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The ambient metric associated to a conformal structure on a
manifold was originally introduced by Ch. Fefferman and
C.R. Graham in a short article without complete proofs in
1985.

While the ambient metric found many applications in the
sequel, the complete results were not available until 2007,
when Fefferman and Graham released the preprint
arXiv:0710.0919 (about 100 pages) with complete proofs.

In my talk, I will survey the basic properties of the ambient
metric, its relation to other conformally invariant objects, and
some applications.

I will also discuss the motivation for the ambient metric
construction which comes from complex analysis and CR
geometry.
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Basic notions

Two (Pseudo–)Riemannian metrics gij and ĝij on a smooth
manifold M are conformally equivalent if there is a smooth
function ϕ : M → R such that ĝij = e2ϕgij .

It is very easy to construct (scalar) invariants associated to a
Riemannian manifold (M, g): Take the Riemann curvature Rij

k
`

and its iterated covariant derivatives ∇a1 . . .∇ar Rij
k
` multiply

several such objects up and then define I (g) to be a complete
contraction of such an expression.
It is a natural idea to look at particularly robust Riemannian
invariants, which behave nicely under conformal changes. The
simplest of those are the conformal invariants:

Definition

A conformal invariant of weight w is a Riemannian invariant I
such that for ĝ = e2ϕg one obtains I (ĝ) = ewϕI (g).
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Similarly, it is very easy to construct (linear) differential operators
acting on tensor or spinor bundles, which are intrinsic to a
Riemannian manifold (M, g): One just takes iterated covariant
derivatives, the curvature and its covariant derivatives and then
forms tensorial operations like contractions to define a differential
operator Dg depending on g . Again, one can look at such
operators which are well behaved with respect to conformal
changes:

Definition

A Riemannian invariant linear differential operator Dg is called
conformally covariant of weight (a, b) if and only if for ĝ = e2ϕg
one gets

D ĝ (eaϕs) = ebϕDg (s).
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Examples

The Weyl curvature Wij
k
` (the totally tracefree part of the

Riemann curvature) is well known to be conformally invariant.
Hence forming a complete contraction of a product of Weyl
curvatures defines a scalar conformal invariant.

The Yamabe operator Y (f ) = ∆(f ) + 1
n+2 Rf is a

modification of the Laplacian which is conformally covariant
of weight (−n

2 − 1,−n
2 + 1).

The simplicity of these examples is misleading. Although conformal
geometry was studied intensively, only very few other conformal
invariants were know classically.
Likewise, a naive approach to conformally covariant operators is
very effective for order 1 or 2, but gets quickly out of hand in
higher orders. A conformally covariant modification of ∆2 in
dimension 4 was first constructed in 1983 (Paneitz operator).
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To overcome these difficulties, it is desirable to work in a
conformally invariant way throughout. The basic ideas for this have
been developed in the 1920s and 30s, but only in the last decades
things have turned into fairly effective calculi. All these approaches
are based on the homogeneous model of conformal structures.

The sphere Sn can be realized as the space of null–lines in Rn+1,1

and inherits a canonical conformal structure from the Lorentzian
inner product. This leads to a transitive action of
G := SO(n + 1, 1) on Sn by conformal isometries, and an
identification Sn ∼= G/P, where P ⊂ G is the stabilizer of an
isotropic line (Poincaré conformal group). The group P is an
extension of the conformal group CO(n) by Rn, so CO(n) is
naturally a quotient of P.
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Projectivizing the interior of the light cone, one obtains hyperbolic
space Hn+1 and the natural action realizes G as the isometry
group of Hn+1. The sphere, viewed as the projectivized light cone,
thus naturally shows up as the conformal infinity of Hn+1 in this
picture (with the group G of conformal isometries).

The basic object associated to a conformal structure is the
canonical Cartan connection introduced by E. Cartan in the 1920s.
On the homogeneous model, one observes the G → G/P ∼= Sn is a
principal P–bundle, and the Maurer–Cartan form defines a
trivialization of the tangent bundle TG ∼= G × g with nice
properties, where g = so(n + 1, 1). The Cartan connection
generalizes this description to arbitrary conformal structures:
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Theorem (E. Cartan)

Let (M, [g ]) be a conformal manifold. Then one can naturally
extend the conformal frame bundle to a principal P–bundle
P → M which can be canonically endowed with a Cartan
connection ω ∈ Ω1(P, g). The pair (P, ω) is uniquely determined
up to isomorphism.

Already in the 1930s, T. Thomas developed an equivalent
approach via a canonical vector bundles endowed with natural
linear connections. This has been rediscovered and developed
under the name tractor bundles during the last years. The basic
example is the standard tractor bundle T → M which comes with
a bundle metric of signature (n + 1, 1), a canonical line subbundle
T 1 ⊂ T with isotropic fibers, and a natural linear connection. It
can be obtained as T = P ×P Rn+1,1. On the homogeneous
model, it corresponds to the trivial bundle Sn × Rn+1,1 with the
tautological subbundle.
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The ambient metric construction can also be motivated from the
homogeneous model. It is easy to generalize the point of view of
Sn as a projectivized light cone: One simply attaches to each point
of M the line formed by the metrics in the conformal class to
define a cone. The ambient metric construction then tries to
obtain an analog of the surrounding space Rn+1,1 and the flat
metric on this space.

There is a deeper background however, (which also came first
historically) in which the whole construction becomes more
natural. This comes from the complex analog of the whole setup,
which is related to complex analysis and CR geometry.
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Let Ω ⊂ Cn+1 be a (suitably convex) bounded domain with
smooth boundary M = ∂Ω. Then for each x ∈ M the tangent
space TxM ⊂ Cn+1 has real dimension 2n + 1, so the maximal
complex subspace HxM ⊂ TxM must have complex dimension n.
The family Hx of complex subspaces is called a CR–structure on
M, and many analytic properties of Ω are reflected in this
geometric structure.

The homogeneous model

Consider Cn+1,1 with a Hermitian form of Lorentzian signature.
Then the space of lines in the light cone respectively in its interior
can be identified with the unit sphere S2n+1 respectively the unit
ball Bn+1 in Cn+1. The resulting actions of G = SU(n + 1, 1)
identify G with the group of CR–automorphisms of S2n+1

respectively of holomorphic automorphisms of Bn.
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Many of the tools for conformal geometry discussed before have
analogs in the CR setting. There is a canonical Cartan connection
(due to Cartan for n = 1 and Tanaka and Chern–Moser in general),
an equivalent formulation in terms of tractor bundles and so on.

In the 1970s Ch. Fefferman did groundbreaking work on such
domains. Motivated by considerations from complex analysis, he
came up with the following construction:

Given Ω ⊂ Cn+1 with M = ∂Ω consider the domain
Ω# = (C \ 0)× Ω ⊂ (C \ 0)× Cn+1 and its boundary
M# = (C \ 0)×M. Consider a defining function r for M
(i.e. M = r−1(0) and dr is nonzero on M), and define
r#(z0, z) := |z0|2r(z). Then this is a defining function for M# and
it can be used as the potential for a Lorentzian Kähler metric g#

defined locally around M#.
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The Ricci curvature of g# can be easily computed as a (highly
non–linear) expression in the partial derivatives of r up to second
order. In particular, g# is Ricci flat (and hence Calabi–Yau) locally
around M# if and only if r is a solution of a complex
Monge–Ampère equation.

In general, this Monge–Ampère equation does not admit smooth
solutions (and the solvability questions were later on sorted out
completely by Cheng–Yau), but Fefferman found an ingenious
algorithm to algorithmically construct approximate solutions and
proved that they are uniquely determined. It is then rather easy to
show that an appropriate jet of the metric g# constructed from
such an approximate solution is intrinsic to the domain Ω
respectively the CR structure on M.
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Andreas Čap Ambient metric



Conformal structures
The ambient metric in complex analysis

The conformal ambient metric

Remark

There is a stronger connection to conformal structures. The
restriction of g# to M# = (C \ 0)×M turns out to be degenerate
with the degenerate directions given by the real rays in (C \ 0).
Factoring by these real rays, one obtains an induced conformal
structure on M̃ = M × S1. The resulting conformal manifold is
called the Fefferman space of M. On the one hand, this allows the
use of conformal geometry for the study of CR–structures (which
was the original reason for Fefferman’s interest in the topic). On
the other hand, it gives rise to a nice subclass of conformal
structures.

The relation between conformally invariant objects and calculi on
M̃ and CR–invariant objects and calculi is well understood and
explicitly described by now. Also there are nice characterizations of
Fefferman spaces (up to local isomorphism).
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We have seen that we obtain an analog of the cone over a
conformal manifold (M, [g ]) by attaching to each point x ∈ M the
set of values gx of all metrics in the conformal class. This defines a
smooth manifold G with a projection p : G → M.

R+ acts on G via r · gx := (r 2g)x with orbits the fibers of p.

There is a canonical degenerate metric g0 on G whose value in
gx is given by projecting tangent vectors to M and then
applying gx .

g0 is homogeneous of degree two for the R+–action.

Now one considers G × R with the extended action of R+ and
R+–invariant neighborhoods G̃ of G = G × 0 in there, together
with Lorentzian metrics g̃ on G̃ which are homogeneous of degree
two and restrict to g0 on G.
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The basic aim is to find pairs (G̃, g̃) for which g̃ is Ricci flat.
Fefferman–Graham study this problem formally:

Choosing a representative g in the conformal class one obtains
coordinates (t, x) on G via (t, x) 7→ t2gx and hence
coordinates (t, x , ρ) G × R.

The R+–action is just multiplication in the first coordinate
and g0 = t2gijdx idx j .

Now one makes a power–series ansatz (in ρ) for g̃ and tries to
determine the terms in this series from Ricci flatness of g̃
iteratively.

It turns out that the result depends heavily on the parity of n.
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Theorem (Fefferman–Graham)

1 If n is odd, then all terms in the power series can be
determined uniquely. In particular, one can find a pair (G̃, g̃)
for which g̃ is Ricci flat to infinite order along G.

2 If n is even, then there is a formal obstruction to finding a
power series solution in order n/2. One can find a pair (G̃, g̃)
for which g̃ is Ricci flat to order n/2− 1 along G. Even if the
obstruction vanishes, there is a formal indeterminacy at this
order.

3 In both cases, the solution is unique up to diffeomorphism
which are defined locally around G × 0 and fix this subset and
addition of terms which vanish to infinite order respectively to
order n/2 along G × 0.
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Remarks

(1) Since g̃ is assumed to be homogeneous, one may factor by the
R+–action to obtain picture of a Poincaré metric g+ on M × [0, ε).
This is a Riemannian Einstein metric, which has the given
conformal class as conformal infinity. One may simply translate
between results in the ambient picture and this picture.

(2) Also in the Poincaré picture, g+ is only defined up to
diffeomorphisms fixing M × {0} and up to terms vanishing to
appropriate order along M × {0}.

(3) There are a few global results on Poincaré metrics. For
example, any conformal class on Sn close to the standard one, is
induced by a unique complete Poincaré– Einstein metric close to
the hyperbolic metric on Bn+1 (Graham–Lee, Biquard). These
results are of completely different nature than the ones of
Fefferman–Graham.
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Relation to tractors

Given (G̃, g̃), one can restrict the tangent bundle and g̃ to G ⊂ G̃.
Next one can extend the R+–action appropriately to this
restriction.

T G̃|G descends to a vector bundle T → M, g̃ descends to a
bundle metric on T , and the vertical subbundle induces an
isotropic line subbundle T 1 ⊂ T .

The Levi–Civita connection ∇̃ of g̃ descends to a linear
connection on T .

Theorem (Č.-Gover)

If g̃ has vanishing Ricci curvature along G, then this is isomorphic
to the standard tractor bundle and its canonical connection. If g̃ is
Ricci flat to higher order, one can compute R̃ and its covariant
derivative from tractor data.
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Immediate applications

Riemannian invariants of g̃ (which are of low enough order to
be well defined) determine conformal invariants of (M, [g ]).

Already simple examples like ‖∇̃R̃‖2 (defined in dimensions
6= 4) lead to conformal invariants which were previously
unknown.
There are (very involved) general results that all conformal
invariants (with certain restrictions on weights) can be
obtained in this way.
The obstruction in even dimensions can be viewed as a
tracefree symmetric two–tensor Oij on M of certain weight.
This is a conformal invariant, which turns out to be very
important.
If a conformal class contains an Einstein metric, then Oij = 0.
(Starting from an Einstein representative as above, the
equation for Ricci flatness of g̃ reduces to an ODE.)
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GJMS operators

Choosing a representative g of the conformal class and a
smooth function f on M, one can canonically lift f to a
function G which is homogeneous of degree w ∈ R.
(Changing to ĝ = e2ϕg then leads to f̂ = ewϕf ).

Then extend this lift to a smooth function f̃ on G̃ and apply
∆̃k (for k small enough to be unambiguous), and ∆̃k(f̃ ) is
homogeneous of degree w − 2k.

One proves that for fixed k , w can be uniquely chosen in such
a way that ∆̃k(f̃ ) depends only on f and not on the extension
ϕ̃. Hence it induces a differential operator P2k , which is
conformally covariant of weight (w ,w − 2k). In the Poincaré
metric picture, the P2k are deeply related to scattering theory.
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Branson’s Q–curvature

For dim(M) = 2n, fix a representative metric g and build
coordinates (t, x , ρ) on G̃ as before (with a small additional
normalization). Then consider the function log(t) on G̃ and
define function Qg on M by Qg (x) := −∆̃n(| log(t)|)(1, x , 0).

Then Qg is a smooth function on M which defines a
Riemannian invariant, called Branson’s Q–curvature. This has
a very nice (linear) conformal transformation law. Namely for
ĝ = e2ϕg one gets Q ĝ = Qg + P2n(ϕ).

Together with self–adjointness of P2n this implies that for
compact M integrating Qg with respect to the volume form
of g defines a global conformal invariant.
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Asterique, Num. Hors Serie 1985, 95–116.

Ch. Fefferman, C.R. Graham: “The ambient metric”, arXiv:0710.0919, 100 pp.

C.R. Graham, R. Jenne, L. Mason, G. Sparling: “Conformally invariant powers of the Laplacian. I.
Existence”, J. London Math. Soc. 46 (1992) 557–565.

Ch. Fefferman, K. Hirachi: “Ambient metric construction of Q-curvature in conformal and CR
geometries”, Math. Res. Lett. 10 (2003) 819–831.

C.R. Graham, J.M. Lee: “Einstein metrics with prescribed conformal infinity on the ball” Adv. Math. 87
(1991) 186–225.
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