the form
(x1, . . . , xm) 7→ (x1, . . . , xn). In particular, locally a surjective submersion admits
smooth sections, i.e. a smooth map σ such that f ◦σ = id. This implies that a surjective
submersion f : M → N has a universal property. Namely, a map ϕ from N to any
manifold Z is smooth if and only if ϕ ◦ f : M → Z is smooth.

Theorem 1.16. Let G be a Lie group and H ⊂ G a closed subgroup. Then there
is a unique structure of a smooth manifold on the homogeneous space G/H such that
the natural map p : G → G/H is a submersion. In particular, dim(G/H) = dim(G)−
dim(H).

Proof. From Theorem 1.11 we know that H is a Lie subgroup of G and we denote
by h ⊂ g the corresponding Lie subalgebra. Choose a linear subspace k ⊂ g which
is complementary to the subspace h. Consider the map ϕ : k × h → G defined by
ϕ(X, Y ) := exp(X) exp(Y ). From the proof of Theorem 1.11 we can find open neigh-
borhoods W1 of 0 in k and V of 0 in h such that exp(W1) ∩H = {e} and such that ϕ
restricts to a diffeomorphism from W1 × V onto an open neighborhood U ′ of e in G.

Next, (X1, X2) 7→ exp(X1)−1 exp(X2) defines a continuous map k × k → G, so the
preimage of U ′ under this map is an open neighborhood of (0, 0). Thus we can find an
open neighborhood W2 of 0 in k such that exp(X1)−1 exp(X2) ∈ U ′ for X1, X2 ∈ W2,
and we consider the neighborhood W := W1 ∩W2 of 0 in k.

Now we claim that the smooth map f : k×H → G defined by f(X, h) := exp(X)h
restricts to a diffeomorphism from W × H onto an open neighborhood U of e in G.
If exp(X1)h1 = exp(X2)h2, then h1h

−1
2 = exp(X1)−1 exp(X2) ∈ H ∩ U ′ = exp(V ).

Hence there is an element Y ∈ V such that exp(Y ) = exp(X1)−1 exp(X2) and thus
exp(X1) exp(Y ) = exp(X2). But this means ϕ(X1, Y ) = ϕ(X2, 0) and hence Y = 0 and
X1 = X2, which also implies h1 = h2. Hence the restriction of f to W ×H is injective.

Next, we have f(X, exp(Y )) = ϕ(X, Y ), so locally around W × {e} we can write f
as ϕ ◦ (id, exp−1). In particular, the tangent map T(X,e)f is a linear isomorphism for
each X ∈ W . Since f ◦ (id, ρh) = ρh ◦f , we see that all tangent maps of f are invertible,
so f is a local diffeomorphism everywhere. Together with injectivity, this implies that
U := f(W ×H) is open and f : W ×H → U is a diffeomorphism.

Consider the natural map p : G → G/H and the subset p(U) ⊂ G/H. For g ∈ U
and h ∈ H, we by construction have gh ∈ U , so p−1(p(U)) = U and hence p(U) is open
in the quotient topology on G/H. Now define ψ : W → p(U) by ψ(X) := p(exp(X)).
If ψ(X1) = ψ(X2), then exp(X1)H = exp(X2)H, which implies X1 = X2 by injectivity
of f on W × H. Surjectivity of f immediately implies that ψ is surjective, and ψ is
continuous by construction. If W ′ ⊂ W is open, then p−1(ψ(W ′)) = f(W ′×H) is open
in G, and hence ψ : W → p(U) is a homeomorphism.

For g ∈ G put Ug := p(λg(U)) = {g exp(X)H : X ∈ W} ⊂ G/H and define
ug : Ug → W by ug := ψ−1 ◦ `g−1 , where `g−1(g′H) = g−1g′H. We claim, that (Ug, ug) is
a smooth atlas for G/H. Suppose that Ug ∩ Ug′ 6= ∅. Then

(ug′ ◦ u−1
g )(X) = ug′(g exp(X)H) = ψ−1((g′)−1g exp(X)H) = pr1(f−1((g′)−1g exp(X)))

and by construction (g′)−1g exp(X) ∈ U . Hence the transition function ug′ ◦ (ug)
−1 is a

restriction of the smooth map pr1 ◦ f−1 ◦ λ(g′)−1g ◦ exp and thus it is smooth. �
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We have already observed that we can define a map ` : G × G/H → G/H by
`(g, g′H) := gg′H. Otherwise put, ` ◦ (id×p) = p ◦ µ, where p : G → G/H is the
canonical map. Since p is a surjective submersion, so is id×p and hence ` is smooth by
the universal property of surjective submersions discussed above. Clearly, ` defines a
left action, so G acts smoothly on G/H and by construction the isotropy group of the
base point o = eH is H ⊂ G.

On the other hand, restricting the multiplication map to G×H, we obtain a right
action of H on G, and by definition the orbit space of this action is the homogeneous
space G/H. This action has the additional property that it is free. In general, this
(very strong) condition means that if x · h = x for one x ∈ X, then h = e. Here it is
evidently satisfied by the properties of the multiplication.

The proof of the theorem gives us quite a bit more than just an atlas for G/H.
For the subsets Ug ⊂ G/H constructed in the proof, we can define a smooth map
σg : Ug → G by σg(x) := g exp(ug(x)). By construction, this has values in p−1(Ug) and
p ◦ σg = idUg . This can now be used to construct a smooth map ϕg : p−1(Ug)→ Ug ×H
by ϕg(y) := (p(y), σg(p(y))−1y). This even is a diffeomorphism, since the inverse is
given by (x, h) 7→ σg(x)h. If g, g′ ∈ G are such that V := Ug ∩ Ug′ 6= ∅, then we obtain
a transition function ϕg′ ◦ ϕ−1

g : V × H → V × H. By construction, this must be of
the form (x, h) 7→ (x, α(x, h)) for some smooth function α : V × H → H. From the
formulae above, one reads off that α(x, h) = (σg′(x)−1σg(x))h and x 7→ σg′(x)−1σg(x)
is a smooth map V → H. This says that (Ug, ϕg) is a principal fiber bundle atlas, thus
showing that p : G→ G/H is a principal fiber bundle with structure group H.

1.17. Quotients of Lie groups. As a first application of Theorem 1.16, consider
the case that H ⊂ G is a closed normal subgroup. Then basic algebra implies that
the multiplication on G induces a well defined multiplication on G/H via (gH)(g′H) =
(gg′)H, which makes G/H into a group. Denoting this multiplication by µ : G/H ×
G/H → G/H, we of course get p ◦ µ = µ ◦ (p× p). Since p is a surjective submersion,
the same is true for p× p, so the universal property for surjective submersions implies
that µ is smooth. Hence the quotient G/H canonically is a Lie group and p : G→ G/H
is a homomorphism of Lie groups. Proposition 1.14 shows that the Lie subalgebra
h ⊂ g actually is an ideal, so the quotient g/h inherits a Lie algebra structure from g.
Clearly p′ = Tep induces a surjection g→ TeHG/H with kernel h which is a Lie algebra
homomorphism. Thus the Lie algebra of G/H is g/h with the induced structure.

Using this, we can prove the following result that also clarifies the significance of
surjectivity of the derivative of a homomorphism.

Proposition 1.17. Let ϕ : G→ H be a smooth homomorphism of Lie groups with
kernel ker(ϕ) ⊂ G and derivative ϕ′ : g→ h.

(1) We can write ϕ as the composition of the inclusion of G/ ker(ϕ) as a virtual Lie
subgroup into H with the canonical quotient projection p : G→ G/ ker(ϕ).

(2) If ϕ′ is surjective and H is connected, then ϕ induces an isomorphism of Lie
groups G/ ker(ϕ) ∼= H.

Proof. (1) From Proposition 1.11, we know that ker(ϕ) ⊂ G is a closed normal sub-
group, so G/ ker(ϕ) is a Lie group and we have the canonical quotient homomorphism
p : G → G/ ker(ϕ). Elementary algebra shows that ϕ induces and injective homomor-
phism ϕ : G/ ker(ϕ)→ H such that ϕ ◦ p = ϕ. Since p is a surjective submersion, ϕ is
smooth and thus the inclusion of a virtual Lie subgroup.

(2) Since ϕ′ is surjective, part (1) Theorem 1.9 shows that exp(X) ∈ ϕ(G) for all
X ∈ h. Since ϕ(G) ⊂ H is a subgroup, part (2) of that theorem implies that ϕ is
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surjective. This implies that map ϕ : G/ ker(ϕ) → H from (1) is a bijective smooth
homomorphism, and since ker(p′) = ker(ϕ′), also ϕ′ is a linear isomorphism. But this

immediately implies that all tangent maps of ϕ are linear isomorphisms, so ϕ−1 is
smooth by the inverse function theorem and the claim follows. �

1.18. Further applications. An important line of application of Theorem 1.16
to make a broad variety of sets into smooth manifolds. For example, let RP n be the
set of lines through zero in Rn+1. The group G := GL(n + 1,R) acts on this set by
A · ` = A(`). Let e1 be the first vector in the standard basis of Rn+1 and let `0 be
the line generated by this vector. Given any line `, choose a nonzero vector v ∈ ` and
extend it to a basis of Rn+1. Taking the resulting vectors as the columns of a matrix A,
we obtain A(e1) = v, and hence A(`0) = `. The isotropy group G`0 is the subgroup of
all invertible matrices whose first column is a multiple of e1, so this is evidently closed
in G. Hence we can identify RP n with the manifold G/G`0 .

Replacing G by O(n+ 1) we can use the same argument by taking a unit vector in
` and extending it to an orthonormal basis of Rn+1. So we see that also O(n + 1) acts
transitively on RP n. An orthogonal matrix which fixes `0 must map e1 to ±e1, and any
ei for i > 1 to a vector orthogonal to e1. Hence the isotropy group of `0 consists of all

matrices of the form

(
±1 0
0 A

)
and one immediately sees that A ∈ O(n). Hence we can

view RP n as O(n+ 1)/(O(1)×O(n)) which in particular implies that RP n is compact
since O(n+ 1) is compact.

This can be easily generalized to the so-called Grassman manifolds. By definition
Grk(Rn) is the set of all k-dimensional subspaces of Rn, so RP n = Gr1(Rn+1). Again
G = GL(n,R) acts on this space by A ·V := A(V ). Take V0 to be the subspace spanned
by the first k vectors in the standard basis. For an arbitrary subspace V , choose a basis
{v1, . . . , vk}, extend it to a basis of Rn and use the resulting elements as the columns
of a matrix A. Then A(ei) = vi for i = 1, . . . , k and hence A(V0) = V . The isotropy

subgroup of V0 consists of all block matrices of the form

(
B C
0 D

)
with blocks of size

k and n − k so it is closed. Hence we can make Grk(Rn) into a smooth manifold, by
identifying it with G/GV0 .

Replacing bases by orthonormal bases, we can apply the same argument with O(n)
replacing GL(n,R). An orthogonal matrix which preserves the subspace V0 also pre-
serves its orthocomplement, so the isotropy group of V0 consists of block diagonal ma-
trices and is isomorphic to O(k) × O(n − k). Hence we can also view Grk(Rn) as
O(n)/(O(k)×O(n− k)), which shows that Grk(Rn) is a compact manifold.

Next consider the set Gn of positive definite inner products on Rn. An element of
Gn by definition is a symmetric bilinear map g : Rn × Rn → R such that g(x, x) > 0
for all x 6= 0. The group G := GL(n,R) acts on Gn by A · g(x, y) := g(A−1(x), A−1(y)).
(Checking that this defines a left action is a good exercise.) Let 〈 , 〉 be the standard
inner product. Applying the Gram–Schmidt procedure with respect to g to any basis of
Rn, we obtain a basis {v1, . . . , vn} of Rn such that g(vi, vj) = δij. The matrix A which
has these vectors as columns is invertible. For x ∈ Rn we then by construction have
A−1(x) = A−1(

∑
xivi) =

∑
xiei and therefore

〈A−1(x), A−1(y)〉 =
∑

xiyi = g(
∑

xivi,
∑

yjvj) = g(x, y).

Thus we see that g = A · 〈 , 〉 so G acts transitively on Gn. The isotropy group of
the standard inner product by definition is the closed subgroup O(n) ⊂ GL(n,R), and
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hence we may identify Gn with the smooth manifold GL(n,R)/O(n). (Of course, there
is a simpler way to identify Gn as a smooth manifold, since it can be viewed as the
space of all positive definite symmetric n × n-matrices, which is an open subspace of
the vector space of all symmetric matrices.)

We can also use homogeneous spaces to clarify connectedness properties:

Lemma 1.18. Let G be a Lie group and H ⊂ G a closed subgroup such that the ho-
mogeneous space G/H is connected. Then the inclusion of H into G induces a surjective
homomorphism H/H0 → G/G0 between the component groups.

Proof. The inclusion i : H → G is a homomorphism and connectedness of H0

implies that i(H0) ⊂ G0. Hence we get an induced homomorphism H/H0 → G/G0 and
to see that surjective, we have to show that any connected component of G contains an
element of H.

Let g0 ∈ G be any element and consider g0H ∈ G/H. Since the homogeneous space
is connected, we can find a continuous curve c : [0, 1]→ G/H such that c(0) = g0H and
c(1) = eH. By compactness of [0, 1] we can find a subdivision 0 = t0 < t1 < · · · < tn = 1
such that c([ti, ti+1]) is contained in one of the charts constructed in the proof of Theorem
1.16. Let U0 be the first of these charts and let σ0 : U0 → p−1(U0) be the corresponding
section. Then there is a unique element h0 ∈ H such that g0 = σ0(g0H)h0 and we
define c̃ : [0, t1] → G by c̃(t) = σ0(c(t))h0. Denoting the next chart and section by U1

and σ1, there is a unique element h1 ∈ H such that σ0(c(t1))h0 = σ1(c(t1))h1. Using
this, we define c̃ on [t1, t2] as σ1(c(t))h1, thus obtaining a continuous lift c̃ of c on [0, t2].
Proceeding in that way we obtain a continuous lift c̃ : [0, 1]→ G of c. By construction
c̃(0) = g0 and p(c̃(1)) = eH, so c̃(1) ∈ H. Hence there is an element of H in the same
connected component as g0. �

Using this, we can now clarify the connectedness properties of several classical
groups.

Proposition 1.18. For n ≥ 1 the groups SL(n,R), SO(n), GL(n,C), SL(n,C),
U(n), and SU(n) are connected, while the groups GL(n,R) and O(n) have exactly two
connected components.

Proof. Consider a matrix A ∈ GL(n,R) with columns vi ∈ Rn. Then {v1, . . . , vn}
is a basis of Rn, so we can apply the Gram–Schmidt orthonormalization procedure. The
resulting orthonormal basis {w1, . . . , wn} is obtained in such a way that each wj is a
linear combination of the vi with i ≤ j and the coefficient of vj is positive. Letting
C = (w1 . . . wn) be the matrix with columns wj, this reads as C = AN , where N is an
upper-triangular matrix with positive entries on the main diagonal. But then for each
t ∈ [0, 1] also tN+(1−t)I is upper triangular with positive entries on the main diagonal,
so det(tN +(1− t)I) > 0 for all t. Hence t 7→ A(tN +(1− t)I) defines a continuous path
in GL(n,R) joining A to C, so O(n) meets each connected component of GL(n,R).
Since GL(n,R) evidently has at least two connected components (corresponding to
det(A) > 0 and det(A) < 0), the claim on GL(n,R) follows if we prove that O(n) has
only two components.

If we start with A ∈ SL(n,R), then a(t) := det(tN + (1 − t)I) > 0 for all t ∈ [0, 1]
and det(C) = ±1 implies C ∈ SO(n). This also shows that det(N) = 1 and hence
a(0) = a(1) = 1. Since a(t) > 0 for all t, also a(t)−1/n is continuous and replacing
our curve by t 7→ a(t)−1/nA(tN + (1− t)I) is a continuous curve that connects A to C
and stays in SL(n,R). Hence connectedness of SL(n,R) follows from connectedness of
SO(n).
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For A ∈ O(n) with n ≥ 2 and x ∈ Rn we have |Ax| = |x|, so the action of O(n)
on Rn restricts to a smooth action on the unit sphere Sn−1. Since any unit vector can
be extended to a positively oriented orthonormal basis, we see that even the subgroup
SO(n) ⊂ O(n) acts transitively on Sn−1. The stabilizer of the first vector in the

standard basis consists of all matrices of the block form

(
1 0
0 A

)
and this lies in O(n)

(respectively SO(n)) if and only if A ∈ O(n − 1) (respectively SO(n − 1)). Hence we
conclude that both O(n)/O(n− 1) and SO(n)/SO(n− 1) are homeomorphic to Sn−1.
For n ≥ 2, Sn−1 is connected, so by the lemma O(n) has at most as many connected
components as O(n− 1). Inductively, this implies that for n ≥ 2, O(n) has at most as
many connected components as O(1) = {1,−1} ⊂ R, and the results in the real case
follow.

In the complex case, we can use the Gram–Schmidt procedure with respect to the
standard Hermitian inner product on Cn in the same way. This shows that U(n) meets
any connected component of GL(n,C), and SU(n) meets any connected component
of SL(n,C). Finally, we have seen in 1.12 that the determinant defines a smooth
homomorphism U(n) → U(1) with kernel SU(n). This implies that U(n)/SU(n) is
homomorphic to the connected group U(1) ∼= S1, and all results in the complex case
follow from connectedness of SU(n). The standard action of SU(n) on Cn restricts to an
action on the unit sphere S2n−1 which is transitive for n ≥ 2. The isotropy group of the
first vector in the standard basis is isomorphic to SU(n− 1). As before, connectedness
of SU(n) for n ≥ 2 follows from connectedness of SU(1) = {1} ⊂ C. �

Remark 1.18. As we have seen in Section 1.12 invertible upper triangular matrices
form a closed subgroup B(n,R) ⊂ GL(n,R). Any entry on the main diagonal of such
a matrix must be non-zero, and hence is either positive or negative. Mapping A =
(aij) ∈ B(n,R) to ( a11

|a11| , . . . ,
ann
|ann|) clearly defines a homomorphism B(n,R) → O(1)n.

The kernel of this homomorphism is a closed subgroup Pn ⊂ B(n,R) which consists
of all upper-triangular matrices with positive entries on the main diagonal. Now the
first step in the proof of Proposition 1.18 shows that any matrix A ∈ GL(n,R) can be
written as CP for C ∈ O(n) and P ∈ Pn and if A ∈ SL(n,R) then C ∈ SO(n).

A complex version of this is obtained in a very similar way. Invertible upper trian-
gular matrices with positive real entries on the main diagonal form a closed subgroup
PC
n ⊂ GL(n,C) and any matrix A ∈ GL(n,C) can be written as CP with C ∈ U(n)

and P ∈ PC
n , and for A ∈ SL(n,C), we get C ∈ SU(n) (and also det(P ) = 1).

In each of the cases, the two subgroups involved in the construction intersect only
in I. Since C1P1 = C2P2 implies C−1

2 C1 = P2P
−1
1 , this implies that the decomposition

is unique in each case. Moreover, we have noted in Section 1.12 that O(n) ⊂ GL(n,R),
SO(n) ⊂ SL(n,R), U(n) ⊂ GL(n,C) and SU(n) ⊂ SL(n,C) are compact subgroups.
One can actually shows that in each of these cases, one actually obtains a maximal
compact subgroup. The main property of the other factors is that they always have
trivial topology, the map (t, P ) 7→ tP + (1 − t)I in each case defines a homotopy from
the identity to the constant map I.

An analogous decomposition is available for general semi-simple Lie groups under
the name Iwasawa decomposition. Any such group turns out to contain a maximal
compact subgroup K and one gets a decomposition with one factor from K and one
factor from a subgroup which is contractible, i.e. has trivial topology. Notice that even
when starting with K = C, things happen in the setting of real Lie groups, since already
U(n) and SU(n) are not complex Lie groups. In the language of algebraic topology,
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one actually shows that the maximal compact subgroup in a semi-simple Lie group is
a deformation retract, which in particular implies that any semi-simple Lie group is
homotopy equivalent to its maximal compact subgroup.

The second part of the proof actually shows that SO(n)→ Sn−1 is a locally trivial
fiber bundle with fiber SO(n− 1), while SU(n)→ S2n−1 is a locally trivial fiber bundle
with fiber SU(n− 1). There is a general result in algebraic topology that locally trivial
fiber bundles over sufficiently nice spaces are so-called fibrations. Any fibration gives rise
to a long exact sequence of homotopy groups, and the proof contains a direct argument
for a very simple consequence of this long exact sequence. The long exact sequence
associated to the two above fibrations can be used to deduce more information about
the homotopy groups of the classical matrix groups that show up in Proposition 1.18.
This is also done by inductive procedures which need starting points. On the one hand,
one proves directly that SU(2) consists of all matrices of the form ( z −w̄w z̄ ) with z, w ∈ C
such that |z|2 + |w|2 = 1. Clearly, such a matrix is determined by its first column,
which is a unit vector in C2. Thus, SU(2) ∼= S3 as a manifold which shows that its first
non-trivial homotopy group is π3(SU(2)) ∼= Z. The long exact sequences inductively
show that the same holds for SU(n) for all n ≥ 3.

On the other hand, the Lie algebra su(2) of SU(2) is the three dimensional vec-
tor spaces of trace-free, skew Hermitian complex 2 × 2-matrices, which have the form(
ia −z̄
z −ia

)
with a ∈ R and z ∈ C. One immediately verifies that 〈X, Y 〉 := − tr(XY )

defines a positive definite inner product on su(2) ∼= R3. Now for A ∈ SU(2) and
X ∈ su(2) we know from 1.12 that Ad(A)(X) = AXA−1, which immediately shows that
〈Ad(A)(X),Ad(A)(Y )〉 = 〈X, Y 〉. Hence the homomorphism Ad : SU(2)→ GL(su(2))
has values in O(su(2)) ∼= O(3) and since SU(2) is connected the values even have to lie
in SO(3). It is then elementary to verify (see exercises) that Ad′ = ad : su(2)→ so(3)
is a linear isomorphism and that ker(Ad) = Z(SU(2)) = {±I}. This implies that
the manifold underlying SO(3) is obtained from S3 by identifying antipodal points, so
SO(3) is diffeomorphic to the real projective space RP 3. In particular, the fundamental
group π1(SO(3)) ∼= Z2 and via the long exact sequences, one inductively concludes that
this also holds for SO(n) with n ≥ 4.



CHAPTER 2

The Frobenius theorem and existence results

To complete the basic understanding of the correspondence between Lie groups and
Lie algebras, we have to prove some existence results. For example, we know that a Lie
group leads to a Lie algebra, but we do not know yet how many Lie algebras are obtained
in that way. Similarly, a homomorphism of Lie groups induces a homomorphism between
their Lie algebras, which essentially determines the group homomorphism, but we do
not know how many Lie algebra homomorphisms are obtained in that way. To prove
existence results of that type, we use a a basic tool of differential geometry, the Frobenius
theorem.

The Frobenius theorem

2.1. Distributions and integrability. The basic question answered by the Frobe-
nius theorem is whether a family of linear subspaces in the tangent spaces of a smooth
manifold M can be realized as the tangent spaces of a smooth submanifold. For the
purpose of motivation let us consider the case of one-dimensional subspaces.

So let M be a smooth manifold and suppose that for each x ∈ M , we choose a
1-dimensional linear subspace `x ⊂ TxM . There is an obvious idea for what it should
mean that `x depends smoothly on x: One requires that for each x ∈ M there is an
open neighborhood V of x in M and a smooth local vector field ξ ∈ X(V ) such that
`y = R · ξ(y) for each y ∈ V . Now if c : I → M is an integral curve for ξ defined
on some open interval I ⊂ R, then c′(t) = ξ(c(t)) 6= 0 for all t ∈ I. Hence c is a
regularly parametrized curve in M and, possibly shrinking I, N := c(I) is an embedded
submanifold in M such that TyN = `y for each y ∈ N .

We can actually get a better result. By the flow box theorem [AnaMf, Theorem
2.9], we can find a local chart (U, u) for M with U ⊂ V such that ξ|U = ∂

∂u1
. Now for

y ∈ U , we have the affine line u(y) + Re1 in Rn, whose image under u−1 is a smooth
submanifold of M whose tangent spaces are the lines `z. Hence U is actually decomposed
into a union of 1-dimensional submanifolds whose tangent spaces are the distinguished
lines in the tangent spaces of M .

In higher dimensions things cannot be as easy. Simple examples show that for two
vector fields ξ and η which are linearly independent in each point, the planes spanned
by their values cannot be realized as tangent planes of a submanifold in general, see
[AnaMf, Section 2.4]. The crucial additional ingredient coming into the game is the
behavior of the Lie bracket of the two fields. After these considerations we can collect
the basic notions to deal with the higher dimensional situation:

Definition 2.1. (1) For a smooth manifold M of dimension n, a distribution E of
rank k on M is given by a k-dimensional subspace Ex ⊂ TxM for each x ∈ M . (This
should not be confused with distributions in the sense of generalized functions.)

(2) A (smooth) section of distribution E ⊂ TM is a vector field ξ ∈ X(M) such that
ξ(x) ∈ Ex for all x ∈M . A local section of E on an open subset U is a local vector field
ξ ∈ X(U) such that ξ(x) ∈ Ex for all x ∈ U .

25
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(3) The distribution E ⊂ TM is called smooth if it can be locally spanned by smooth
sections. This means that for each x ∈ M there is an open neighborhood U of x in M
and their are local sections ξ1, . . . , ξk of E on U such that for each y ∈ U the vectors
ξ1(y), . . . , ξk(y) form a basis for Ey. Such a collection of sections is then called a local
frame for the distribution E.

Smooth distributions are also called vector subbundles of TM .
(4) A distribution E ⊂ TM is called involutive if for any two local sections ξ and η

of E also the Lie bracket [ξ, η] is a section of E.
(5) A distribution E ⊂ TM is called integrable if for each x ∈M there is a smooth

immersed submanifold N ⊂ M which contains x such that for each y ∈ N we have
TyN = Ey ⊂ TyM . Such an immersed submanifold is called an integral submanifold for
E.

Observe that locally around each point x ∈ N , an immersed submanifold is an
embedded submanifold, so one could also use embedded submanifolds in the definition
of integrability. However, as we shall see below, integral submanifolds that are not
embedded play an important role. Observe also that involutivity of a distribution can
be checked effectively: Suppose that {ξ1, . . . , ξk} is a local frame for the distribution U .
Then one can compute the Lie brackets [ξi, ξj] of two elements of the frame and check
whether they are again sections of the distribution. If this is the case, then by definition,
for two sections ξ and η, there are smooth functions fi and gi such that ξ =

∑k
i=1 fiξi

and η =
∑k

j=1 gjξj. Hence we obtain [ξ, η] =
∑

i,j[fiξi, gjξj] and expanding the brackets,

we see that one obtains a linear combination (with smooth coefficients) of the fields ξi
and the brackets [ξi, ξj], and hence again a section. Thus a distribution is involutive,
provided that locally around each point there is a local frame {ξi} for which all brackets
[ξi, ξj] are again sections of the distribution.

Our above considerations then say that any smooth distribution of rank 1 is inte-
grable. We can also see that for higher rank involutivity is a necessary condition for
integrability. Suppose that E ⊂ TM is integrable, x ∈ M is a point, and N ⊂ M
is an integral manifold with x ∈ N . Given a local section ξ of E defined one some
neighborhood U of x, we may replace N by N ∩ U to assume that ξ is defined on all
of N . For y ∈ N , we then get ξ(y) ∈ Ey = TyN , so ξ restricts on N to a vector field
ξ ∈ X(N). This can be expressed as ξ ∼i ξ, where i : N →M is the inclusion. Given a
second local section η, we similarly get η ∈ X(N) with η ∼i η, and Lemma 1.5 implies
[ξ, η] ∼i [ξ, η]. In particular [ξ, η](x) lies in the image of Txi which is Ex. Since x was
arbitrary, we see that [ξ, η] is a local section of E, which proves the claim.

The Frobenius theorem states that for smooth distributions also the converse is true,
i.e. involutive smooth distributions are integrable. To prepare for this, we recall the
characterization of coordinate vector fields on a smooth manifold, see [AnaMf, Section
2.11]. If there is no risk of confusion, we will write ∂i for the coordinate vector field ∂

∂ui

determined by a chart (U, u). The coordinate vector fields act on a smooth function
f ∈ C∞(M,R) simply via the partial derivatives of the local coordinate representation
f ◦ u−1 of f . Symmetry of the second partials then shows that [∂i, ∂j] = 0 for all i, j.
Indeed, this is all that is special about coordinate vector fields:

Lemma 2.1. Let V be an open subset of a smooth manifold M of dimension n, and
let ξ1, . . . , ξn ∈ X(V ) be local vector fields such that [ξi, ξj] = 0 for all i, j and such that
for each y ∈ V the elements ξ1(y), . . . , ξn(y) ∈ TyM form a basis.

Then for any point x ∈ V there is a chart (U, u) for M with x ∈ U ⊂ V such that
ξi|U = ∂

∂ui
for all i = 1, . . . , n.
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Sketch of proof. (see [AnaMf, Corollary 2.11] for details) Fixing a point x, one

considers the map ϕ(t1, . . . , tn) := (Flξ1t1 ◦ . . .◦Flξntn )(x), which is well defined and smooth
on some open neighborhood W of 0 in Rn. As shown in [AnaMf, Theorem 2.11], van-
ishing of the Lie bracket of two vector fields implies that their flows commute wherever
they are defined. Thus the order of composition of the flows plays no role. Putting Flξiti
to the leftmost place, one easily concludes that ∂ϕ

∂ti
(t) = ξi(ϕ(t)). In particular, Ttϕ is

invertible for all t ∈ W , so shrinking W we may assume that ϕ is a diffeomorphism
from W onto an open neighborhood U of x in M . Putting u := ϕ−1 : U → W the chart
(U, u) does the job. �

2.2. The Frobenius theorem. We are ready to prove the so-called “local version”
of the Frobenius theorem:

Theorem 2.2. Let M be a smooth manifold of dimension n and let E ⊂ TM be a
smooth involutive distribution of rank k. Then for each x ∈M , there exists a local chart
(U, u) for M with x ∈ U such that u(U) = V ×W ⊂ Rn for open subsets V ⊂ Rk and
W ⊂ Rn−k and for each a ∈ W the subset u−1(V × {a}) ⊂ M is an integral manifold
for the distribution E. In particular, any involutive distribution is integrable.

Proof. Choose local smooth sections ξ1, . . . , ξk of E such that {ξ1(x), . . . , ξk(x)}
is a basis for Ex, as well as an arbitrary local chart (Ũ , ũ) with x ∈ Ũ and ũ(x) = 0.
Putting ∂i := ∂

∂ũi
, we consider the local coordinate expressions for the vector fields

ξj. This defines smooth functions f ij : Ũ → R for i = 1, . . . , n and j = 1, . . . , k such

that ξj =
∑

i f
i
j∂i. Consider the n × k-matrix (f ij(y)) for y ∈ Ũ . Since the vectors

ξi(x) are linearly independent, the matrix (f ij(x)) has rank k and hence has k linearly
independent rows. Renumbering the coordinates, we may assume that the first k rows
are linearly independent. Then the top k × k-submatrix has nonzero determinant in x.
By continuity, this is true locally around x, and possibly shrinking Ũ , we may assume
that it holds on all of Ũ .

For y ∈ Ũ let (gij(y)) the k× k-matrix which is inverse to the first k rows of (f ij(y)).

Since the inversion in GL(k,R) is smooth, each of the gij defines a smooth function on

Ũ . For i = 1, . . . , k we now put ηi :=
∑

j g
j
i ξj. These are local smooth sections of E

and since the matrix (gij(y)) is always invertible, their values span Ey for each y ∈ Ũ .
Expanding ηi in the basis ∂` we obtain

(2.1) ηi =
∑

j g
j
i ξj =

∑
j,` g

j
i f

`
j∂` = ∂i +

∑
`>k h

`
i∂`,

for certain smooth functions h`i on Ũ .
We claim that the sections ηi of E satisfy [ηi, ηj] = 0 for all i, j. Since the distribution

E is involutive, we know that [ηi, ηj] is a section of E, so there must be smooth functions
c`ij such that [ηi, ηj] =

∑
` c
`
ijη`. Applying equation (2.1) to the right hand side, we see

that [ηi, ηj] is the sum of
∑k

`=1 c
`
ij∂` and some linear combination of the ∂` for ` > k.

On the other hand, inserting (2.1) for ηi and ηj, we see that that [ηi, ηj] must be a linear
combination of the ∂` for ` > k only. This is only possible if all c`ij vanish identically.

The vectors Txũ · η1(x), . . . , Txũ · ηk(x) generate a k-dimensional subspace in Rn and
changing ũ by some linear isomorphism, we may assume that this is Rk ⊂ Rn. Now we
can find open neighborhoods V in Rk and W ∈ Rn−k of zero such that

ϕ(t1, . . . , tk, a) := (Flη1t1 ◦ . . . ◦ Flηk
tk

)(ũ−1(a))
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makes sense for all t = (t1, . . . , tk) ∈ V and all a ∈ W . As in the proof of Lemma 2.1
we see that ∂ϕ

∂ti
(t, a) = ηi(ϕ(t, a)) for i = 1, . . . , k. On the other hand, ϕ(0, a) = ũ−1(a),

which by construction easily implies that T(0,0)ϕ is invertible. Possibly shrinking V and
W , we may assume that ϕ is a diffeomorphism onto an open neighborhood U of x in
M . But then we have already seen above that ϕ−1(V ×{a}) is an integral submanifold,
so putting u := ϕ−1 we obtain a chart with the required properties. �

Charts of the type constructed in the theorem are called distinguished charts, and the
integral submanifolds u−1(V ×{a}) are called plaques. Now suppose that i : N →M is
an integral submanifold for E and consider the intersection i(N)∩U for a distinguished
chart (U, u). Then i−1(U) is open in N and hence a union of at most countably many
connected components Oα, each of which is open in N . Now by construction the forms
duj for j = k + 1, . . . , n satisfy i∗duj = 0, so by connectedness the functions uj ◦ i are
constant on of the Oα. Thus i(Oα) has to be contained in one plaque P . Now P ⊂ M
is an embedded submanifold and i|Oα : Oα → P is an injective immersion between
manifolds of the same dimension. Thus it is a local diffeomorphism, so i(Oα) is open
in P and hence also an embedded submanifold in M . But this directly shows that the
distinguished charts identify i(N) as an initial submanifold of M .

These considerations in particular show that for two integral submanifolds that
intersect in a point, the intersection is open in both the manifolds. Using this, one
proves that for a point x in M , one can make the union of all connected integral
submanifolds that contain x into a connected initial integral submanifold Bx, see [Lee,
Lemma 19.22]. This is called the leaf through x and by maximality, any connected
integral submanifold that has non-trivial intersection with Bx is contained in Bx.

The leaves associated to an integrable distribution E decomposes M into a union
of k-dimensional initial submanifolds. This decomposition is called the foliation of M
defined by the involutive distribution E. The existence of maximal connected integral
submanifolds for an involutive distribution or the fact that they form a foliation of M is
often referred to as the global version of the Frobenius theorem. See [Michor, Chapter
3] or [Lee, Chapter 19] for more information. Michor’s book also discusses the extension
of the Frobenius theorem to distributions of non-constant rank.

Existence of subgroups and homomorphisms

2.3. Existence of virtual Lie subgroups. As a first application of the Frobenius
theorem, we can show that for a Lie group G with Lie algebra g, any Lie subalgebra
h ⊂ g corresponds to a virtual Lie subgroup of G.

Theorem 2.3. Let G be a Lie group with Lie algebra g and let h ⊂ g be a Lie
subalgebra. Then there is a unique connected virtual Lie subgroup H → G whose tangent
space at the identity is h. This virtual Lie subgroup is an initial submanifold of G.

Proof. For g ∈ G we define Eg := {ξ ∈ TgG : Tgλg−1 · ξ ∈ h}, so E ⊂ TG
corresponds to h ⊂ g under the left trivialization. Choosing a basis {X1, . . . , Xk} of
h, the tangent vectors LX1(g), . . . , LXk(g) form a basis of Eg. Morover, [LXi , LXj ] =
L[Xi,Xj ], which is a section of E since h ⊂ g is a Lie subalgebra. Thus E is a smooth
involutive distribution.

Let Be the leave of the corresponding foliation through e ∈ G. Then this is a
connected initial submanifold of G, so we obtain a manifold B#

e and a smooth map
i : B#

e → G as discussed in Section 1.13. By construction, the distribution E is left
invariant, i.e. for all g, h ∈ G we have Thλg(Eh) = Egh. This implies that for g ∈ G the
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subset λg(Be) coincides with the leaf Bg. If g ∈ Be, then clearly Bg = Be which means
that the subset Be ⊂ G is closed under the multiplication. The equation λg(Be) = Be
also implies that g−1 ∈ Be, so Be ⊂ G is a subgroup. Consequently, the smooth map
µ ◦ (i × i) : B#

e × B#
e → G has values in Be, so from Section 1.13 we know that there

is a smooth map µ# : B#
e × B#

e → B#
e such that µ ◦ (i × i) = i ◦ µ#. By construction

this smooth multiplication makes B#
e into a group, so this is a Lie group and i is a

group homomorphism. Hence we have found a connected virtual Lie subgroup of G
corresponding to h, which is an initial submanifold.

Conversely, suppose that H → G is a connected virtual Lie subgroup such that
TeH = h ⊂ g. Then for g ∈ H we have TgH = Teλg(TeH) = Eg, so H is an integral
submanifold for the distribution E. Since e ∈ H, we see that H must be contained in
Be. On the other hand, H evidently contains exp(h) ⊂ Be. Part (2) of Theorem 1.9
shows that exp(h) generates the connected Lie group Be, so H = Be follows. �

With the help of a result from the structure theory of Lie algebras, we also get a
proof of what is called Lie’s third fundamental theorem. The result on Lie algebras
we need is called Ado’s theorem. It states that any finite dimensional Lie algebra
g admits a representation on a finite dimensional vector space V , which is injective
as a homomorphism g → L(V, V ). (Such representations are usually called faithful.)
Otherwise put, g is isomorphic to a Lie subalgebra of L(V, V ). While Ado’s theorem is
usually considered as difficult, there is a short and fairly simple proof, see [Neretin].

Corollary 2.3 (Lie’s third fundamental theorem). Let g be a finite dimensional
Lie algebra. Then there is a Lie group G with Lie algebra g.

Proof. By Ado’s theorem discussed above, we may view g as a Lie subalgebra of
L(V, V ). By the Theorem, there is a virtual Lie subgroup G → GL(V ) corresponding
to g ⊂ L(V, V ). �

Remark 2.3. (1) The result even says that for a Lie algebra g ⊂ gl(V ), one can
find a Lie group with Lie algebra g as a virtual Lie subgroup of GL(V ). It is not true
however, that any connected finite dimensional Lie group is isomorphic to a virtual Lie
subgroup of some group of the form GL(V ).

(2) There are simpler proofs of Lie’s third fundamental theorem available, see for
example [Knapp, Appendix B], but they all need a certain amount of the structure
theory of Lie algebras.

2.4. Groups with isomorphic Lie algebras. Suppose that ϕ : G → H is a
homomorphism between connected Lie groups such that ϕ′ : g→ h is an isomorphism.
Then Propositions 1.11 and 1.17 tell us that ker(ϕ) is a discrete normal subgroup of G
that is contained in the center Z(G) and that ϕ induces an isomorphism G/ ker(ϕ)→ H.
There is more that we can prove about ϕ, however, and this provides a connection to
(algebraic) topology and in particular to covering maps.

Recall that a continuous map p : E → X between two topological spaces is called
a covering map if and only if each point x ∈ X has an open neighborhood U such
that p−1(U) is a disjoint union of open subsets Vα of E and for each α the restriction
p|Vα : Vα → U is a homeomorphism. Such a subset U is called trivializing for the
covering p. We will mainly deal with the case that E and X are smooth manifolds, p is
smooth, and the restriction of p to each Vα is a diffeomorphism. The standard example
of a covering map (which has this additional property) is the map R → U(1) given by
t 7→ eit.
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Proposition 2.4. Let ϕ : G → H be a smooth homomorphism between connected
Lie groups whose derivative ϕ′ : g → h is a linear isomorphism. Then ϕ : G → H is a
local diffeomorphism and a covering map.

Proof. Differentiating the equation ϕ ◦ λg = λϕ(g) ◦ ϕ we immediately see that
bijectivity of ϕ′ implies bijectivity of Tgϕ, so ϕ is a local diffeomorphism. To prove
that ϕ is a covering map, we may use Proposition 1.17 to replace ϕ : G → H by
p : G→ G/ ker(ϕ). Since ker(ϕ) is discrete, there is an open neighborhood U of e in G
such that U ∩ ker(ϕ) = {e}. By continuity of µ and ν, there is an open neighborhood
V of e in G such that for g, h ∈ V we always have h−1g ∈ U , so in particular V ⊂ U .
Put Vg = ρg(V ) for g ∈ G. Suppose that g, h ∈ V and g1, g2 ∈ ker(ϕ) are such that
gg1 = hg2. Then h−1g = g2g

−1
1 ∈ U ∩ ker(ϕ), so g1 = g2 and g = h. On the one hand,

this shows that p|V : V → p(V ) is bijective. On the other hand, it shows that for g1 6= g2

the subsets Vg1 and Vg2 are disjoint. Hence we see that p−1(p(V )) is the disjoint union
of the open sets Vg for g ∈ ker(ϕ). By construction, the restriction of p to each of the
sets Vg for g ∈ ker(ϕ) is a bijective local diffeomorphism and hence a diffeomorphism.

For an arbitrary element g ∈ G we can now use p(Vg) as a neighborhood of g ker(ϕ)
in G/ ker(ϕ) which is trivializing for p. �

2.5. Covering groups and existence of homomorphisms. We now move to
the question of existence of smooth homomorphisms between Lie groups with prescribed
derivative. One can immediately see that this is not a trivial question: The covering map
t 7→ eit can be viewed as a group homomorphism (R,+) → U(1), whose derivative is
an isomorphism of Lie algebras. There cannot exist a group homomorphism U(1)→ R,
however, whose derivative is the inverse of this isomorphism of Lie algebras. The point
is that the image of such a homomorphism would be a non trivial compact subgroup of
R and such a subgroup does not exist. The problem actually is that the identity on R
does not descend to U(1) ∼= R/Z.

One way out of this problem is to only ask for local homomorphisms.

Definition 2.5. Let G and H be Lie groups. A local homomorphism from G to H
is given by an open neighborhood U of e in G and a smooth map ϕ : U → H such that
ϕ(e) = e and ϕ(gh) = ϕ(g)ϕ(h) whenever g, h, and gh all lie in U .

Note that for a local homomorphism ϕ : G ⊃ U → H one also has ϕ′ : g → h and
the proof of Proposition 1.5 shows that ϕ′ is a homomorphism of Lie algebras.

The other possibility is to restrict to a subclass of groups for which such covering
phenomena are impossible: Via the notion of the fundamental group, covering maps are
closely related to algebraic topology. Recall that a path connected topological space X
is called simply connected, if for any continuous map f : S1 → X there is a continuous
map H : S1× [0, 1]→ X and a point x0 ∈ X such that H(z, 0) = f(z) and H(z, 1) = x0

for all z ∈ S1. This means that any closed continuous curve in X can be continuously
deformed to a constant curve. For example, the spheres Sn are simply connected for
n > 1 but S1 is not simply connected. A fundamental result of algebraic topology says
that if X is a simply connected space and p : E → X is a covering map such that E is
path connected, then p is a homeomorphism.

Using this, we can now state:

Theorem 2.5. Let G and H be Lie groups with Lie algebras g and h and let f :
g → h be a homomorphism of Lie algebras. Then there exists a local homomorphism
ϕ : G ⊃ U → H such that ϕ′ = f . If G is simply connected, then there even is a
homomorphism ϕ : G→ H with this property.
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Proof. Consider the Lie group G × H. From 1.4 we know that its Lie algebra is
g× h with the component-wise operations. Consider the subset k := {(X, f(X)) : X ∈
g} ⊂ g× h, i.e. the graph of the Lie algebra homomorphism f . Since f is a linear map,
this is a linear subspace of g× h, and since f is a homomorphism we get

[(X, f(X)), (Y, f(Y ))] = ([X, Y ], [f(X), f(Y )]) = ([X, Y ], f([X, Y ])).

Thus k is a Lie subalgebra of g×h and by Theorem 2.3 we obtain a virtual Lie subgroup
K → G × H corresponding to k. The two projections define smooth homomorphisms
from G × H to G and H. Restricting the first projection to K, we obtain a smooth
homomorphism π : K → G. By construction π′(X, f(X)) = X, so this is a linear
isomorphism k → g. By Proposition 2.4, π is a covering and a local diffeomorphism
from K onto G0. Take open neighborhoods V and U of e in K respectively G such that
π restricts to a diffeomorphism V → U , and define ϕ : U → H as ϕ := pr2 ◦ (π|V )−1.
Since π is a homomorphism, one immediately concludes that ϕ is a local homomorphism
and by construction ϕ′ is given by X 7→ (X, f(X)) 7→ f(X).

If G is simply connected, then G = G0 and the covering π : K → G must be a
homeomorphism and a local diffeomorphism. Hence π is an isomorphism of Lie groups,
and ϕ := pr2 ◦ π−1 is the required homomorphism. �

2.6. Classification of Lie groups. We can now give a complete description of
all Lie groups which have a given Lie algebra g. This assumes Lie’s third fundamental
theorem from 2.3 for which we have not given a complete proof. Without assuming this
result, we obtain the classification provided that there is at least one Lie group G with
Lie algebra g.

As a background, we need a fundamental result on coverings: In algebraic topology
one shows that for any topological space X which satisfies certain connectedness hy-
potheses (which are satisfied for smooth manifolds), there is a covering map p : X̃ → X
such that X̃ is simply connected. This is called the universal covering of X, and it has
several important properties: On the one hand, for every covering map π : E → X with
path connected E, there is a covering map q : X̃ → E such that p = π ◦ q. Thus the
universal covering covers all connected coverings. This also implies that the universal
covering is uniquely determined up to isomorphism. On the other hand, if Y is a simply
connected space and f : Y → X is a continuous map, then there is a continuous lift
f̃ : Y → X̃ (i.e. p ◦ f̃ = f) which is uniquely determined by its value in one point.

Finally, suppose that we have given a covering map p : E →M of a smooth manifold
M . Let us further suppose that the covering has at most countably many sheets, i.e. for
any open subset U which is trivializing for p, the preimage p−1(U) consists of at most
countably many subsets Vα. Then the fact that M is separable and second countable
implies that E has the same properties. Further we can take an atlas for M consisting of
charts (U, u) such that U ⊂M is trivializing for p. Then we can use u◦p|Vα : Vα → u(U)
as charts for E. This makes E into a smooth manifold in such a way that p is smooth
and p|Vα is a diffeomorphism for each α.

Theorem 2.6. Let g be a finite dimensional Lie algebra. Then there is a unique (up
to isomorphism) simply connected Lie group G̃ with Lie algebra g. Any other Lie group
G with Lie algebra (isomorphic to) g is isomorphic to the quotient of G̃ by a discrete
normal subgroup H ⊂ G̃ which is contained in the center Z(G̃).

Proof. By Theorem 2.3 there is a connected Lie group G with Lie algebra g.
From above we know that there is a covering map p : G̃ → G such that G̃ is simply
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connected. Further, we can make G̃ into a smooth manifold in such a way that p is a
local diffeomorphism. Fix an element ẽ ∈ G̃ such that p(ẽ) = e.

Since G̃ is simply connected, so is G̃ × G̃. For the continuous map µ ◦ (p × p) :
G̃ × G̃ → G we therefore find a unique continuous lift µ̃ : G̃ × G̃ → G̃ such that
µ̃(ẽ, ẽ) = ẽ. Likewise, there is a unique lift ν̃ : G̃ → G̃ of ν ◦ p : G̃ → G such that
ν̃(ẽ) = ẽ. Restricting to small open subsets, one easily shows that smoothness of µ and
ν implies smoothness of µ̃ and ν̃. Now µ̃ ◦ (id×µ̃) and µ̃ ◦ (µ̃ × id) lift the same map
G̃ × G̃ × G̃ → G, and have the same value on (ẽ, ẽ, ẽ). Hence this two maps coincide
which means that µ̃ defines an associative multiplication on G̃. The other group axioms
are verified similarly to show that (G̃, µ̃, ν̃) is a Lie group.

If Ĝ is any connected Lie group with Lie algebra (isomorphic to) g, then by Theorem

2.5 there is a homomorphism ϕ : G̃ → Ĝ whose derivative is the identity (respectively
the given isomorphism). By Proposition 2.4, ϕ is a covering map and induces an isomor-

phism between Ĝ and a quotient of G̃ as required. Finally, if Ĝ also is simply connected,
then the local diffeomorphism ϕ must be a homeomorphism and thus an isomorphism
of Lie groups. �

Example 2.6. (1) We have noted in the end of 1.18 that SU(2) is diffeomorphic
to S3 and that there is a fibration SU(n) → S2n−1 with fiber SU(n − 1) for n ≥ 3.
Thus SU(2) is simply connected and the long exact homotopy sequence of the fibration
inductively implies that SU(n) is simply connected for all n ≥ 2. Thus we have found
the simply connected Lie group with Lie algebra su(n).

To determine how many Lie groups with Lie algebra su(n) exist, it therefore remains
to determine the center of SU(n). If A and B are commuting matrices in SU(n), then
A must map any eigenspace of B to itself. Given any complex line ` ⊂ Cn, we can
choose an orthogonal line ˜̀, and consider the map B which acts by multiplication by
i on ` by multiplication by −i on ˜̀ and as the identity on (` ⊕ ˜̀)⊥. This defines an
element of SU(n), so we see that any A ∈ Z(SU(n)) must map the line ` to itself. Since
this works for any line `, any A ∈ Z(SU(n)) must be a complex multiple of the identity.
Since det(z id) = zn, we see that Z(SU(n)) is isomorphic to the group Zn of nth roots
of unity. Hence connected Lie groups with Lie algebra su(n) correspond to subgroups
of Zn and hence to natural numbers dividing n.

As a specific example, consider SU(2) ∼= S3. Since Z(SU(2)) ∼= Z2, there are
(up to isomorphism) only two Lie groups with Lie algebra su(2), namely SU(2) and
SU(2)/{± id}. It turns out that the latter group is isomorphic to SO(3) and the
isomorphism is induced by the adjoint representation Ad : SU(2) → GL(su(2)) ∼=
GL(3,R).

(2) For the group SO(n) with n ≥ 3 the situation is a bit more complicated. We
have noted above the the universal covering of SO(3) is SU(2) and the kernel of the
covering homomorphism is a two element subgroup. This shows that the fundamental
group of SO(3) is isomorphic to Z2 and using the fibration SO(n) → Sn−1 with fiber
SO(n− 1) constructed in 1.18 one shows that the same is true for SO(n) with n ≥ 4.

The simply connected Lie group with Lie algebra so(n) is called the spin group
Spin(n). There is always a covering homomorphism Spin(n) → SO(n) with kernel Z2.
The spin groups play an important role in various parts of differential geometry and
theoretical physics. For n ≤ 6, the spin groups are isomorphic to other classical Lie
groups, but for n > 6 one needs an independent construction using Clifford algebras.

Similarly as in (1), one shows that the center of SO(n) can only consist of multiples
of the identity, so it is trivial for odd n and isomorphic to Z2 for even n. Hence for odd
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n, any Lie group with Lie algebra so(n) is isomorphic to Spin(n) or to SO(n). For even
n, the center of Spin(n) has four elements, and it is either Z4 or Z2 × Z2 depending on
whether n is a multiple of 4 or not. Hence there are either three or four connected Lie
groups with Lie algebra so(n) for even n.

Maurer–Cartan form and fundamental theorem of calculus

We will next discuss an analog of basic calculus for functions with values in a Lie
group. A central role in these considerations is played by the Maurer–Cartan form,
which is an alternative way to view the left trivialization of the tangent bundle of a Lie
group.

2.7. The Maurer–Cartan form. Several elements of the usual theory of differen-
tial forms easily generalize to forms with values in a finite dimensional vector space V .
Given a smooth manifold M , one defines a V -valued k-form as a map ϕ which associates
to each x ∈ M a k-linear, alternating map ϕ(x) : (TxM)k → V . This map is required
to be smooth in the obvious sense, i.e. for vector fields ξ1, . . . , ξk on M the function
ϕ(ξ1, . . . , ξk) : M → V should be smooth. The space of all V -valued k-forms is denoted
by Ωk(M,V ). It is a vector space and a module over C∞(M,R) under pointwise oper-
ations. The usual proof (see [AnaMf, Lemma 3.3]) shows that elements of Ωk(M,V )
can be characterized as those k-linear, alternating maps X(M)k → C∞(M,V ) which
are linear over C∞(M,R) in one (and hence in any) entry. Next, for a smooth map
f : M → N and a form ϕ ∈ Ωk(N, V ), one defines f ∗ϕ ∈ Ωk(M,V ) by

(f ∗ϕ)(x)(ξ1, . . . , ξk) := ϕ(f(x))(Txf · ξ1, . . . , Txf · ξk).
The exterior derivative generalizes to an operator d : Ωk(M,V ) → Ωk+1(M,V ):

Choosing a baisis {vi} for V , we can write ϕ ∈ Ωk(M,V ) as ϕ =
∑
ϕivi with ϕi ∈ Ωk(M)

and then define dϕ :=
∑

(dϕi)vi. One immediately verifies that this is independent of
the choice of the basis. Standard properties of the exterior derivative then imply that
the identities d(f ∗ϕ) = f ∗(dϕ) and d2 = d ◦ d = 0 generalize to V -valued forms. Recall
further that the action of vector fields on real-valued functions generalizes to V -valued
functions (again by decomposing with respect to a basis), see [AnaMf, Section 2.2].
Hence the construction implies that the “global formula” for the exterior derivative
(formula (3.17) in [AnaMf]) continues to hold for V -valued forms. In particular, for
ϕ ∈ Ω1(M,V ) and ξ0, ξ1 ∈ X(M), we have

(2.2) dϕ(ξ0, ξ1) = ξ0 · ϕ(ξ1)− ξ1 · ϕ(ξ0)− ϕ([ξ0, ξ1]).

Now let G be a Lie group. Then from 1.3 we know the left trivialization TG→ G×g
of the tangent bundle of G. We can reformulate this as a canonical g-valued one form,
which is called the (left) Maurer Cartan form:

Definition 2.7. Let G be a Lie Group with Lie algebra g. Then we define the left
Maurer Cartan form ω ∈ Ω1(G, g) by ω(g)(ξ) := Tgλg−1 · ξ.

It follows immediately from 1.3 that ω is indeed smooth. The basic properties of
the Maurer–Cartan form are now easy to prove:

Proposition 2.7. For any Lie group G with Lie algebra g, the left Maurer–Cartan
form ω ∈ Ω1(G, g) has the following properties:

(1) (λg)
∗ω = ω for all g ∈ G.

(2) (ρg)∗ω = Ad(g−1) ◦ ω for all g ∈ G.
(3) For the left invariant vector field LX generated by X ∈ g, we have ω(LX) = X.
(4) For each g ∈ G, the map ω(g) : TgG→ g is a linear isomorphism.
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(5) (“Maurer–Cartan equation”) For vector fields ξ, η ∈ X(G) we have

dω(ξ, η) + [ω(ξ), ω(η)] = 0,

where the bracket is in g.

Proof. By definition, ω(h) = Thλh−1 , which implies (3) and (4). Next,

((λg)
∗ω)(h) = ω(gh) ◦ Thλg = Thλh−1 ◦ Tghλg−1 ◦ Thλg = ω(h),

and (1) follows. Likewise,

((ρg)∗ω)(h) = ω(hg) ◦ Thρg = Tgλg−1 ◦ Thgλh−1 ◦ Thρg = Tgλg−1 ◦ Teρg ◦ Thλh−1 ,

and (2) follows since Tgλg−1 ◦ Teρg = Ad(g−1).
For part (5), we observe that the value of dω(ξ, η) + [ω(ξ), ω(η)] in a point g ∈ G

depends only on ξ(g) and η(g). Since the values of left invariant vector fields span each
tangent space, it suffices to check the equation for ξ = LX and η = LY for X, Y ∈ g.
But then since ω(LX) and ω(LY ) are constant, formula (2.2) implies that

dω(LX , LY ) = −ω([LX , LY ]) = −ω(L[X,Y ]) = −[X, Y ],

and the result follows. �

2.8. The left logarithmic derivative. Now we can generalize calculus to func-
tions with values in a Lie group:

Definition 2.8. Let G be a Lie group with Lie algebra g, let M be a smooth
manifold and f : M → G a smooth function. Then the left logarithmic derivative or
the Darboux derivative δf ∈ Ω1(M, g) is defined by δf(x)(ξ) = Tf(x)λ(f(x))−1 · Txf · ξ ∈
TeG = g for x ∈ M and ξ ∈ TxM . Equivalently, δf := f ∗ω, where ω ∈ Ω1(G, g) is the
left Maurer Cartan form of G.

One may think of the left logarithmic derivative as an analog of the exterior deriva-
tive d : C∞(M,R)→ Ω1(M) for smooth real valued functions. The name logarithmic de-
rivative comes from the special case of the Lie group (R>0, ·): Suppose that f : M → R>0

is smooth. Viewing f as a real valued function, we have df ∈ Ω1(M), which is given by
df(x)(ξ) = Txf · ξ ∈ Tf(x)R = R. Since left translations in R>0 are (the restrictions of)
linear maps, we see from the explicit formula that δf ∈ Ω1(M,R) = Ω1(M) is given by
δf(x)(ξ) = 1

f(x)
Txf · ξ and hence δf = df

f
= d(log(f)).

It is easy to prove some basic properties of the logarithmic derivative:

Proposition 2.8. Let G be a Lie group with Lie algebra g and let f, g : M → G be
smooth functions.

(1) For the pointwise product of f and g we have

δ(fg)(x) = δg(x) + Ad(g(x)−1)(δf(x)).

(2) For the pointwise inverse ν ◦ f we obtain

δ(ν ◦ f)(x) = −Ad(f(x))(δf(x)).

Proof. (1) The pointwise product is given by µ◦(f, g), so by Lemma 1.2 we obtain

Tx(fg) = Tg(x)λf(x) ◦ Txg + Tf(x)ρ
g(x) ◦ Txf.

To obtain δ(fg)(x), we have to compose this from the left with Tf(x)g(x)λg(x)−1f(x)−1 .
For the first summand, this simply gives Tg(x)λg(x)−1 ◦ Txg = δg(x). In the second
summand, we can commute the right translation with the left translation to obtain
Ad(g(x)−1) ◦ Tf(x)λf(x)−1 ◦ Txf = Ad(g(x)−1) ◦ δf(x).

(2) This immediately follows from (1) using that δ(f(ν ◦ f)) = δ(e) = 0. �



MAURER–CARTAN FORM AND FUNDAMENTAL THEOREM OF CALCULUS 35

One can explicitly compute the logarithmic derivative of the exponential mapping
exp : g→ G, see [Michor, 4.27]. This can be used to characterize the elements X ∈ g
for which TX exp is invertible, and hence exp is a local diffeomorphism around X. This
is the case if and only if no eigenvalue of ad(X) : g → g is of the form 2πik for
some k ∈ Z. Finally, the computation of δ exp also leads to a proof for the Baker–
Campbell–Hausdorff formula, which locally around (0, 0) ∈ g × g computes the map
(X, Y ) 7→ exp−1(exp(X) exp(Y )), see [Michor, 4.29]. The remarkable fact about this
formula is that it only involves iterated Lie brackets of X and Y , so it shows that the
Lie bracket determines the multiplication on an open neighborhood of e in G.

2.9. The fundamental theorem of calculus. To finish this chapter, we want
to prove a characterization of the elements of Ω1(M, g) which are of the form δf for a
smooth function f : M → G. This generalizes the fundamental theorem of one-variable
calculus.

We first observe that there is a simple necessary condition for solvability of the
equation δf = ϕ for given ϕ ∈ Ω1(M, g). By definition, δf = f ∗ω, and hence dδf =
f ∗dω. Using this, we compute

dδf(ξ, η) + [δf(ξ), δf(η)] = dω(Txf · ξ, Txf · η) + [ω(Txf · ξ), ω(Txf · η)],

so this vanishes by the Maurer–Cartan equation, see Theorem 2.7. Hence we see that
ϕ has to satisfy the Maurer Cartan equation in order that it can be of the form δf . As
we shall see below, this locally is the only restriction on ϕ.

Before we can prove our main result, we need a criterion for the involutivity of
certain distributions which is often useful.

Lemma 2.9. Let M be a smooth manifold and let E ⊂ TM be a smooth distribution.
Suppose that there is a one form ϕ on M with values in a finite dimensional vector space
V such that Ex = ker(ϕ(x)) for all x ∈M .

Then E is involutive if and only if dϕ(ξ, η) = 0 for all vector fields ξ, η ∈ X(M)
such that ϕ(ξ) = ϕ(η) = 0.

Proof. By definition, a vector field ξ is a section of E if and only if ϕ(ξ) = 0.
For such sections ξ and η, we then have dϕ(ξ, η) = −ϕ([ξ, η]) by formula (2.2), so this
vanishes if and only if [ξ, η] is a section of E. �

Using this, we can now prove:

Theorem 2.9. Let G be a Lie group with Lie algebra g and let M be a connected
smooth manifold.

(1) Let f1, f2 : M → G be smooth maps such that δf1 = δf2 ∈ Ω1(M, g). Then there
is an element g ∈ G such that f2 = λg ◦ f1.

(2) Let ϕ ∈ Ω1(M, g) be a form which satisfies the Maurer–Cartan equation 0 =
dϕ(ξ, η) + [ϕ(ξ), ϕ(η)] for all ξ, η ∈ X(M). Then for each point x ∈M there is an open
subset U ⊂M with x ∈ U and a smooth function f : U → G such that δf = ϕ|U .

Proof. (1) Consider the function h := f1(ν ◦ f2) : M → G. By Proposition 2.8 we
obtain

δh(x) = δ(ν ◦ f2)(x) + Ad(f2(x)) ◦ δf1(x) = Ad(f2(x))(δf1(x)− δf2(x)) = 0.

Since the Maurer–Cartan form is injective in each point, this implies that Txh = 0 for
all x ∈ M . Since M is connected, h must be constantly equal to some element g ∈ G,
and by definition this means f1(x) = gf2(x) for all x ∈M .
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(2) Consider the product M × G and the distribution E ⊂ TM × TG defined by
E(x,g) = {(ξ, η) : ϕ(x)(ξ) = ω(g)(η)}. For a chart on M with coordinate vector fields ∂i
we obtain smooth sections (x, g) 7→ (∂i(x), Lϕ(∂i(x))(g)) of E. For (ξ, η) ∈ E, we must
have η = Lϕ(ξ)(g), so we see that these sections form a basis of E wherever they are
defined. Hence E is a smooth distribution of rank dim(M). Moreover, we can define
Ω ∈ Ω1(M × G, g) by Ω(ξ, η) = ϕ(ξ) − ω(η), and then evidently E(x,g) = ker(Ω(x, g)).
Otherwise put, Ω = pr∗1ϕ− pr∗2ω. Therefore, dΩ = pr∗1dϕ− pr∗2dω, which means that

dΩ((ξ1, η1), (ξ2, η2)) = dϕ(ξ1, ξ2)− dω(η1, η2).

Since both ϕ and ω satisfy the Maurer–Cartan equation, this vanishes if Ω(ξ1, η1) =
Ω(ξ2, η2) = 0.

By Lemma 2.9, the distribution E is integrable, and for x ∈ M we consider the
leaf B(x,e) of the corresponding foliation. Restricting the projections we obtain smooth
maps from B(x,e) to M and G. By construction the first projection induces a linear
isomorphism E(x,e) → TxM , so the first projection restricts to a local diffeomorphism
around (x, e). Hence we find an open neighborhood U of x in M and a smooth map α :
U → B(x,e) which is inverse to the first projection. Composing this with the restriction
of the second projection, we obtain a smooth map f : U → G. Evidently, its tangent
maps have to have the form ξ 7→ (ξ, η) 7→ η, where (ξ, η) is the unique element of E with
first component ξ. But this implies that ω(η) = ϕ(ξ) and hence δf = f ∗ω = ϕ. �

Remark 2.9. (1) From this theorem one easily deduces a global result for I = [a, b].
Since this is one-dimensional, any g-valued one form on I satisfies the Maurer–Cartan
equation, so any ϕ ∈ Ω1(I, g) is of the form δf for a smooth f : I → G. Specializing
to G = (R,+) this give the usual fundamental theorem of calculus, namely existence of
an anti-derivative which is unique up to an additive constant.

(2) There is also a global version of the theorem. Given a form ϕ ∈ Ω1(M, g), which
satisfies the Maurer–Cartan equation, one first defines the monodromy of ϕ. Fix a
point x0 ∈M and consider a smooth closed curve c : [0, 1]→M with c(0) = c(1) = x0.
From part (1) of this remark, we see that there is a unique smooth curve c̃ in G with
c̃(0) = e such that δc̃ = c∗ϕ, and we consider c̃(1) ∈ G. It turns out that (since ϕ
satisfies the Maurer–Cartan equation) for homotopic curves one obtains the same result
and this induces a homomorphism from the fundamental group of M to G, called the
monodromy representation. Existence of a global smooth function f : M → G with
δf = ϕ is then equivalent to the fact that the monodromy representation is trivial, see
[Sharpe, 3.§7] for more details.

(3) This theorem gives us an alternative proof for the existence of local homomor-
phisms with prescribed derivative: Suppose that G and H are Lie groups with Lie
algebras g and h and that α : g→ h is a homomorphism of Lie algebras. Then for the
Maurer Cartan form ωG of G, we can consider α ◦ ωG ∈ Ω1(G, h). Since α is a homo-
morphism, one easily shows that this satisfies the Maurer–Cartan equation, so there is
an open neighborhood U of e in G and a smooth map f : U → H such that f(e) = e
and δf = α ◦ ωG. For g ∈ U , one then considers f ◦ λg : λ−1

g (U) ∩ U → H. One easily
verifies that this has the same logarithmic derivative as f , so it must be of the form
λh ◦ f . Looking at the values at e, we see that h = f(g), so f is a local homomorphism.

One can also deduce existence of virtual Lie subgroups from the theorem, see
[Sharpe, 3., Exercise 6.3].



CHAPTER 3

Compact Lie groups and representation theory

In this chapter we study compact Lie groups. A good part of the results is based on
special properties of representations of compact Lie groups, so we have to develop the
basics of representation theory on the way.

Basic representation theory

Representation theory is one of the fundamental parts of the theory of Lie groups and
Lie algebras. Applying the theory to the adjoint representation also leads to structure
theory for Lie algebras and Lie groups.

3.1. Representations of Lie groups. We have already met the notion of a repre-
sentation of a Lie group G on a finite dimensional vector space V in 1.10. Equivalently
to the definition as a smooth homomorphism G→ GL(V ) used there, one can also view
a representation of G on V as a smooth left action (see 1.15) ` : G× V → V such that
for each g ∈ G the map `g : V → V is linear. By a complex representation we mean
a representation on a complex vector space such that each of the maps `g is complex
linear. As in the case of actions, we will often denote representations by (g, v) 7→ g · v.

Given representations of G on V and W , a linear map f : V → W is called a
morphism or G–equivariant if f(g · v) = g · f(v) for all g ∈ G. An isomorphism
of representations is a G–equivariant linear isomorphism f : V → W . If such an
isomorphism exists, then we say that V and W are isomorphic and write V ∼= W .

Suppose that we have given representations of G on V1 and V2. Then there is an
obvious representation on V1⊕V2 defined by g ·(v1, v2) := (g ·v1, g ·v2). This construction
is referred to as the direct sum of representations. Of course, the natural inclusion of
the two summands into V1 ⊕ V2 are G–equivariant. A representation V of G is called
decomposable if it is isomorphic to a direct sum V1 ⊕ V2 with dim(V1), dim(V2) > 0. If
this is not the case, then the representation is called indecomposable.

Let V be a representation of G. A linear subspace W ⊂ V is called G–invariant
or a subrepresentation if g · w ∈ W for all g ∈ G and w ∈ W . In that case, we
obtain representations of G on W and on V/W , defined by restriction respectively by
g · (v + W ) := (g · v) + W . For any representation of G on V , the subspaces {0}
and V of V are evidently invariant. If these are the only invariant subspaces then the
representation is called irreducible. Parts (2) and (3) of the following lemma, which are
known as Schur’s lemma, show that irreducible representations have nice properties.

Lemma 3.1. Let V and W be representations of G and let ϕ : V → W be a
morphism.
(1) ker(ϕ) ⊂ V and im(ϕ) ⊂ W are G–invariant subspaces and ϕ induces an isomor-
phism V/ ker(ϕ)→ im(ϕ) of representations.
(2) If V and W are irreducible, then ϕ is either zero or an isomorphism.
(3) If V is a complex irreducible representation and W = V , then ϕ is a complex multiple
of the identity.

37
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Proof. (1) is evident from the definitions.
(2) Since V is irreducible, we must have ker(ϕ) = V and hence ϕ = 0, or ker(ϕ) = {0}.
In the second case, im(ϕ) 6= {0} and hence im(ϕ) = W by irreducibility of W . Then ϕ
is an isomorphism by (1).
(3) Since V is complex and ϕ : V → V is complex linear, it must have at least one
eigenvalue. The corresponding eigenspace is immediately seen to be G–invariant and
thus must equal V by irreducibility. �

As a simple consequence we get a result on irreducible representations of commuta-
tive groups:

Corollary 3.1. Let G be a commutative Lie group. Then each complex irreducible
representation of G has dimension 1.

Proof. By commutativity, `g ◦ `h = `h ◦ `g for all g, h ∈ G. This means that
each of the maps `h is G–equivariant, and hence a multiple of the identity by part (3)
of the theorem. Hence any subspace of the representation space V is G–invariant, so
irreducibility is only possible if dim(V ) = 1. �

Example 3.1. We want to show that there is a big difference between indecompos-
able and irreducible representations in general. Let Bn ⊂ GL(n,R) be the subgroup of
invertible upper triangular matrices. Since this subgroup is evidently closed, it is a Lie
subgroup by Theorem 1.11, and its Lie algebra bn is the space of all upper triangular
matrices.

The inclusion Bn ↪→ GL(n,R) defines a representation of Bn on Rn. For each
k = 1, . . . , n − 1 the subspace Rk ⊂ Rn spanned by the first k vectors in the standard
basis of Rn is clearly Bn–invariant. In particular, this representation is not irreducible
for n > 1. We claim however, that these are the only invariant subspaces. Suppose that
x = (x1, . . . , xn) ∈ Rn is a nonzero element such that for some k we have xk 6= 0 but
xk+1 = · · · = xn = 0. We will show that any Bn–invariant subspace V which contains x
must also contain Rk ⊂ Rn, which implies the claim. Indeed, one immediately constructs
a matrix A ∈ Bn such that Ax = ek, the kth vector in the standard basis, so ek ∈ V .
But for i = 1, . . . , k − 1, there obviously is a matrix Ai ∈ Bn such that Aek = ei − ek,
so the result follows. In particular we see that two nonzero invariant subspaces of Rn

always have nonzero intersection, so Rn is indecomposable as a representation of Bn.
Indeed, it can be shown that irreducible representations of Bn are automatically

one–dimensional, and the action of elements of Bn on such a representation is only via
the diagonal entries.

To obtain decomposability of a representation, one does not only need a nontrivial
invariant subspace but also a complementary subspace, which is invariant, too. A
representation of G is called completely reducible if any G–invariant subspace W ⊂
V admits a G–invariant complement. If this is the case, then V is a direct sum of
irreducible subrepresentations. Indeed, if V does not admit a non–trivial invariant
subspace, then V itself is irreducible. If W ⊂ V is a non–trivial invariant subspace,
then there is an invariant subspace W ′ such that V = W ⊕W ′. Since both W and W ′

have smaller dimension than V , the claim now follows by induction.
While complete reducibility is very difficult to verify in general, there is a simple

condition on a representation, which ensures complete reducibility: A representation
of G on V is called unitary, if there is a positive definite inner product 〈 , 〉 on V
(Hermitian if V is complex) which is G–invariant in the sense that 〈g · v, g ·w〉 = 〈v, w〉
for all g ∈ G and v, w ∈ V .
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Proposition 3.1. Any unitary representation is completely reducible.

Proof. For any subspace W ⊂ V , the orthocomplement W⊥ ⊂ V is a complemen-
tary subspace. Thus it suffices to show that W⊥ is G–invariant if W is G–invariant.
For g ∈ G, v ∈ W⊥ and w ∈ W we compute

〈g · v, w〉 = 〈g−1 · g · v, g−1 · w〉 = 〈v, g−1 · w〉 = 0

since g−1 · w ∈ W . By definition, this means that g · v ∈ W⊥. �

3.2. Representations of Lie algebras. We have met the concept of a represen-
tation of a Lie algebra g on a finite dimensional vector space V in 1.10. Such a repre-
sentation can be either viewed as a homomorphism g→ L(V, V ) (where the bracket on
L(V, V ) is given by the commutator of linear maps) or as a bilinear map g × V → V
with an evident compatibility condition with the bracket. If the actual representation
is clear from the context, we will denote it by (X, v) 7→ X · v.

The concepts of morphisms, isomorphisms, direct sums, invariant subspaces and
quotients, indecomposability, irreducibility, and complete reducibility from 3.1 carry
over to representations of Lie algebras without any change. Also, Lemma 3.1 continues
to hold with the same proof.

The only notion which changes is the one of unitarity. From 1.12 it is clear that
the right notion of unitarity is that V admits an inner product with respect to which
any element of g acts by a skew symmetric (respectively skew Hermitian in the complex
case) linear map. Then it is evident that the orthocomplement of a g–invariant subspace
is g–invariant, too, so unitary representations are again completely reducible.

For a Lie group G with Lie algebra g and a representation ϕ : G → GL(V ), we
obtain the associated infinitesimal representation ϕ′ : g→ L(V, V ). From Theorem 1.9
we see that for X ∈ g we have ϕ(exp(tX)) = exp(tϕ′(X)). Since evaluation in v ∈ V
is a linear map, we conclude that we can compute the infinitesimal representation as
X · v = d

dt
|t=0 exp(tX) · v. If G is connected, then there is a perfect correspondence

between all concepts for the two representations introduced so far:

Proposition 3.2. Let G be a connected Lie group with Lie algebra g and let ϕ :
G→ GL(V ) be a finite dimensional representation with derivative ϕ′ : g→ L(V, V ).
(1) A subspace W ⊂ V is G–invariant if and only if it is g–invariant. In particular, V
is indecomposable, irreducible, or completely reducible as a representation of G if and
only if it has the same property as a representation of g.
(2) V is unitary as a representation of G if and only if it is unitary as a representation
of g.

Proof. (1) Suppose that W ⊂ V is G–invariant. Then for X ∈ g and w ∈ W the
smooth curve t 7→ exp(tX) ·w has values in W . Hence its derivative X ·w in t = 0 lies
in W , too.

Conversely, assume that W is g–invariant. By Theorem 1.9 we have ϕ(exp(X)) =
eϕ
′(X) =

∑∞
k=0

1
k!
ϕ′(X)k. Since ϕ′(X)(W ) ⊂ W , the same holds for ϕ′(X)k, and since

linear subspaces in finite dimensional vector spaces are automatically closed, we see that
ϕ(exp(X)) maps W to itself. Hence W is invariant under that action of all elements of
exp(g) ⊂ G and thus also under the elements of the subgroup of G generated by this
subset. Now the result follows from Theorem 1.9.
(2) If ϕ is unitary, then it has values in O(V ) respectively U(V ). Then ϕ′ has values
in o(V ) respectively u(V ), so it is unitary, too. Conversely, if ϕ′ has values in o(V )
respectively u(V ), then ϕ(exp(X)) = exp(ϕ′(X)) for X ∈ g shows that ϕ maps exp(g)
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to O(V ) respectively U(V ). Then the same is true for the subgroup generated by
exp(g). �

3.3. Some structure theory. We can next apply the ideas of representation the-
ory to the adjoint representation ad : g→ L(g, g) of a Lie algebra g. A subspace h ⊂ g
by definition is g–invariant if and only if [X, Y ] ∈ h for all X ∈ g and Y ∈ h, i.e. if
and only if h is an ideal in g. We have met the direct sum of Lie algebras in 1.4. If
g = h′ ⊕ h′′, then by definition h′ and h′′ are ideals in g. Hence indecomposability of
the adjoint representation exactly means that g is not a direct sum of two non–trivial
ideals.

A Lie algebra g is called simple if dim(g) > 1 and g does not have any ideals except
{0} and g. It is called semisimple if it is a direct sum of simple ideals. Finally, g is
called reductive if any ideal in g admits a complementary ideal, i.e. if the adjoint repre-
sentation is completely reducible. One defines a Lie group G to be simple, semisimple,
or reductive, if its Lie algebra g has that property.

We can now easily clarify some basic properties of these kinds of Lie algebras. For
this, we need two more definitions: Let g be any Lie algebra. Then we define the center
of g to z(g) := {X ∈ g : [X, Y ] = 0 ∀Y ∈ g}. Further, we define the derived subalgebra
[g, g] ⊂ g as the subspace of g spanned by all elements of the form [X, Y ] with X, Y ∈ g.
A moment of thought shows that both z(g) and [g, g] are ideals in g and clearly z(g) is
Abelian.

Theorem 3.3. (1) If g is semisimple then z(g) = {0} and [g, g] = g. Moreover, if
g = g1⊕· · ·⊕ gk is a decomposition into a direct sum of simple ideals, then any ideal in
g is the sum of some of the gi. In particular, g does not have a nonzero Abelian ideal.
(2) If g is reductive then g = z(g)⊕ [g, g], and [g, g] is semisimple.

Proof. (1) In an Abelian Lie algebra, every linear subspace is an ideal. Now for a
simple Lie algebra g, we must by definition have dim(g) > 1, so g cannot be Abelian.
This implies that z(g) 6= g and hence z(g) = {0}, and [g, g] 6= {0} and hence [g, g] = g
in the simple case.

Next, suppose that g is semisimple and that g = g1⊕· · ·⊕gk is a decomposition into
a direct sum of simple ideals. Then [gi, gi] = gi for all i immediately implies [g, g] = g.
On the other hand, suppose that h ⊂ g is an ideal. Then h ∩ gi is an ideal in gi for
each i. Since gi is simple we must have either h∩ gi = {0} or h∩ gi = gi. Suppose that
h∩ gi = {0} and that X ∈ h decomposes as X = X1 + · · ·+Xk with Xj ∈ gj. Then for
any Yi ∈ gi we get [X, Yi] ∈ h ∩ gi (since both subsets are ideals) so [X, Yi] = 0 for any
Yi. But by definition [X, Yi] = [Xi, Yi], so Xi ∈ z(gi) = {0}. This shows that h is the
sum of those gj for which h ∩ gj = gj. In particular, a semisimple Lie algebra does not
have non–trivial Abelian ideals and hence z(g) = {0}.
(2) Since g is reductive, there is an ideal h ⊂ g such that g = z(g) ⊕ h. It is an easy
exercise to verify that any ideal in a reductive Lie algebra is reductive, too. Inductively,
we can decompose h as h1 ⊕ · · · ⊕ hk, such that each hi does not admit any nontrivial
ideals. But this means that hi either is simple or one–dimensional. In the latter case,
one immediately concludes that hi ⊂ z(g) which is a contradiction. This shows that h
is semisimple and hence [h, h] = h and hence [g, g] ⊃ h. Since the other inclusion is
obvious, the result follows. �

Remark 3.3. (1) The proposition shows that semisimple Lie algebras are automat-
ically reductive. On the other hand, we see that to understand reductive (and hence
also semisimple) Lie algebras, it suffices to understand the simple ones. It turns out
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that simple real and complex Lie algebras can be completely classified using linear al-
gebra. In the complex case, there are the so–called classical series consisting of the Lie
algebra sl(n,C), so(n,C), and sp(n,C), plus five exceptional simple Lie algebras, see
[Cap:Liealg, chapter 3]. In the real case, the classification is more complicated but
still manageable, see e.g. [Knapp].
(2) The opposite end of the spectrum of Lie algebras to the ones discussed here is
formed by solvable Lie algebras. For a Lie algebra g, we define g(1) := g, g(2) := [g, g],
and inductively, g(i+1) = [g(i), g(i)]. Then one obtains the derived series of g, namely
g ⊃ g(2) ⊃ · · · ⊃ g(i) ⊃ g(i+1) ⊃ . . . , and g is called solvable if g(k) = {0} for some k.
The typical example of a solvable Lie algebra is the Lie algebra bn of upper triangular
matrices, see 3.1.

From the proposition we see that for a semisimple Lie algebra g we have g(i) = g
for all i, and hence the classes of semisimple and solvable Lie algebras are disjoint.
Likewise, the classes of reductive and solvable Lie algebras intersect only in the Abelian
ones.
(3) The property we have used as the definition of semisimplicity is usually viewed as
the result of a theorem. The usual definition (which is equivalent) is that g does not
contain a non–trivial solvable ideal, see [Cap:Liealg, chapter 2].

The following result leads to many examples of reductive and semisimple Lie alge-
bras:

Proposition 3.3. Let g ⊂Mn(R) be a Lie subalgebra which is closed under forming
the transpose of matrices. Then g is reductive.

Proof. One immediately verifies that 〈X, Y 〉 := tr(XY t) is the standard inner

product on Mn(R) ∼= Rn2
and hence restricts to a positive definite inner product on g.

We claim that for an ideal h ⊂ g also the orthocomplement h⊥ is an ideal, which proves
the result. Suppose that X ∈ h⊥ and Y ∈ g. Then for Z ∈ h we compute

〈[X, Y ], Z〉 = tr(XY Zt − Y XZt) = tr(X(Y Zt − ZtY )) =

= tr(X(ZY t − Y tZ)t) = −〈X, [Y t, Z]〉,

which vanishes since Y t ∈ g and hence [Y t, Z] ∈ h. �

This immediately shows that gl(n,R), sl(n,R), o(n), and o(p, q) are reductive Lie
algebras. It is elementary to show that the center of gl(n,R) consists of all multiples
of the identity matrix, while for sl(n,R) with n ≥ 2 and o(p, q) with p + q ≥ 3 the
center is trivial and hence these algebras are semisimple. Indeed, except for o(p, q) with
p+ q = 4, they are even simple.

3.4. Compact groups. The first fundamental result about compact groups that
we can prove is that their representations are automatically completely reducible, which
also has strong consequences on their structure. This needs some background on inte-
gration.

First we observe that any Lie group G is an orientable manifold, see Section 4.3 of
[AnaMf]. Indeed, to define a compatible orientation on each tangent space, choose a ba-
sis {X1, . . . , Xn} of the Lie algebra g of G and then define the basis {LX1(g), . . . , LXn(g)}
of TgG to be positively oriented for each g ∈ G. Recall further that the right objects
for integration on n–dimensional oriented manifolds are n–forms, see Section 4.4 of
[AnaMf]. An n–form ϕ ∈ Ωn(M) smoothly assigns to each x ∈ M an n–linear, alter-
nating map ϕ(x) : (TxM)n → R. In local coordinates, such an n–form is determined by
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one smooth function, and integration is defined by decomposing an n–form into a sum
of forms supported in one chart and then integrating the local coordinate expressions.

Returning to the case of a Lie group G, we can consider the space of n–linear
alternating maps gn → R, which is one–dimensional. Chose a nonzero element α in this
space and define ϕ ∈ Ωn(G) by

ϕ(g)(ξ1, . . . , ξn) := α(Tλg−1 · ξ1, . . . , Tλg−1 · ξn).

The resulting n–form is left invariant in the sense that (λg)
∗ϕ = ϕ for all g ∈ G. If

G is compact, then
∫
G
ϕ is a well defined real number, and we can uniquely rescale α

in such a way that the integral equals one. Let us write vol for the resulting n–form,
which we call the volume form of the compact Lie group G.

Having this volume form at hand, we can integrate smooth functions on G. For
f : G → K, where K = R or C we have f vol ∈ Ωn(G,K), and we will also write∫
G
f or

∫
G
f(g)dg for

∫
G
f vol ∈ K. The fundamental property of this integral is again

left invariance: By construction, for any g ∈ G the left translation λg : G → G is an
orientation preserving diffeomorphism, and hence

∫
G
f =

∫
G
λ∗g(f vol). But λ∗g(f vol) =

(f ◦λg)λ∗g vol = (f ◦λg) vol, and therefore
∫
G
f ◦λg =

∫
G
f or equivalently

∫
G
f(gh)dh =∫

G
f(h)dh for all g ∈ G. The volume form leads to a measure on G, called the (left)

Haar measure which can then be used to extend integration to continuous functions
and further. All these extensions are still left invariant. It is a nice exercise to show
that compactness of G implies that also (ρg)∗ vol = vol for all g ∈ G.

Using integration, we can prove the first fundamental result on compact Lie groups.
To deal with K = R and C simultaneously we we always use Hermitian forms in com-
putations and define the conjugation on R to be the identity.

Theorem 3.4. Let G be a compact Lie group. Then any finite dimensional repre-
sentation of G is unitary and hence completely reducible.

Proof. For a representation on V , choose an arbitrary positive definite Hermitian
inner product on V , which we denote by b(v, w). Then define fv,w : G→ K by fv,w(g) :=
b(g−1 · v, g−1 · w). Define a map 〈 , 〉 : V × V → K by

〈v, w〉 :=

∫
G

fv,w.

By construction we have fv1+tv2,w = fv1,w + tfv2,w which implies that 〈 , 〉 is linear

in the first variable. Next, fw,v = fv,w implies that 〈 , 〉 is a Hermitian form, and
since fv,v(g) > 0 for all v 6= 0 and all g ∈ G we obtain a positive definite Hermitian
inner product. Finally, by definition we get fg−1·v,g−1·w(h) = fv,w(gh), which means that
fg−1·v,g−1·w = fv,w ◦λg. Left invariance of the integral now shows that 〈g−1 · v, g−1 ·w〉 =
〈v, w〉 for all v, w ∈ V and all g ∈ G. �

By Proposition 3.2, this carries over to representations of the Lie algebra g of G,
and applying it to the adjoint representation we get

Corollary 3.4. Let G be a compact Lie group. Then the Lie algebra g of G is
reductive and hence g = z(g)⊕ [g, g] with [g, g] semisimple.

3.5. Matrix coefficients and characters. For any representation ϕ : G →
GL(V ) of a Lie group G on a finite dimensional K–vector space V , one defines the
character of ϕ as the smooth function χ : G → K given by χ(g) := tr(ϕ(g)). Since
ϕ : G→ GL(V ) is a homomorphism, we get ϕ(ghg−1) = ϕ(g)ϕ(h)ϕ(g)−1, which implies
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that χ(ghg−1) = χ(h), so the character is a class function. On the other hand, sup-
pose that f : V → W is an isomorphism between two representations ϕ and ψ. Then
ψ(g)◦f = f ◦ϕ(g) or ψ(g) = f ◦ϕ(g)◦f−1 which shows that isomorphic representations
have the same character.

For a unitary representation on (V, 〈 , 〉), there is a larger class of associated smooth
functions G → K. One defines a matrix coefficient to be a map of the form g 7→
〈g · v, w〉 for v, w ∈ V . If {v1, . . . , vn} is an orthonormal basis for V , then the matrix
representation of ϕ(g) is given by (〈g · vi, vj〉)i,j, so we really obtain matrix entries in
that way. Moreover, we clearly have χ(g) =

∑
i〈g · vi, vi〉, so the character is a sum of

matrix coefficients.
Of course, the matrix coefficients depend on the choice of the inner product. How-

ever, this dependence does not really matter: For a representation of a Lie group G on
a vector space V , consider the dual space V ∗ and for α ∈ V ∗ define g · α : V → K by
g · α(v) := α(g−1 · v). One immediately verifies that this defines a representation of G
on V ∗, called the dual of the given representation. Looking at the derivative, one sees
that for Lie algebra representations the right definition is (X · α)(v) := −α(X · v).

Given an inner product 〈 , 〉 on V , we obtain a map V → V ∗ which sends v ∈ V
to the functional α(w) := 〈w, v〉. The statement that the inner product is G–invariant
is equivalent to the corresponding map V → V ∗ being G–equivariant. In the complex
case, a similar statement holds, but the isomorphism V → V ∗ induced by a Hermitian
inner product is conjugate linear rather than complex linear. If V is irreducible, then
one easily verifies that V ∗ is irreducible, which by Schur’s lemma implies that any two
isomorphisms V → V ∗ are proportional. In particular, an irreducible representation V
of G admits, up to multiples, at most one invariant inner product.

A general unitary representation can be written as an orthogonal direct sum of
irreducible representations. This implies that each matrix coefficient is a linear com-
bination of matrix coefficients of the irreducible components. In particular, the space
of matrix coefficients of a unitary representation, viewed as a subspace of C∞(G,K), is
independent of all choices.

The basic fact about matrix coefficients for compact Lie groups is provided by the
Schur orthogonality relations :

Proposition 3.5. Let G be a compact Lie group, and let V and W be irreducible
unitary representations of G (with both inner products denoted by 〈 , 〉).
(1) If V and W are non–isomorphic, then for any matrix coefficients ϕ of V and ψ of
W , we have

∫
G
ϕψ̄ = 0.

(2) If V is complex and W = V , then for v1, v2, w1, w2 ∈ V we have∫
G

〈g · v1, v2〉〈g · w1, w2〉dg =
1

dim(V )
〈v1, w1〉〈v2, w2〉.

Proof. Take any linear map f : V → W . For fixed elements v ∈ V and w ∈ W ,
consider

∫
G
〈f(g−1 · v), g−1 ·w〉dg. This expression is evidently conjugate linear in w, so

for fixed v ∈ V we obtain an element F (v) ∈ W such that

〈F (v), w〉 =

∫
G

〈f(g−1 · v), g−1 · w〉dg

for all w ∈ W . Since the right hand side is also linear in v, this defines a linear map
F : V → W . Now

〈h · F (v), w〉 = 〈F (v), h−1 · w〉 =

∫
G

〈f(g−1 · v), (hg)−1 · w〉dg.



44 3. COMPACT LIE GROUPS AND REPRESENTATION THEORY

Using g−1·v = (hg)−1·h·v, we conclude from invariance of the integral that 〈h·F (v), w〉 =
〈F (h · v), w〉 for all v ∈ V , w ∈ W , and h ∈ G. Thus, F : V → W is a morphism of
representations.
(1) Since V and W are non–isomorphic, we must have F = 0 for any choice of f by
Schur’s lemma. Defining f(v) := 〈v, v1〉w1 for fixed v1 ∈ V and w1 ∈ W , we obtain

0 =

∫
G

〈g−1 · v, v1〉〈w1, g
−1 · w〉dg =

∫
G

〈g · w1, w〉〈g · v1, v〉dg.

(2) Again by Schur’s lemma, any choice of f has to lead to F = a id for some a ∈ C.
Hence for all v, w ∈ V we get

(3.1)

∫
G

〈f(g−1 · v), g−1 · w〉dg = a〈v, w〉.

Taking an orthonormal basis {vi} of V , inserting v = w = vi, and summing over all
i, the right hand side of (3.1) equals a dim(V ). On the other hand, since then also
{g−1 · vi} is an orthonormal basis, the left hand side of (3.1) equals

∫
G

tr(f) = tr(f),

which shows that a = tr(f)
dim(V )

.

Similarly as in (1), we now put f(v) := 〈v, v1〉w1. Then tr(f) = 〈w1, v1〉, so the right
hand side of (3.1) becomes 1

dim(V )
〈w1, v1〉〈v, w〉. On the other hand, as in (1), the left

hand side of (3.1) evaluates to ∫
G

〈g · w1, w〉〈g · v1, v〉dg.

�

This has immediate strong consequences on characters:

Corollary 3.5. Let G be a compact Lie group.
(1) For complex irreducible representations V1 and V2 of G with characters χ1 and χ2

we have ∫
G

χ1(g)χ2(g)dg =

{
0 V1 6∼= V2

1 V1
∼= V2

(2) Two complex representations of G are isomorphic if and only if they have the same
character.

Proof. Part (1) follows easily from the theorem since χ(g) =
∑

i〈g · vi, vi〉 for an
orthonormal basis {vi}.
(2) Let us first assume that V1 and V2 are complex irreducible representations with the
same character χ. If V1 6∼= V2, then by part (1) we have

∫
G
|χ|2 = 0 and hence χ = 0.

But this is impossible, since χ(e) is the dimension of the representation space.
Let V be a complex representation of G. By Theorem 3.4, V decomposes as a

direct sum of irreducible representations and taking together isomorphic factors, we can
write V as V ∼= (V1)n1 ⊕ · · · ⊕ (Vk)

nk for pairwise non–isomorphic complex irreducible
representations Vi and positive integers ni. This implies that the character of V is given
by χ = n1χ1 + · · · + nkχk, where χj is the character of Vj. But by part (1) we can

recover the representations Vj and the integers nj since nj =
∫
G
χ(g)χj(g)dg. �

The number nj which shows up in the proof of part (2) is called the multiplicity of
the irreducible representation Vj in V .
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Maximal tori

We continue our study of the structure of compact Lie groups by looking at maximal
connected Abelian subgroups. As we shall see, such a subgroup is essentially unique
and meets each conjugacy class. This has interesting consequences both for structure
theory and for the theory of characters.

Let us describe the main results in this direction for the prototypical example G =
U(n), where they follow from linear algebra. The subset T ⊂ G of unitary diagonal
matrices is a connected commutative subgroup of G. Evidently, T ∼= U(1)n so this
is a torus. Since any unitary matrix can be unitarily diagonalized, any element of G
is conjugate to an element of T . Any family of commuting unitary matrices can be
simultaneously diagonalized unitarily, so any commutative subgroup of G is conjugate
to a subgroup of T . In particular, T is a maximal commutative subgroup of G and any
such subgroup is conjugate to T .

Since T is a commutative subgroup of G, there is no conjugation inside of T . Still
the question of whether two elements of T are conjugate in G is of interest. Since
conjugate matrices have the same eigenvalues (including multiplicities), two diagonal
matrices can only be conjugate if there entries agree up to a permutation. But of course,
any permutation σ of the vectors of the standard basis defines a unitary matrix Aσ ∈ G
so we see that any permutation of diagonal entries can be realized by a conjugation
inside of G. This will identify the permutation group Sn (together with its action on
T ) as the Weyl group associated to T .

3.6. We first have to clarify the structure of connected Abelian Lie groups. We
write Tn for the n–dimensional torus, so Tn ∼= U(1)n ∼= Rn/Zn.

Proposition 3.6. Any connected Abelian Lie group is isomorphic to Rm × Tn for
some n,m ∈ N. In particular, any compact connected Abelian Lie group is a torus.

Proof. Let G be connected and Abelian, take two elements X, Y ∈ g and consider
t 7→ exp(tX) exp(tY ). Since G is commutative, this is a one parameter subgroup,
and its derivative at t = 0 is X + Y . In particular, exp(X) exp(Y ) = exp(X + Y ), so
exp : g→ G is a homomorphism from (g,+) ∼= Rdim(g) to G. The derivative exp′ : g→ g
is the identity by Theorem 1.8, so by Propositions 1.11 and 1.17, K := ker(exp) ⊂ g
is a discrete subgroup and exp induces an isomorphism g/K → G. Let V ⊂ g be the
subspace spanned by K and let W ⊂ g be a complementary subspace. Then evidently
g/K ∼= (V/K)×W , so it suffices to show that V/K is a torus to complete the proof.

So we have to show that for a discrete subgroup K ⊂ Rn which spans Rn, there is a
basis {x1, . . . , xn} such that K consists of all integral linear combinations of the xi. Take
an element x1 ∈ K of minimal norm. Then Zx1 ⊂ K and we claim that Rx1∩K = Zx1.
Indeed, if λx1 ∈ K for some λ ∈ R \ Z, we may assume without loss of generality that
λ > 0. But then we find k ∈ Z such that k < λ < k + 1 and (λ − k)x1 ∈ K would be
an element of smaller norm than x1. In particular, this proves the result if n = 1.

Proceeding inductively, assume that K ⊂ Rn for n ≥ 2 and that the result has
been proved for subgroups of Rn−1. For an element x1 ∈ K as above, we can form
Rn/Rx1

∼= Rn−1 and obtain an embedding of K/Zx1 into Rn−1. By construction,
the image is a subgroup that spans Rn−1 and one easily shows it is again discrete.
By induction hypothesis, it consists of all integral linear combinations of the elements
of a basis for Rn−1, and we choose preimages x2, . . . , xn ∈ K of the basis elements.
Then by construction {x1, . . . , xn} is a basis for Rn and K contains all integral linear
combinations of the basis elements.



46 3. COMPACT LIE GROUPS AND REPRESENTATION THEORY

Conversely, given x ∈ K, the element x + Rx1 ∈ Rn/Rx1 can be written as an
integral linear combination of our basis elements, which leads to a representation x =
λx1 +a2x2 + · · ·+anxn with λ ∈ R and a2, . . . , an ∈ Z. But this readily implies λx1 ∈ K
and hence λ ∈ Z, which completes the argument. �

Now let us consider a compact Lie groupG. ThenG contains connected commutative
subgroups, for example one parameter subgroups. Hence it makes sense to look for
connected Abelian subgroups T ⊂ G which are maximal, i.e. not contained in larger
subgroups having the same property. As we shall see below, such a subgroup must be
isomorphic to Tk for some k, and hence is called a maximal torus in G.

Likewise, any one–dimensional subspace in the Lie algebra g is an Abelian subal-
gebra, so we can also look for maximal commutative subalgebras of g, which evidently
exist by dimensional considerations.

Theorem 3.6. Let G be a compact Lie group with Lie algebra g.
(1) Any maximal connected Abelian subgroup T of G is closed and hence a Lie subgroup
and isomorphic to a torus.
(2) The maximal tori in G are exactly the unique (virtual) Lie subgroups corresponding
to maximal commutative Lie subalgebras of g.

Proof. The main point in the proof is that for a connected Abelian subgroup
H ⊂ G also the closure H̄ is a connected Abelian subgroup. Connectedness of H̄ is
clear, and for a, b ∈ H̄ we find sequences (an) and (bn) in H converging to a and b
respectively. But then ab = lim anbn = lim bnan = ba ∈ H̄ and a−1 = lim a−1

n ∈ H̄.
From this, (1) follows immediately.

For (2), suppose that H is a connected Lie group whose Lie algebra h is commutative.
Then since ad is the derivative of Ad, connectedness of H implies that Ad(h) = idh for
all h ∈ H. Since Ad(h) is the derivative of conjh, this must be the identity, too, so
H is commutative. Hence there is a direct correspondence between commutative Lie
subalgebras and connected commutative Lie subgroups, from which (2) easily follows.

�

3.7. The Weyl group. Let G be a compact Lie group and let T ⊂ G be a maximal
torus. Then we define the normalizer N := NG(T ) of T in G as {g ∈ G : gag−1 ∈
T ∀a ∈ T}. This is evidently a subgroup of G and since T is a closed subset of G,
also the subgroup N is closed and hence compact. By definition, T ⊂ N is a normal
subgroup, and N ⊂ G is the maximal subgroup for which this is true. In particular, we
can form the quotient group W := N/T , which is called the Weyl group of the torus T .

Let us look at the case G = U(n) and T ⊂ G is the torus of diagonal matrices. Let
D ∈ T have all eigenvalues different. If A ∈ G is such that ADA−1 = D̃ ∈ T , then also
all eigenvalues of D̃ are different, and AD = D̃A. Hence A must map any eigenspace
of D to an eigenspace of D̃, and hence each coordinate axis to some other coordinate
axis. Thus we exactly recover permutation matrices as dicussed earlier and W = N/T
in this case is isomorphic to the permutation group Sn of n elements. This acts on T
by permuting the entries of diagonal matrices. Our next task is to prove that the group
W is finite in general.

Lemma 3.7. Let T ⊂ G be a maximal torus and let N be its normalizer in G. Then
T coincides with the connected component of the identity of N , and W = N/T is a
finite group.

Proof. Let t and n be the Lie algebras of T and N . Since T is a normal subgroup
of N , the Lie algebra t is an ideal in n. From 3.4 we know that there is an inner product
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on n, which is invariant under the adjoint action. Accordingly, we get n = t⊕ t⊥. Since
t is an ideal in n, so is t⊥ (see 3.4). If t⊥ 6= {0} then we choose a one–dimensional
subspace ` ⊂ t⊥ and see that t ⊕ ` is an Abelian Lie subalgebra of n and hence of g,
which strictly contains t. This contradicts part (2) of Theorem 3.6, so we obtain n = t.

Since N and T have the same Lie algebra and T is connected, it must coincide with
the connected component of the identity of N . Thus the quotient group W = N/T is
discrete and since N is a closed and hence compact subgroup of G, the group W must
be finite. �

The group N acts on T by conjugation. Since T is commutative, elements of T act
trivially, so we obtain an induced left action W × T → T .

3.8. Conjugacy. To prove the fundamental results about maximal tori, we need
some background on the mapping degree, see Section 4.10 of [AnaMf] for more infor-
mation. Suppose that M and N are connected oriented compact smooth manifolds of
dimension n, and that f : M → N is a smooth map. Choose a form α ∈ Ωn(N) such
that

∫
N
α = 1, consider the pullback f ∗α ∈ Ωn(M) and define deg(f) :=

∫
M
f ∗α ∈ R.

This is well defined, since the integral of an n–form over a compact smooth n–manifold
vanishes if and only if it is the exterior derivative of an (n− 1)–form. Hence any other
choice for α is of the form α + dβ and f ∗(α + dβ) = f ∗α + d(f ∗β) and the integral
remains unchanged. (More formally this can be phrased as the fact that the action
f ∗ : Hn(N) → Hn(M) between the top de–Rham cohomologies, which are isomorphic
to R, is given by multiplication by deg(f)).

We only need two facts about the mapping degree: First if f : M → N is not
surjective, then deg(f) = 0. Indeed, in that case we can find an open subset U ⊂ N
which is disjoint to f(M). Using an appropriate bump function, we can construct an
n–form α on N with support contained in U and

∫
N
α = 1. But then f ∗α = 0 and

hence deg(f) = 0.
On the other hand, suppose that y ∈ N is a regular value for f : M → N , i.e. for

all x ∈ f−1({y}) the map Txf : TxM → TyN is a linear isomorphism. In this case each
such x has a neighborhood Ux on which f restricts to a diffeomorphism Ux → f(Ux),
so in particular Ux ∩ f−1({y}) = {x}. This shows that f−1({y}) is discrete in M but
since it is clearly closed and thus compact. Hence f−1({y}) is finite and we number
its elements as x1, . . . , xk and define εi to be +1 if Txif is orientation preserving and
−1 otherwise. Then we can find connected neighborhoods Ui of xi and V of y such
that f restricts to a diffeomorphism Ui → V for each i = 1, . . . , k. As above, we find
α ∈ Ωn(N) with support contained in V and

∫
N
α = 1. But then

∫
M
f ∗α =

∑k
i=1

∫
Ui
f ∗α

and by diffeomorphism invariance of the integral we obtain deg(f) =
∑k

i=1 εi.
On the other hand, we need the notion of a generator of a Lie group. An element g

of a Lie group G is called a generator if the subset {gk : k ∈ Z} (i.e. the subgroup of
G generated by g) is dense in G. From 3.6 we know that the closure of a commutative
subgroup is commutative, so only Abelian Lie groups can have a generator. While it is
easy to see that Rn does not admit a generator, we get the following result for tori:

Lemma 3.8. For each n ≥ 0 the torus Tn admits a generator. Indeed, the set of
generators is dense in Tn.

Proof. Let us view Tn as Rn/Zn, so the exponential map is just the canonical
projection Rn → Tn. We call a cube in Rn any subset of the form {x : |xi− ξi| ≤ ε ∀i}
for fixed ξ ∈ Rn and ε > 0. Choose any cube C0 contained in [0, 1]n and let {Uk : k ∈ N}
be a countable basis for the open subsets of Tn. Suppose inductively, that we have
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already constructed cubes C0 ⊃ · · · ⊃ Cm−1 and numbers N1 < · · · < Nm−1 such that
for each x ∈ Ck we have exp(x)Nk ∈ Uk. Let 2ε be the length of the sides of Cm−1.
Choose Nm such that Nm2ε > 1. Then NmCm−1 is a cube of side length > 1, which
implies that x 7→ exp(x)Nm defines a continuous surjection Cm−1 → Tn. Hence the
preimage of Um under this map is open and therefore contains a cube Cm. Thus we find
cubes Ck for all k ∈ N.

By compactness of [0, 1]n, the intersection ∩k∈NCk is non–empty and for an element
x in there we have exp(x)Nk ∈ Uk for all k ∈ N. Since any open subset of T contains
one of the sets Uk, the element exp(x) is a generator. �

Having the background at hand, we can now prove the main result about maximal
tori:

Theorem 3.8. Let G be a connected compact Lie group and T ⊂ G a maximal
torus. Then any element of G is conjugate to an element of T.

Proof. Define a map ϕ : G × T → G by (g, a) 7→ gag−1. Since T is Abelian, we
have ϕ(gb, a) = ϕ(g, a) for all g ∈ G and a, b ∈ T. Thus there is a map ψ : G/T×T→ G
such that ϕ = ψ ◦ (p × id), which is smooth since p : G → G/T, and thus p × id, is a
surjective submersion. Now G/T×T and G have the same dimension, so we can prove
that the mapping degree of ψ is nonzero in order to show that ψ is surjective, which
implies the claim.

Denoting by t ⊂ g the Lie algebra of T, we have g = t⊕t⊥ for some fixed ad–invariant
inner product on g. Fix orientations on t and t⊥. This gives an orientation of g, so via
left translations we obtain orientations of T and G. Since G and T are connected, and
translating with e is the identity, all left and right translations as well as conjugations
are orientation preserving diffeomorphisms.

The projection p : G → G/T is a surjective submersion and ker(Tep) = t, so it
induces a linear isomorphism t⊥ → To(G/T), where o = eT. For g ∈ G, we obtain a
linear isomorphism To`g : To(G/T)→ TgT(G/T). Since ĝT = gT implies ĝ = ga for some
a ∈ T and T is connected, all these maps lead to the same orientation on TgT(G/T).
Hence we get an orientation on G/T such that all the maps `g are orientation preserving.

For a ∈ T, the derivative T(e,a)ϕ : g×TaT→ TaG is given by (X,RY (a)) 7→ RX(a)−
LX(a) + RY (a), which using Proposition 1.10 can be written as RY+X−Ad(a)(X)(a). By
construction, the derivative T(o,a)ψ is given by the same formula when viewed as a map
t⊥ × TaT → TaG. Since Ad(a)(t) ⊂ t, the map Ad(a) also preserves t⊥, which shows
that ker(T(o,a)ψ) = ker((id−Ad(a))|t⊥)× {0}.

We claim that for a generator a of T, the map id−Ad(a) restricts to an orientation
preserving linear isomorphism on t⊥. Indeed, if Y ∈ g is such that Ad(a)(Y ) = Y , then
of course Ad(ak)(Y ) = Y for all k ∈ Z and since {ak : k ∈ Z} is dense in T, we get
Ad(b)(Y ) = Y for all b ∈ T. Putting b = exp(Z) we see that [Y, Z] = 0 for all Z ∈ t and
hence Y ∈ t by maximality. Since T is connected, we must have Ad(a) ∈ SO(t⊥). Now
any such matrix can be brought to block diagonal forms which blocks of the form −1

(+1 is impossible since id−Ad(a) is an isomorphism) or

(
cosα − sinα
sinα cosα

)
. Since such

a block contributes a factor 2 respectively 2(1−cosα) to the determinant of id−Ad(a),
the claim follows.

We have now shown that for each generator a of T, the tangent map T(o,a)ψ is an
orientation preserving linear isomorphism. By definition, ψ ◦ (`g× id) = conjg ◦ψ, which
shows that for each g ∈ G the tangent map T(gT,a)ψ : TgT(G/T)× TaT→ Tgag−1G is an
orientation preserving linear isomorphism. Now still for a generator a of T consider the
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preimage ψ−1(a). If a = gbg−1 for some g ∈ G and b ∈ T, then conjg−1(a) ∈ T. Hence

also conjg−1(ak) ∈ T for all k ∈ Z and by continuity conjg−1(T ) ⊂ T , which implies
that g ∈ NG(T ). But then also b = conjg−1(a) is a generator of T , so we see that for
each point (gT, b) ∈ ψ−1(a), the tangent map T(gT,b)ψ is an orientation preserving linear
isomorphism, so a is a regular value and deg(ψ) > 0. �

With a bit more care, one shows that actually deg(ψ) equals the order of the Weyl
group W of T.

3.9. Some applications. The basic conjugacy result from Theorem 3.8 has several
immediate but surprisingly strong consequences for the structure of compact Lie groups:

Corollary 3.9. Let G be a compact connected Lie group and T ⊂ G a maximal
torus.
(1) Any connected Abelian subgroup of G is conjugate to a subgroup of T , and any
maximal torus of G is conjugate to T .
(2) Any element of G lies in some maximal torus of G.
(3) The center Z(G) is contained in any maximal torus of G.
(4) The exponential mapping exp : g→ G is surjective.
(5) For any k ∈ Z \ {0}, the kth power map g 7→ gk is surjective.

Proof. (1) For a connected Abelian subgroup S ⊂ G also the closure S̄ is connected
and Abelian. Since S̄ is a torus, it has a generator a, and by the theorem we find an
element g ∈ G such that conjg(a) ∈ T . But then conjg(a

k) ∈ T for all k ∈ Z and by

continuity we get conjg(S̄) ⊂ T . The statement on maximal tori is then evident.
(2) Given g ∈ G we find an element h ∈ G such that conjh(g) ∈ T . But then g lies in
conjh−1(T ), which evidently is a maximal torus in G.
(3) This is evident since for g ∈ Z(G) and h ∈ G we have conjh(g) = g.
(4) follows immediately from (2) since the exponential map for tori is surjective.
(5) This is clear from (4) since exp(X) = exp( 1

k
X)k for all k ∈ Z \ {0}. �

Since any two maximal tori of G are conjugate, they in particular have the same
dimension. This dimension is called the rank of the compact group G. It also follows
easily that the Weyl groups associated to two maximal tori of G are isomorphic, so the
Weyl group can be considered as an invariant of the compact Lie group G.

3.10. Remarks on representation theory and the Weyl character formula.
Now we want to sketch applications of maximal tori to the theory of characters and hence
to representation theory. Recall from Section 3.5 that the character χ of any finite
dimensional representation is a class function, i.e. χ(ghg−1) = χ(h) for all g, h ∈ G.
For a maximal torus T ⊂ G, part (1) of the corollary therefore implies that any such
character is uniquely determined by its restriction to T . For a representation on a
K–vector space, this restriction is a smooth function T → K. The action of the Weyl
group W of T on T is given by the restriction to T of the conjugation by an element
g ∈ NG(T ), so it follows that the restriction of any character to T is invariant under
the action of W . With a bit more work, one can show that restriction to T actually
defines a bijection between the set of continuous class functions on G and W–invariant
continuous functions on T .

Any representation of G on V gives rise to a representation of T by restriction. As
a representation of T , V is much easier to handle, since by Theorem 3.4 and Corollary
3.1 it is isomorphic to a direct sum of 1–dimensional representations. But evidently,
the character of the representation of T on V is simply the restriction of the character
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of the G–representation. Using Corollary 3.5 we see from above that two complex
representations of G are isomorphic if and only if their restrictions to T are isomorphic.

One can push this much further: A one-dimensional complex representation of T is
given by a homomorphism T → C\{0}. Such a homomorphism is uniquely determined
by its derivative, which is a linear map t → C, i.e. an element of the dual t∗. This
is a counterpart to the theory of weights for complex reductive Lie algebras. It turns
out that an element of t∗ comes from a homomorphism T → C \ {0} if and only if any
element of ker(exp) is mapped to an integer multiple of 2πi. Such functionals are called
analytically integral and one shows that there is a basis of t∗ for which the analytically
integral weights are exactly the linear combinations of the basis elements with integral
coefficients. One denotes by t∗R the real span of this basis.

The action of the (rather large) Weyl group W of T induces actions on t and on
t∗R and the set of functionals obtained from a representation of G is invariant under
this action. This invariance also refers to the multiplicity with which an irreducible
representation of T occurs in the decomposition of V . To deal with this symmetry,
one introduces the notion of dominant elements of t∗R. These elements form a closed
cone D in t∗R which meets each orbit of the Weyl group W and if the intersections of D
with an orbit contains an interior point of D, it consists of that point only. (So D is a
fundamental domain for the action of W on t∗R.) This also gives rise to a total order on
t∗R, so in particular for a representation V of G one can look at the largest functional
that occurs. This is automatically dominant and integral and it is called the highest
weight of V . It is rather easy to show that two irreducible representations of G with
the same highest weight are isomorphic.

As mentioned above, there is also a Lie algebraic version of these notions in the
setting of complex semisimple Lie algebras which is essentially equivalent to the setting
of real compact Lie algebras. In many respects the resulting approach based on linear
algebra is simpler than the approach via compact groups discussed here. There is a
very important result, however, for which the two settings lead to very different proofs,
which both are very interesting. This is the so-called Weyl character formula, which
provides detailed information on the structure of irreducible representations and is one
of the cornerstones of representation theory. Given a dominant integral functional λ,
this formula describes what the character of an irreducible representation V with highest
weight λ has to look like. (It turns out that such representations always exist, but this
is not needed for the proof.)

The expression for the character obtained in the character formula is of relatively
complicated nature and we will not discuss it here. However, in the setting of compact
groups, there is a small but crucial input coming from integration theory. This is
closely related to the ideas for the proof of Theorem 3.8, so we sketch it here. What one
wants to exploit in the proof of the character formula is the fact that for an irreducible
representation V of G the character χV satisfies

∫
G
χV χV = 1. To combine this with

the above considerations on a maximal torus T , one has to relate the integral over G to
an integral over T , which is the content the Weyl integration formula.

This formula is based on the map ψ : G/T × T → G from Theorem 3.8 which was
defined by ψ(gT, t) := gtg−1. As we have noted in 3.8, the mapping degree of ψ is
given by |W |, which together with Fubini’s theorem shows that for f : G → C, one
gets

∫
G
f volG = 1

|W |

∫
T

∫
G/T

(f ◦ ψ)ψ∗ volG, where volG denotes the volume form of G

from 3.4. To compute ψ∗ volG, one needs to compute the Jacobian of ψ, which is also
essentially done in the proof of Theorem 3.8. The result is that in a point (gT, t), this
Jacobian is given by J(t) := det((I−Ad(t−1))|t⊥). Since this depends only on t and not



THE PETER–WEYL THEOREM 51

on gT , we see that it can be taken out of the integral over G/T , so for that part we only
get an integral of the form

∫
G/T

f(gtg−1)d(gT ). In particular, if f is a class function,

then this will simply give a constant that can then be taken out of the integral over T .
Hence in the case of a class function (which we are interested in), we have successfully
expressed the integral over G as an integral over T . A second important step is that
J(t) can be explicitly expressed using specific elements of t∗ coming from the adjoint
representation of g, but we will not go into that.

The Peter–Weyl theorem

The final circle of ideas about compact groups we will discuss is centered around the
set of matrix coefficients of finite dimensional complex representations.

3.11. Peter–Weyl theorem for matrix groups. Basically, the Peter–Weyl the-
orem can be thought of as a generalization of the theory of Fourier series. The first
result in this direction is Weierstrass’ theorem, which states that any real valued con-
tinuous function on R which is periodic with period 2π can be uniformly approximated
by linear combinations of the functions t 7→ sin(kt) and t 7→ cos(kt) with k ∈ Z. More
conceptually and slightly simpler, we can look at continuous complex valued functions
on the unit circle S1 ⊂ C. Then Weierstrass’ result states that these can be uniformly
approximated by functions of the form

∑N
k=−N akz

k with ak ∈ C.
To get a connection to representation theory, let us view S1 as U(1). Since this is

a compact commutative group, we know from 3.1 and 3.4 that any finite dimensional
representation of U(1) is a direct sum of one–dimensional representations. A one di-
mensional representation simply is a homomorphism ϕ : U(1)→ C\{0}. The derivative
of such a homomorphism is a homomorphism ϕ′ : iR → C so it must be of the form
ϕ′(it) = tz0 for some element z0 ∈ C. For the commutative groups U(1) and C \ {0},
the exponential map is simply the usual exponential. Using ϕ(exp(it)) = exp(ϕ′(it)) for
t = 2π we see that exp(2πz0) = 1, which implies that z0 ∈ iZ. On the other hand, the
map z 7→ zk for k ∈ Z evidently defines a homomorphism U(1)→ C\{0} with derivative
it 7→ ikt, so these exhaust all possible homomorphisms. Hence the matrix coefficients of
one–dimensional representations of U(1) are exactly the complex multiples of the func-
tions z 7→ zk and the matrix coefficients of general finite dimensional representations
are exactly the expressions z 7→

∑N1

k=N0
akz

k with N0, N1 ∈ Z and ak ∈ C.
Hence we can view Weierstrass’ theorem as the statement that any complex valued

continuous function on U(1) can be uniformly approximated by matrix coefficients of
finite dimensional complex representations.

The analogous statement for compact matrix groups can be proved using the abstract
Stone–Weierstrass theorem from topology: Recall that for a compact space X, the
vector space C(X) = C(X,C) of complex valued continuous functions on X naturally
is a complex Banach space under the norm ‖f‖ := supx∈X |f(x)|. The abstract Stone–
Weierstrass theorem deals with subalgebras A ⊂ C(X), i.e. linear subspaces which
are also closed under the pointwise product of functions. The theorem states that a
subalgebra A ⊂ C(X) is dense, i.e. the closure Ā is all of C(X) provided that

(i) all constant functions belong to A
(ii) for f ∈ A, the conjugate f̄ lies in A
(iii) A separates points, i.e. for x, y ∈ X with x 6= y, there is an f ∈ A such that

f(x) 6= f(y)

To apply this theorem, we need one more construction. From 3.5 we know that
a finite dimensional representation of G on V gives rise to the dual representation on
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V ∗ which is defined by (g · λ)(v) := λ(g−1 · v) for λ ∈ V ∗ and v ∈ V . Having given
two finite dimensional representations of G on V and W , we define a representation on
L(V,W ) by (g · f)(v) = g · (f(g−1 · v)). One immediately verifies that this indeed is a
representation. The corresponding representation of the Lie algebra g of G is determined
by (X · f)(v) := X · (f(v))− f(X · v).

Putting these two constructions together, we see that representations on V and W
give rise to a representation on V ⊗W := L(V ∗,W ), called the tensor product of the
representations V and W . For v ∈ V and w ∈ W we define v ⊗ w ∈ L(V ∗,W ) by
(v ⊗ w)(λ) := λ(v)w. Then (v, w) 7→ v ⊗ w defines a bilinear map V ×W → V ⊗W .
One easily verifies that for bases {v1, . . . , vn} of V and {w1, . . . , wm} of W , the set
{vi ⊗ wj} forms a basis for V ⊗W . Using this, one easily verifies that for any vector
space Z and bilinear map ϕ : V ×W → Z there is a unique linear map ϕ̃ : V ⊗W → Z
such that ϕ(v, w) = ϕ̃(v⊗w). This is called the universal property of the tensor product
of the vector spaces V and W .

Now let us compute what the natural representation on V ⊗ W looks like. We
compute

(g · (v ⊗ w))(λ) = g · (v ⊗ w(g−1 · λ)) = λ(g · v)(g · w) = ((g · v)⊗ (g · w))(λ),

so the representation is characterized by g · (v⊗w) = (g ·v)⊗ (g ·w). The corresponding
infinitesimal representation is given by X · (v ⊗ w) = (X · v)⊗ w + v ⊗ (X · w).

Finally assume that V and W are endowed with Hermitian inner products, which
we both denote by 〈 , 〉. Then one immediately verifies that

〈v1 ⊗ w1, v2 ⊗ w2〉 := 〈v1, v2〉〈w1, w2〉

defines a Hermitian inner product on V ⊗W . This has the property that for orthonormal
bases {v1, . . . , vn} and {w1, . . . , wm} the set {vi ⊗ wj} defines an orthonormal basis for
V ⊗W . Now for the matrix coefficients of V ⊗W we obtain

〈g · (v1 ⊗ w1), v2 ⊗ w2〉 = 〈g · v1, v2〉〈g · w1, w2〉,

so this is the product of a matrix coefficient of V with a matrix coefficient of W . Using
this we can now prove:

Theorem 3.11 (Peter–Weyl theorem for matrix groups). Let G ⊂ GL(n,R) be a
compact matrix group. Then the set A of all matrix coefficients of finite dimensional
representations of G is dense in C(G,C).

Proof. A linear combination of a matrix coefficient of V and a matrix coefficient
of W is a matrix coefficient of V ⊕W , so A ⊂ C(G) is a linear subspace. The product
of a matrix coefficient of V and one of W is a matrix coefficient of V ⊗W , so A even is
a subalgebra. For the trivial representation G→ C∗, g 7→ 1, the matrix coefficients are
the constant functions, so A contains constants.

For a representation of G on V , an invariant inner product 〈 , 〉 gives a conjugate
linear isomorphism V → V ∗. This immediately implies that the conjugate of a matrix
coefficient of V is a matrix coefficient of V ∗, so A is closed under conjugation. Finally,
the inclusion G → GL(n,R) ⊂ GL(n,C) defines a representation of G on Cn. Taking
an invariant Hermitian inner product on Cn and using matrices with respect to an
orthonormal basis for this inner product, we obtain an injective homomorphism G →
U(n). The matrix entries of the image are matrix coefficients of the corresponding
representation on Cn, which implies that A separates points. Now the result follows
from the Stone–Weierstrass theorem. �
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3.12. The general result. The proof of the Peter–Weyl theorem for general com-
pact groups needs a deeper result from functional analysis, namely the so–called Hilbert–
Schmidt theorem. Consider a compact topological space X and the Banach space
C(X) = C(X,C) as before. Choosing a Borel measure on X, one can integrate continu-
ous functions and then form spaces like Lp(X). In particular, one has the Hilbert space
L2(X). Since on the compact space X any continuous function is square integrable, we
have an inclusion C(X) ↪→ L2(X), which is bounded for the usual norms on the two
spaces.

We have to study a class of linear operators which are defined analogously to ma-
trices in finite dimensions. Namely, consider a continuous function K : X × X → C
(called the kernel of the operator) and define an operator T on functions by Tf(x) :=∫
X
K(x, y)f(y)dy. If f is continuous, then so is Tf , so we can interpret T as an

(evidently bounded) linear operator on C(X). However, much more is true. It is
easy to show that for f ∈ L2(X) the function Tf is continuous and even the family
{Tf : f ∈ L2(X), ‖f‖2 ≤ 1} is equicontinuous. Therefore we can interpret T as a com-
pact linear operator L2(X) → C(X) and via the inclusion also as a compact operator

on L2(X). If one in addition assumes that K is Hermitian, i.e. the K(y, x) = K(x, y),
then T is self adjoint as an operator on the Hilbert space L2(X), so one can apply the
spectral theorem.

Notice that for an eigenfunction f of T , we by definition have Tf = λf for some
number λ, so since T has values in C(X), eigenfunctions are automatically continuous.
Now the Hilbert–Schmidt theorem states the following:

• Any eigenvalue of T is real and the set of eigenvalues is finite or countable with
zero as the only possible accumulation point.
• Ordering the eigenvalues as |λ1| ≥ |λ2| ≥ . . . one has

∑
j |λj|2 < ∞, so T is

a Hilbert–Schmidt operator. In particular, any eigenspace of T is finite dimen-
sional.
• Any continuous function in the image of T can be uniformly approximated by

a linear combination of eigenfunctions.

Using this background, we can now obtain the general Peter–Weyl theorem:

Theorem 3.12 (Peter–Weyl). Let G be a compact Lie group. Then the space of
matrix coefficients of finite dimensional representations of G is dense in C(G).

Proof. We have to show that for each continuous function f0 : G→ C we can find
a linear combination of matrix coefficients which is uniformly close to f0.
Claim: For any ε > 0, there is an open neighborhood U of e in G such that for g, h ∈ G
such that g−1h ∈ U we have |f0(g)− f0(h)| < ε.

For each x ∈ G we find a neighborhood Ux of x in G such that |f0(y)−f0(x)| < ε
2

for
all y ∈ Ux. Then λx−1(Ux) is a neighborhood of e inG and by continuity of multiplication
we find a neighborhood Vx of e in G such that ab ∈ λx−1(Ux) for all a, b ∈ Vx. Then
λx(Vx) is a neighborhood of x in G. By compactness, we find finitely many points
g1, . . . , gN ∈ G such that G = λg1(Vg1)∪· · ·∪λgN (VgN ) and we consider the neighborhood
U := Vg1 ∩ · · · ∩ VgN of e in G. If g, h ∈ G are such that g−1h ∈ U , then there is an
index j ∈ {1, . . . , N} such that g ∈ λgj(Vgj), i.e. g−1

j g ∈ Vgj . Since g−1h ∈ U ⊂ Vgj we

conclude that g−1
j h ∈ λg−1

j
(Ugj), i.e. h ∈ Ugj . By construction Vgj ⊂ λg−1

j
(Ugj), so we

also have g ∈ Ugj . But then

|f0(g)− f0(h)| ≤ |f0(g)− f0(gj)|+ |f0(gj)− f0(h)| < ε,

and the claim follows.
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Using a partition of unity, we can construct a smooth function µ : G → R with
support contained in U such that µ(g) ≥ 0 for all g ∈ G and µ(e) > 0. Without loss
of generality, we may assume that µ(g) = µ(g−1) for all g ∈ G. Now

∫
G
µ(x)dx > 0, so

rescaling µ we may assume that
∫
G
µ(x)dx = 1. Define K : G× G → C by K(x, y) :=

µ(x−1y). This is continuous, real valued and symmetric and thus Hermitian, and we
consider the corresponding integral operator Tf(x) :=

∫
G
K(x, y)f(y)dy on C(G). By

construction Tf0(x) =
∫
G
µ(x−1y)f0(y)dy. The product µ(x−1y)f0(y) vanishes unless

x−1y ∈ U and if x−1y ∈ U then |f0(y)− f0(x)| < ε. Hence we conclude that

|µ(x−1y)f0(y)− µ(x−1y)f0(x)| < εµ(x−1y)

for all x, y ∈ G. Now
∫
G
µ(x−1y)f0(y)dy = Tf0(x) by definition, while∫

G

µ(x−1y)f0(x)dy = f0(x)

∫
G

µ(x−1y)dy = f0(x).

In the same way, integrating the right hand side we obtain ε, so we conclude that
|Tf0(x) − f0(x)| < ε, so f0 is uniformly close to an element in the image of T . By the
Hilbert–Schmidt theorem, any element of this image can be uniformly approximated
by linear combinations eigenfunctions of T , so we can complete the proof by relating
eigenfunctions of T to matrix coefficients.

Consider the map G×C(G)→ C(G), (g, f) 7→ g ·f , which is defined by (g ·f)(h) :=
f(g−1h). One immediately verifies that this defines a left action of G on the space C(G).
For fixed f ∈ C(G) consider a neighborhood U of e in G as constructed for f0 above.

For ĝ ∈ λg(ν(U)) and f̂ ∈ C(G) with ‖f̂ − f‖ < ε, we then compute

|f̂(ĝ−1h)− f(g−1h)| ≤ |f̂(ĝ−1h)− f(ĝ−1h)|+ |f(ĝ−1h)− f(g−1h)| < 2ε,

since by construction (g−1h)(ĝ−1h)−1 = g−1ĝ ∈ ν(U) and hence (ĝ−1h)(g−1h)−1 ∈
U . But this says that we have actually defined a continuous left action of G on the
topological space C(G), and of course for g ∈ G the map f 7→ g · f is linear.

Observe that the kernel K of the operator T : C(G)→ C(G) from above is defined
by K(x, y) = µ(x−1y) for x, y ∈ G. In particular, this shows that K(gx, gy) = K(x, y)
for all g, x, y ∈ G. Using this, we compute

(g · Tf)(x) = Tf(g−1x) =

∫
G

K(g−1x, y)f(y)dy =

=

∫
G

K(x, gy)f(y)dy =

∫
G

K(x, y)f(g−1y)dy = T (g · f)(x),

where we have used invariance of the integral in the last but one step. But this shows
that T : C(G) → C(G) is equivariant for the G–action on C(G). If f ∈ C(G) is
an eigenfunction with eigenvalue λ, then we get T (g · f) = g · (Tf) = g · (λf) =
λ(g · f), so any eigenspace of T is a G–invariant subspace. Any such eigenspace V is
finite dimensional by the Hilbert–Schmidt theorem, so we obtain a finite dimensional
continuous representation of G on V . But this is a smooth representation of G by
Corollary 1.8. Fix an invariant inner product 〈 , 〉 on V . Since the map f 7→ f(e) is
linear, we find an element w ∈ V such that 〈f, w〉 = f(e). But then the corresponding
matrix coefficient is given by g 7→ 〈g · f, w〉 = (g · f)(e) = f(g−1).

Putting together what we have proved so far, we see that f0 is uniformly close to a
linear combination of functions of the form ϕ ◦ ν, where ϕ is a matrix coefficient of a
finite dimensional representation of G. Applying this to f0 ◦ ν, the result follows. �
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As an immediate corollary, we can show that any compact Lie group is isomorphic
to a matrix group:

Corollary 3.12. Any compact Lie group G is isomorphic to a closed subgroup of
a unitary group U(N) for sufficiently large N .

Proof. By the theorem, the matrix coefficients of finite dimensional representations
of G form a dense subset of C(G). If g ∈ G is such that ϕ(g) = ϕ(e) for all matrix
coefficients, then the same property holds for all f ∈ C(G), so g = e. This implies that
for each e 6= g ∈ G there is a representation ϕg : G → GL(V ) such that ϕg(g) 6= id.
Choose an arbitrary element g1 ∈ G and consider the representation ϕg1 . Then ker(ϕg1)
is a closed subgroup of G and hence a compact Lie group. If this group is nontrivial,
then choose e 6= g2 ∈ ker(ϕg1) and consider ϕg1 ⊕ϕg2 . The kernel of this representation
is a proper subgroup of ker(ϕg1), so it must either have smaller dimension or the number
of connected components (which is always finite by compactness) must be smaller. But
this shows that in finitely many steps we obtain a representation ϕ : G→ GL(V ) which
is injective. Taking an invariant inner product on V and matrices with respect to an
orthonormal basis, we obtain an injective homomorphism ϕ : G → U(dim(V )). Since
G is compact, this must be an isomorphism onto a closed subgroup. �

3.13. Infinite dimensional representations. Up to now, we have only consid-
ered representations of Lie groups on finite dimensional vector spaces, but for some
purposes this concept is too restrictive. Let us illustrate this on two examples: On the
one hand, many non–compact groups do not admit finite dimensional unitary represen-
tations. Consider the group G := SL(2,R) and suppose that we have a homomorphism

ϕ : G → U(n) for some n ∈ N. For the matrix E :=

(
0 1
0 0

)
in the Lie algebra

g = sl(2,R) we get exp(tE) =

(
1 t
0 1

)
. For t 6= 0 all these matrices are conjugate, since

they all have 1 as an eigenvalue with multiplicity 2 but are not diagonalizable. Hence
the elements ϕ(exp(tE)) = exp(tϕ′(E)) for t 6= 0 are conjugate in U(n). However, the
conjugacy class of h in U(n) is the image of U(n) under the continuous map g 7→ ghg−1,
and hence it is compact and therefore closed in U(n). But this implies that ϕ(exp(tE))
must be in the same conjugacy class for all t ∈ R, which implies that ϕ(exp(tE)) = id
for all t ∈ R. Hence ϕ′(E) = 0 so the kernel of ϕ′ is an ideal in g which contains
E. It is a trivial exercise to show that such an ideal must be all of g, and thus ϕ is
trivial. On the other hand, there are many nontrivial unitary representations of G on
infinite dimensional Hilbert spaces. The simplest example of such a representation is
provided by the left regular representation of G. Using a nonzero 3–linear alternating
map g3 → R, one obtains as in 3.4, a left invariant 3–form on G. Via this, one obtains
a left invariant integral

∫
G

: C∞c (G,C) → C defined on compactly supported smooth
functions. Then one defines L2(G) to be the completion of C∞c (G,C) with respect to
the norm ‖f‖2 :=

∫
G
|f(g)|2dg. Then L2(G) is a Hilbert space and one defines a repre-

sentation of G on L2(G) by (g · f)(x) = f(g−1x), i.e. g · f = f ◦ λg−1 . Invariance of the
integral immediately implies that this representation is unitary.

The second example shows that, more drastically, there are Lie groups which do
not have any interesting finite dimensional representations. The example we discuss is
the so called Heisenberg group H. Consider the group of all 3× 3 matrices of the form1 a c

0 1 b
0 0 1

. Let us write this matrix as (
(
a
b

)
, c) ∈ R2 ⊕ R. In this picture, the product
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is given by

(

(
a

b

)
, c) · (

(
u

v

)
, w) = (

(
a+ u

b+ v

)
, c+ w + av).

In partiuclar, (
(
a
b

)
, c)−1 = (

(−a
−b

)
, ab − c). The elements of the form (

(
0
0

)
, c) form

a subgroup which is contained in the center. In particular, the elements which in
addtion have c ∈ Z form a normal subgroup and H is defined as the quotient group.
Denoting elements in the quotient group as (

(
a
b

)
, c + Z) the product is given as above,

but computing modulo Z in the second factor.
The elements of the form (

(
0
0

)
, c + Z) form a subgroup in H which is contained in

the center Z(H) and isomorphic to R/Z ∼= U(1). It is easy to see that this subgroup
coincides with Z(H). Mapping (

(
a
b

)
, c + Z) to

(
a
b

)
induces an isomorphism H/Z(H)→

R2. The group H itself is not commutative, however. For example,

(

(
a

0

)
, 0) · (

(
0

1

)
, 0) · (

(
−a
0

)
, 0) · (

(
0

−1

)
, 0) = (

(
0

0

)
, 2a+ Z),

which shows that any element of Z(H) can be written as a commutator. A moment of
thought shows that Z(H) = [H,H].

Now suppose that ϕ : H → GL(V ) is a finite dimensional complex representation.
We can restrict the representation to the subgroup Z(H) = U(1) and then decompose
into irreducibles. This means that there are finitely many different elements k1, . . . , kn ∈
Z and V splits as V = V1⊕· · ·⊕Vn such that z ∈ U(1) acts on Vi by multiplication by zki .
But since U(1) is contained in the center of H, each of the subspaces Vi is H–invariant.
Let us restrict to one of the components Vi. Then ϕi(z) ∈ GL(Vi) can be written as a
commutator since z is a commutator in H. But this implies that det(ϕi(z)) = 1 for all
z which is only possible if ki = 0. Hence any finite dimensional representation of H is
trivial on the subgroup U(1) and factorizes through the commutative quotient R2. On
the other hand, one shows that the group H has injective unitary representations on a
separable Hilbert space.

For infinite dimensional representations, purely algebraic concepts are not sufficient,
so one has to work with topological vector spaces. This can be done on various levels
of generality and for our purposes the amount of generality is of minor importance. We
will restrict our attention to representations on Banach spaces, but everything we do
carries over to complete locally convex vector spaces. The main property we need from
a space V is that for a compact Lie group G endowed with its volume form as in 3.4,
there is a well defined integral for V –valued continuous functions on G. This has the
property that if f : G→ V has values in some ball, then also

∫
G
f(g)dg lies in that ball.

Of course, this integral still is left invariant, i.e.
∫
G
f(hg)dg =

∫
G
f(g)dg for all h ∈ G.

Given a Lie group G and a Banach space V , one defines a representation of G on
V as a continuous left action G × V → V such that for each g ∈ G the map v 7→ g · v
is linear. Of course, for a morphism between two representations, one does not only
require equivariancy but also continuity.

In the proof of Theorem 3.12 we have seen that for any compact Lie group G,
one obtains a representation in that sense on the Banach space C(G,C) by defining
(g · f)(h) := f(g−1h). The same method can be used to define representations of a
general Lie group G on various spaces of complex valued functions on G respectively
on a homogeneous space G/H of G. A particularly important case is provided by
Hilbert spaces of L2–functions in which one automatically obtains unitary operators by
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invariance of the integral. To work with infinite dimensional representations often needs
quite a lot of functional analysis.

Generalizing notions from finite dimensional representations to the infinite dimen-
sional case, one usually has to replace “subspace” by “closed subspace”. This is neces-
sary for various reasons. For example, a subspace of a Banach space is complete if and
only if it is closed, or for a subspace W of a Hilbert space H we have H = W ⊕W⊥ if
and only if W is closed, and so on. Hence one defines a representation to be indecom-
posable if it cannot be written as the direct sum of two closed invariant subspaces and
to be irreducible if it does not admit non–trivial closed invariant subspaces. Likewise,
complete reducibility is defined as the fact that any closed invariant subspace admits
an invariant complement. Note that unitary representations on Hilbert spaces always
have this property, so for unitary representations indecomposability is equivalent to
irreducibility.

Even though there is a simple notion of smoothness in Banach spaces, one has to
work with continuous rather than smooth representations, simply because many of the
representations that come up canonically are not smooth. Consider for example the
representation of a compact group G on C(G,C) from above. The evaluation in e
defines a continuous linear and hence smooth map eve : C(G,C) → C. Now fix a
function f ∈ C(G,C) and consider the map g 7→ eve(g · f). By definition, this is given
by g 7→ f(g−1), so it equals f ◦ ν. Hence we see that the partial mapping g 7→ g · f can
only be smooth if f itself is smooth. Notice however, that the space C∞(G,C) forms a
dense subspace of C(G,C).

This example also shows that passing from a representation of a Lie group G to
a representation of its Lie algebra g is much more subtle in infinite dimensions. The
natural idea to obtain an action of the Lie algebra is by restricting representations to
one–parameter subgroups and then differentiating. As we see from above, one parameter
subgroups do not act differentiably in general, so the Lie algebra cannot act on the whole
representation space. However, in the special case above, we do obtain a representation
of g on the dense subspace C∞(G,C) ⊂ C(G,C). This representation is explicitly given
by

(X · f)(g) = d
dt
|t=0(exp(tX) · f)(g) = d

dt
|t=0f(exp(−tX)g) = (R−X · f)(g),

so we have to differentiate functions using right invariant vector fields. The fact that
this is a representation of g (on an infinite dimensional space) follows immediately from
the fact that [R−X , R−Y ] = R−[X,Y ], see 1.6.

It turns out that general infinite dimensional representations behave similarly. Start-
ing from a representation of G, one obtains a representation of the Lie algebra g on a
dense subspace. This can be used to analyze infinite dimensional representations using
Lie algebra techniques.

3.14. Infinite dimensional representations of compact Lie groups. As a
final topic in this chapter, we want to use the Peter–Weyl theorem to show that for
compact Lie groups infinite dimensional representations are not much more difficult to
handle than finite dimensional ones.

Definition 3.14. Consider a continuous representation of a Lie group G on a
complex Banach space V .
(1) An element v ∈ V is called G–finite if it is contained in a finite dimensional G–
invariant subspace of V . The linear subspace of V spanned by all G–finite vectors is
denoted by V fin.
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(2) For a finite dimensional complex irreducible representation W of G, we define the
W–isotypical component VW ⊂ V as the space of all v ∈ V for which there is a morphism
ϕ : W → V with v ∈ im(ϕ).

Note that for finite dimensional W , any linear map W → V is automatically con-
tinuous. Since morphisms from W to V form a vector space, we see immediately that
the isotypical component VW is a linear subspace of V . For v ∈ VW , the image of the
corresponding morphism ϕ is a finite dimensional G–invariant subspace of V containing
v, so VW ⊂ V fin.

In the special case of a compact Lie group G, there also is a converse to this result.
For v ∈ V fin there is a finite dimensional G–invariant subspace Ṽ ⊂ V containing v.
By Theorem 3.4, Ṽ splits into a direct sum of irreducible representations, which implies
that v can be written as a linear combination of vectors contained in some isotypical
component. This implies that for compact G we get V fin = ⊕W∈ĜVW , where Ĝ denotes
the set of all isomorphism classes of finite dimensional irreducible representations of G
and we consider the algebraic direct sum, i.e. the subspace spanned by all finite linear
combinations of elements of the subspaces VW .

Theorem 3.14. For any representation of a compact Lie group G on a complex
Banach space V , the subspace V fin ⊂ V of G–finite vectors is dense in V .

Proof. The main tool for this proof is an extension of the action of G on V to
an action of C(G,C). This technique is referred to as “smearing out the action” by
physicists. So let f : G→ C be a continuous function and for v ∈ V consider the map
G → V defined by h 7→ f(h)(h · v). Evidently, this is continuous, so we can define
Tf (v) :=

∫
G
f(h)h · vdh ∈ V .

Given v0 ∈ V , continuity of the action of G on V implies that we can find a neigh-
borhood U of e in G, such that ‖g ·v0−v0‖ < ε

2
for all g ∈ U . As in the proof of Theorem

3.12 we find a smooth function µ : G → R with non–negative values and support con-
tained in U such that

∫
G
µ(h)dh = 1. As in that proof, we next get the estimate that

‖µ(h)h · v0−µ(h)v0‖ < ε
2
µ(h) and integrating both sides shows that ‖Tµ(v0)− v0‖ < ε

2
.

On the other hand, one easily verifies that g · Tf (v) =
∫
G
f(h)gh · vdh, which by

invariance of the integral equals
∫
G
f(g−1h)h · vdh = Tg·f (v). In particular, if f ∈

C(G,C)fin, then we have Tf (v) ∈ V fin. Now certainly any linear combination of matrix
coefficients lies in C(G,C)fin, so by the Peter–Weyl theorem 3.12 we find a function
f ∈ C(G,C)fin arbitrarily close to µ. Since g 7→ ‖g ·v0‖ is continuous and G is compact,
there is an M ∈ R such that ‖g · v0‖ < M for all g ∈ G, and we choose f ∈ C(G,C)fin

in such a way that ‖f − µ‖ < ε
2M

. Then f(h)h · v0 − µ(h)h · v0 lies in the ball of radius
ε
2

around zero for all h ∈ G, so integrating shows that ‖Tf (v0)− Tµ(v0)‖ < ε
2
. Together

with the above, we see that Tf (v0) ∈ V fin is ε–close to v0. �

Corollary 3.14. For a compact Lie group G, any irreducible representation on a
Banach space is finite dimensional.

Proof. This evidently follows from the theorem since for an infinite dimensional
irreducible representation all isotypical components and hence the space of finite vectors
would be zero. �

Remark 3.14. (1) The tools introduced in the proof of the theorem are very im-
portant in representation theory of general Lie groups. If G is a general Lie group,
then for representations of G on V smearing out the action cannot be done with
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continuous functions, but rather one uses L1–functions. These form a Banach space
L1(G), which can be made into a Banach algebra by using the convolution, defined
by (f1 ∗ f2)(g) :=

∫
G
f1(h)f2(h−1g)dh. The above construction then makes V into a

module over the convolution algebra. The convolution algebra has no identity element
(which would be the delta distribution in e) but one can approximate the identity by
L1–functions, which is the technique used in the proof.
(2) The theorem itself is also very useful for representations of general Lie groups.
Starting with a general Lie group G, one often has a nice maximal compact subgroup
K ⊂ G. Prototypical examples are SU(n) ⊂ SL(n,C), and SO(n) ⊂ SL(n,R). Given
a representation of G on V , one may first analyze V as a representation of K. By the
theorem, this mainly amounts to understanding the isotypical components, which in
turn means finding the multiplicities of finite dimensional irreducible representations
W in V , i.e. the dimensions of the spaces of G–equivariant maps from W to V .
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