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More on projectively compact metrics

This is a survey talk based on joint work with A. Rod Gover
(Auckland).

Attaching a boundary at infinity to complete (pseudo–)
Riemannian manifolds plays an important role in several parts
of mathematics and mathematical physics, for example in
scattering theory, general relativity and AdS/CFT.
The model case for all this is hyperbolic space with the sphere
as its boundary at infinity. The Klein model of hyperbolic
space suggests an interpretation this model in terms of
projective differential geometry. This admits curved analogs
via reduction of projective holonomy.
These examples motivate the general definition of projective
compactness, which involves an additional parameter called
the order of projective compactness. This is a concept for
affine connections on the interior of a manifold with boundary
and, via the Levi–Civita connection, for pseudo–Riemannian
metrics.

Andreas Čap Projective compactness



The concept of projective compactness
Examples from holonomy reductions

More on projectively compact metrics

This is a survey talk based on joint work with A. Rod Gover
(Auckland).
Attaching a boundary at infinity to complete (pseudo–)
Riemannian manifolds plays an important role in several parts
of mathematics and mathematical physics, for example in
scattering theory, general relativity and AdS/CFT.

The model case for all this is hyperbolic space with the sphere
as its boundary at infinity. The Klein model of hyperbolic
space suggests an interpretation this model in terms of
projective differential geometry. This admits curved analogs
via reduction of projective holonomy.
These examples motivate the general definition of projective
compactness, which involves an additional parameter called
the order of projective compactness. This is a concept for
affine connections on the interior of a manifold with boundary
and, via the Levi–Civita connection, for pseudo–Riemannian
metrics.
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The most important classical example of a boundary at infinity is
provided by hyperbolic space. In the simplest picture, hyperbolic
space Hn+1 of dimension n + 1 is realized as the open unit ball
B ⊂ Rn+1 endowed with the Riemannian metric g := 1

(1−r2)2 ds2,

which has constant negative sectional curvature. Here r is the
Euclidean distance to the origin and ds2 is the flat Riemannian
metric on Rn+1.

g is complete, so its geodesics stay inside B for all times.
Viewed from inside, Hn+1 thus is infinitely large.

Viewed from outside, however, it is very natural to attach the
unit sphere Sn as a “boundary at infinity” to Hn+1.

The group of isometries of Hn+1 is SO0(n + 1, 1), which coincides
with the group of conformal isometries of the round metric on the
boundary sphere. Taking into account only the action of this
group, it is however hard to see, how the boundary is attached to
the interior.
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One interpretation of this situation is that the conformal class on
Sn is obtained from conformal rescalings of the hyperbolic metric
which extend to the boundary. Generalizing this, one obtains
R. Penrose’s concept of conformal compactness. Here we want to
take a different route based on the Klein model of hyperbolic space.

View Sn+1 as the space of rays in Rn+2, hence homogeneous
under G̃ := SL(n + 2,R), the group of orientation preserving
projective transformations of Sn+1.

Break this symmetry by introducing a Lorentzian inner
product 〈 , 〉 on Rn+2, and put G := SO0(n + 1, 1).

Then Sn+1 splits into 5 orbits for G , future pointing negative
rays can be identified with Hn+1, and future pointing
null–rays with the boundary sphere Sn.

The geometric structures on Hn+1 and Sn both arise from
this picture.
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Andreas Čap Projective compactness



The concept of projective compactness
Examples from holonomy reductions

More on projectively compact metrics

One interpretation of this situation is that the conformal class on
Sn is obtained from conformal rescalings of the hyperbolic metric
which extend to the boundary. Generalizing this, one obtains
R. Penrose’s concept of conformal compactness. Here we want to
take a different route based on the Klein model of hyperbolic space.

View Sn+1 as the space of rays in Rn+2, hence homogeneous
under G̃ := SL(n + 2,R), the group of orientation preserving
projective transformations of Sn+1.

Break this symmetry by introducing a Lorentzian inner
product 〈 , 〉 on Rn+2, and put G := SO0(n + 1, 1).

Then Sn+1 splits into 5 orbits for G , future pointing negative
rays can be identified with Hn+1, and future pointing
null–rays with the boundary sphere Sn.

The geometric structures on Hn+1 and Sn both arise from
this picture.
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This example admits “curved analogs” in the setting of projective
differential geometry. Recall that projective equivalence of two
torsion–free linear connections ∇ and ∇̂ on the tangent bundle of
a smooth manifold N can be equivalently defined as

same geodesics up to parametrization

existence of Υ ∈ Ω1(M) such that for all ξ, η ∈ X(M) one has
∇̂ξη = ∇ξη + Υ(ξ)η + Υ(η)ξ.

We will briefly write the second condition as ∇̂ = ∇+ Υ.
The concept of projective compactness is motivated by studying
the form of projective modifications which extend to the boundary
in the example of Hn+1 (which corresponds to α = 2) and a
similar example related to the inclusion of the equator into a
hemisphere (which corresponds to α = 1.)
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Definition

Let M be a smooth manifold with boundary ∂M and interior M
and let α be a positive real number.

A torsion free linear connection∇ on TM is called projectively
compact of order α if for each x ∈ ∂M there is a local defining
function ρ for ∂M defined on an open neighborhood U of x in M
such that the linear connection ∇̂ := ∇+ dρ

αρ on U ∩M admits a
smooth extension to all of U.

Remarks

This condition is independent of the defining function.

Changing the parameter α corresponds to replacing ρ by a
power of ρ, so α cannot be eliminated.

The concept automatically extends to pseudo–Riemannian
metrics on M, by requiring the Levi–Civita connection to be
projectively compact.
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For ∇ being projectively compact it is necessary that the projective
structure [∇] admits a smooth extension to M. This can be
characterized equivalently as the fact that in local charts the
tracefree parts of the connection coefficients admit a smooth
extension to the boundary.

If ∇ is special i.e. preserves a volume density, then it admits
non–zero parallel densities of any projective weight and there is the
following characterization of projective compactness which can be
rephrased as uniform volume growth:

Proposition

If ∇ is special and [∇] admits an extension to M, then ∇ is
projectively compact of order α if and only if a non–zero density
σ ∈ Γ(E(α)) such that ∇σ = 0 extends by zero to a defining
density for ∂M.
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Some further basic results

Since [∇] extends to M, the hypersurface ∂M inherits the
projective second fundamental form. This is a conformal class
of (possibly degenerate) bundle metrics on T∂M. In the
projectively compact case, it can be described in terms of
curvature asymptotics of ∇.

If ∇ is projectively compact of order α ≤ 2, then ∂M is at
infinity in the sense the geodesics for ∇ to not reach the
boundary in finite time.

Motivated by the last result, one usually considers projective
compactness of orders ≤ 2.
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A curved analog of the Klein model of hyperbolic space is given by
a projective manifold (N, [∇]) endowed with a bundle metric h of
signature (p, q + 1) on the projective standard tractor bundle T ,
which is parallel for the canonical tractor connection. From the
BGG–machinery and the general theory of holonomy reductions
one deduces:

The bundle metric h is equivalent to a density τ ∈ Γ(E(2))
which satisfies a projectively invariant third order PDE.

A “curved orbit decomposition” N = N+ ∪N0 ∪N− according
to the sign of τ into open subsets N± and a separating
embedded hypersurface N0.

An Einstein metric on N+ (resp. N−) of signature (p, q) (resp.
(p − 1, q + 1)), whose Levi–Civita connection ∇ is in the
(restriction of the) projective class.

A conformal structure of signature (p − 1, q) on N0.
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More on projectively compact metrics

In this situation, denoting by M the closure of N+, which consists
of M := N+ and ∂M ⊂ N0, the Levi–Civita connection ∇ on TM
is projectively compact of order α = 2.

There is a nice converse to this result:

Theorem

Suppose that for M = M ∪ ∂M, one has a linear connection ∇ on
TM such that

the projective class [∇] extends to M but ∇ itself does not
extend to any open neighborhood of a boundary point

∇ preserves a volume density

∇ has non–degenerate, parallel Ricci–tensor

Then ∇ is projectively compact of order α = 2 and one obtains a
holonomy reduction as discussed above.
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More on projectively compact metrics

There is a similar (simpler) story relating parallel standard tractors
to projective compactness of order one.

Given a projective
manifold N and a parallel section I of T , one obtains:

The section I is equivalent to a density σ ∈ Γ(E(1)) which
satisfies a projectively invariant second order PDE.

A “curved orbit decomposition” N = N+ ∪N0 ∪N− according
to the sign of σ into open subsets N± and a separating
embedded hypersurface N0.

Ricci flat connections ∇ in the projective class on N±.

The hypersurface N0 is totally geodesic and thus inherits a
projective structure.

Looking at the closure of N+, one obtains a projective manifold
with boundary and a Ricci flat connection in the interior, which is
projectively compact of order one.
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More on projectively compact metrics

Theorem

Conversely, suppose that for M = M ∪ ∂M, one has a linear
connection ∇ on TM such that

the projective class [∇] extends to M but ∇ itself does not
extend to any open neighborhood of a boundary point

∇ preserves a volume density

∇ is Ricci–flat

Then ∇ is projectively compact of order α = 1 and one obtains a
holonomy reduction as discussed above.

If ∇ is the Levi–Civita connection of a Ricci–flat metric on M (and
projectively compact of order one), then in addition to the induced
projective structure on ∂M, one obtains a parallel bundle metric on
the standard tractor bundle for this structure, with consequences
as discussed before.
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More on projectively compact metrics

Here the relation to asymptotic forms is of particular interest. For
fixed α, the asymptotic form in question is that, locally around

each boundary point, we have

g = C
dρ2

ρ4/α
+

h

ρ2/α
, where ρ is a

defining function for ∂M, h is smooth up to the boundary and
non–degenerate on T∂M, and C is a smooth function asymptotic
to a non–zero constant on ∂M.

Proposition

If α ≤ 2 and 2
α ∈ Z, then a metric having such an asymptotic form

is projectively compact of order α.

The nature of this asymptotic form depends on α. If α 6= 2, this
form works only for specific defining functions. For α = 2, the
asymptotic form for one choice of ρ implies that it is available
(with the same C and a conformally rescaled h) for any defining
function.
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More on projectively compact metrics

For pseudo–Riemannian metrics which are projectively compact of
order two, there are strong additional results:

One always obtains an asymptotic form as above with
constant C .

The tensor field h in the asymptotic form represents the
projective second fundamental form. This implies that g
satisfies an asymptotic form of the Einstein equation.

One obtains an explicit description of the standard tractor
bundle and –connection for the conformal structure on ∂M in
terms of projective tractors on M.
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Andreas Čap Projective compactness



The concept of projective compactness
Examples from holonomy reductions

More on projectively compact metrics

Finally, there is a vast generalization of the result on projective
compactness of non–Ricci flat Einstein metrics discussed before:

Theorem

Suppose that for M = M ∪ ∂M, one has a pseudo–Riemannian
metric g on M with Levi–Civita connection ∇ such that

the projective class [∇] extends to M but ∇ itself does not
extend to any open neighborhood of a boundary point

the scalar curvature of g is bounded away from zero

Then g is projectively compact of order α = 2.
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Andreas Čap Projective compactness



The concept of projective compactness
Examples from holonomy reductions

More on projectively compact metrics

Finally, there is a vast generalization of the result on projective
compactness of non–Ricci flat Einstein metrics discussed before:

Theorem

Suppose that for M = M ∪ ∂M, one has a pseudo–Riemannian
metric g on M with Levi–Civita connection ∇ such that

the projective class [∇] extends to M but ∇ itself does not
extend to any open neighborhood of a boundary point

the scalar curvature of g is bounded away from zero

Then g is projectively compact of order α = 2.
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