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@ | will start by describing the general version of Kostant's
Hodge theory for analyzing certain Lie algebra cohomology
groups.

@ This Hodge theory plays a central role in the construction of
canonical Cartan connections, which | will describe in detail
for conformal structures and outline for general parabolic
geometries.

@ This setup directly leads to a twisted de—Rham sequence
which controls infinitesimal automorphisms and deformations
on the level of Cartan geometries. Interpreting this sequence
in terms of the underlying structures provides an archtypical
example of the machinery of BGG sequences.
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Kostant's Hodge theory

Let g be a semisimple Lie algebra endowed with a grading

9=9-D90DP 9+ =9-kkD - D gk

This is (loosely speaking) equivalent to specifying the parabolic
subalgebra p := go @ g+.

We will later look at geometric structures determined by (g, p),
important examples with the corresponding geometries are:

so(n+1,1) =R" @ cso(n) ® R™  (conformal)
sl(n+1,R) =R" @ gl(n,R) & R™  (projective)
su(n+1,1) = (R® C") @ csu(n) ® (C"®dR) (CR).

Given a representation V' of g, the playground for Kostant's Hodge
structure is the space A*(g/p)* ® V/, and the key observation is
that this admits two different Lie theoretic interpretations.
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Kostant's Hodge theory

First, via the Killing form of g, we get (g/p)* = g+ which leads to
the Lie algebra homology differentials (traditionally called “Kostant
codifferential”) 9* : Akg, @ V — A<lg, @ V.
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Kostant's Hodge theory

First, via the Killing form of g, we get (g/p)* = g+ which leads to
the Lie algebra homology differentials (traditionally called “Kostant
codifferential”) 9* : Akg, @ V — A<lg, @ V.

F(DON - NZeov) =N~V N2 . NZ®Zi-v
+ N CVHZLZIN DN 2 L N L@y

Andreas Cap The infinitesimal automorphism equation



Kostant's Hodge theory

First, via the Killing form of g, we get (g/p)* = g+ which leads to
the Lie algebra homology differentials (traditionally called “Kostant
codifferential”) 9* : Akg, @ V — A<lg, @ V.

On the other hand, linearly and as a go—module, we have (g/p) =
g_. Hence we can identify A(g/p)* ® V with multilinear alternat-
ing V—valued maps on g_ and obtain the Lie algebra cohomology
differential 0 : Nkg* @ V — NFlg* @ V.
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Kostant's Hodge theory

First, via the Killing form of g, we get (g/p)* = g+ which leads to
the Lie algebra homology differentials (traditionally called “Kostant
codifferential”) 9* : Akg, @ V — A<lg, @ V.

On the other hand, linearly and as a go—module, we have (g/p) =
g_. Hence we can identify A(g/p)* ® V with multilinear alternat-
ing V—valued maps on g_ and obtain the Lie algebra cohomology
differential 0 : Nkg* @ V — NFlg* @ V.
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Kostant's Hodge theory

First, via the Killing form of g, we get (g/p)* = g+ which leads to
the Lie algebra homology differentials (traditionally called “Kostant
codifferential”) 9* : Akg, @ V — A<lg, @ V.

On the other hand, linearly and as a go—module, we have (g/p) =
g_. Hence we can identify A(g/p)* ® V with multilinear alternat-
ing V—valued maps on g_ and obtain the Lie algebra cohomology
differential 0 : Nkg* @ V — NFlg* @ V.

Together we have two sequences of operators
NN g/p)r @ VS N (g/p)r e V S A (gp) o V-

with leftward pointing arrows being 0*'s and rightward pointing
arrows being 0's. Moreover, 0 o3 =0 and 0* 0 9" = 0.
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Kostant's Hodge theory

Kostant's results

@ The operators 9 and 0* are adjoint with respect to a natural
inner product.

@ Defining the Kostant Laplcian 0 =y := 3" 0 d + 0 o 0" on
AX(g/p)* ® V one obtains the Hodge decomposition

AN (g/p)* @ V = Im(9*) @ ker(Oy) @ Im(9).

@ The first two summands in the Hodge decomposition add up
to ker(9*), the last two to ker(9). In particular,

Hi(g+, V) = ker(Ok) = H (g, V),

and this can be described algorithmically as a representation
of go.
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Canonical Cartan connections

The conformal sphere

Consider G := SO(n + 1,1), the special orthogonal group of a
Lorentzian vector space of dimension n+ 2, and let P C G be the
stabilizer of an isotropic line in R"*1:1. On the Lie algebra level,
one gets a grading g =g_1 ® go ® g1 with p = go D g1.

The homogeneous space G/P can be identified with the space of
null lines in R"T11 which is isomorphic to the sphere S”, and G is
the group of conformal isometries of S”.

The Poincaré conformal group P is the group of conformal
isometries of S” which fix a distinguished point o. Taking the
derivative in o, defines a surjective homomorphism

P — CO(n) =: Gy. The kernel of this is a subgroup G; C P with
Lie algebra g;. One can also identify Gy with the subgroup of
those elements of P whose adjoint action preserves the grading of
gand P = Gy x Gy.



Canonical Cartan connections

Now suppose that M is an n—-manifold endowed with a conformal
structure [g]. Then there is a natural frame bundle Gy — M with
structure group CO(n) = Gp. Now we tautologically extend the
structure group of this bundle to P by forming G := Gy X g, P.

Next, look for Cartan connections w € Q'(G, g), i.e. P-equivariant
trivializations of TG, which reproduce the generators of
fundamental vector fields. Via Go = G/ Gy any Cartan connection
on G descends to a soldering form 6 € Q'(Go, g/p), and one
requires that w descends to the canonical soldering form on the
frame bundle.

Remark: In standard EDS-language, one would view 6 (and its
pull-back to G) as an n-tuple (') of 1-forms and w as a matrix
(wj) of 1-forms of size n+ 2. The fact that w is g-valued is then

expressed by relations among the wJ’ The fact that w descends to
0 is expressed by formulae for some wJ’: in terms of 0X's.
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Canonical Cartan connections

Local existence of such Cartan connections is easily seen. To
ensure uniqueness (which then also implies that local connections
fit together) on has to impose normalization conditions on the
curvature.

Definition
The curvature K € Q2(G, g) of a Cartan connection w € Q(G, g)

is defined by K(&,7) = dw(§, n) + [w(§), w(n)].

This is horizontal and P—equivariant, and thus completely captured
by the curvature function k : G — N?(g/p)* @ g, which is
characterized by K(&,n) = k(0(£),6(n)).

If w is a Cartan connection, then all Cartan connections lifting the
same soldering form are parametrised by P—equivariant functions

G — L(g/p, 80 © g1).
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Canonical Cartan connections

Denoting the function by @, the relation is determind by

6(6) = w(€) + 9(6(¢)). J

By construction & = w mod p and thus also d&(&,n) = dw(&,n).
On the other hand, modulo p we get

[©(€), ©(m)] = [w(€), w(n)] = [w(€), P(O(n))] + [®(6(¢)), w(n)]-

We may further replace the w's in the right hand side by 6’s and
the ®'s by their components ®¢ in L(g/p, go), so modulo p, we get:

R(X,Y)=k(X,Y)+ (00 Po)(X,Y) mod p. |

Using Kostant's hodge theory, one sees that, given w, the map ¢
can be chosen in such a way that & is congruent to an element of
ker(0*) modulo p—valued maps.

Andreas Cap The infinitesimal automorphism equation



Canonical Cartan connections

Assuming that w already has this property, one can do the same
thing with ® : G — L(g/p, g1), computing curvatures modulo g;.
This shows that 4 can be made congruent to an element of
ker(0*) modulo gi;—valued maps. Since these are automatically in
ker(0*) we get:

Any first order Gg—structure is induced by a Caran connection w
which is normal in the sense that 0* o k = 0.

To study uniqueness, assume that we have two principal P-bundles
endowed with normal Cartan connections. Using a cohomological
condition which can be verified using Kostant's theorem one
deduces:

Any morphism of the underlying Go—principal bundles preserving
the induced soldering forms uniquely lifts to an morphism of the
Cartan geometries. Thus passing to the normal Cartan geometry is
an equivalence of categories.
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Canonical Cartan connections

Harmonic curvature

If w is a normal Cartan connection on G, then by definition its
curvature function x : G — A?(g/p)* ® g has values in the
subspace ker(9*). Thus we can project its values into
ker(0%)/im(9*) = H*(g-1. 9)-

The resulting geometric object is called the harmonic curvature ky
of the geometry. Here, this produces the Weyl curvature
respectively the Cotton—York tensor.

Using the Bianchi—identity one shows that the lowest non—zero
component of k always has values in ker(9) thus obtaining:

Proposition (Tanaka)

If Ky vanishes, then x vanishies, so the geormetry is locally
isomorphic to G/P.
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Canonical Cartan connections

Tanaka theory

In pioneering work in the 1960's and 70's N. Tanaka showed that
the Kostant codifferential provides an appropriate normalization
condition for general parabolic subalgebras in semisimple Lie
algebras. This leads to a class of geometric structures called
parabolic geometries. Some modifications are necessary:

@ The underlying structure now involves a filtration of the
tangent bundle with prescribed symbol algebras and a
reduction of the associated graded of the tangent bundle.

@ The filtrations involved lead to a natural notion of
homogeneity for g—valued differential forms. In the procedure
one has to look at components of some fixed homogeneity
rather than sorting components by their values.

@ The iterative process has to be run more often.
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A BGG sequence related to deformations

We have already observed that the space of Cartan connections on
a principal P-bundle has an affine structure. More formally:

If w and & are Cartan connections on G then & — w € QY(G, g) is
horizontal and P—equivariant.

Conversely, if ¢ € Qt_ (G, g)" then w + ¢ is a Cartan connection
provided that its restriction to each tangent space is injective.

Likewise, we have seen that the curvature K of w lies in Q2_ (G, g).
Fixing a Cartan connection w, we get an isomorphism

Qﬁor(gag)P =~ QK(M, AM) where AM :=G xp g.

AM is called the adjoint tractor bundle. Via w, we can identify
F(AM) = %(G)F, the space of P-invariant vector fields on G.
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A BGG sequence related to deformations

Given w, we can thus identify I'(LAM) with the space of
ifnititesimal principal bundle automorphisms and Q!(M, AM) with
the tangent space at w to the space of all Cartan connections. The
infinitesimal change of w caused by ¢ € X(G)F is of course given
by the Lie derivative L¢w. Now we get

Proposition

For & € X(G)P we get Lew € QF (G, 9)F. Viewing € — Lew as an

hor

operator [(AM) — QY(M, AM), it defines a linear connection V
on AM.

Likewise, one can interpret ¢ € Q1(M, AM) as an infinitesimal
deformation of the Cartan connection w and compute the resulting
infinitesimal change of curvature, which is an element of

Q2(M, AM). It turns out that this is dV¢, where dV is the
covariant exterior derivative associated to V.
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A BGG sequence related to deformations

Thus the twisted de~Rham sequence (2*(M, AM), d"V) associated
to the linear connection V admits an interpretation as a
deformation sequence on the level of the Cartan geometry (G, w):

@ The kernel of the first operator is the space of infinitesimal
automorphism while its image is the space of trivial
infinitesimal deformations.

o If k =0, then V is flat, so we obtain a complex. The kernel
of the second operator is the space of infinitesimal flat
deformations, and the cohomology in degree one is the formal
tangent space to the moduli space of flat structures.

Suppose that we start with a normal Cartan connection determined
by some underlying structure. Then the categorical equivalence
implies that deformations in the sub—category of normal Cartan
connections should be equivalent to deformations of the underlying
structure. This is implemented by the BGG machinery.
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A BGG sequence related to deformations

To formalize this, we first observe that 0* defines p—equivariant
maps on the spaces Akg, ® g, so there are induced bundle maps
O NCT*M @ AM — N1 T*M @ AM and hence

0 im(9*) C ker(9*) € AKT*M ® AM are natural subbundles

@ the quotient bundle Hy := ker(9*)/Im(9*) is isomorphic to
g Xp Hk(g—ag)'
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A BGG sequence related to deformations

To formalize this, we first observe that 0* defines p—equivariant
maps on the spaces Akg, ® g, so there are induced bundle maps
O NCT*M @ AM — N1 T*M @ AM and hence

0 im(9*) C ker(9*) € AKT*M ® AM are natural subbundles
@ the quotient bundle Hy := ker(9*)/Im(9*) is isomorphic to
g Xp Hk(g—ag)'

In the conformal case, Ho = TM, Hi1 = 58 T*M and H, is the
bundle of Weyl tensors respectively Cotton—York tensors.
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A BGG sequence related to deformations

To formalize this, we first observe that 0* defines p—equivariant
maps on the spaces Akg, ® g, so there are induced bundle maps
O NCT*M @ AM — N1 T*M @ AM and hence

0 im(9*) C ker(9*) € AKT*M ® AM are natural subbundles

@ the quotient bundle Hy := ker(9*)/Im(9*) is isomorphic to
g Xp Hk(g—ag)'

From what we have discussed above, it is clear that im QY(M, AM)
is a normal infinitesimal deformation iff 9*(dV¢) = 0. Denoting
by 7y : ker(0*) — Hjy the natural projections, my(dY ) is the
infinitesimal change of harmonic curvature caused by ¢.

The second crucial ingredient is that dV preserves homogeneities
and its lowest homogeneous component is tensorial and induced by
0. (Technically speaking, the “lowest homogeneous component” is
the induced operator on sections of the associated graded bundles.)
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A BGG sequence related to deformations

This implies that certain aspects of Kostant's Hodge decomposition
carry over to the curved setting. Defining OF := dVo* + 9*dV,
which is an operator on Q"(M, AM), one shows

Theorem

Q ker(OR) = ker(0*) N ker(a*d@).

@ Given ¢ € QK(M, AM) there is 1) € QK~1(M, AM) such that
F*(p+ dﬁw) = 0. One may use ¢ = Q(d*y) for a differential
operator Q on '(im(9*)) which is a polynomial in (IR,

@ Given a € I'(H) there is a unique section 1 € ker(CIR) such
that mH(¢) = . This defines a differential operator
S T(Hy) — ker(CIR) € QX(M, AM) which can be written as
a (universal) polynomial in CIR. (“splitting operators”)
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A BGG sequence related to deformations

Having the splitting operators at hand, we can define the BGG
operators D = Dy : T(Hi) = T(Hys1) by D() := mu(dV 5(c)).
Having these at hand, we can now interpret the deformation
sequence in terms of the underlying structure:

First we need a fact specific to this case, expressing that trivial
deformations of normal geometries are normal:
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A BGG sequence related to deformations

Having the splitting operators at hand, we can define the BGG
operators D = Dy : T(Hi) = T(Hys1) by D() := mu(dV 5(c)).
Having these at hand, we can now interpret the deformation
sequence in terms of the underlying structure:

For s € [(AM), we have 0*dVVs =0.  (x) J

Now we can prove that Dy is the infinitesimal automorphism
operator and (V, S) provides a prolongation:

{s € T(AM) : Vs = 0} = ker(Dy) via 7y and S J

Proof: For s € [(AM) we always have 9%s = 0, so we can form
o =mp(s) € [(Ho). If Vs =0, then 0OR(s) =0, so s = S(o) and
Do(c) = my(Vs) = 0. Conversely, for o € ['(H) consider

s = 5(o), which by definition satisfies 0 :Na*@s. But then (x)
implies that (IR (Vs) =0, so Vs = S(m(Vs)) = S(Do(0)).

Andreas Cap The infinitesimal automorphism equation



A BGG sequence related to deformations

At the level of one—forms, we can first show:

For a € I(H1), S(e) € QY(M, AM) is a normal infinitesimal
deformation, and D () is the infinitesimal change of harmonic
curvature caused by this. Morover, any normal deformation is
equivalent modulo trivial deformations to one of this form.

Proof: 0 = 9*dV 5(a) holds by definition, and since

Di(a) = mi(dV 5(a)) the first part follows. For the second part,
given p € QY (M, AM), put ¢ := ¢ + VQ(d*), which by
construction satisfies 9*1) = 0. Moreover, by (*) the deformation
® is again normal. But this shows [J®(¢)) = 0 and thus

W = S(mp (1))

Having this at hand, similar arguments as before show that

The quotient of normal infinitesimal deformations by trivial ones
can be identified with the quotient ['(#H1)/im(Dy).
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A BGG sequence related to deformations

If we start from a flat Cartan connection (which is automatically
normal), then the linear connection V is flat and the twisted
de—Rham sequence is a complex defining a fine resultion of the
sheaf of infinitesimal automorphims. Here one easily proves:

In this case, also the BGG-sequence (I'(#.), D) is a complex and a
fine resolution of the same sheaf.

Here one obtains a deformation complex on the level of the
underlying structures generalizing the one for locally conformally
flat manifolds constucted by Gasqui and Goldschmidt.

There are cases in which one may construct deformation complexes
in categories of semi—flat geometries using the BGG machinery. In
particular, this works for self-dual conformal structures in
dimension 4, for quaternionic structures, (integrable)
CR-structures and quaternionic contact structures.
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