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I will start by completing the discussion of the deformation
sequence discussed in the last lecture by passing to the
underlying structure. The crucial ingredient here is the
consequences of Kostant’s Hodge decomposition which are
available on this level.

The basic technical ingredients generalize immediately to the
case of an arbitrary tractor bundle endowed with its canonical
(linear) tractor connection. This leads to a vast number of
examples of geometric overdetermined systems.

In contrast to the case of the deformation sequence, the
machinery only provides a partial prolongation of the
overdetermined system. At the same time, it singles out a
special subclass of solutions called normal solutions.

I will finish by briefly discussing full prolongations, as well as
some recent applications of the machinery.
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Recall that we had ...

A principal P–bundle G → M endowed with a normal Cartan
connection ω ∈ Ω1(G, g) which encodes an underlying
geometric structure.

The adjoint tractor bundle AM := G ×P g of the geometry
with a nice interpretation of the spaces Ωi (M,AM) for
i = 0, 1, 2 as infinitesimal principal bundle automorphisms of
G, infinitesimal deformations of Cartan connections and
infinitesimal changes of Cartan curvature, respectively.

A linear connection ∇̃ on AM such that the twisted de–Rham
sequence (Ω∗(M,AM), d∇̃) admits an interpretation as a
deformation sequence.

Natural bundle maps ∂∗ : ΛkT ∗M ⊗AM → Λk−1T ∗M ⊗AM
induced by the Kostant codifferential with ∂∗ ◦ ∂∗ = 0, so we
get natural subbundles im(∂∗) ⊂ ker(∂∗) ⊂ ΛkT ∗M ⊗AM.
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and we observed that ...

The bundles Hk := ker(∂∗)/ im(∂∗) ∼= G ×P Hk(g+, g) consist
of much simpler geometric object than the adjoint tractor
bundle, their form can be deduced from Kostant’s theorem.

Both ∂∗ and d∇̃ are compatible with a natural filtration on
the bundles ΛkT ∗M ⊗AM induced from the grading of g we
started with. Morover the lowest homogeneous component of
d∇̃ is tensorial and induced by the Lie algebra cohomology
differential ∂.

This implies that certain aspects of Kostant’s Hodge
decomposition carry over to the curved setting. Defining
�̃R := d∇̃∂∗ + ∂∗d∇̃, which is an operator on Ωk(M,AM),
we get:
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Theorem

1 ker(�̃R) = ker(∂∗) ∩ ker(∂∗d∇̃).

2 Given ϕ ∈ Ωk(M,AM) there is ψ ∈ Ωk−1(M,AM) such that

∂∗(ϕ+ d∇̃ψ) = 0. One may use ψ = Q̃(∂∗ϕ) for a differential
operator Q̃ on Γ(im(∂∗)) which is a polynomial in �̃R .

3 Given α ∈ Γ(Hk) there is a unique section ψ ∈ ker(�̃R) such
that πH(ψ) = α. This defines a differential operator
S̃ : Γ(Hk)→ ker(�̃R) ⊂ Ωk(M,AM) which can be written as
a (universal) polynomial in �̃R . (“splitting operators”)

Most of this follows directly from Kostant’s Hodge theory. For
example, if 0 = �̃R(ϕ), one applies ∂∗ to conclude that

∂∗d∇̃∂∗ϕ = 0. If ∂∗ϕ were non–zero, then its lowest
non–vanishing homogneous component would be annihilated by
∂∗∂ which contradicts Kostant’s Hodge decompositon. Thus
∂∗ϕ = 0 and hence ∂∗d∇̃ϕ = 0.
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Having the splitting operators at hand, we can define the BGG
operators D̃ = D̃k : Γ(Hk)→ Γ(Hk+1) by D̃(α) := πH(d∇̃S̃(α)).
Having these at hand, we can now interpret the deformation
sequence in terms of the underlying structure:
First we need a fact specific to this case, expressing that trivial
deformations of normal geometries are normal:

Now we can prove that D̃0 is the infinitesimal automorphism
operator and (∇̃, S̃) provides a prolongation:

{s ∈ Γ(AM) : ∇̃s = 0} ∼= ker(D̃0) via πH and S̃

Proof: For s ∈ Γ(AM) we always have ∂∗s = 0, so we can form
σ = πH(s) ∈ Γ(H0). If ∇̃s = 0, then �̃R(s) = 0, so s = S̃(σ) and
D̃0(σ) = πH(∇̃s) = 0. Conversely, for σ ∈ Γ(H0) consider
s = S̃(σ), which by definition satisfies 0 = ∂∗∇̃s. But then (∗)
implies that �̃R(∇̃s) = 0, so ∇̃s = S̃(πH(∇̃s)) = S̃(D0(σ)).
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Having the splitting operators at hand, we can define the BGG
operators D̃ = D̃k : Γ(Hk)→ Γ(Hk+1) by D̃(α) := πH(d∇̃S̃(α)).
Having these at hand, we can now interpret the deformation
sequence in terms of the underlying structure:

For s ∈ Γ(AM), we have ∂∗d∇̃∇̃s = 0. (∗)

Now we can prove that D̃0 is the infinitesimal automorphism
operator and (∇̃, S̃) provides a prolongation:

{s ∈ Γ(AM) : ∇̃s = 0} ∼= ker(D̃0) via πH and S̃

Proof: For s ∈ Γ(AM) we always have ∂∗s = 0, so we can form
σ = πH(s) ∈ Γ(H0). If ∇̃s = 0, then �̃R(s) = 0, so s = S̃(σ) and
D̃0(σ) = πH(∇̃s) = 0. Conversely, for σ ∈ Γ(H0) consider
s = S̃(σ), which by definition satisfies 0 = ∂∗∇̃s. But then (∗)
implies that �̃R(∇̃s) = 0, so ∇̃s = S̃(πH(∇̃s)) = S̃(D0(σ)).
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At the level of one–forms, we can first show:

For α ∈ Γ(H1), S̃(α) ∈ Ω1(M,AM) is a normal infinitesimal
deformation, and D̃1(α) is the infinitesimal change of harmonic
curvature caused by this. Morover, any normal deformation is
equivalent modulo trivial deformations to one of this form.

Proof: 0 = ∂∗d∇̃S̃(α) holds by definition, and since

D̃1(α) = πH(d∇̃S̃(α)) the first part follows. For the second part,
given ϕ ∈ Ω1(M,AM), put ψ := ϕ+ ∇̃Q̃(∂∗ϕ), which by
construction satisfies ∂∗ψ = 0. Moreover, by (∗) the deformation
ψ is again normal. But this shows �̃R(ψ) = 0 and thus
ψ = S̃(πH(ψ)).
Having this at hand, similar arguments as before show that

The quotient of normal infinitesimal deformations by trivial ones
can be identified with the quotient Γ(H1)/ im(D̃0).
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If we start from a flat Cartan connection (which is automatically
normal), then the linear connection ∇̃ is flat and the twisted
de–Rham sequence is a complex defining a fine resultion of the
sheaf of infinitesimal automorphims. Here one easily proves:

In this case, also the BGG–sequence (Γ(H∗), D̃) is a complex and a
fine resolution of the same sheaf.

Here one obtains a deformation complex on the level of the
underlying structures generalizing the one for locally conformally
flat manifolds constucted by Gasqui and Goldschmidt.

There are cases in which one may construct deformation complexes
in categories of semi–flat geometries using the BGG machinery. In
particular, this works for self–dual conformal structures in
dimension 4, for quaternionic structures, (integrable)
CR–structures and quaternionic contact structures.
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Tractor bundles and tractor connections

A tractor bundle is a bundle of the form VM := G ×P V , where V
is a representation of G (viewed as a representation of P). As
geometric objects, these bundles are rather unusual, but they
inherit linear connections from the Cartan connection ω.

For a section s ∈ Γ(VM) consider the corresponding P–equivariant
function f : G → V and for a vector field ξ ∈ X(M) take a
P–invariant lift ξ̃ ∈ X(G). Then the function

u 7→ (ξ̃ · f )(u) + ω(ξ̃(u)) · f (u)

(with the dot in the last term denoting the action of g on V ) is
P–equivariant and depends only on ξ, so we can define
∇ξs ∈ Γ(VM) to be the corresponding section.
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Remark

In the case V = g, we return to the adjoint tractor bundle AM
used in the case of the deformation sequence. However, the
connection ∇ is different from ∇̃:
If s ∈ Γ(AM) corresponds to η̃ ∈ X(G)P , then by defintion ∇̃s
corresponds to Lη̃ω, while the equivariant function G → g
corresponding to s is ω(η̃). Then for ξ ∈ X(M) and a lift
ξ̃ ∈ X(G)P , we see that ∇̃ξs corresponds to the function

(Lη̃ω)(ξ̃) = η̃ · ω(ξ̃)− ω([η̃, ξ̃]) = dω(η̃, ξ̃) + ξ̃ · ω(η̃) =
κ(η, ξ) + [ω(ξ̃), ω(η̃)] + ξ̃ · ω(η̃)

The last two summands correspond to ∇ξs, so ∇ and ∇̃ differ by a
curvature term. The BGG machinery applies to both since κ is
homogeneous of positive degree.
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As before, we obtain a twisted de–Rham sequence
(Ω∗(M,VM), d∇). Also, the Kostant codifferential induces bundle
maps ∂∗ : ΛkT ∗M ⊗ VM → Λk−1T ∗M ⊗ VM and thus natural
subbundles im(∂∗) ⊂ ker(∂∗) ⊂ ΛkT ∗M ⊗ VM such that
HV

k := ker(∂∗)/ im(∂∗) ∼= G ×P Hk(g+,V ).
To imitate the case of the deformation sequence, we first observe
that V carries a natural P–invariant filtration

V = V 0 ⊃ V 1 ⊃ · · · ⊃ VN ⊃ VN+1 = 0

defined by VN = {v ∈ V : g+ · v = 0} and inductively
V i−1 = {v ∈ V : g+ · v ∈ V i}.

Both ∂∗ and d∇ are compatible with the induced filtration on
Ω∗(M,VM) and the lowest homogeneous component of d∇ is
tensorial and induced by the Lie algebra differential ∂.
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The next steps are completely parallel to the deformation case:
Defining �R := d∇∂∗ + ∂∗d∇, one proves

Theorem

1 ker(�R) = ker(∂∗) ∩ ker(∂∗d∇).

2 Given ϕ ∈ Ωk(M,VM) there is ψ ∈ Ωk−1(M,VM) such that
∂∗(ϕ+ d∇ψ) = 0. One may use ψ = Q(∂∗ϕ) for a differential
operator Q on Γ(im(∂∗)) which is a polynomial in �R .

3 Given α ∈ Γ(HV
k ) there is a unique section ψ ∈ ker(�R) such

that πH(ψ) = α. This defines a differential operator
S : Γ(HV

k )→ ker(�R) ⊂ Ωk(M,VM) which can be written as
a (universal) polynomial in �R . (“splitting operators”)

The BGG–operators D = Dk : Γ(Hk)→ Γ(Hk+1) are again defined
as D(α) = πH(d∇S(α)).
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It turns out that the first operator D0 in each BGG sequence
defines a natural overdetermined system of PDEs. It is defined on
sections of the bundle HV

0 = VM/V1M, the quotient of the tractor
bundle by the largest filtration component. The target bundle can
be easily described using Kostant’s theorem. The general
machinery easily shows that we obtain a partial prolongation of D0:

The projection πH and the splitting operator S restrict to inverse
bijections between {s ∈ Γ(AM) : ∇s ∈ Γ(im(∂∗))} and ker(D0).

This means that for α ∈ Γ(H0) the equation D0(α) = 0 is
equivalent to ∇S(α) = ∂∗ϕ for some ϕ ∈ Ω2(M,VM), and the
right hand side can be computed from S(α). This was used to
obtain a full prolongation, even for quasilinear operators with the
same principal symbol in many cases.
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Normal solutions

The BGG construction automatically leads to a subclass of
solutions of the first BGG operator:

A normal solution of D0 is a section α ∈ Γ(HV
0 ) such that

∇S(α) = 0. (Note that this implies D0(α) = 0.)

Remarks: (1) In many cases of interest, the BGG sequence
constructed for the adjoint tractor bundle AM from the connection
∇ produces the same splitting operator and the same BGG
operator in degree zero, so one again gets the infinitesimal
automorphism operator. Normal solutions in this case are
infinitesimal automorphisms which in addition insert trivially into
the Cartan curvature.
(2) It turns out that one can obtain a natural full prolongation of
the first BGG operator in all cases.
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Normal solutions II

On the homogeneous model G/P any solution is normal and
solutions can be described in terms of algebraic geometry or
even linear algebra.

Normal solutions on general geometries are locally conjugate
to solutions on G/P via a diffeomorphism. This in particular
gives information on their zero set.

This fits into the much more general context of holonomy
reductions of Cartan geometries.

If the zero set is always an embedded hypersurface, then one
can looks at the situation of a manifold with boundary such
that the zero set coincides with the boundary. This leads to
notions of geometric compactifications. A model case is
Poincaré–Einstein manifolds.

. . .
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Thanks for your attention

Happy Birthday, Robert!
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