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CHAPTER 1

Fundamentals of Riemannian geometry

After recalling some background, we define Riemannian metrics and Riemannian
manifolds. We analyze the basic tensorial operations that become available in the
presence of a Riemannian metric. Then we construct the Levi-Civita connection, which
is the basic “new” differential operator coming from such a metric.

Background

The purpose of this section is two-fold. On the one hand, we want to relate the
general concept of a Riemannian manifold to the geometry of hypersurfaces as known
from introductory courses. On the other hand, we recall some facts about tensor fields
and introduce abstract index notation.

1.1. Euclidean geometry. The basic object in Euclidean geometry is the n-di-
mensional Euclidean space En. One may abstractly start from an affine space of di-
mension n, but for simplicity, we just take the n-dimensional real vector space Rn and
“forget about the origin”. Given two points in this space, there is a well defined vector
connecting them, which we denote by −→xy ∈ Rn. Identifying En with Rn, this can be
computed as −→xy = y−x (which visibly is independent of the location of the origin). On
the other hand, given a point x ∈ En and a vector v ∈ Rn, we can form x + v ∈ En.
Of course, this satisfies x + −→xy = y and similar properties. (The abstract definition of
an affine space requires the existence of (x, y) 7→ −→xy as a map En × En → Rn and of
+ : En × Rn → En together with some of the basic properties of these operations.)

The second main ingredient to Euclidean geometry is provided by the standard
inner product 〈 , 〉 on Rn. This allows us to define the Euclidean distance of two points

x, y ∈ En by d(x, y) := ‖−→xy‖ =
√
〈−→xy,−→xy〉.

Let us relate this to differential geometry. Fixing a point o ∈ En, the map x 7→ −→ox
defines a bijection En → Rn. This can be used as a global chart (and any two such charts
are compatible) thus making En into a smooth manifold. Moreover, one can identify
each tangent space TxE

n with Rn by mapping v ∈ Rn to c′(0), where c : R→ En is the
smooth curve defined by c(t) := x+ tv. Hence we can view the standard inner product
on Rn as defining an inner product on each tangent space of En.

The two pictures fit together nicely, as we can see from the appropriate concept of
morphisms of Euclidean space, which can be formulated in seemingly entirely different
ways:

Proposition 1.1. For a set-map f : En → En the following conditions are equiv-
alent.

(i) For all points x, y ∈ En, we have d(f(x), f(y)) = d(x, y).
(ii) The map f is smooth and for each x ∈ En, the tangent map Txf : TxE

n →
Tf(x)E

n is orthogonal.
(iii) There is an orthogonal linear map A : Rn → Rn such that for all x, y ∈ En we

have f(y) = f(x) + A(−→xy).

1
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Proof. The condition in (iii) can be rewritten as
−−−−−→
f(x)f(y) = A(−→xy) for all x, y ∈

En. Since orthogonal linear maps preserve the norms of vectors, we see that (iii)⇒(i).
Applying the condition to y = x + tv, we get −→xy = tv, so f(x + tv) = f(x) + tA(v).
This shows that if f satisfies (iii), then it is smooth and Txf = A for each x ∈ En, so
(iii)⇒(ii).

(i)⇒(iii): We claim that a map F : Rn → Rn which satisfies F (0) = 0 and which
is distance-preserving must be an orthogonal linear map. Since ‖v‖ = d(v, 0) and
F (0) = 0, we see that ‖F (v)‖ = ‖v‖ for all v ∈ Rn. Now one of the polarization
identities reads as

〈v, w〉 = 1
2

(
‖v‖2 + ‖w‖2 − d(v, w)2

)
,

so we conclude that 〈F (v), F (w)〉 = 〈v, w〉. In particular, denoting by {e1, . . . , en} the
(orthonormal) standard basis for Rn, we see that the vectors F (e1), . . . , F (en) also form
an orthonormal system and thus an orthonormal basis.

Taking an arbitrary element v ∈ Rn, we can expand v in the standard basis as v =∑
i〈v, ei〉ei. Likewise, we can expand F (v) in the orthonormal basis {F (ei)} as F (v) =∑
i〈F (v), F (ei)〉F (ei). But then 〈v, ei〉 = 〈F (v), F (ei)〉 implies that F (

∑
i λiei) =∑

i λiF (ei) for all (λ1, . . . , λn). Hence F is a linear map and knowing this, we have
already observed orthogonality.

Starting from a distance-preserving map f : En → En, we choose a point o ∈ En

and define F : Rn → Rn as F (v) =
−−−−−−−−→
f(o)f(o+ v). This evidently satisfies F (0) = 0.

Moreover, F (w)− F (v) =
−−−−−−−−−→
f(o)f(o+ w)−

−−−−−−−−→
f(o)f(o+ v) =

−−−−−−−−−−−−→
f(o+ v)f(o+ w) and in the

same way
−−−−−−−−−−→
(o+ v)(o+ w) = w − v, so we see that F is distance-preserving and thus an

orthogonal linear map by the claim. By construction, we get f(x) = f(o) + F (−→ox) for
all x ∈ En. For another point y, we have −→oy = −→ox+−→xy and thus f(y) = f(o) +F (−→ox) +
F (−→xy) = f(x) + F (−→xy).

(ii)⇒(iii): As in the last step, it suffices to show that a smooth map F : Rn → Rn

such that F (0) = 0 and for each v ∈ Rn the derivative DF (v) : Rn → Rn is orthogonal,
must itself be an orthogonal linear map.

By assumption, for X, Y ∈ Rn, we have 〈DF (v)(X), DF (v)(Y )〉 = 〈X, Y 〉. Taking
w ∈ Rn, we can form d

dt
|t=0DF (v+ tw)(X) = D2F (v)(w,X), and this is symmetric in w

and X. On the other hand, the map t 7→ 〈DF (v+ tw)(X), DF (v+ tw)(Y )〉 is constant,
so differentiating it at t = 0, we obtain

0 = 〈D2F (v)(w,X), DF (v)(Y )〉+ 〈DF (v)(X), D2F (v)(w, Y )〉

This means that the tri-linear map Φ(X, Y, Z) := 〈D2F (v)(X, Y ), DF (v)(Z)〉 satisfies
Φ(X, Y, Z) = Φ(Y,X,Z) and Φ(X,Z, Y ) = −Φ(X, Y, Z). But this implies

Φ(X, Y, Z) = −Φ(X,Z, Y ) =− Φ(Z,X, Y ) = Φ(Z, Y,X)

=Φ(Y, Z,X) = −Φ(Y,X,Z) = −Φ(X, Y, Z).

Hence we conclude that 〈D2F (v)(X, Y ), DF (v)(Z)〉 = 0 and since the orthogonal map
DF (v) is surjective, we see that D2F (v) = 0. But this means that DF (v) = A for some
fixed orthogonal linear map A : Rn → Rn. This implies that the curve c(t) = F (tv) has

derivative c′(t) = A(v) for all t. Hence F (v) = c(1) = c(0)+
∫ 1

0
c′(t)dt = 0+A(v) = A(v)

for any v ∈ Rn. �

Definition 1.1. A Euclidean motion is a map f : En → En which satisfies the
equivalent conditions of Proposition 1.1.
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The three conditions characterizing Euclidean motions visibly are of very different
nature. Condition (i) tells us in a way that the Euclidean distance is the only central
ingredient in Euclidean geometry. It is surprising that it is not necessary to assume
smoothness initially. Condition (iii) is the most useful one for explicitly describing
Euclidean motions and this is often used as the definition. Condition (ii) shows that
Euclidean motions are exactly the isometries of En in the sense of Riemannian geometry.

1.2. Geometry of curves and surfaces. These classical parts of differential ge-
ometry study submanifolds in En. To obtain geometric properties, one always requires
that things are well behaved (in an appropriate sense) with respect to Euclidean mo-
tions. (For example, the curvature of a curve should remain unchanged, while the
tangent line should also be moved by the motion.)

In the geometry of surfaces in E3, one meets a new phenomenon, since there are
different kinds of curvatures. This is related to the question whether one can observe
the fact that a surface is curved from inside the surface. (In classical language, this
is referred to as “inner” or “intrinsic” geometry as opposed to “extrinsic” geometry of
surfaces.) The classical examples are provided by a cylinder and a sphere, respectively.
While a cylinder is curved from an outside point of view, it can be locally mapped
onto an open subset of E2 in a distance preserving way. In contrast to that, it is not
possible to map an open subset of the sphere S2 onto an open subset of E2 in such a
way that distances are preserved. Here “distance” in the cylinder and in S2 are defined
via the infimum of the arclengths of curves connecting two points (as we will develop
the concept on general Riemannian manifolds). This is related to facts like that the sum
of the three angles of a (geodesic) triangle on S2 is always bigger than π and depends
on the area of the triangle.

To formalize this concept, one observes that for a smooth submanifold M ⊂ En and
a point x ∈ M , the tangent space TxM can be naturally viewed as a linear subspace
of TxE

n = Rn. Hence one can restrict the standard inner product to the tangent
spaces of M , thus defining a smooth

(
0
2

)
-tensor field on M . This is called the first

fundamental form. Roughly speaking, intrinsic quantities are those which depend only
on the first fundamental form. To formalize this, one introduces the concept of a local
isometry between such submanifolds (of the same dimension) as a local diffeomorphism,
for which all tangent maps are orthogonal.

If M ⊂ En is a smooth submanifold and f : En → En is a Euclidean motion, then
f(M) ⊂ En is a smooth submanifold of the same dimension as M , and f |M : M → f(M)
is an isometry. However, as the example of the cylinder and and the plane shows, there
are isometries between submanifolds which do not arise in this way (since the distances
of points in Rn are not preserved). Now the formal definition of a intrinsic quantity is
a quantity which is not only invariant under Euclidean motions but also under general
isometries.

A fundamental example of an intrinsic quantity is the Gauß curvature for surfaces
in E3. This can be proved directly, but a conceptual approach to understanding this
is more involved. This is based on the notion of the covariant derivative which (in
view of the original definition of the covariant derivative very surprisingly) turns out
to be intrinsic. Then the Gauß curvature for surfaces can be expressed (and is essen-
tially equivalent to) the Riemann curvature, which in turn can be constructed from the
covariant derivative and thus is intrinsic.

1.3. Tensor fields and abstract index notation. Let M be a smooth manifold.
For a point x ∈ M one has the tangent space TxM . One then defines the cotangent
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space T ∗xM at x to be the dual vector space to the tangent space. A
(
`
k

)
-tensor field

on M then assigns to each point x ∈M an element of the tensor product TxM ⊗ · · · ⊗
TxM ⊗ T ∗xM ⊗ · · · ⊗ T ∗xM with ` factors of the tangent space and k factors of the
cotangent space, see Chapter 3 of [AnaMF]. The value at x can then be interpreted as
a (k + `)-linear map (TxM)k × (T ∗xM)` → R, and the assignment should be smooth in
the sense that inserting the values of k vector fields and ` smooth one-forms into these
multilinear maps, one obtains a smooth function on M .

There are two basic point-wise operations with tensor fields, see Section 3.3 of
[AnaMF]. On the one hand, given an

(
`
k

)
-tensor field s and a

(
`′

k′

)
-tensor field t,

one can form the tensor product s ⊗ t, which then is of type
(
`+`′

k+k′

)
. In the picture of

multilinear maps, this just feeds the first arguments into the first map and the others
into the second map and then multiplies the values. On the other hand, one can form
the basic contraction or evaluation map TxM ⊗ T ∗xM → R, which maps ξ ⊗ ϕ to ϕ(ξ).
This then leads to a contraction Cs

r mapping
(
`
k

)
-tensor fields to

(
`−1
k−1

)
-tensor fields for

each r and s with 1 ≤ r ≤ k and 1 ≤ s ≤ ` specifying which factors in the tensor
products should be contracted.

In this last bit it is already visible, that there is some need for notation, since one
has to select one of the entries of each type. Abstract index notation as introduced by
Roger Penrose offers this possibility. At the same time, this has the advantage that,
while the notation makes sense without a choice of local coordinates (and hence there
is no need to check that things do not depend on a choice of coordinates) an abstract
index expression gives the expression in local coordinates after any such choice.

In abstract index notation, indices are used to indicate the type of tensor fields as
well as contractions. A

(
`
k

)
-tensor field is denoted by some letter with ` upper indices

and k lower indices. So ξi will be a vector field, ϕj a one-form, and Aab a
(

1
1

)
-tensor field.

A tensor product is simply indicated by writing the tensor fields aside of each other,
which allows keeping track of the indices. A contraction is indicated by using the same
symbol for one upper and one lower index, these indices then are not “free” so they
are not to be counted in determining the type. So for example for a

(
1
1

)
-tensor field Aab

there is just one possible contraction which is denoted by Aaa (or also by Aii) and this is a
tensor field of type

(
0
0

)
, i.e. a smooth function. The space TxM ⊗T ∗xM can be identified

both with L(TxM,TxM) and with L(T ∗xM,T ∗xM). Either of these identifications can be
obtained by first forming the tensor product with the source space and then applying
the unique possible contraction (and the resulting maps are dual to each other). The
maps on vector fields and one-forms induced by Aab can be written as A(ξ)i = Aijξ

j

respectively as A(ϕ)b = Aabϕa. In this picture, the smooth function Aii corresponds to
the point-wise trace of either of these maps.

Choosing a chart (U, u) for M with local coordinates ui, one has the corresponding
coordinate vector fields ∂i = ∂

∂ui
and the dual one-forms dui. Then one can represent

tensor fields by their coefficient functions with respect to the induced bases. For exam-
ple, a

(
1
1

)
-tensor field A can then on U be written as

∑
i,j A

i
j∂i ⊗ duj, and one often

omits the sum using Einstein sum convention. Here the Aij are smooth functions for

each i and j and interpreting A as a field of bilinear maps, one has Aij = A(dui, ∂j).

Given a vector field ξ, we may represent it on U as
∑

j ξ
j∂j. Therefore, the vector field

A( , ξ) can be written as
∑

j ξ
jA( , ∂j), which in turn is given by

∑
i,j ξ

jAij∂i. Hence the

vector field A(ξ) really has coordinate functions Aijξ
j (using Einstein sum convention)

and the abstract index expression also gives the expression in local coordinates.
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A further ingredient in the calculus with tensor fields is that the identity map (on
TxM or on T ∗xM) defines a canonical element in TxM ⊗T ∗xM . These elements of course
fit together to define a canonical

(
1
1

)
-tensor field, which in abstract index notation is

usually called δij. Interpreting this as the Kronecker-delta, we again get the coordinate
expression in any local coordinate system.

The last important ingredient are symmetrizations and alternations. These can only
affect several entries of the same type (vector-field or one-form entries) of a tensor field.
Let us consider the simplest situation of a

(
0
2

)
-tensor field, whose values are bilinear

forms on tangent spaces. If t is such a tensor field, then its symmetrization is defined by
s(ξ, η) = 1

2
(t(ξ, η)+ t(η, ξ)) while for the alternation, the second summand is subtracted

rather than added. So the symmetrization of t can be written as 1
2
(tij+tji) and similarly

for the alternation. If one has to symmetrize or alternate over more than two entries,
one sums over all permutations of the entries, multiplies by the sign of the permutation
in the case of the alternation, and divides by the number of permutations. Since this
becomes a bit tedious to write out, one denotes a symmetrization over a group of indices
by putting them into round brackets and an alternation by putting them into square
brackets. The conventions here differ by the division by number of permutations from
those used in Section 3.5 of [AnaMF]. They are chosen in such a way, that one can
efficiently express the fact that a tensor is symmetric respectively alternating. For
example a

(
0
k

)
-tensor field ϕ is a k-form if and only if ϕi1...ik = ϕ[i1...ik].

Basic definitions and consequences

1.4. Riemannian metrics and Riemannian manifolds. We will always assume
that manifolds are smooth (C∞) and paracompact, so that partitions of unity are avail-
able.

Definition 1.4. (1) A pseudo-Riemannian metric on a smooth manifold M is a(
0
2

)
-tensor field g on M such that for each point x ∈M , the value gx : TxM ×TxM → R

is a non-degenerate symmetric bilinear form.
(2) A Riemannian metric is a pseudo-Riemannian metric such that for each x ∈M

the value gx is positive definite and hence defines an inner product on the vector space
TxM .

(3) A (pseudo-) Riemannian manifold (M, g) is a smooth manifold M together with
a (pseudo-) Riemannian metric g on M .

For a pseudo-Riemannian metric g on M and a point x ∈M , the bilinear form gx has
a well defined signature (p, q) with p+ q = n = dim(M). By definition, p (respectively
q) is the maximal dimension of a linear subspace of TxM on which the restriction of gx
is positive (respectively negative) definite. From this, it easily follows that the signature
is locally constant, and one usually assumes that it is constant on all of M .

The situation with pseudo-Riemannian metrics is a bit unfortunate. On the one
hand, they are an interesting topic from a mathematical point of view and they have
important applications. In particular, the geometry of pseudo-Riemannian metrics of
signature (1, 3) is a fundemental ingredient of general relativity. Moreover, large parts
of Riemannian geometry, in particular the study of the Levi-Civita connection and its
curvature, generalize to the pseudo-Riemannian case with only minimal changes. On
the other hand, some of the fundamental and most intuitive facts about Riemannian
metrics, in particular the relation to metrics in the topological sense, do not generalize.
Therefore, it is difficult to treat Riemannian and pseudo-Riemannian metrics coherently
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at the same time, and unfortunately we’ll have to focus on the Riemannian case. Still
I will try to indicate which parts of the theory generalize without changes.

Proposition 1.4. (1) For any smooth manifold M , there is a Riemannian metric
g on M .

(2) Let (M, g) be a Riemannian manifold, let (U, u) be a local chart on M . Viewed
as a matrix, the local coordinate expression gij of the tensor field g is symmetric and
positive definite and thus invertible. The point-wise inverse matrix defines a smooth(

2
0

)
-tensor field gij on M such that gijgjk = δik.

(3) In the setting of (2) consider the smooth function volg :=
√

det(gij) on U .
Under a change of local coordinates, this function transforms by the absolute value of
the determinant of the derivative of the change of coordinates. Hence for any compactly
supported smooth function f on M , the product f volg can be integrated over M in a
coordinate-independent way.

(4) Let (M, g) be a Riemannian manifold of dimension n. Then for each x ∈ M ,
there is an open neighborhood U of x in M and there are local vector fields ξ1, . . . , ξn ∈
X(U) such that for each y ∈ U , the vectors ξ1(y), . . . , ξn(y) form an orthonormal basis
for TyM .

Proof. Let (U, u) be a chart on a smooth manifold M . Then for a
(

0
2

)
-tensor field

g on M , the coordinate expression of g is given by gij = g(∂i, ∂j). Hence gx is symmetric
if and only if the matrix (gij(x)) is symmetric and gx is positive definite if and only if
the matrix (gij(x)) is positive definite.

(1) The above argument shows that we can find a Riemannian metric on U , for
example by taking gij to be the identity matrix. Now we can choose a covering (Uα, uα)
of M by coordinate charts and a sub-ordinate partition {ϕi : i ∈ N} of unity (see
Theorem 1.9 of [AnaMF]). For each i, chose α(i) such that supp(ϕi) ⊂ Uα(i), take
a Riemannian metric gi on Uα(i) and then put g :=

∑
i ϕigi. It follows immediately

that this is a symmetric
(

0
2

)
-tensor field. Moreover, for a point x ∈ M and a tangent

vector 0 6= ξ ∈ TxM , we have g(x)(ξ, ξ) =
∑

i ϕi(x)gi(x)(ξ, ξ). Now by construction
gi(x)(ξ, ξ) > 0 for all i such that x ∈ Uα(i) and ϕi(x) ≥ 0 for all i, so 0 ≤ g(x)(ξ, ξ).
Moreover, there is at least one i such that ϕi(x) > 0, which implies x ∈ Uα(i) and hence
gi(x)(ξ, ξ) > 0, so g(x)(ξ, ξ) > 0, and the proof of (1) is complete.

(2) From above, we know that (gij(x)) is a symmetric, positive definite matrix
depending smoothly on x. Hence it is invertible in each point, and we can denote the
inverse matrix, which is again symmetric, by (gij(x)). The components of the inverse of
a matrix can be computed by determinants via Cramer’s rule, so inversion of matrices is
a smooth function, so also the gij depend smoothly on x. Hence

∑
ij g

ij ∂
∂ui
⊗ ∂

∂uj
is a well

defined
(

2
0

)
-tensor field on U . Of course, these tensor fields for different charts agree,

thus defining a smooth tensor field on M . The abstract index expression gijgjk = δik
just expresses the fact that in local coordinates the matrices are inverse to each other.

(3) Suppose that U ⊂ M is open and that uα and uβ are diffeomorphisms from U
onto open subsets of Rn. Consider the chart change uαβ := uα ◦ u−1

β : uβ(U) → uα(U)

and its derivative D(uαβ). Writing D(uαβ)(uβ(x)) = Aij(x) for x ∈ U , we by definition

obtain ∂

∂ujβ
=
∑

iA
i
j(x) ∂

∂uiα
. This implies that the coordinate expressions gαij and gβij are

related by
gβij(x) =

∑
k,`A

k
i (x)A`j(x)gαk`(x).

In terms of matrices, the right hand side can be written as the product with A and its
transpose (which is exactly the behavior of the symmetric matrix associated to an inner
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product under a change of basis). This shows that det(gβij(x)) = det(Aij(x))2 det(gαij(x)).

Thus the square roots transform by | det(Aij(x))|, which is exactly the behavior required
for the integral of f volg being defined independently of coordinates, compare with
Sections 4.1 and 4.2 of [AnaMF].

(4) This is the fact that the Gram–Schmidt orthonormalization scheme can be done
depending smoothly on a point. Given x, we can find a neighborhood U of x in M and
vector fields η1, . . . , ηn ∈ X(U) such that the vectors η1(y), . . . , ηn(y) form a basis for
TyM for each y ∈ U . (For example, we can use the coordinate vector fields associated
to a chart.) Since η1 is nowhere vanishing on U , g(η1, η1) is a nowhere vanishing smooth
function on U , so we can define ξ1 := 1√

g(η1,η1)
η1. Then by construction ξ1(y) ∈ TyM

is a unit vector for each y ∈ U . Next, we define ξ̃2 := η2 − g(η2, ξ1)ξ1, which evidently

is a smooth vector field on U such that g(ξ̃2, ξ1) = 0. By construction η2(y) and ξ1(y)

are linearly independent for each y, so ξ̃2 is nowhere vanishing. Thus we can define
ξ2 := 1√

g(ξ̃2,ξ̃2)
ξ̃2, and this is a smooth vector field on u, such that ξ1(y) and ξ2(y)

form an orthonormal system in TyM for each y ∈ U . The other ξi are constructed
similarly. �

Remark 1.4. (1) The simple trick used in the proof of part (1) to glue local Rie-
mannian metrics using a partition of unity depends on the fact that positive definite
inner products form a convex set. In fact, the corresponding statement for pseudo-
Riemannian metrics is wrong! For example, there are topological obstructions against
existence of a pseudo-Riemannian metric of signature (n− 1, 1) for even n.

(2) If the manifold M is oriented, then the result in (3) can be stated as the fact

that the local coordinate expressions
√

det(gij(x))dx1 ∧ · · · ∧ dxn in positively oriented
charts fit together and define a nowhere-vanishing differential form of top degree on M .
This is called the volume form associated to the metric g. In the case of non-orientable
manifolds, there is a notion of densities, which are the objects that can be integrated
independently of coordinates, see Sections 4.1 and 4.2 of [AnaMF]. Hence volg is also
referred to as the volume density associated to g. The main moral is that in the presence
of a Riemannian metric, one obtains a well defined notion of integration over (compactly
supported) smooth functions.

(3) A family {ξ1, . . . , ξn} as in part (4) of the Proposition is called a local orthonormal
frame for M around x. Observe that for η ∈ X(U), we get η =

∑
i g(η, ξi)ξi, so we can

write any vector field on U as a linear combination of the ξi with smooth coefficients.

1.5. Immediate consequences. Given a Riemannian metric g on a manifold M ,
one can use the data constructed in Proposition 1.4 to obtain a large number of addi-
tional structures. On the level of individual tangent spaces, one may use the point-wise
inner product as known from linear algebra, and usually the result will depend smoothly
on the point. For example, one can look at the inner product of a tangent vector with
itself and at its norm, i.e. at gx(X,X) respectively

√
gx(X,X). If ξ ∈ X(M) is a vector

field, then smoothness of the tensor field g implies that g(ξ, ξ) is a smooth function.

This function is non-zero unless ξ vanishes in a point. Hence also
√
g(ξ, ξ) is smooth

where ξ is non-zero.
Likewise, for two non-zero tangent vectors ξ and η in a point x ∈ M , one can

characterize the angle α between ξ and η by the usual formula cos(α) = gx(ξ,η)√
gx(ξ,ξ)

√
gx(η,η)

.

As before, for non-vanishing vector fields, the angle depends smoothly on the point.
In particular, given two curves through a point x, one may define the angle between
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the two curves and, more specifically, one can talk about curves (and more general
submanifolds) intersecting orthogonally in a point.

Integrating functions via the volume density volg, has several evident applications.
From the definition of volg it follows that if f : M → R is a compactly supported
smooth function with non-negative values than

∫
M
f volg ≥ 0 and

∫
M
f volg = 0 in only

possible for f = 0. Hence one can make the space C∞c (M,R) of smooth functions with
compact support into a pre-Hilbert space by defining 〈f, h〉 :=

∫
M
fh volg. Hence one

can provide the setup for functional analysis by looking at the completion of C∞c (M,R)
with respect to the resulting norm, which is the space L2(M,R) of square integrable
functions, and so on.

This can be immediately extended to the space Xc(M) of compactly supported
vector fields on M . Here one defines a pre-Hilbert structure by 〈ξ, η〉 :=

∫
M
g(ξ, η) volg,

or in abstract index notation
∫
M
gijξ

iηj volg. Again, it is possible to complete this to
the space of square-integrable vector fields. Next, we can take the inverse metric gij

as constructed in Proposition 1.4. For each point x, this defines a positive definite
inner product on the vector spaces T ∗xM which depends smoothly on the point x. In
particular, for two compactly supported one-forms α and β, gijαiβj is a smooth function
on M , and we can define 〈α, β〉 :=

∫
M
gijαiβj volg. This makes the space Ω1

c(M) of one-
forms on M with compact support into a pre-Hilbert spaces, which can be completed
to the space of square-integrable one-forms.

It is a matter of linear algebra to extend this further. Given inner products on two
vector spaces, one obtains an induced inner product on their tensor product. Iterating
this, gx induces inner products on all the spaces ⊗kT ∗xM ⊗ ⊗`TxM and likewise on
the spaces ΛkT ∗xM of alternating k-linear maps (TxM)k → R. All these induced inner
products can be characterized in the way that starting from an orthonormal basis of
TxM , also the induced basis of the space in question is orthonormal. Using part (4) of
Proposition 1.4, one concludes that there are smooth local orthonormal frames for all
these inner products, which implies that they depend smoothly on the point. Integrating
point-wise inner products, one can make all spaces of tensor-fields and of differential
forms with compact support into pre-Hilbert spaces.

Next, an inner product on a vector space induces an isomorphism with the dual
space. Hence given a point x in a Riemannian manifold (M, g) and a tangent vector ξ ∈
TxM , we obtain a linear functional TxM → R by η 7→ gx(ξ, η). Starting from a vector
field ξ ∈ X(M) we can associate to each x ∈M the functional gx(ξ(x), ). Inserting the
values of a smooth vector field η, we obtain the smooth function g(ξ, η), so this defines
a one-form on M . In abstract index notation, the resulting linear map X(M)→ Ω1(M)
is given by ξ 7→ gijξ

j. Similarly, α 7→ gijαj defines a map X(M) → Ω1(M), which is
inverse to the other one. Thus the metric g induces an isomorphism between vector
fields and one-forms.

This readily generalizes to tensor fields of arbitrary type. In view of abstract index
notation this is often phrased as “raising and lowering indices using the metric” (and its
inverse). For example, given a

(
1
1

)
-tensor field A = Aij, we can use the metric to lower

the upper index and form the
(

0
2

)
-tensor field Akj gik. This corresponds to the bilinear

form (ξ, η) 7→ g(ξ, A(η)). This bilinear form can be decomposed into a symmetric and
a skew symmetric part as Ak(jgi)k + Ak[jgi]k. One can then convert these parts back to(

1
1

)
-tensor fields to obtain a decomposition of A itself. For example, for the symmetric

part, this reads as

1
2
gi`(Ak`gjk + Akj g`k) = 1

2
(gi`Ak`gjk + Akj δ

i
k) = 1

2
(Aij + gikA`kg`j).
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To interpret this result, observe that the for the linear map Bi
j := gikA`kg`j we can write

g(B(ξ), η) as

gajB
a
i ξ

iηj = gajg
abAcbgciξ

iηj = δbjA
c
bgciξ

iηj = Acjgciξ
iηj,

so by symmetry of g, this coincides with g(ξ, A(η)). Hence Bx : TxM → TxM is simply
the adjoint of Ax with respect to the inner product gx, and so we have just applied the
usual formula for the symmetric part from linear algebra in each point.

1.6. Hodge-∗ operator, codifferential, and Laplacian. Let us discuss a more
complicated but very important construction based on the ideas from Section 1.5. Let
(M, g) be an oriented Riemannian manifold of dimension n. Then we can view the
volume form volg as a nowhere vanishing element of Ωn(M), thus identifying for each
point x ∈M the space ΛnT ∗xM with R. For each point x ∈M and each k = 0, . . . , n, the
wedge product defines a bilinear map ΛkT ∗xM × Λn−kT ∗xM → ΛnT ∗xM . Linear algebra
tells us that this gives rise to a linear isomorphism Λn−kT ∗xM → L(ΛkT ∗xM,ΛnT ∗xM).
Using volg(x) to identify ΛnT ∗xM with R, we can identify the target space with the dual
space (ΛkT ∗xM)∗. But from above, we know that gx induces an inner product g̃x on
ΛkT ∗xM which gives an identification of the dual space with ΛkT ∗xM itself. Otherwise
put, for each ψ ∈ ΛkT ∗xM , there is a unique element ∗ψ ∈ Λn−kT ∗xM such that for each
ϕ ∈ ΛkT ∗xM we have ϕ ∧ ∗ψ = g̃x(ϕ, ψ) volg(x).

Proposition 1.6. Let (M, g) be a oriented Riemannian manifold of dimension n.
(1) For each k = 0, . . . , n, the point-wise ∗-operation defined above gives rise to

a linear isomorphism ∗ : Ωk(M) → Ωn−k(M) which is characterized by α ∧ ∗β =
g̃(α, β) volg for all α, β ∈ Ωk(M). Moreover, for any β ∈ Ωk(M), we get ∗(∗β) =
(−1)k(n−k)β.

(2) Let d be the exterior derivative and define δ : Ωk(M) → Ωk−1(M) as δβ :=
(−1)nk+n+1 ∗ d ∗β. Then this satisfies δ2 = δ ◦ δ = 0. If M is compact, then δ is adjoint
to d with respect to the L2-inner products on the spaces Ω∗(M) introduced in 1.5.

(3) Suppose that M is compact. Then the operator ∆ := δd+ dδ : Ωk(M)→ Ωk(M)
is self-adjoint with respect to the L2-inner product from 1.5. Moreover, for α ∈ Ωk(M),
we get ∆(α) = 0 if and only if dα = 0 and δα = 0, while for β ∈ Ωk−1(M), ∆(dβ) = 0
implies dβ = 0.

Proof. (1) We first have to show that for a smooth k-form β ∈ Ωk(M) the point-
wise definition of ∗β gives rise to a smooth form. This is a local question, so we can
restrict to an open subset U for which there is a positively oriented local orthonormal
frame ξ1, . . . , ξn, see Proposition 1.4. Then we define α1, . . . , αn ∈ Ω1(U) to be the dual
forms, i.e. αi(ξj) = δij for all i, j. Then for each x ∈ U the values (αi1 ∧ · · · ∧ αik)(x)

with 1 ≤ i1 < · · · < ik ≤ n form an orthonormal basis for ΛkT ∗xM . Moreover, it is easy
to see that α1 ∧ · · · ∧ αn = volg on U . But this implies that among the basis elements
(αj1 ∧ · · · ∧ αjn−k)(x) for Λn−kT ∗xM , there is a unique one, for which the wedge product
with (αi1 ∧ · · · ∧ αik)(x) coincides with ± volg(x), while all other wedge-products are
zero. But this exactly means that, with a sign that is independent of x, we have

∗(αi1 ∧ · · · ∧ αik)(x) = ±(αj1 ∧ · · · ∧ αjn−k)(x)

where {j1, . . . , jn−k} is the complement of {i1, . . . , ik} in {1, . . . , n}. Hence for each of
the forms αi1 ∧ · · · ∧ αik the point-wise ∗ defines a smooth (n − k)-form. Since any k
form can be written as a linear combination of these with smooth coefficients and ∗ is
evidently linear, we conclude that ∗β is smooth for each β ∈ Ωk(M).
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To prove the second part of (1), we observe that in the defining equation α ∧ ∗β =
g̃(α, β) volg, the right hand side is symmetric in α and β. Thus we see that α ∧ ∗β =
β∧∗α = (−1)k(n−k)∗α∧β for all α, β ∈ Ωk(M). Next, for α ∈ Ωk(M) and γ ∈ Ωn−k(M),
we compute

g̃(α, ∗γ) volg = α ∧ ∗ ∗ γ = (−1)(n−k)k ∗ α ∧ ∗γ = (−1)(n−k)kg̃(∗α, γ) volg .

Applying this to γ = ∗β for β ∈ Ωk, we get g̃(α, ∗ ∗ β) = (−1)k(n−k)g̃(∗α, ∗β). But
above we have seen that ∗ maps an orthonormal system in ΛkT ∗xM to an orthonormal
system in Λn−kT ∗xM . Hence it is orthogonal, so in particular g̃(∗α, ∗β) = g̃(α, β), and
this implies that last statement in (1).

(2) Up to a sign, δδβ equals ∗d ∗ ∗d ∗ β and since the two middle ∗’s also produce
a sign only, d2 = 0 implies δ2 = 0. On the other hand, observe that the sign in the
definition of δ is chosen in such a way that for β ∈ Ωk+1(M) we have ∗δβ = (−1)k+1d∗β.
Now taking α ∈ Ωk(M), we can form α ∧ ∗β ∈ Ωn−1(M) and by Stokes’ theorem, we
get

0 =

∫
M

d(α∧∗β) =

∫
M

dα∧∗β+(−1)k
∫
M

α∧d∗β =

∫
M

g̃(dα, β) volg−
∫
M

g̃(α, δβ) volg .

By definition of the L2-inner product from 1.5, this simply equals 〈dα, β〉 − 〈α, δβ〉 and
adjointness follows.

(3) This is now a simple direct computation. For α, β ∈ Ωk(M), we get using the
adjointness from (2):

〈∆(α), β〉 = 〈δdα, β〉+ 〈dδα, β〉 = 〈dα, dβ〉+ 〈δα, δβ〉,

and in the same way, one shows that this equals 〈α,∆(β)〉. If ∆(α) = 0, then 0 =
〈∆(α), α〉 and the above computation shows that 0 = 〈dα, dα〉+ 〈δα, δα〉. Since 〈 , 〉 is
a positive definite inner product, this implies dα = 0 and δα = 0.

Applying this to α = dβ, we see that ∆(dβ) = 0 implies δdβ = 0. But this gives
0 = 〈δdβ, β〉 = 〈dβ, dβ〉 and hence dβ = 0. �

Definition 1.6. (1) The operator ∗ is called the Hodge-∗-operator associated to
the Riemannian metric g.

(2) The operator δ is called the codifferential associated to g.
(3) The operator ∆ is called the Laplace–Beltrami operator associated to g.

Remark 1.6. (1) For the basic adjointness results in part (2) and (3), compactness
of M is not really necessary. In general, one may consider both d and δ as operators on
differential forms with compact support and then adjointness is still true.

(2) The Laplace–Beltrami operator is of fundamental importance in large areas of
differential geometry and of analysis. Differential forms in the kernel of ∆ are called
harmonic forms. In the case of a compact manifold, ∆ extends to an essentially self
adjoint operator on L2-forms, so one can do spectral theory and so on. One can also
look at the analog of the heat equation on a compact Riemannian manifold, which is of
fundamental importance in geometric analysis.

(3) The last part of Proposition 1.6 is the starting point for Hodge theory on compact
Riemannian manifolds. As we have proved, for a harmonic k-form α we get dα = 0,
so one may look at the class of α in the de-Rham cohomology group Hk(M), which
by definition is the quotient of the kernel of d : Ωk(M) → Ωk+1(M) by the image of
d : Ωk−1(M) → Ωk(M). The last statement in the proposition then shows that this
maps the space of harmonic k-forms injectively to Hk(M). Using a bit of functional
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analysis, one proves that this map is also surjective and thus a linear isomorphism.
Hence any cohomology class contains a unique harmonic representative.

1.7. Arclength and the distance function. The next direct way to use a Rie-
mannian metric is related to arclength of curves.

Definition 1.7. Let (M, g) be a Riemannian manifold and let c : [a, b]→ M be a
smooth curve defined on a compact interval in R.

Then we define the arclength L(c) and the energy E(c) of c by

L(c) :=

∫ b

a

√
gc(t)(c′(t), c′(t))dt

E(c) := 1
2

∫ b

a

gc(t)(c
′(t), c′(t))dt.

Of course, the factor 1
2

in the definition of the energy is just a matter of convention.
It is motivated by the definition of kinetic energy in physics. There is an obvious
concept of reparametrization of a smooth curve, in which one replaces c by c ◦ ϕ for a
diffeomorphism ϕ. As we shall see below, the arclength of a curve remains unchanged if
the curve is reparametrized. For some applications, this is an advantage, but for other
purposes, like for finding distinguished curves, it is a disadvantage and it is better to
use the energy.

For technical purposes, it is better to work with curves which are only piece-wise
smooth. Here by a piece-wise smooth curve c : [a, b]→M we mean a continuous curve
c : [a, b] → M such that there is a subdivision a = t0 < t1 < · · · < tN−1 < tN = b
of [a, b] such that for each i = 0, . . . , N − 1 the restriction of c to [ti, ti+1] is smooth.

Putting ci := c|[ti,ti+1] one then defines L(c) =
∑N−1

i=0 L(ci) and E(c) =
∑N−1

i=0 E(ci).
One immediately verifies that this is well defined (i.e. there is no problem with adding
additional points to the sub-division around which c is smooth anyway).

Proposition 1.7. (1) The arclength of smooth curves is invariant under orien-
tation preserving reparametrizations, i.e. if c : [a, b] → M is a smooth curve and
ϕ : [a′, b′]→ [a, b] is a diffeomorphism with ϕ′(t) > 0 for all t, then L(c ◦ ϕ) = L(c).

(2) For points x, y in a connected Riemannian manifold M define dg(x, y) as the
infimum of the arclengths L(c) of piece-wise smooth curves c : [a, b]→M with c(a) = x
and c(b) = y. Then (M,dg) is a metric space and the topology induced by the metric dg
coincides with the manifold topology on M .

Proof. (1) This is the same computation as in Euclidean space. By the chain rule,
we have (c ◦ ϕ)′(t) = c′(ϕ(t)) · ϕ′(t) and thus√

g((c ◦ ϕ)(t))((c ◦ ϕ)′(t), (c ◦ ϕ)′(t)) = |ϕ′(t)|
√
g(c(ϕ(t)))(c′(ϕ(t)), c′(ϕ(t))).

By assumption, ϕ′(t) > 0, so we may leave out the absolute value and the result follows
by the substitution rule for one-dimensional integrals.

(2) If c : [a, b] → M is a smooth curve, then the function in the integral defining
L(c) is continuous and non-negative. Hence L(c) ≥ 0 and L(c) = 0 if and only if
the integrand is identically zero and hence c is constant. Since M is assumed to be
connected, any two points in M can be connected by at least one piece-wise smooth
curve and hence dg : M ×M → R≥0 is well defined. The fact that dg(x, y) = dg(y, x)
follows easily since one can run through curves in the opposite direction. The triangle
inequality dg(x, z) ≤ dg(x, y) + dg(y, z) follows since having given a curve c connecting
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x to y and a curve c̃ connecting y to z, one can simply run through them successively
to obtain a curve of length L(c) + L(c̃) which connects x to z.

Let us next consider the special case M = Rn, endowed with an arbitrary Riemann-
ian metric g. We compare dg to the Euclidean distance focusing on (a neighborhood
of) the point 0 ∈ Rn. Now TRn = Rn × Rn, and we consider the map Rn × Rn → R
defined by (x, v) 7→

√
g(x)(v, v). This map is clearly continuous and positive unless

v = 0. Looking at the compact set B̄1(0) × Sn−1 we thus see that there are constants

0 < C1 < C2 such that C1 ≤
√
g(x)(v, v) ≤ C2 provided that ‖x‖ ≤ 1 and ‖v‖ = 1.

This in turn implies that for ‖x‖ ≤ 1 we have

C1‖v‖ ≤
√
g(x)(v, v) ≤ C2‖v‖

Hence for a piece-wise smooth curve c whose image is contained in the closed unit ball,
the arclength Lg(c) with respect to g and the Euclidean arclength LE(c) are related by
C1L

E(c) ≤ Lg(c) ≤ C2L
E(c). In particular for 0 < ε < 1 and x ∈ Bε(0), the straight

line provides a curve of length < εC2 connecting 0 to x, so the Bε(0) is contained in the
dg-ball around 0 of radius εC2.

Conversely, suppose we have given 0 < ε < 1/C1 and a curve c : [a, b] → Rn with
c(a) = 0 and L(c) < ε. Then we first prove that c cannot leave the unit ball. Indeed, if
c leaves the unit ball, we let t0 ∈ [a, b] be the infimum of {t : ‖c(t)‖ ≥ 1} and look at
the curve c̃ := c|[a,t0]. Then c̃ stays inside the closed unit ball and satisfies Lg(c̃) < 1/C1

and hence LE(c̃) < 1, which is a contradiction. Hence we conclude that LE(c) < εC1

and hence c(b) ∈ BεC1(0). Hence BεC1(0) contains the dg-ball of radius ε around 0.
Now returning to a general Riemannian manifold (M, g) and a point x ∈ M , we

can choose a chart (U, u) for M with x ∈ U , u(x) = 0, and u(U) = Rn. Then u is a
homeomorphism, and we can pull back g|U by u−1 to a Riemannian metric on Rn. Of
course, for a curve c with values in U , the arclength of c with respect to g coincides with
the arclength of u ◦ c with respect to the pullback metric. Now from above we conclude
that there is an ε > 0 such that curves of length ≤ ε stay in U . Hence if y ∈ M is
such that dg(x, y) = 0 then y ∈ U . But then the above considerations show that u(y)
has Euclidean distance zero to 0 = u(x) and hence y = x. Hence (M,dg) is a metric
space, and the above argument shows that any Riemannian metric on Rn produces the
usual neighborhoods of 0 ∈ Rn. Since u is a homeomorphism, we see that dg leads to
the usual neighborhoods of x, which completes the proof. �

Remark 1.7. (1) One may now go ahead as in the Euclidean case, and con-
sider regular parametrizations. For any regularly parametrized curve, one can then
obtain a reparametrization by arclength (as usual by solving an ODE). This means the
g(c(t))(c′(t), c′(t)) = 1 and hence t = L(c|[a,t]) for all t ∈ [a, b].

(2) The relation to metrics in the topological sense is the main point where things
go wrong for pseudo-Riemannian metrics. The notion of energy still makes sense in
the pseudo-Riemannian setting, but the energy of a non-trivial curve can be zero or
negative. (In physical applications, this is a feature, since it allows to distinguish space-
like, time-like, and light-like curves.) In particular, there is no direct relation to metric
spaces in the pseudo-Riemannian case. Still, energy and arclength and constructions
analogous to metric spaces are important tools there.

The Levi-Civita connection

After we have exploited the tensorial operations arising from a Riemannian metric on
a smooth manifold, we will next construct and study the fundamental family of “new”
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differential operators available in the presence of such a metric. While the motivation
of this concept from submanifold geometry is not very difficult, things are constructed
on an abstract Riemannian manifold in different order.

1.8. Motivation. There are various concepts in submanifold geometry that are
related to the covariant derivative. The most intuitive among these probably is the
notion of a geodesic: The simplest non-trivial curves in En are the affine lines t 7→ x+tv
with x ∈ En, v ∈ Rn and t ∈ R. For a general curve t 7→ c(t), one can view the derivative
c′ as a map to Rn, so it is no problem to form the second derivative c′′, which again is an
Rn-valued function. The affine lines in En are exactly the curves for which c′ is constant
or equivalently c′′ = 0. Now if M ⊂ En is a smooth submanifold, then in general M
will not contain any pieces of affine lines. However, there is a nice class of curves in
M , which can be thought of as the paths of particles which move freely in M . Namely,
for a smooth curve c : I → M , one requires that for each t ∈ I, the second derivative
c′′(t) is perpendicular to the tangent space Tc(t)M ⊂ Rn. Intuitively, this means that
acceleration is only there to keep the curve on the submanifold. These curves are the
geodesics of M , and one shows that, given x ∈ M and X ∈ TxM , there locally is a
unique geodesic c : I →M with c(0) = x and c′(0) = X.

As a slight variation, one can consider the concept of parallel transport. In En one
can transport a tangent vector X ∈ TxEn = Rn parallely to all of En by looking at the
vector field corresponding to the constant function X. To be applicable to submanifolds,
one has to modify this concept by only looking at it along a curve. Namely, for a curve
c : I → En, a vector field along c is a smooth function X : I → Rn, which we view
as associating to t a tangent vector in the point c(t). Then one can simply say that
X is parallel along c if the function X is constant. Now this concept can be adapted
to a smooth submanifold M ⊂ En. Given a smooth curve c : I → M , one defines
a vector field along c as a smooth map X : I → Rn such that X(t) ∈ Tc(t)M for all
t ∈ R. Then one says that X is parallel along c if for each t ∈ I the derivative X ′(t) is
perpendicular to Tc(t)M . In local coordinates, this amounts to a system of linear first
order ODE. Hence any tangent vector can be transported parallely along a curve, i.e. it
can be extended uniquely to a vector field which is parallel along the curve.

Observe that a curve c is a geodesic if and only if c′(t) (which evidently defines a
vector field along c) is parallel along c. In this sense, parallel transport is easier to
deal with than geodesics are. Simple examples of surfaces in E3 show that the concept
of parallel transport only makes sense along curves. Take the unit sphere S2 and a
tangent vector X 6= 0 at the north pole. Then take the great circle in S2 obtained by
intersecting the sphere with the plane orthogonal to X. Then along this great circle the
constant vector field on E3 corresponding to X is tangent to S2, so it must be parallel
along the curve. So transporting X parallely to the south pole along this curve, one
obtains X. In contrast to this, if one takes the great circle emanating from the north
pole in direction X and transports X parallely along this to the south pole, one obtains
−X! This is another way to see that the sphere is (intrinsically) curved.

The last step is to absorb these ideas into the definition of the covariant derivative,
an analog of a directional derivative for vector fields. Suppose that M ⊂ En is a
submanifold and η ∈ X(M) is a vector field, which we can view as a smooth function
η : M → Rn such that η(x) ∈ TxM ⊂ Rn for all x ∈ M . Then given a point x ∈ M
and a tangent vector X ∈ TxM , one forms X · η ∈ Rn (the directional derivative of
the function η in direction X) and projects the result orthogonally into TxM to obtain
an element ∇Xη(x) ∈ TxM . This depends smoothly on the point in the sense that for
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ξ, η ∈ X(M), one obtains a smooth vector field ∇ξη in this way. There are two crucial
properties of this operation. On the one hand, taking η, ζ ∈ X(M) and their point-wise
inner product, one gets

ξ · 〈η, ζ〉 = 〈ξ · η, ζ〉+ 〈η, ξ · ζ〉.
Since ζ and η lie in the tangent spaces to M , the inner products in the right hand side
remain unchanged if one replaces ξ · η by ∇ξη and ξ · ζ by ∇ξζ. Hence we see that ∇
satisfies a Leibniz rule with respect to the first fundamental form.

On the other hand, consider the skew-symmetrization ∇ξη −∇ηξ of the operation.
This can be computed as the orthogonal projection of ξ · η − η · ξ to the tangent
spaces of M . However, it is well known that ξ · η − η · ξ = [ξ, η], the Lie bracket,
which is automatically contained in the tangent space. Hence ∇ξη − ∇ηξ = [ξ, η],
which is referred to as torsion-freeness of the covariant derivative. Having the covariant
derivative at hand, the fact that a vector field ξ is parallel along c can be written as
0 = ∇c′(t)ξ for all t. (One has to check that this also makes sense for vector fields along
c.) So one can recover the more intuitive concepts discussed above.

1.9. Existence and uniqueness of the Levi-Civita connection. It turns out
that it is easiest to generalize the covariant derivative to Riemannian manifolds and
then derive the other concepts as consequences.

Definition 1.9. Let M be a smooth manifold.
(1) A linear connection on TM is an operator ∇ : X(M) × X(M) → X(M), which

is bilinear over R and satisfies

∇fξη = f∇ξη ∇ξ(fη) = (ξ · f)η + f∇ξη

for all ξ, η ∈ X(M) and all f ∈ C∞(M,R).
(2) If ∇ is a linear connection on TM , then the torsion of ∇ is the bilinear map

T : X(M)× X(M)→ X(M) defined by

T (ξ, η) := ∇ξη −∇ηξ − [ξ, η].

The connection ∇ is called torsion-free if and only if its torsion vanishes identically.
(3) A linear connection ∇ on TM is said to be metric with respect to a Riemannian

metric g on M if and only if

ξ · g(η, ζ) = g(∇ξη, ζ) + g(η,∇ξζ)

for all ξ, η, ζ ∈ X(M).

While this is not really needed for our purposes, observe that the torsion of any
linear connection actually defines a

(
1
2

)
-tensor field on M . To see this, we just have

to prove that T (ξ, η) is bilinear over smooth functions. Now if we replace η by fη for
f ∈ C∞(M,R), then ∇ξ(fη) = (ξ · f)η + f∇ξη and ∇fηξ = f∇ηξ by definition of a
linear connection. On the other hand, it is well known that [ξ, fη] = (ξ · f)η + f [ξ, η],
which shows that T (ξ, fη) = fT (ξ, η). Since T (η, ξ) = −T (ξ, η) is evident, we see that
T indeed is a tensor field. This is why the torsion is an important concept.

One of the most fundamental results of Riemannian geometry is the following

Theorem 1.9. Let (M, g) be a Riemannian manifold. Then there is a unique
torsion-free linear connection on TM , which is metric for g.

We discuss two proofs for this result, which very different in nature. While the first
proof is entirely global, it is slightly mysterious why it works. The second proof requires
some local input, but is makes the algebraic background clear. In both proofs we leave
some straightforward verifications to the reader.
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First proof. The global proof is based on the fact that, assuming the existence of
a torsion free metric linear connection, one can derive a formula for it via a nice trick.
Take three vector fields ξ, η, and ζ on M . Write out the definition of being metric three
times with the vector fields cyclically permuted and taking the negative in one case, we
get

0 = ξ · g(η, ζ)− g(∇ξη, ζ)− g(η,∇ξζ)

0 = η · g(ζ, ξ)− g(∇ηζ, ξ)− g(ζ,∇ηξ)

0 = −ζ · g(ξ, η) + g(∇ζξ, η) + g(ξ,∇ζη).

Adding up these three lines, we of course get zero. We can always exchange arguments
in g and then use bilinearity. Via torsion freeness, we can replace −∇ξζ + ∇ζξ by
−[ξ, ζ], −∇ηζ + ∇ζη by −[η, ζ], and −∇ξη − ∇ηξ by −2∇ξη + [ξ, η]. Bringing the
term involving ∇ξη to the other side, we arrive at the so-called Koszul formula, which
expresses 2g(∇ξη, ζ) as

(1.1) ξ · g(η, ζ) + η · g(ζ, ξ)− ζ · g(ξ, η) + g([ξ, η], ζ)− g([ξ, ζ], η)− g([η, ζ], ξ).

Observe that in the right hand side, only the Lie bracket and the action of vector fields
on smooth functions is used. If we have a torsion free metric connection ∇, then this
formula allows us to compute, for each x ∈ M , the value gx(∇ξη(x), ζ(x)). For fixed ξ
and η, we can of course realize any element of TxM as ζ(x) for an appropriate vector
field ζ. Hence ∇ξη(x) is uniquely determined by these values, and since this can be
done in each point, ∇ξη is uniquely determined. Since this works for arbitrary vector
fields, the uniqueness part of the theorem follows.

To prove existence, we show that the formula (1.1) can be used to define a linear
connection ∇. Let us first fix two vector fields ξ and η, and view (1.1) as defining an
operator that sends a vector field ζ to a smooth function. This map is linear and one
verifies directly that it is even linear over smooth functions, so we have actually defined
a one-form on M . From Section 1.5 we know that this can be expressed as g(ϕ, ζ) for
a uniquely determined vector field ϕ ∈ X(M), and we define ∇ξη := 1

2
ϕ.

Doing this for all vector fields ξ and η, we obtain an operator ∇ : X(M)×X(M)→
X(M), which is bilinear since (1.1) is evidently linear in ξ and in η. Next, one verifies
that (1.1) is linear over smooth functions in ξ. This means that

g(∇fξη, ζ) = fg(∇ξη, ζ) = g(f∇ξη, ζ).

As above, this shows that ∇ is linear over smooth functions in the first argument.
On the other hand, replacing η by fη in (1.1), one obtains the product of (1.1) by f
plus 2(ξ · f)g(η, ζ). Bringing the function into the metric, we conclude that ∇ξ(fη) =
(ξ · f)η + f∇ξη. Hence ∇ defines a linear connection on TM .

To prove torsion-freeness, we observe that the first two summands, the last two
summands and the third summand in (1.1) are symmetric in ξ and η. Hence we obtain

2g(∇ξη −∇ηξ, ζ) = g([ξ, η], ζ)− g([η, ξ], ζ),

and torsion freeness follows. On the other hand, the second and third summand, the
fourth and fifth summand, and the last summand in (1.1) are skew symmetric in η and
ζ. Thus we obtain

2(g(∇ξη, ζ) + g(η,∇ξζ)) = 2ξ · g(η, ζ),

so ∇ is metric. �

Second Proof. The second proof starts by showing that for any smooth manifold
M , there exist linear connections on TM and the space of all such connections can be
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nicely described. First, in the domain of a chart (U, u), one can represent vector fields
as ξ =

∑
i ξ
i∂i and η =

∑
j η

j∂j and then define

∇ξη :=
∑

j(
∑

i ξ
i ∂
∂ui

(ηj))∂j.

One immediately verifies that this defines a linear connection on TU . Now take an
atlas {(Uα, uα) : α ∈ I} for M and a subordinate partition {ϕi : i ∈ N} of unity. For
each i choose α(i) such that supp(ϕi) ⊂ Uα(i) and consider a linear connection ∇i on
TUα(i) as constructed above. Now taking ξ, η ∈ X(M), ∇i

ϕiξ
η is defined on Uα(i) and

vanishes identically outside of the support of ϕi, so it can be extended by zero to a
smooth vector field on M . Thus given ξ and η, ∇ξη :=

∑
i∇i

ϕiξ
η defines a smooth

vector field on M . One immediately verifies that this defines a linear connection on
TM .

Given two linear connections ∇ and ∇̂ on TM , one considers their difference, i.e. the
map Φ : X(M) × X(M) → X(M) defined by Φ(ξ, η) = ∇̂ξη − ∇ξη. This expression is
bilinear and clearly linear over smooth functions in ξ. But since both connections
satisfy the same compatibility condition with respect to multiplication of η by smooth
functions, their difference is linear over smooth functions in η, too. Thus, Φ is a smooth(

1
2

)
-tensor field.

Conversely, if ∇ is a linear connection on TM and Φ is a
(

1
2

)
-tensor field, then Φ

defines a map X(M) × X(M) → X(M) which is bilinear over smooth functions, and

one immediately verifies that ∇̂ξη := ∇ξη + Φ(ξ, η) defines a linear connection on TM .
(Technically speaking, we have shown that the space of linear connections on TM is an
affine space modeled on the vector space of smooth

(
1
2

)
-tensor fields on M .) It is also

clear, how such a modification affects the torsion. Denoting by T and T̂ the torsions
of ∇ and ∇̂, we of course get T̂ (ξ, η) = T (ξ, η) + (Φ(ξ, η)− Φ(η, ξ)). In abstract index

notation, this reads as T̂ ijk = T ijk + 2Φi
[jk].

Next, suppose that g is a Riemannian metric on M , and that ∇ is some linear
connection on TM . Then we can look at the extent to which ∇ fails to be metric for g,
i.e. consider the map X(M)× X(M)× X(M)→ C∞(M,R) defined by

(ξ, η, ζ) 7→ A(ξ, η, ζ) := ξ · g(η, ζ)− g(∇ξη, ζ)− g(η,∇ξζ).

This mapping evidently is trilinear over R, linear over smooth functions in ξ, and
symmetric in η and ζ. But one also verifies readily that it is linear over smooth functions
in η and ζ, too, and thus it is given by a

(
0
3

)
-tensor field. If we change the connection

to ∇̂ using a
(

1
2

)
-tensor field Φ, then the resulting tensor field Â evidently satisfies

Â(ξ, η, ζ) = A(ξ, η, ζ)− g(Φ(ξ, η), ζ)− g(η,Φ(ξ, ζ)),

or Âijk = Aijk−g`kΦ`
ij−g`jΦ`

ik. Now if we put Φi
jk := 1

2
girAjkr then the resulting change

becomes

−1
2
δrkAijr − 1

2
δrjAikr = −1

2
Aijk − 1

2
Aikj = −Aijk,

where in the last step we used that Aijk is symmetric in the last two indices. Hence this

change leads to Â = 0, and thus to a linear connection on TM , which is metric for g.
So finally, we can start with a linear connection ∇ on TM which is metric for g.

Changing from ∇ to ∇̂ using Φ, we see from above that ∇̂ is also metric for g if and
only if 0 = g`kΦ

`
ij + g`jΦ

`
ik. Otherwise put, the

(
0
3

)
-tensor field Ψijk := Φ`

ijgk` has to be
skew symmetric in j and k. On the other hand, the change of torsion caused by this
change of connection is trivial if and only if Φ`

ij is symmetric in i and j, i.e. if and only
if Ψijk is symmetric in i and j. But we already know from the proof of Proposition
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1.1 that these symmetries force Ψ to vanish identically. Hence we see that the map
sending a linear connection which is metric for g to its torsion is injective. But both
the change of connection and the torsion are point-wise objects. In a point x ∈ M the
changes of metric connections are described by trilinear maps TxM ×TxM ×TxM → R
which are skew symmetric in the last two entries. Hence this space has dimension

nn(n−1)
2

. On the other hand, the torsion in each point is a skew symmetric bilinear

map TxM ×TxM → TxM , so again the space of maps has dimension nn(n−1)
2

. Hence we
conclude that the map between metric connections and torsions is a linear isomorphism,
so there is a unique torsion free one. �

1.10. The covariant derivative in local coordinates. We first observe that a
linear connection is a local operator and thus can be described in local coordinates.

Lemma 1.10. Let M be a smooth manifold and let ∇ be a linear connection on
TM . Then the operator ∇ is local in both arguments, i.e. if U ⊂ M is open and for
ξ, η ∈ X(M) we either have ξ|U = 0 or η|U = 0, then ∇ξη vanishes on U .

Moreover, ∇ is tensorial in the first argument, i.e. if ξ vanishes in some point
x ∈M , then ∇ξη(x) = 0 for any η ∈ X(M).

Proof. For a point x ∈ U , there is a bump function ϕ ∈ C∞(M,R) such that
ϕ(x) = 1 and supp(ϕ) ⊂ U . If ξ|U = 0, then the vector field ϕξ vanishes identically,
so 0 = ∇ϕξη = ϕ∇ξη for any η ∈ X(M). Evaluating in x, we get 0 = ϕ(x)∇ξη(x) and
since ϕ(x) = 1, this implies that ∇ξη(x) = 0.

If η|U = 0, then ϕη = 0, and we get 0 = ∇ξ(ϕη) = (ξ · ϕ)η + ϕ∇ξη. Evaluating in x
and using that η(x) = 0, we again get ∇ξη(x) = 0.

Now assume that ξ(x) = 0 for some point x ∈M and choose a chart (U, u) with x ∈
U . Expanding ξ|U =

∑
i ξ
i∂i, we conclude from the first part that in computing ∇ξη|U

we may replace ξ by this sum. Using the defining properties of ∇, we conclude that
∇ξη|U =

∑
i ξ
i∇∂iη. But if ξ(x) = 0 then ξi(x) = 0 for all i and hence ∇ξη(x) = 0. �

As usual, the lemma implies that ∇ξη|U depends only on ξ|U and η|U and that
∇ξη(x) depends only on ξ(x). The second fact indicates that a linear connection on
TM can indeed be thought of as an analog of a directional derivative for vector fields.

This implies that we can compute the action of any linear connection on TM in
local coordinates. Consider a local chart (U, u) for M with coordinate vector fields ∂i
and two vector fields ξ, η ∈ X(M). Then we can expand the fields as ξ|U =

∑
i ξ
i∂i and

η =
∑

j η
j∂j for smooth functions ξi, ηj : U → R and using the lemma, we get

(1.2) ∇ξη|U =
∑

i,j∇ξi∂i(η
j∂j) =

∑
i,j ξ

i(∂i · ηj)∂j +
∑

i,j ξ
iηj∇∂i∂j.

Since any vector field on U can be expanded in terms of the coordinate vector fields, there
are uniquely determined smooth functions Γkij : U → R for i, j, k = 1, . . . , n = dim(M)
such that

∇∂i∂j =
∑

k Γkij∂k.

Knowing these functions, one has a complete description of ∇ in local coordinates via

(1.3) ∇ξη|U =
∑

i,j ξ
i(∂i · ηj)∂j +

∑
i,j,k ξ

iηjΓkij∂k.

Definition 1.10. The quantities Γkij are called the connection coefficients or, in par-
ticular in the case of the Levi-Civita connection of a Riemannian metric, the Christoffel
symbols of the linear connection ∇ with respect to the chart (U, u).
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Proposition 1.10. Let M be a smooth manifold and let ∇ be a linear connection
on TM .

(1) The connection ∇ is torsion-free if and only if its connection coefficients with
respect to any chart are symmetric in the lower indices, i.e. Γkij = Γkji for all i, j, k.

(2) If ∇ is the Levi-Civita connection of a Riemannian metric g on M , then the
Christoffel symbols are given explicitly by

Γkij = 1
2

∑
` g

k` (∂i · gj` + ∂j · gi` − ∂` · gij) ,

where gij and gij are the components of the metric and its inverse in local coordinates.

Proof. (1) If ∇ is torsion-free, then [∂i, ∂j] = 0 implies ∇∂i∂j = ∇∂j∂i and hence
symmetry of the connection coefficients. Conversely, the formula (1.3) for ∇ in local
coordinates together with the formula for the Lie bracket in local coordinates shows
that

(∇ξη −∇ηξ)|U = [ξ, η]|U +
∑

i,j,k ξ
iηj(Γkij − Γkji)∂k.

Thus symmetry of the connection coefficients implies torsion-freeness of ∇.

(2) We apply the Koszul formula (1.1) from the first proof of Theorem 1.9 for ξ = ∂i,
η = ∂j and ζ = ∂`. Of course, we get 2g(∇∂i∂j, ∂`) = 2

∑
m gm`Γ

m
ij , so we can recover

2Γkij from this by multiplying with gk` and summing over `. But using that the Lie
bracket of two coordinate vector fields always vanishes, we conclude that (1.1) in our
case leads to

∂i · gj` + ∂j · gi` − ∂` · gij.
This immediately implies the claim. �

It is easy to compute directly how connection coefficients transform under a change
of local coordinates and in particular to see that they do not define a tensor field.
Nonetheless, it is sometimes useful to interpret them as a tensor field defined on the
domain on a coordinate chart. Given a chart (U, u) one thus defines ΓU : X(U)×X(U)→
X(U) as ΓU(ξ, η) =

∑
i,j,k ξ

iηjΓkij∂k. Using this, one can rewrite equation (1.3) for the
local coordinate representation of a linear connection as

∇ξη|U =
∑

j(ξ · ηj)∂j + ΓU(ξ, η).

1.11. Parallel transport. The last formula for the covariant derivative has an
important advantage. It shows that in order to compute the value of ∇ξη in a point
x ∈ M one only has to know η(x) and the derivative of the component functions of η
with respect to some chart in direction ξ(x). Given a smooth curve c : I → M with
c(0) = x and c′(0) = ξ, these derivatives can be computed as ξ · ηj = d

dt
|t=0η

j(c(t)).
Now suppose that we start with a curve c : I →M and take a vector field η ∈ X(M).

Then for each t ∈ I, we can look at ∇c′(t)η(c(t)) ∈ Tc(t)M . From above we see that
this depends only on the restriction of η to the image of c. This allows us to generalize
the next part of what was discussed in the motivation in Section 1.9 from embedded
submanifolds to general Riemannian manifolds.

Consider an interval I ⊂ R and a smooth curve c : I → M in a manifold M .
Then one defines a vector field along c as a smooth function ξ : I → TM such that
ξ(t) ∈ Tc(t)M for all t ∈ I. Observe that in the domain of a chart (U, u), we can expand
the tangent vectors ξ(t) in terms of the coordinate vector fields ∂i determined by the
chart. Thus we obtain smooth functions ξi such that ξ(t) =

∑
i ξ
i(t)∂i(c(t)). Finally

observe that given a vector field ξ along c and a smooth function f : I → R, one can
form fξ in an obvious way.
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Given a linear connection ∇ on TM , the above considerations show that there is a
well defined tangent vector ∇c′(t)ξ(c(t)) ∈ Tc(t)M for each t ∈ I. From the coordinate
formula above it follows readily that these fit together to form a smooth vector field
∇c′ξ along c. The basic properties of this operation are as follows.

Proposition 1.11. Let (M, g) be a Riemannian manifold and ∇ its Levi-Civita
connection.

(1) The covariant derivative for vector fields along a smooth curve c : I → M is a
linear operator which satisfies the product rule ∇c′(fξ) = f ′ξ + f∇c′ξ for any smooth
function f : I → R. In local coordinates we get

∇c′ξ(t) =
∑

i(ξ
i)′(t)∂i(c(t)) + ΓU(c′(t), ξ(t))(c(t)).

(2) For two vector fields ξ and η along c, one has

d
dt
g(ξ, η) = g(∇c′ξ, η) + g(ξ,∇c′η),

where g(ξ, η)(t) = g(c(t))(ξ(t), η(t)).
(3) Given a point a ∈ I and a tangent vector ξ0 ∈ TxM , where x = c(a), there is a

unique vector field ξ : I →M along c such that ξ(a) = ξ0 and ∇c′ξ = 0.
(4) In the setting of (3) suppose that [a, b] ⊂ I. Then mapping ξ0 to ξ(b) defines an

orthogonal linear isomorphism Tc(a)M → Tc(b)M .

Proof. (1) Linearity follows immediately from bilinearity of the covariant deriv-
ative of vector fields. The formula in local coordinates then follows directly from the
considerations in the end of Section 1.10. Since for the components with respect to local
coordinates, one clearly has (fξ)i = fξi, the product rule follows from this coordinate
formula.

(2) this follows immediately from the fact that ∇ is metric for g.
(3) From the coordinate formula in (1) is is clear that in local coordinates ∇c′ξ = 0 is

a linear system of first order ordinary differential equations on the coordinate functions
ξi. Hence this admits a unique global solution for any initial value.

(4) Linearity clearly implies that one obtains a linear map Tc(a)M → Tc(b)M . From
(2) it follows that if ∇c′ξ = ∇c′η = 0, then g(ξ, η) is constant, which implies orthogo-
nality of the map. �

Definition 1.11. (1) A vector field ξ along c is called parallel (along c) if and only
if ∇c′ξ = 0.

(2) For c : [a, b]→M , the map Tc(a)M → Tc(b)M from part (4) of the proposition is
called the parallel transport along c.

Parallel transport is closely related to a concept called holonomy. Given a point x in
a Riemannian manifold M , one considers piece-wise smooth closed curves starting and
ending in x. It is easy to see that parallel transport extends to piece-wise smooth curves
without problem, so each such curve gives rise to an orthogonal linear map TxM → TxM .
It is also easy to see that the resulting linear maps form a subgroup of the orthogonal
group O(TxM) (compositions comes from going through two curves successively, while
inversion comes from going in the opposite direction). This is called the holonomy group
of the metric g in the point x. One further proves that for connected M , the holonomy
groups in different points are isomorphic, so one can speak about the holonomy group
of M . One of the reasons for the importance of the concept of holonomy is that by a
classical result of M. Berger, one can completely classify (in a certain sense) the possible
holonomy groups of Riemannian manifolds.
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1.12. Geodesics and the exponential map. For a smooth curve c : I → M ,
the derivative c′ of course is a vector field along c. Hence it makes sense to call a curve
c a geodesic of g, if ∇c′c

′ = 0 i.e. if c′ is parallel along c. We can quickly prove some
fundamental results on geodesics:

Proposition 1.12. Let (M, g) be a Riemannian manifold.
(1) Given x ∈M and ξ ∈ TxM , there is a unique maximal interval I ⊂ R with 0 ∈ I

and a unique maximal geodesic c : I →M with c(0) = x and c′(0) = ξ.
(2) Given x ∈M , there is an open neighborhood U of zero in TxM such that for each

ξ ∈ U , the interval I from (1) contains [0, 1] and mapping ξ to c(1) defines a smooth
map expx : U →M .

(3) The map expx from (2) satisfies expx(0) = x and T0 expx = idTxM so choosing
U small enough, expx is a diffeomorphism from U onto an open neighborhood of x in
M .

(4) Let π : TM → M be the natural projection. There is an open neighborhood V
of the zero-section in TM such that for each ξ ∈ V , expπ(ξ)(ξ) ∈M is defined. Calling
the latter element exp(ξ), one obtains a smooth map exp : V → M . Choosing V small
enough, (π, exp) : V → M ×M is a diffeomorphism onto an open neighborhood of the
diagonal in M ×M .

Proof. From part (1) of Proposition 1.11, we see that in local coordinates, the
equation 0 = ∇c′c

′ reads as (ci)′′(t) = −Γijk(c(t))(c
j)′(t)(ck)′(t), so this is a (non-linear)

system of second order ODEs, which admits unique local solutions for fixed initial values
for c and c′. From this, (1) follows by piecing together unique local solutions to maximal
solutions.

(2) The fact that solutions of ODEs depend smoothly on the initial data implies
that there is an ε > 0 such that for each unit vector ξ ∈ TxM , the maximal interval on
which the solution from (1) is defined contains (−ε, ε). Now suppose that I ⊂ R is an
interval containing zero and c : I →M is a geodesic. Fix a real number s and consider
c̃(t) := c(st). Then c̃′(t) = sc′(st), and one easily concludes that c̃ is a geodesic with
c̃(0) = c(0) and c̃′(0) = sc′(0). Together with the above, this shows that expx is defined
and smooth on the ball of radius ε and thus on an open neighborhood of 0.

(3) Since the constant curve c(t) = x is a geodesic with c(0) = x and c′(0) = 0, we
see that expx(0) = x. Moreover, the considerations in the proof of part (2) show that
the geodesic c : I → M with c(0) = x and c′(0) = ξ can be written as t 7→ expx(tξ) for
t close enough to zero. But this shows that

T0 expx ·ξ = d
dt
|t=0 expx(tξ) = ξ,

so T0 expx = id(TxM). Hence expx is a local diffeomorphism around 0.
(4) The fact that exp is well defined on an open neighborhood of the zero section in

TM follows from smooth dependence of solutions of ODEs on the initial conditions as
before. Hence we can consider (π, exp) : V →M×M . This maps 0x ∈ TxM to (x, x), so
the diagonal is in the image. Next we claim that T0x(π, exp) : T0xTM → TxM ×TxM is
injective and thus a linear isomorphism for dimensional reasons. The first component of
this map is Txπ, so this is surjective and thus has a kernel of dimension n = dim(M). On
the other hand, one can view TxM naturally as a subspace of T0xTM (via the derivatives
of the curves t 7→ tξ). This is contained in ker(Txπ) and hence has to coincide with
this subspace for dimensional reasons. But by construction, the second component of
T0x exp coincides on this subspace with T0 expx, so the claim follows. Hence we know
that (π, exp) is a local diffeomorphism around 0x for each x ∈M . A moment of thought
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shows that this map is injective and hence a diffeomorphism on sufficiently small open
neighborhoods of the zero section. �

An important consequence is that for each x ∈M on can use the inverse of expx as
a local chart around x. Choosing an orthonormal basis of TxM , one can identify the
target space of this chart with Rn (endowed with the standard inner product), and thus
get local coordinates around x. These are called normal coordinates centered at x.

1.13. Curvature. The last topic we discuss in this chapter is the curvature tensor
of a Riemannian metric.

Proposition 1.13. Let (M, g) be a Riemannian manifold and consider the trilinear
map X(M)× X(M)× X(M)→ X(M) defined by

R(ξ, η)(ζ) := ∇ξ∇ηζ −∇η∇ξζ −∇[ξ,η]ζ.

(1) This is given by the action of a
(

1
3

)
-tensor field, which in abstract index notation

is denoted by Rij
k
` via R(ξ, η)(ζ)k = Rij

k
`ξ
iηjζ`.

(2) The tensor field R can be viewed as a two-form with values in skew-symmetric
endomorphisms of the tangent bundle, i.e. g(R(ξ, η)(ζ1), ζ2) is skew symmetric both in
ξ and η and in ζ1 and ζ2, respectively Rij

k
` = R[ij]

k
` and Rij

a
`gka = Rij

a
[`gk]a.

(3) In view of the last symmetry, Rx can be viewed as a bilinear form on Λ2TxM , and
as such a form it is symmetric, i.e. g(R(ξ, η)(ζ1), ζ2) = g(R(ζ1, ζ2)(ξ), η), respectively
Rij

a
kg`a = Rk`

a
igja.

(4) Finally, R satisfies the first Bianchi-identity

0 = R(ξ, η)(ζ) +R(ζ, ξ)(η) +R(η, ζ)(ξ),

respectively R[ij
k
`] = 0.

Proof. (1) We have to show that the map we have defined is linear over smooth
functions in all three entries, but since it is obviously skew-symmetric in ξ and η, it
suffices to verify this linearity in η and ζ. Now the second term in the defining formula
for R evidently is linear over smooth functions in η, while for the first term, we compute
for f ∈ C∞(M,R):

∇ξ∇fηζ = ∇ξ(f∇ηζ) = f∇ξ∇ηζ + (ξ · f)∇ηζ.

But on the other hand, [ξ, fη] = f [ξ, η]+(ξ ·f)η, which after inserting into the covariant
derivative cancels the other contribution.

To verify linearity over smooth functions in ζ, we take f ∈ C∞(M,R) and compute

∇ξ∇ηfζ = ∇ξ(f∇ηζ + (η · f)ζ)

= f∇ξ∇ηζ + ((ξ · f)∇ηζ + (η · f)∇ξζ) + (ξ · η · f)ζ

The middle sum is symmetric in ξ and η and thus cancels with the corresponding term
coming from −∇η∇ξfζ. On the other hand,

∇[ξ,η]fζ = f∇[ξ,η]ζ + ([ξ, η] · f)ζ.

By definition of the Lie bracket [ξ, η] · f = ξ · η · f − η · ξ · f , so linearity over smooth
functions in ζ follows.

(2) We have already observed that R(ξ, η)(ζ) is skew symmetric in ξ and η, so
Rij

k
` = R[ij]

k
`. On the other hand, Rij

a
`gka is just the

(
0
4

)
-tensor field defined by
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(ξ, η, ζ1, ζ2) 7→ g(R(ξ, η)(ζ1), ζ2), and we have to prove that this is skew symmetric in ζ1

and ζ2. Now we can compute directly as follows

ξ · η·g(ζ1, ζ2) = ξ · (g(∇ηζ1, ζ2) + g(ζ1,∇ηζ2))

= g(∇ξ∇ηζ1, ζ2) + g(∇ηζ1,∇ξζ2) + g(∇ξζ1,∇ηζ2) + g(ζ1,∇ξ∇ηζ2).

Observe that the middle two terms in the last expression are symmetric in ξ and η,
hence they will vanish if we subtract the same term with ξ and η exchanged. But then
if we further subtract

[ξ, η] · g(ζ1, ζ2) = g(∇[ξ,η]ζ1, ζ2) + g(ζ1,∇[ξ,η]ζ2),

then the left hand side will vanish by definition of the Lie bracket, while on the right
hand side we get

g(R(ξ, η)(ζ1), ζ2) + g(ζ1, R(ξ, η)(ζ2)).

(4) Expanding R(ξ, η)(ζ) +R(ζ, ξ)(η) +R(η, ζ)(ξ) according to the definition of R,
the first term ∇ξ∇ηζ from the first summand adds up with the second term −∇ξ∇ζη
from the second summand to ∇ξ[η, ζ] by torsion freeness. Again by torsion freeness,
this adds up with the last term −∇[η,ζ]ξ from the last summand to [ξ, [η, ζ]]. This can
be similarly done for the other terms to see that

R(ξ, η)(ζ) +R(ζ, ξ)(η) +R(η, ζ)(ξ) = [ξ, [η, ζ]] + [ζ, [ξ, η]] + [η, [ζ, ξ]],

which vanishes by the Jacobi identity for the Lie bracket of vector fields. Since R(ξ, η)(ζ)
is skew symmetric in ξ and η, its complete alternation coincides with 1/3 times the sum
over all cyclic permutations of the arguments.

(3) This identity is a formal consequence of the other ones. Writing Sijk` := Rij
a
kga`,

we know skew symmetry in (i, j) and in (k, `) from (2) and 0 = Sijk` +Skij` +Sjki` from
(4). Using this, we compute

Sijk` = −Skij` − Sjki` = Ski`j + Sjk`i = −S`kij − Si`kj − S`jki − Sk`ji
= 2Sk`ij + Si`jk + S`jik = 2Sk`ij − Sji`k.

Since the last term equals −Sijk` the claimed symmetry Sijk` = Sk`ij follows. �

The Riemann curvature tensor is the fundamental invariant of a Riemannian metric.
As the discussion of the symmetries shows, it is a rather complicated object, and ex-
tracting parts of the curvature, which are more easily handled is an important problem
in Riemannian geometry. We will discuss some aspects of this in the next chapter.

1.14. Remarks on isometries. Let us apply the concepts discussed so far to
obtain some basic facts on isometries, which are the appropriate concept of morphisms
in the category of Riemannian manifolds. This discussion also shows that the concepts
we have developed so far actually are naturally associated to Riemannian manifolds.

Definition 1.14. Let (M, g) and (N, h) be Riemannian manifolds of dimension n.
An isometry between M and N is a smooth map Φ : M → N such that for each x ∈M
the tangent map TxΦ : TxM → TΦ(x)N is orthogonal with respect to the inner products
gx and hΦ(x).

Observe that by definition TxΦ always has to be a linear isomorphism, so Φ is a local
diffeomorphism. In particular, one may always pull back arbitrary tensor fields along
isometries. Moreover, since Riemannian metrics can be restricted to open subsets, there
is an obvious concept of a local isometry. For simplicity, one often restricts to the case
of isometries which are diffeomorphisms.
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For an isometric diffeomorphism Φ : (M, g) → (N, h) we have induced linear iso-
morphisms Φ∗ : C∞(N,R)→ C∞(M,R) and likewise for all kinds of geometric objects.
From the constructions in Proposition 1.4 it is clear that Φ∗ maps the inverse metric
to h to the inverse metric to g and is also compatible with the volume forms. In par-
ticular, we see that the maps Φ∗ are always orthogonal for the L2-inner products we
have constructed in 1.5 and hence extend to isomorphisms of the Hilbert space comple-
tions. Likewise, the pullback along Φ is compatible with the Hodge-∗ operation, since
the maps induced by Φ are compatible with the induced inner products on the spaces
ΛkT ∗xM and ΛkT ∗Φ(x)N . Hence Φ∗ is also compatible with the codifferential and the
Laplace–Beltrami operator on forms.

Next, for a smooth curve c : [a, b] → M , Φ ◦ c is a smooth curve in N , and since
(Φ◦c)′(t) = Tc(t)Φ ·c′(t), orthogonality of the tangent maps of Φ implies that c and Φ◦c
have the same arclength. Denoting by dg and dh the metrics on M and N as defined in
1.7 and assuming that Φ is a diffeomorphism, we conclude that dh(Φ(x),Φ(y)) = dg(x, y)
for all x, y ∈ M . This means that Φ is an isometry between the metric spaces (M,dg)
and (N, dh).

Proposition 1.14. Let (M, g) and (N, h) be Riemannian manifolds of the same
dimension n with Levi-Civita connections ∇M and ∇N and Riemann curvature tensors
RM and RN , and let Φ : M → N be an isometry.

(1) For ξ, η ∈ X(M) we have Φ∗(∇N
ξ η) = ∇M

Φ∗ξΦ
∗η.

(2) Φ is compatible with the curvature tensors, i.e. Φ∗RN = RM .
(3) Φ is compatible with the covariant derivative of smooth vector fields along smooth

curves. Thus it is compatible with the parallel transport along smooth curves and maps
geodesics in M to geodesics in N .

Proof. (1) This is a local question, so we may replace M and N by U and Φ(U)
where Φ restricts to a diffeomorphism on U . Then consider the operation X(Φ(U)) ×
X(Φ(U)) → X(Φ(U)) defined by (ξ, η) 7→ (Φ−1)∗(∇M

Φ∗ξΦ
∗η). This is evidently bilinear

and since pullbacks are linear over smooth functions it follows readily that it is linear over
smooth functions in the first variable. On the other hand, one uses Φ∗(fη) = (f ◦Φ)Φ∗η
and (Φ∗ξ) · (f ◦ Φ) = (ξ · f) ◦ Φ to conclude that this satisfies a Leibniz rule in second
variable, so we have constructed a linear connection on TΦ(U). Next, alternating
this operation, we just have to use [Φ∗ξ,Φ∗η] = Φ∗([ξ, η]) to conclude that this linear
connection is torsion free.

Finally, since the tangent maps of Φ are all orthogonal, we conclude that

hΦ(x)(ξ(Φ(x)), η(Φ(x))) = gx(Φ
∗ξ(x),Φ∗η(x)),

so h(ξ, η) ◦ Φ = g(Φ∗ξ,Φ∗η). Thus for a third vector field ζ ∈ X(U), we can write
(ζ · h(ξ, η)) ◦Φ as (Φ∗ζ) · g(Φ∗ξ,Φ∗η). Now apply compatibility of ∇M with the metric
and rewrite g(∇M

Φ∗ζΦ
∗ξ,Φ∗η) as h((Φ−1)∗(∇M

Φ∗ζΦ
∗ξ), η) ◦ Φ and likewise for the other

summand. Since Φ is a diffeomorphism, we can forget about the composition with Φ
and conclude that the connection we have defined is compatible with h and hence has
to coincide with ∇N by Theorem 1.9. From this, the result follows by applying Φ∗.

(2) Since Φ is a local diffeomorphism, we can realize all tangent vectors in a point x as
the values of vector fields of the form Φ∗ξ for ξ ∈ X(N). But the formula in (1) together
with the definition of curvature shows that RM(Φ∗ξ,Φ∗η)(Φ∗ζ) = Φ∗(RN(ξ, η)(ζ)),
which implies the claim.

(3) For a smooth curve c in M , Φ ◦ c is a smooth curve in N and for a vector field
ξ along c, Φ∗ξ(t) := Tc(t)Φ · ξ(t) is a vector field along Φ ◦ c. Now the result in (1)
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easily implies that Φ∗∇c′ξ = ∇(Φ◦c)′Φ∗ξ. This immediately implies compatibility with
the parallel transport and since by definition (Φ ◦ c)′ = Φ∗c

′, the claim on geodesics
follows, too. �

This implies that isometries are rather rare in various senses. For example, consider
Euclidean space En. By definition, the coordinate vector fields ∂i on En satisfy∇ξ∂i = 0
for any vector field ξ on En. But this easily shows that R(ξ, η)(∂i) = 0, so on En the
Riemann curvature vanishes identically. From part (2) of the proposition, we thus
conclude that if (M, g) is a Riemannian manifold and x ∈ M is a point, there may
be an isometry from an open neighborhood U of x in M to En only if the Riemann
curvature RM vanishes identically on U .

If we endow Rn with an arbitrary Riemannian metric g, then the Riemann curvature
tensor of g can be considered as a smooth function to (a subspace of) ⊗3Rn∗⊗Rn. Now
even taking into account all the symmetries of the curvature tensor, the target space is
high dimensional. Suppose it is possible to choose the metric g in such a way that the
curvature tensor defines an injective function. Then part (2) of the proposition implies
that the only isometry between open subsets of Rn endowed with the restriction of this
metric, is the identity map, so there are no non-trivial local isometries. Indeed, one can
make this precise and show that the space of Riemannian metrics on a smooth manifold
M in dimension n ≥ 3 contains an open dense subset (in a suitable topology) consisting
of metric which do not admit any non-trivial local isometries.

Finally, Proposition 1.1 shows that any isometry of Euclidean space is a Euclidean
motion. The proof of (ii)⇒(iii) we have given actually applies more generally to show
that for connected open subsets U and V of En any isometry f : U → V is the restriction
of a Euclidean motion. So even for this simplest example of a Riemannian manifold,
isometries are rather rare (they form a finite dimensional manifold). Now we can prove
an analog of this result for arbitrary Riemannian manifolds.

Corollary 1.14. Let (M, g) and (N, h) be Riemannian manifolds of dimension n
such that M is connected, and let x ∈ M be a point. Then an isometry Φ : M → N is
uniquely determined by Φ(x) and TxΦ.

Proof. From part (3) of the proposition, we know that an isometry Φ maps
geodesics to geodesics. Hence if c : I → M is a geodesic with c(0) = x and c′(0) = ξ,
then Φ ◦ c is a geodesic through Φ(x) with initial direction TxΦ · ξ. In terms of the
exponential mapping this means that Φ ◦ expx = expΦ(x) ◦TxΦ holds on the domain of
definition of expx. By Proposition 1.12, expx restricts to a diffeomorphism from some
open neighborhood of zero onto a neighborhood of x in M . But then the restriction of
Φ to this neighborhood is uniquely determined by Φ(x) and TxΦ.

Given two isometries Φ,Ψ : M → N , this shows that the set

{x ∈M : Φ(x) = Ψ(x) and TxΦ = TxΨ}.
is open in M . On the other hand, its complement is evidently open, hence if non-empty,
this set coincides with M , since M is connected. �



CHAPTER 2

Some more advanced topics

Having the core notions of Riemannian geometry at hand, we briefly discuss “how
things go on from here” in several directions. There is some dependence between the
different topics we discuss, but this is not too strong. Hence to a large extent the
individual parts of this chapter can be studied independently of each other.

Moving frames – Examples

We start by discussing the fundamentals of E. Cartan’s moving frame method. This
gives a systematic way for computing the Levi-Civita connection and the Riemann
curvature tensor of a Riemannian manifold in terms of local orthonormal frames and
coframes. The method builds on the calculus of differential forms.

2.1. Local orthonormal frames and coframes. One of the basic difficulties in
Riemannian geometry is that it is impossible to choose local coordinates which are well
adapted to a Riemannian metric. This is basically due to the fact that the Riemann
curvature tensor constructed in 1.13 is a local invariant of a Riemannian metric, which
tells us that Riemannian metrics in general do not locally look the same. For example,
suppose that one has a local chart (U, u) on a Riemannian manifold such that the
corresponding coordinate vector fields ∂i form an orthonormal basis of TxM for each
x ∈ U . Then (compare with Proposition 2.7 below) u is an isometry to the subset
u(U) ⊂ Rn with the restriction of the usual metric on Rn. As observed in 1.13, such an
isometry can only exist if the Riemann curvature vanishes identically on U .

A possible replacement for adapted coordinates are local orthonormal frames, which
we have met in 1.4. Given a Riemannian manifold (M, g) of dimension n and an open
subset U ⊂M , a local orthonormal frame for U is a family {s1, . . . , sn} of vector fields
defined on U such that g(si, sj) = δij on U . This means that for each x ∈ U , the tangent
vectors s1(x), . . . , sn(x) ∈ TxM form an orthonormal basis for TxM (with respect to gx).
In Proposition 1.4 we have proved that local orthonormal frames always exist. Since
there is a better calculus for differential forms available than for vector fields, it is better
to use the dual concept defined as follows.

Definition 2.1. Let (M, g) be a Riemannian manifold of dimension n and let
U ⊂ M be an open subset. A local orthonormal coframe on U is a family {σ1, . . . , σn}
of one-forms defined on U such that g|U =

∑n
i=1 σ

i ⊗ σi.

Lemma 2.1. Let (M, g) be a Riemannian manifold of dimension n and let U ⊂ M
be an open subset. A family {σ1, . . . σn} of elements of Ω1(U) is a local orthonormal
coframe if and only if for each x ∈ U the elements σ1(x), . . . , σn(x) form a basis for
T ∗xM , for which the dual basis of TxM is orthonormal. In particular, local orthonormal
coframes always exist.

Proof. This is just a linear algebra statement. Starting with a local orthonormal
coframe, we get gx =

∑
i σ

i(x) ⊗ σi(x), so non-degeneracy of gx implies that for each
ξ ∈ TxM , there is at least one i such that σi(x)(ξ) 6= 0. This implies that the σi(x) are

25
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linearly independent and thus form a basis of T ∗xM . Denoting the dual basis by si we
conclude that gx(si, sj) =

∑
k σ

k(x)(si)σ
k(x)(sj) = δij so the dual basis is orthonormal.

Conversely, suppose that σ1, . . . , σn is a family of one-forms satisfying the condition
on the values in x. Then gx and

∑
i σ

i(x) ⊗ σi(x) agree whenever one inserts two
elements of the basis dual to {σ1(x), . . . , σn(x)} and hence on all pairs of vectors.

In particular, we see that we can obtain a local orthonormal coframe by forming
the dual basis to a local orthonormal frame in each point, so existence follows from
Proposition 1.4. �

From now on, we will usually work in a local orthonormal coframe {σ1, . . . , σn} with
dual orthonormal frame {s1, . . . , sn}, so σi(sj) = δij. This simply means that any vector

field ξ in the domain of the frames can be written as ξ =
∑

i σ
i(ξ)si. Likewise, a one-

form can, in the domain of the frames, be written as ϕ =
∑

j ϕ(sj)σ
j, and similarly for

more complicated tensor fields.
It is actually possible to develop the fundamentals of Riemannian geometry in the

language of local orthonormal coframes. One defines objects in terms of such a coframe
and then proves that different coframes lead to the same object. In particular, texts
taking this approach contain lots of computations on how various quantities behave
under a change of frame. In the approach we take, such computations are not needed,
since we only compute quantities which we already know to be well defined in terms of
a local coframe.

2.2. Connection and curvature in a moving frame. Consider a local orthonor-
mal coframe {σ1, . . . , σn} for a Riemannian manifold (M, g) defined on U ⊂ M with
dual frame {s1, . . . , sn}. To describe the Levi-Civita connection in the frame, we observe
that for each ξ ∈ X(U) and each i = 1, . . . , n, ∇ξsi is a smooth vector field on U , so we

can write it as
∑

j ω
j
i (ξ)sj for smooth functions ωji (ξ), i = 1, . . . , n, which depend on

ξ. But by definition for a smooth function f ∈ C∞(U,R), we have ∇fξsi = f∇ξsi, and

hence ωji (fξ) = fωji (ξ) for all i, j. Thus each ωji actually is a smooth one-form on U ,

and it is natural to view (ωji ) as a matrix of one-forms on U . This is called the matrix
of connection forms associated to the coframe {σi}.

It is even easier to describe the Riemann curvature tensor in a local frame. Namely,
given vector fields ξ, η ∈ X(U), we expand R(ξ, η)(si) =

∑
j Ωj

i (ξ, η)sj. The fact that

R is a tensor immediately implies that Ωj
i actually is a two-form on U for each i and j.

Hence we also view (Ωj
i ) as a matrix of two-forms, called the matrix of curvature forms

associated to the coframe {σi}.

Proposition 2.2. (1) The matrix (ωij) of connection forms associated to a local

orthonormal coframe {σi} is skew symmetric, i.e. ωij = −ωji and for each i = 1, . . . , n
it satisfies the equation

0 = dσi +
∑

j ω
i
j ∧ σj.

These two properties uniquely determine (ωji ).
(2) The corresponding matrix (Ωi

j) of curvature forms is also skew symmetric and
it is given by

Ωi
j = dωij +

∑
k ω

i
k ∧ ωkj .

Proof. (1) By definition, we have

ωji (ξ) = σj(∇ξsi) = g(∇ξsi, sj).
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But since g(si, sj) is always constant, compatibility of ∇ with g implies that 0 =

g(∇ξsi, sj) + g(si,∇ξsj) and thus ωji (ξ) = −ωij(ξ), so skew symmetry follows.

For a vector field η ∈ X(U), we have noted in 2.1 that η =
∑

j σ
j(η)sj. Hence we

compute

∇ξη =
∑

j∇ξ(σ
j(η)sj) =

∑
j(ξ · σj(η))sj +

∑
j,k σ

j(η)ωkj (ξ)sk.

Otherwise put, we get

σi(∇ξη) = ξ · σi(η) +
∑

j σ
j(η)ωij(ξ).

Now subtract the analogous term with ξ and η exchanged and further subtract σi([ξ, η])
from both sides. Then in the left hand side, we get zero by torsion freeness of ∇. In the
right hand side, we can use the definition of the exterior derivative to conclude that

0 = dσi(ξ, η) +
∑

j

(
ωij(ξ)σ

j(η)− ωij(η)σj(ξ)
)
,

and the last term just represents
∑

j(ω
i
j ∧ σj)(ξ, η).

To prove the statement on uniqueness, we consider the difference of two skew sym-
metric matrices of one-forms, which both satisfy the equations. Then this is a matrix
(τ ji ) of one-forms such that τ ij = −τ ji and such that

∑
j τ

i
j ∧σj = 0 for each i = 1, . . . , n.

Now evaluate the last expression on (sk, s`) to get 0 = τ i`(sk)− τ ik(s`). Hence if we put
Φijk := τ ij(sk), we get Φijk = −Φijk and Φijk = Φikj and we know from the proof of

Proposition 1.1 that this implies Φijk = 0 and hence τ ij = 0 for all i and j.

(2) By definition,

Ωj
i (ξ, η) = σj(R(ξ, η)(si)) = g(R(ξ, η)(si), sj),

so skew symmetry follows from part (2) of Proposition 1.13. From the defining equation
∇ηsi =

∑
k ω

k
i (η)sk, we conclude that

∇ξ∇ηsi =
∑

k(ξ · ωki (η))sk +
∑

k,` ω
k
i (η)ω`k(ξ)s`,

and hence
σj(∇ξ∇ηsi) = ξ · ωji (η) +

∑
k ω

j
k(ξ)ω

k
i (η).

To obtain Ωi
j(ξ, η) we have to subtract the corresponding term with ξ and η exchanged

and further subtract σj(∇[ξ,η]si) = ωji ([ξ, η]). Now the result follows immediately from
the definition of the exterior derivative and of the wedge product. �

2.3. Examples. (1) Flat space: In Euclidean space En, we take one of the global
charts from 1.1 to identify En with Rn. Then the corresponding coordinate vector fields
∂i form a global orthonormal frame. The dual coframe is simply given by σi = dxi for
i = 1, . . . , n. Since dσi = 0 for all i, we conclude that both the matrix (ωij) of connection

forms and the matrix (Ωi
j) of curvature forms vanish identically in this frame.

Vanishing of the curvature forms reflects reflects the fact that the Riemann curvature
of En vanishes identically, so this is a property of Euclidean space. Vanishing of the
connections forms is not a property of Euclidean space but of the particularly nice
frame that we have chosen. For more general frames the connection forms and thus the
computation showing that the curvature forms vanish become much more complicated.

(2) The sphere: Let us consider the unit sphere Sn := {x ∈ Rn+1 : 〈x, x〉 = 1}
with the Riemannian metric induced from Rn+1. To get simple formulae, we use a
particularly nice chart, the stereographic projection. Let N = en+1 ∈ Sn be the north
pole, put U := Sn \ {N} and define u : U → Rn by

u(x) = u(x1, . . . , xn+1) = 1
1−xn+1 (x1, . . . , xn)
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(To interpret this geometrically, one views Rn as the affine hyperplane through −N
which is orthogonal to N and one maps each point x ∈ Sn to the intersection of the ray
from N through x with that affine hyperplane.) One immediately verifies that the map

(u1, . . . , un) 7→ 1
〈u,u〉+1

(2u1, . . . , 2un, 〈u, u〉 − 1)

is inverse to u. The ith partial derivative of this mapping is given by

−2ui

(1+〈u,u〉)2 (2u, 〈u, u〉 − 1) + 1
1+〈u,u〉(2ei, 2u

i),

which shows that we can write ∂
∂ui
◦ u−1 as

−2ui

(1+〈u,u〉)2

(∑n
j=1 2uj ∂

∂xj
+ (〈u, u〉 − 1) ∂

∂xn+1

)
+ 2

1+〈u,u〉

(
∂
∂xi

+ ui ∂
∂xn+1

)
.

Now we can compute the inner products of these vector fields using that the fields ∂
∂xj

are orthonormal. The bracket in the first summand is independent of i and inserting it
twice into the metric, one gets 4〈u, u〉+(〈u, u〉−1)2 = (1+〈u, u〉)2. So the contributions

to g( ∂
∂ui
, ∂
∂uk

) ◦ u−1 is given by 4uiuk

(1+〈u,u〉)2 . Likewise from the second terms, one obtains a

contribution of 4
(1+〈u,u〉)2 (δik + uiuk). Finally, the terms mixing the two summands give

a contribution of −8uiuk

(1+〈u,u〉)2 . Altogether, we see that

g( ∂
∂ui
, ∂
∂uk

) ◦ u−1 = 4
(1+〈u,u〉)2 δik.

Now putting f(x) := 1
2
(1 + 〈u(x), u(x)〉), i.e. f = 1

2
(1 +

∑
i(u

i)2) we see that {f ∂
∂ui
} is a

local orthonormal frame and hence the one-forms σi := 1
f
dui form a local orthonormal

coframe.
Consequently, dσi = − 1

f2
df ∧ dui and since df =

∑
j u

jduj this can be written as∑
j
uj

f2
dui ∧ duj =

∑
j u

jσi ∧ σj. This can be written as −
∑

j ω
i
j ∧ σj with

(2.1) ωij := uiσj − ujσi = ui

f
duj − uj

f
dui.

This evidently satisfies ωji = −ωij and thus gives the matrix of connection forms associ-
ated to our coframe.

Applying the exterior derivative to (2.1) immediately gives

dωij = − ui

f2
df ∧ duj + uj

f2
df ∧ dui + 2

f
dui ∧ duj.

On the other hand, using df =
∑

k u
kduk, we compute∑

k(
ui

f
duk − uk

f
dui) ∧ (u

k

f
duj − uj

f
duk) = ui

f2
df ∧ duj − uj

f2
df ∧ dui −

∑
(uk)2

f2
dui ∧ duj.

Hence we directly get Ωi
j = 1

f2
dui ∧ duj = σi ∧ σj. To understand the form of the

curvature more explicitly, we look at the elements sa of the orthonormal frame. By
definition of the matrix of curvature forms, we have R(ξ, η)(sj) =

∑
i Ω

i
j(ξ, η)si and

hence g(R(ξ, η)(sj), si) = Ωi
j(ξ, η). Thus we can compute g(R(sa, sb)(sc), sd) as

Ωd
c(sa, sb) = σd(sa)σ

c(sb)− σc(sa)σd(sa) = g(sa, sd)g(sb, sc)− g(sa, sc)g(sb, sd).

Since this is a tensorial expression, it holds for arbitrary vector fields instead of the
elements of the frame, which shows that, in abstract index notation, we have Rij

a
`gka =

gikgj`− gi`gjk respectively Rij
k
` = δki gj`− δkj gi`. This is the simplest way to construct a

tensor with curvature symmetries out of the metric. We will later say that the sphere
has constant (positive) sectional curvature. As in the case of Euclidean space these
computations get significantly more involved in more general frames.
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(3) Hyperbolic space: Although this example is quite different from the sphere,
the computations will quickly become very similar. We consider the open unit ball
{x ∈ Rn : 〈x, x〉 < 1} and define a metric there as g := 4

(1−〈x,x〉)2 g0, where g0 is the

restriction of the flat metric. (As we define it here, this may seem rather artificial, but
it arises from several other pictures in a natural way.) Putting f(x) := 1

2
(1 − 〈x, x〉)

we see that the vector fields f∂i form an orthonormal frame, and the corresponding
orthonormal coframe is obtained by putting σi := 1

f
dxi. The only difference compared to

the case of the sphere now is that df = −
∑
xidxi, so there is a sign change compared to

the case of the sphere. This sign change carries over to dσi and hence to ωij, so this time

we get ωij = −xiσj + xjσi = −xi

f
dxj + xj

f
dxi. As in the case of the sphere, one directly

verifies that this leads to Ωi
j = −σi∧σj, so again there is a sign change compared to the

sphere. As in the case of the sphere, one then verifies that Rij
a
`gka = −gikgj` + gi`gjk

respectively Rij
k
` = −δki gj` + δkj gi`. We will say that hyperbolic space has constant

negative sectional curvature.

Geodesics, distance and completeness

One of the fundamental facts in Euclidean geometry is the fact that a line segment
provides the shortest path connecting two points. Since the analogs of straight lines in
general Riemannian manifolds are the geodesics, it is a natural question whether any
two points can be connected by a geodesic and whether this is a (or even the) shortest
curve connecting the two points.

The geodesics of a Riemannian metric also lead to a natural notion of complete-
ness for Riemannian manifolds. It turns out that completeness is closely related to the
interpretation of geodesics as shortest curves. Using this relation, this concept of com-
pleteness turns out to be equivalent to completeness in the sense of metric spaces. This
result is called the Hopf–Rinow theorem, and it is one of the cornerstones of Riemannian
geometry.

2.4. The first variational formula. We start with an elementary characterization
of geodesics which is a first step towards identifying them as “shortest curves”. As we
have noted in 1.7, the arclength of a curve is invariant under reparametrizations, which
make it less suitable for the purpose of characterizing curves, so we use the energy
instead. We study the behavior of the energy under a variation of curves. Given a
smooth curve c : [a, b]→M , such a variation is a smooth mapping γ : [a, b]× (−ε, ε)→
M such that γ(t, 0) = c(t). Evidently, we can view such a variation as a smooth family
{cs : [a, b]→ M : |s| < ε} of curves by putting cs(t) := γ(t, s). The “direction” of such
a variation can be described by r(t) := ∂

∂s
|s=0γ(t, s). This evidently is a vector field

along c called the variational vector field determined by γ. A particularly interesting
case is provided by variations fixing the endpoints, where one in addition requires that
γ(a, s) = c(a) and γ(b, s) = c(b) for all s. The infinitesimal version of this condition of
course is r(a) = r(b) = 0.

Given a variation γ of c, we can consider the resulting variation of energy, i.e. look at

E(s) := 1
2

∫ b
a
g(γ(t, s))(γ′(t, s), γ′(t, s))dt, where we write γ′(t, s) for ∂

∂t
γ(t, s). Evidently,

this is a smooth function (−ε, ε) → R, so we can try to compute the infinitesimal
variation d

ds
|s=0E(s) of energy. The result is very appealing:

Proposition 2.4 (First variational formula). Let γ be a smooth variation of c :
[a, b] → M with variation vector field r. Then the infinitesimal variation of energy is
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given by

d
ds
|s=0E(s) = −

∫ b

a

g(c(t))(∇c′c
′(t), r(t))dt+ g(c(b))(c′(b), r(b))− g(c(a))(c′(a), r(a)).

In particular, a smooth curve c is a critical point for the energy under all variations
with fixed endpoints if and only if c is a geodesic.

Proof. The formula on [a, b] clearly follows from the analogous formula on small
sub-intervals of [a, b]. Thus, we may restrict to the case that γ has values in the domain
U of a chart (U, u) for M . In this chart, we can use local coordinate expressions and in
terms of the corresponding component functions, we get

E(s) = 1
2

∫ b

a

∑
i,j gij(γ(t, s))(γ′(t, s))i(γ′(t, s))jdt.

Differentiating this with respect to s at s = 0, we can exchange the derivative with the
integral and then use the product rule and the chain rule. Observe that ∂

∂s
|s=0γ(t, s) =

r(t) and since partial derivative commute, we get that ∂
∂s
|s=0γ

′(t, s) = r′(t). Using this,

we see that d
ds
|s=0E(s) is given by

(2.2) 1
2

∫ b

a

∑
i,j,` ∂`gij(c(t))(r(t))

`(c′(t))i(c′(t))jdt+

∫ b

a

∑
i,j gij(c(t))(r

′(t))i(c′(t))jdt.

Now in the second summand, we can integrate by parts to remove the derivative from
r. First, this gives boundary terms, which evidently reduce to g(c(b))(r(b), c′(b)) −
g(c(a))(r(a), c′(a)). To this, we have to add an integral term, for which we obtain in
the same way as above

−
∫ b

a

(r(t))i
(∑

i,j,` ∂`gij(c(t))(c
′(t))`(c′(t))j +

∑
i,j gij(c(t))(c

′′(t))j
)
dt.

The second summand can be expressed as −
∫ b
a
g(c(t))(r(t), c′′(t))dt. Moreover, the

formula for Γkij in part (2) of Proposition 1.10 exactly says that the first summand

adds up with the first summand in (2.2) to −
∫ b
a
g(ΓU(c(t))(c′(t), c′(t)), r(t)). Since

Proposition 1.11 shows that ∇c′c
′(t) = c′′(t) + ΓU(c(t))(c′(t), c′(t)), this completes the

proof. �

The computation in the proof actually allows an elementary approach to the con-
struction of the Levi-Civita connection. Motivated by the computation, one shows
that, in the domain of a chart, one can write 2(Dg(x)(ξ))(ξ, η) − (Dg(x)(η))(ξ, ξ) as
g(x)(Qx(ξ), η) for a quadratic form Qx. This then determines a symmetric bilinear form
Γx such that Qx(ξ) = Γx(ξ, ξ). Then one can use these forms to define a covariant de-
rivative in charts and verify directly that the definitions in different charts coincide, so
one obtains a globally defined covariant derivative.

2.5. Minimizing curves. Given a point x in a Riemannian manifold (M, g) we
have seen in Proposition 1.12 that there is an open neighborhood of zero in TxM on
which the exponential map expx restricts to a diffeomorphism onto an open neighbor-
hood of x in M . In particular, there is a number ε > 0 such that expx restricts to a
diffeomorphism from the ball of radius ε (with respect to gx) in TxM onto a neighbor-
hood U of x in M . We will phrase this by saying that U is the geodesic ball of radius ε
around x. So geodesic balls exist for sufficiently small radii but not necessarily for large
radii. Now any point y in a geodesic ball U can be written as exp(X) for some X in



GEODESICS, DISTANCE AND COMPLETENESS 31

that ball, and hence t 7→ expx(tX) defines a geodesic c : [0, 1]→ M such that c(0) = x
and c(1) = y. So any point in a geodesic ball can be joined to x by a geodesic.

On the other hand, for 0 < δ < ε, we can consider the sphere of radius δ in TxM .
Its image under expx is called the geodesic sphere Sδ(x) of radius δ around x.

Lemma 2.5 (Gauß). Let x be a point in a Riemannian manifold (M, g) and let
ε > 0 be chosen in such a way that the geodesic ball U of radius ε around x exists. Then
for each 0 < δ < ε, the geodesic sphere Sδ(x) is a smooth submanifold in M and the
geodesics through x intersect this submanifold orthogonally.

Proof. Since any sphere in TxM is a submanifold in any ball containing it, and
Sδ(x) is the image of one of these spheres under a diffeomorphism, it is a submanifold,
too. Now take any smooth curve v(s) in the sphere of radius δ in TxM and for t ∈ [0, 1]
define γ(t, s) := expx(tv(s)). This is a smooth variation of the curve c(t) = expx(tv(0))
which is a geodesic. But it is also true that for each fixed s, the curve cs(t) = expx(tv(s))
is a geodesic. Thus g(cs(t))(c

′
s(t), c

′
s(t)) is constant and its value at t = 0 of course is

gx(v(s), v(s)) = δ2. In particular, the energy of this variation is constant in s, so
0 = d

ds
|s=0E(s).

But we can also compute this infinitesimal variation using the first variational for-
mula, and since c is a geodesic, only the boundary terms survive in this formula.
Moreover, ∂

∂s
γ(t, s) := (Ttv(s)) expx(t

d
ds
v(s)), so the variation vector field r satisfies

r(0) = 0 and r(1) = Tv(0) expx ·v′(0). Thus the first variational formula simply tells
us that 0 = g(expx(v(0)))(c′(1), ξ) for any tangent vector ξ which can be written as
Tv(0) expx ·v′(0). By construction, any vector tangent to Sδ(x) can be written in this
form, so the whole tangent space of the geodesic sphere is orthogonal to the tangent
vector c′(1) of the geodesic c. �

Now by a minimizing curve, we mean a piece-wise smooth curve c : [a, b] → M
which is a shortest connection between its endpoints, i.e. satisfies d(c(a), c(b)) = L(c).
We can next prove that for nearby points, minimizing curves exist and are geodesics
(up to parametrization).

Proposition 2.5. Let (M, g) a Riemannian manifold, x ∈ M a point and ε > 0
such that the a geodesic ball U around x of radius ε exists, and put Bε(0) := {ξ ∈ TxM :
gx(ξ, ξ) < ε2}.

(1) Let u : [a, b] → (0, ε) and v : [a, b] → TxM be smooth functions such that
gx(v(t), v(t)) = 1 for all t and put c(t) := expx(u(t)v(t)). Then the arc length of c
satisfies L(c) ≥ |u(b)− u(a)| and equality holds if and only if u is monotonous and v is
constant.

(2) For y = expx(ξ) ∈ U , the geodesic t 7→ expx(tξ) is a minimizing curve joining x
to y, and up to reparametrizations it is the unique such curve.

Proof. (1) By construction, we get c′(t) = Tu(t)v(t) expx(u
′(t)v(t)+u(t)v′(t)). Along

the line spanned by v(t), the vector T expx(v(t)) is the speed vector of a geodesic,
whence we conclude that g(T expx(u

′(t)v(t)), T expx(u
′(t)v(t))) = |u′(t)|2. On the

other hand, Tu(t)v(t) expx ·(u(t)v′(t)) is tangent to Su(t)(x) and hence orthogonal to
Tu(t)v(t) expx ·(u′(t)v(t)) by Lemma 2.5. Hence we get g(c′(t), c′(t)) ≥ |u′(t)|2 with equal-
ity only if v′(t) = 0.

Hence we obtain L(c) ≥
∫ b
a
|u′(t)|dt ≥ |

∫ b
a
u′(t)dt| = |u(b) − u(a)| as claimed. The

first inequality becomes an equality if and only if v′(t) = 0 for all t i.e. iff v is constant.
The second inequality becomes an equality if and only if u′(t) has constant sign and
hence u is monotonous.
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(2) By assumption, y ∈ Sρ(x) for some ρ < ε. Of course have d(x, y) ≤ ρ, since the
geodesic joining x to y has length ρ. From (1) we conclude that a curve joining x to
y which stays in Sρ ∪ expx(Bρ(0)) has length at least ρ, since outside of x, any such
curve can be written in the form used in (1). But any curve leaving this set has to have
larger length, since the part up to the first intersection with Sρ(x) already has length
≥ ρ. This shows that d(x, y) = ρ, so the geodesic is a minimizing curve.

Conversely, a minimizing curve connecting x to y must stay in Sρ∪expx(Bρ(0)). Now
it follows immediately from the definition that the restriction of a minimizing curve to
a smaller interval is still minimizing. Applying the equality part of (1) outside of x
shows that a minimizing curve there must be of the form expx(u(t)v) for a monotonous
function u, and hence a reparametrization of the geodesic expx(tv). �

We can further use this to conclude that short pieces of minimizing curves always
are geodesics.

Corollary 2.5. Let c : [a, b]→M be a piece-wise smooth minimizing curve. Then
for each t ∈ (a, b), there are a′ < t < b′ such that c|(a′,b′) is a reparametrization of a
geodesic. In particular, c can be parametrized smoothly.

Proof. Given t, we claim that we can find a′ < t and ε > 0 such that there is a
geodesic ball U of radius ε around c(a′) such that c(t) ∈ U . Having shown this, the
fact that U is open implies that there is a b′ > t such that c([a′, b′]) ⊂ U . As we have
noticed above already, c|[a′,b′] is also minimizing, so the result follows from the last part
of Proposition 2.5.

To prove the claim, recall the by part (4) of Proposition 1.12, there is an open neigh-
borhood V of the zero section in TM on which (π, exp) restricts to a diffeomorphism.
This implies that we can find an open neighborhood W of c(t) in M and a number ε > 0
such that Ṽ := {ξ : π(ξ) ∈ W, |ξ| < ε} ⊂ V , where the norm of ξ is taken with respect
to gπ(ξ). Continuity of c then implies that we can choose a′ < t such that c(a′) ∈ W and

(c(a′), c(t)) ∈ (π, exp)(Ṽ ), which shows that a′ and ε have the required properties. �

2.6. Completeness and the Hopf–Rinow theorem. In our discussion of ge-
odesics in 1.12, we have proved existence of local solutions to the geodesic equation.
The natural completeness condition coming from geodesics is that all these solutions
are defined for all times.

Definition 2.6. A Riemannian metric g on a smooth manifold M is called (geodesi-
cally) complete if for any x ∈M and ξ ∈ TxM , there exists a geodesic c : R→M such
that c(0) = x and c′(0) = ξ. In this case, (M, g) is called a (geodesically) complete
Riemannian manifold.

The Hopf–Rinow theorem shows that the notion of geodesic completeness is equiv-
alent to completeness of the metric space (M,dg) and at the same time proves an
important property of complete Riemannian manifolds.

Theorem 2.6 (Hopf-Rinow). Let (M, g) be a connected smooth Riemannian man-
ifold and let dg be the distance function associated to g as in Proposition 1.7. Then the
following conditions are equivalent

(i) The metric g is geodesically complete.
(ii) (M,dg) is a complete metric space, i.e. any Cauchy sequence converges.
(iii) (M,dg) has the Heine–Borel property, i.e. bounded closed subsets are compact.
(iv) There exists a point x ∈M such that expx is defined on all of TxM .

Moreover, these equivalent conditions imply
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(v) For any two points x, y ∈M , there is a minimizing geodesic connecting x to y.

Proof. It is clear that (i) implies (iv), and the fact that (iii) implies (ii) is a general
result for metric spaces. (A Cauchy sequence is a bounded set, so (iii) implies that its
closure is compact. Hence there is a convergent subsequence, which already implies that
the initial Cauchy sequence converges.)

(ii)⇒(i): Assume that (ii) holds and that c is a geodesic in M , whose maximal
interval (a, b) of definition is finite. Without loss of generality, we may assume that
g(c′(t), c′(t)) (which is constant since c is a geodesic) is equal to one. This implies that
for all s, t ∈ (a, b) we have dg(c(s), c(t)) ≤ |t− s|. It suffices to show that the domain of
definition of c can be extended on one side. Thus assume that b <∞, choose a sequence
ti converging to b and consider the sequence (c(ti)) in (M,dg). By construction, this is
a Cauchy sequence, so there is a point x ∈M such that c(ti) converges to x. As in the
proof of Corollary 2.5 we can find an index i and a number ε > 0 such that the geodesic
ball of radius ε around c(ti) exists and contains x. Then γ(s) := expc(ti)(sc

′(ti)) is a
well defined geodesic for |s| < ε. But γ(0) = c(ti) and γ′(0) = c′(ti) so γ(s) = c(ti + s)
as long as ti + s ∈ (a, b). But by assumption b < ti + ε, so we obtain an extension of
the domain of definition to (a, ti + ε), which is a contradiction.

We next claim that if for a point x ∈M , expx is defined on all of TxM , then for any
point y ∈M , there is a minimizing geodesic connecting x to y. Put r = dg(x, y), let U be
a geodesic ball around x of some radius ε > 0 and fix δ < ε. Then the geodesic sphere
Sδ(x) ⊂ M is the image of a compact submanifold of Bε(0) under a diffeomorphism
and hence compact. Thus there is a point z ∈ Sδ(x) at which the continuous function
dg( , y) attains its minimum. From Proposition 2.5 we know that any point in Sδ(x)
has distance δ from x. Together with the fact that any piece-wise smooth curve from x
to y has to intersect Sδ(x), this easily implies that dg(z, y) = r − δ.

Now there is a unique unit vector ξ ∈ TxM such that z = expx(δξ) and we consider
the geodesic c(t) := expx(tξ) emanating from x in direction ξ. By construction, this
satisfies gc(t)(c

′(t), c′(t)) = 1, so it is parametrized by arclength. Now we define A :=
{t ∈ [δ, r] : dg(c(t), y) = r − t}, and we want to show that r ∈ A, which implies that
c(r) = y, and hence the claim. As observed above, dg(z, y) = r − δ, so δ ∈ A and A is
non-empty. Moreover, A ⊂ [δ, r] is the subset on which two continuous functions agree,
so it is closed.

Therefore, putting s0 := sup(A), we get s0 ∈ A. If s0 < r, then we can find a
0 < δ′ < ε such that s0 + δ′ < r and the geodesic ball of radius ε around c(s0) exists.
As above, the geodesic sphere Sδ′(c(s0)) contains a point z′ which has minimal distance
to y, and dg(z

′, y) = r − s0 − δ′. But this implies that dg(z
′, x) ≥ s0 + δ′. As above,

we can write z′ = expc(s0)(δ
′ξ′) for a unit vector ξ′ ∈ Tc(s0)M , and we denote by c̃ the

corresponding unit speed geodesic emanating from c(s0). This shows that first going
from x to c(s0) via c and then going to z′ via c̃ is a minimizing curve connecting x to z′.
By Corollary 2.5 this has to coincide with a geodesic on a neighborhood of s0, which is
only possible if ξ′ = c′(s0). But this implies that s0 + δ′ ∈ A, which is a contradiction.
Thus the proof of the claim is complete.

Using this claim, we can now prove that (iv) implies (iii), which completes the proof
of the equivalences. Indeed, if K ⊂M is bounded then there is a constant C such that
dg(x, y) ≤ C for all y ∈ K, where x is the point occurring in (iv). But by the claim, this
implies that K is contained in the image of the closed ball of radius C in TxM under
expx, which is compact by continuity of expx. Hence if K is closed, it is compact, too.
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Having the equivalence at hand, we see that if (iv) is satisfied for one point x ∈M ,
it implies (i), which in turn says that (iv) is satisfied for any point of M . Hence (v)
follows from the claim. �

Corollary 2.6. (1) Any compact Riemannian manifold is complete.
(2) If M is a closed submanifold of Rn for some n, and one endows M with the

Riemannian metric g induced from the inner product of Rn, then (M, g) is complete.
(3) If (M, g) is a complete Riemannian manifold, then for each x ∈ M , the expo-

nential map defines a surjection expx : TxM →M .

Proof. (1) Follows from the well known fact that compact metric spaces are auto-
matically complete.

For (2), observe that for a smooth curve in M connecting two points x and y, the
arclength is always at least the Euclidean distance between x and y. But this shows
that any subset in M which is bounded with respect to dg is also bounded with respect
to Euclidean distance, so closed subsets with this property are automatically compact.

(3) immediately follows from condition (v) in the Hopf–Rinow theorem. �

It turns out that hyperbolic space as discussed in part (3) of 2.3 is a complete
Riemannian manifold. This example nicely illustrates two general phenomena. Starting
from the unit ball in Rn with the restriction g0 of the flat metric (which evidently is not
complete), we have obtained the hyperbolic metric as a so-called conformal rescaling,
i.e. g = fg0 for a positive smooth function f . Rescaling a metric conformally does change
the notion of length, but it does not change the notions of angles, so in particular, one
obtains the same concept of orthogonality. Now the first general phenomenon mentioned
above is that given an arbitrary Riemannian manifold (M, g0), one can always find a
positive smooth function f : M → R such that g := fg0 defines a complete Riemannian
metric on M . Intuitively, one can think about this as “moving the missing points to
infinity”.

The second phenomenon is a kind of converse of this. By the Hopf–Rinow theorem,
for a non-compact, complete Riemannian manifold (M, g), M must be unbounded with
respect to the distance function dg. In the case of hyperbolic space, we can also start
with the hyperbolic metric g and view g0 as a conformal rescaling of g, in which the
manifold becomes bounded. Again this works in general, so any Riemannian metric can
be rescaled to one leading to a bounded distance on M (which then has to be incomplete
unless M is compact).

Covariant derivative of tensor fields

The covariant derivative and parallel transport can be extended to tensor fields,
basically by requiring certain naturality properties. This for example allows us to form
the covariant derivative of the curvature. Moreover, it leads to an interpretation in
which we can iterate covariant derivatives and thus construct higher order differential
operators.

2.7. Basic notions. The extension of the covariant derivative is determined by
requiring certain naturality properties. These properties are analogous to those satisfied
by the Lie derivative with respect to a vector field, see Section 3.4 of [AnaMF]. On the
one hand, for smooth functions, one already has an appropriate operation given by the
usual action of vector fields on smooth functions. Let us denote by T `k (M) the space of
smooth

(
`
k

)
-tensor fields on a smooth manifold M . Then we want to use the Levi-Civita

connection to define operators ∇ : X(M)×T `k (M)→ T `k (M) with properties analogous
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to the covariant derivative. In particular, ∇ should be linear over smooth functions in
the X(M) component.

It turns out that the only thing to require in addition is a compatibility with tensor
products and with contractions. This then pins down the whole operation completely.

Proposition 2.7. Suppose that ∇ is a linear connection on the tangent bundle
of a smooth manifold M . Then this extends uniquely to a family of bilinear operators
∇ : X(M) × T k` (M) → T k` (M) which are linear over smooth functions in the first
variable, commute with contractions, and satisfy ∇ξ(s⊗ t) = (∇ξs)⊗ t+ s⊗∇ξt as well
as ∇ξf = ξ · f for f ∈ T 0

0 (M) = C∞(M,R).

Proof. Let us first look at the case of T 0
1 (M) = Ω1(M). Given ξ, η ∈ X(M) and

ϕ ∈ Ω1(M) we can write the smooth function ϕ(η) as the result of the unique possible
contraction applied to ϕ ⊗ η ∈ T 1

1 (M). If an extension with the required properties
exists, then the contraction of (∇ξϕ)⊗η+ϕ⊗ (∇ξη) has to coincide with ξ ·ϕ(η). Thus
we try defining ∇ξϕ as a map X(M)→ C∞(M,R) by

(2.3) ∇ξϕ(η) := ξ · ϕ(η)− ϕ(∇ξη).

This map is immediately seen to be linear over smooth functions in η, so we have defined
∇ξϕ ∈ Ω1(M). Moreover, the definition readily implies that ∇fξϕ = f∇ξϕ and that

(∇ξ(fϕ))(η) = f∇ξϕ(η) + (ξ · f)ϕ(η)

and hence ∇ξfϕ = f∇ξϕ+ (ξ · f)ϕ.
Having this at hand, the general definition of the covariant derivative is motivated

in the same way. Given t ∈ T `k and ξ ∈ X(M), we define ∇ξt as a (k + `)-linear map
X(M)k × Ω1(M)` → C∞(M,R) by

(2.4)

(∇ξt)(η1, . . . , ηk, ϕ
1, . . . , ϕ`) := ξ · t(η1, . . . , ηk, ϕ

1, . . . , ϕ`)

−
∑k

i=1 t(η1, . . . ,∇ξηi, . . . , ηk, ϕ
1, . . . , ϕ`)

−
∑`

j=1 t(η1, . . . , ηk, ϕ
1, . . . ,∇ξϕ

j, . . . , ϕ`).

Similarly as above, one verifies directly that this map is linear over smooth functions
in each ηi and each ϕj, so we have defined ∇ξt ∈ T `k (M). We also see directly from
the formula that ∇fξt = f∇ξt. As in the case of one-forms, this formula is forced from
the properties we want to achieve, since t(η1, . . . , ϕ`) can be obtained via a sequence of
contractions from t ⊗ η1 ⊗ · · · ⊗ ϕ`. This shows the the required properties pin down
the covariant derivative completely.

So it remains to prove the compatibility with tensor products and with contractions
in general. Concerning tensor products, we take t ∈ T `k (M) and s ∈ T `′k′ (M) and
ξ ∈ X(M) and expand the defining equation for ∇ξ(t⊗ s)(η1, . . . , ηk+k′ , ϕ

1, . . . , ϕ`+`
′
) as

in (2.4). By definition (t⊗ s)(η1, . . . , ηk+k′ , ϕ
1, . . . , ϕ`+`

′
) is given by

t(η1, . . . , ηk, ϕ
1, . . . , ϕ`)s(ηk+1, . . . , ηk+k′ , ϕ

`+1, . . . , ϕ`+`
′
).

Applying ξ to this product of smooth functions, we apply the Leibniz rule. The first
term in the result adds up with those terms in which the covariant derivatives hits one
of the first k η’s or one of the first ` ϕ’s to

(∇ξt)(η1, . . . , ηk, ϕ
1, . . . , ϕ`)s(ηk+1, . . . , ηk+k′ , ϕ

`+1, . . . , ϕ`+`
′
).

This is exactly the action of (∇ξt) ⊗ s on the given vector fields an one-forms. In the
same way, the remaining terms add up to the action of t ⊗ ∇ξs, so the compatibility
with tensor products is proved.
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Let us next look at the basic contraction, which can be viewed as a tensorial operator
C : T 1

1 (M) → C∞(M,R). Given η ∈ X(M) and ϕ ∈ Ω1(M), we get η ⊗ ϕ ∈ T 1
1 (M)

and C(η ⊗ ϕ) = ϕ(η). The definition of ∇ on Ω1(M) together with compatibility with
the tensor product shows that

C(∇ξ(η ⊗ ϕ)) = ξ · ϕ(η) = ∇ξ(C(η ⊗ ϕ)).

The definition in (2.4) also implies that the covariant derivative on tensor fields is a
local operator. But locally any element of T 1

1 (M) can be written as a finite sum of such
tensor products, so compatibility of ∇ with C follows.

Now let us consider a general contraction T `k (M)→ T `−1
k−1 (M), say the one contract-

ing the ith upper index into the jth lower one. On a tensor field of the form t⊗ ψ ⊗ s
with t ∈ T i−1

j−1 (M), ψ ∈ T 1
1 (M) and s ∈ T `−ik−j (M), this contraction is given by C(ψ)t⊗s.

For ξ ∈ X(M) we then conclude that the contraction of ∇ξ(t⊗ ψ ⊗ s) is given by

C(ψ)(∇ξt)⊗ s+ C(∇ξψ)t⊗ s+ C(ψ)t⊗∇ξs.

Since we have verified C(∇ξψ) = ξ · C(ψ) already, we see that this coincides with
∇ξ(C(ψ)t ⊗ s). Locally, any element of T `k (M) can be written as a finite sum of such
tensor products, so compatibility of the contraction with the covariant derivative holds
in general. Since general contractions can be obtained by iterating contractions of a
single pair of indices, the proof is complete. �

Remark 2.7. (1) For a smooth function f and a tensor field t, f ⊗ t is just the
product ft, so ∇ξ(ft) = (ξ · f)t + f∇ξt holds in general as a consequence of the
compatibility with tensor products.

(2) Given a tensor field g ∈ T 0
2 (M), the formula for the covariant derivative from

the proof reads as

(∇ξg)(η, ζ) = ξ · g(η, ζ)− g(∇ξη, ζ)− g(η,∇ξζ).

Hence the condition that a linear connection ∇ on TM is metric with respect to a
Riemannian metric g on M reads as ∇ξg = 0 for the induced connection and any vector
field ξ.

2.8. Parallel tensor fields. From the formula (2.4) for the covariant derivative in
the proof of Proposition 2.7, we can easily derive a description in local coordinates. In
the domain of a chart (U, u), a tensor field t ∈ T `k (M) is determined by the functions
ti1...i`j1...jk

which can be obtained as

ti1,...,i`j1...jk
= t(∂j1 , . . . , ∂jk , du

i1 , . . . , dui`).

Writing ξ ∈ X(M) as
∑

i ξ
i∂i in the domain of the chart, we by definition get ∇ξ∂j =∑

i,a ξ
iΓaij∂a. Likewise, we can expand ∇ξdu

i =
∑

j(∇ξdu
i)(∂j)du

j, which easily leads

to ∇ξdu
i =

∑
j,a ξ

jΓijadu
a. Together, these observations immediately imply that

(∇ξt)
i1...i`
j1...jk

= ξ · ti1...i`j1...jk
−
∑

i,a ξ
iΓaij1t

i1...i`
aj2...jk

− · · · −
∑

i,a ξ
iΓaijkt

i1...i`
j1...jk−1a

−
∑

j,a ξ
jΓi1jat

ai2...i`
j1...jk

− · · · −
∑

j,a ξ
jΓi`jat

i1...i`−1a
j1...jk

.

As in the case of vector fields, this implies that to compute ∇ξt(x), it suffices to know
t along the flow line of ξ through x. Consequently, we can mimic the developments
in 1.11 in the case of tensor fields. Given a smooth curve c : I → M , we define

(
`
k

)
-

tensor fields along c and then obtain a well defined linear operator t 7→ ∇c′t on the
space of such tensor fields. In particular, there is the concept of a tensor field being
parallel along a curve. Since in local coordinates being parallel is again a system of
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linear first order ODE, for a ∈ I and x = c(a) ∈ M , we can uniquely extend any
element t0 ∈ ⊗`TxM ⊗ ⊗kT ∗xM to a

(
`
k

)
-tensor field along c which is parallel along c.

For [a, b] ⊂ I, this gives rise to a well defined parallel transport of tensors along c. From
the construction, one easily verifies that this is exactly the map which gets functorially
induced by the parallel transport of vector fields.

For the Levi-Civita connection of a Riemannian manifold (M, g) we have noted
above that the induced connection on T 0

2 (M) has the property that ∇ξg = 0 for any ξ.
A tensor field with this property is called parallel since it is parallel along any smooth
curve. Surprisingly, parallel tensor fields of any type on a Riemannian manifold can be
described provided that on knows the holonomy of the metric as introduced in 1.11.
Given a point x ∈ M , we have introduced there the holonomy group Holx(M) of M
at x, which is a subgroup of the orthogonal group O(TxM). Observe that any linear
automorphism of TxM induces a linear automorphism of each of the tensor powers
⊗`TxM ⊗ ⊗kT ∗xM . Hence any element of the holonomy group acts on the values of
tensor fields of any type at x.

Proposition 2.8. Let (M, g) be a connected Riemannian manifold and let x ∈ M
be a point.

(1) A parallel tensor field t ∈ T `k (M) is uniquely determined by its value t(x) ∈
⊗`TxM ⊗⊗kT ∗xM .

(2) Given an element t0 ∈ ⊗`TxM ⊗ ⊗kT ∗xM , there is a parallel tensor field t ∈
T `k (M) such that t(x) = t0 if and only if t0 is mapped to itself by any element of the
holonomy group Holx(M) of M at x.

Proof. (1) If t ∈ T `k (M) is parallel, it is parallel along each smooth curve. Given
a point y in M , connectedness of M implies that there is a smooth curve c : [a, b]→M
such that c(a) = x and c(b) = y. But then we must have t(y) = Ptc(t(x)).

(2) The necessity of the condition follows readily since t is parallel along each smooth
curve. To prove sufficiency, one observes that the fact that t0 is preserved by any element
of Holx(M) is equivalent to the fact that for two curves c and c̃ connecting x to some
point y ∈ M , we get Ptc(t0) = Ptc̃(t0). This is because transporting t0 to y parallely
along c and transporting the result back to x parallely along c̃ is the parallel transport
along the pice-wise smooth closed curve obtained by first running through c and then
backwards through c̃. Hence this is given by the action of an element of the holonomy
group.

Knowing this, we can extend t0 to a tensor field t by defining t(y) as Ptc(t0) for any
pice-wise smooth curve c connecting x to y. It is easy to see that the result is smooth
and it is parallel along any smooth curve by construction. �

Note that the statement that g is parallel fits nicely into the picture, since any
element of Holx(M) is orthogonal with respect to gx and this exactly means that the
induced map on ⊗2T ∗xM preserves gx.

2.9. Natural differential operators. We can interpret the covariant derivative
as a linear differential operator (even in the case of vector fields). In this picture the
covariant derivative can be iterated, thus providing the possibility to construct operators
of higher order.

The first observation we need is that for a tensor field t ∈ T `k (M) we can consider
the (k + `+ 1)-linear map ∇t : X(M)k+1 × Ω1(M)` → C∞(M,R) defined by

(∇t)(η0, . . . , ηk, ϕ1, . . . , ϕ`) := (∇η0t)(η1, . . . , ηk, ϕ1, . . . , ϕ`).
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From Proposition 2.7 we know that ∇η0t is a tensor field, so this is linear over smooth
functions in all entries but η0. But in Proposition 2.7 we have also seen that ∇fη0t =
f∇η0t, so ∇t ∈ T `k+1(M). But then it is clear that we can form ∇2t = ∇(∇t) ∈ T `k+2,
and more generally, ∇rt for any integer r.

In these terms, there is a natural interpretation of the curvature. Namely, for ζ ∈
X(M), we can consider ∇2ζ ∈ T 1

2 (M). To compute this, we have to observe that
∇ζ ∈ T 1

1 (M) is, as a bilinear map X(M)×Ω1(M)→ C∞(M,R) given by (∇ζ)(η, ϕ) =
ϕ(∇ηζ). Consequently, we get

(∇2ζ)(ξ, η, ϕ) = (∇ξ(∇ζ))(η, ϕ) = ξ · (ϕ(∇ηζ))− ϕ(∇∇ξηζ)− (∇ξϕ)(∇ηζ).

The first and last term add up to ϕ(∇ξ∇ηζ), which implies that, as a bilinear map
X(M)× X(M)→ X(M), we obtain

(∇2ζ)(ξ, η) = ∇ξ∇ηζ −∇∇ξηζ.

In view of torsion-freeness, this implies that

R(ξ, η)(ζ) = (∇2ζ)(ξ, η)− (∇2ζ)(η, ξ),

which interprets the curvature as the alternation of the square of a covariant derivative.
In the context of abstract index notation, one can use an expression like ∇jt

i1...i`
j1...jk

to

denote ∇t for a tensor field t = ti1...i`j1...jk
∈ T `k(M). This has to be handled with care, since

one has to decide which terms are really differentiated. The usual convention is that if
there are no brackets, then a covariant derivative acts on all terms to its right. Thus
∇jξ

iϕk represents ∇(ξ ⊗ ϕ) and the compatibility of the covariant derivative with the
tensor product can be written as ∇jξ

iϕk = (∇jξ
i)ϕk + ξi∇jϕk. Alternatively, the first

of these summands can be written as ϕk∇jξ
i.

In these terms, one can now easily describe some operators. For example, the fact
that ∇ξf = ξ · f for a smooth function f immediately implies that ∇f = df . Likewise,
for a one-form ϕ = ϕi, we have by definition

(∇ϕ)(ξ, η) = (∇ξϕ)(η) = ξ · ϕ(η)− ϕ(∇ξη).

Torsion-freeness of ∇ together with the global formula for the exterior derivative implies
that

dϕ(ξ, η) = (∇ϕ)(ξ, η)− (∇ϕ)(η, ξ),

so in abstract index notation the exterior derivative can be written as ϕi 7→ 2∇[iϕj]. One
can also verify that for a one-form ϕ = ϕi the codifferential is given by δϕ = gij∇iϕj.
Together with the observation on the exterior derivative of functions from above, this
shows that for a smooth function f , the Laplacian is given by ∆f = gij∇i∇jf .

As an example of a natural differential operator, let us study the so-called Killing
operator on one-forms. This is the operator mapping Ω1(M) to the space of symmetric(

0
2

)
-tensor fields, defined by ϕi 7→ ∇(iϕj). One calls one-forms which lie in the kernel

of this operator Killing one-forms and the vector fields dual to these (i.e. given by
ξi = gijϕj) are called Killing vector fields.

Proposition 2.9. Let (M, g) be a Riemannian manifold. Then we have
(1) For ϕ = ϕi ∈ Ω1(M) the following conditions are equivalent

(i) ϕ is a Killing one-form
(ii) ∇ϕ = 1

2
dϕ

(iii) Each local flow of the dual vector field ξi = gijϕj is a local isometry for g.
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(2) If M is connected, then ϕ is uniquely determined by the values ϕ(x) and ∇ϕ(x)
for any point x ∈ M . In particular, the space of Killing one-forms has dimension at

most n(n+1)
2

, where n = dim(M).

Proof. (1) By definition ϕ is a is a Killing one-form if and only if ∇iϕj has trivial
symmetrization and thus is skew symmetric. Since we have observed already that
dϕ = 2∇[iϕj] we see that (i) and (ii) are equivalent. Next, we show that the condition
in (iii) is equivalent to Lξg = 0, where Lξ denotes the Lie derivative. Indeed, by

definition, one has Lξg(x) = d
dt
|t=0(Flξt )

∗g(x), see Section 3.4 of [AnaMF]. This shows
that Lξg = 0 if the local flows of ξ are isometries. Conversly, one can argue similarly to

the proof of Lemma 2.11 of [AnaMF] to show that d
dt
|t=t0(Flξt )

∗g(x) = ((Flξt0)
∗Lξg)(x)

whenever the flow through x is defined up to t = t0. Hence if Lξg = 0, then (Flξt )
∗g(x)

is constant in t whenever the flow is defined which completes the proof of the claim.
The explict formula for the Lie derivative on tensor fields from Section 3.4 of

[AnaMF] then reads as

(Lξg)(η, ζ) = ξ · g(η, ζ)− g([ξ, η], ζ)− g(η, [ξ, ζ]).

By torsion-freeness of the Levi-Civita connection, we can write [ξ, η] = ∇ξη−∇ηξ, and
likewise for the other bracket. But then the fact that ∇ is metric shows that we end up
with

(Lξg)(η, ζ) = g(∇ηξ, ζ) + g(η,∇ζξ),

and the right hand side is the symmetrization of gai∇jξ
a = ∇jϕi. Hence we see that (i)

is equivalent to (iii).
(2) Suppose that ϕi is a Killing one-form, and put µij = 1

2
dϕ = ∇iϕj. Now a nice

trick allows us to compute ∇iµjk (as a consequence of the equation satisfied by ϕ).
Namely, by construction, we have dµ = 0. Similarly to the case of one-forms discussed
above, one verifies that dµ can be computed as a multiple of the complete alternation
of ∇iµjk. Hence we conclude that

∇iµjk = −∇kµij −∇jµki = ∇k∇jϕi −∇j∇kϕi.

Similarly to the case of vector fields, one now verifies that the commutator of covariant
derivatives can be expressed via the curvature. More precisely, one verifies that

∇k∇jϕi −∇j∇kϕi = Rjk
`
iϕ`.

Thus we conclude that for the pair
(
ϕi
µjk

)
we can compute the component-wise covariant

derivative in terms of the values of the components and the (known) curvature of g.
Along a smooth curve, this gives a first order ODE on the pair

(
ϕi
µjk

)
, so the values along

the curve are determined from the value of the pair in one point. Since M is connected,
this implies the claim. �

Decomposing and interpreting curvature

From the discussion of curvature symmetries in 1.13, it is already visible that the
Riemann curvature tensor is a rather complicated object. Therefore, constructing sim-
pler objects out of the Riemann tensor is important for many applications.
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2.10. Flat manifolds. Before we start decomposing the Riemann curvature ten-
sor, we discuss the geometric meaning of vanishing of the curvature. Observe that by
Lemma 1.10, the covariant derivative is a local operator. The definition of curvature
in 1.13 then implies that the curvature is a local invariant of a Riemannian manifold,
i.e. the restriction of the curvature to an open subset U depends only on the restriction
of the metric to U . Hence vanishing of the curvature is a local condition, so we can only
hope for local characterizations of this property.

Proposition 2.10. Let (M, g) be a Riemannian manifold of dimension n. Then
for a point x ∈M , the following conditions are equivalent

(1) The Riemann curvature tensor vanishes on an open neighborhood of x.
(2) There is a chart (U, u) for M with x ∈ U such that the coordinate vector fields

∂i form an orthonormal basis of each tangent space.
(3) There are vector fields {ξ1, . . . , ξn} defined on a neighborhood of x which are all

parallel, i.e. such that ∇ηξi = 0 for any η ∈ X(M) and any i = 1, . . . , n and such that
{ξ1(x), . . . , ξn(x)} is a basis for TxM .

(4) There is an isometric diffeomorphism from an open neighborhood of x in M onto
an open subset of Euclidean space.

Proof. (3)⇒(2): Let us first orthonormalize the basis {ξ1(x), . . . , ξn(x)} and write
the corresponding orthonormal basis as ηj(x) =

∑
i a

i
jξi(x) with aij ∈ R. Putting

ηj =
∑

i a
i
jξi we of course get ∇ηηj = 0 for each j and any η ∈ X(M) since the aij

are constant. Since ∇ is metric, this implies that for all i, j, the functions g(ηi, ηj) are
constant, so the ηi are orthonormal wherever they are defined.

On the other hand, we in particular get ∇ηiηj = 0 for all i and j, which by torsion
freeness implies [ηi, ηj] = 0 for all i and j. By Corollary 2.11 of [AnaMF], there is a
chart (U, u) around x, such that ∂i = ηi for all i, so (2) holds.

(2)⇒(4): By definition, the chart map u is a diffeomorphism from the open neigh-
borhood U of x onto an open subset of Rn. Moreover for y ∈ U , the tangent map
Tyu maps the orthonormal basis {∂i(y)} to the standard basis of Rn. Hence Tyu is
orthogonal, so u is an isometry.

(4)⇒(1): This is clear since by Proposition 1.14, any isometry is compatible with
the Riemann curvature tensors, and the curvature vanishes on Rn.

(1)⇒(3): Since this is a local question, it suffices to do this locally around 0 ∈ Rn

for an arbitrary Riemannian metric g on Rn with vanishing curvature. We denote
by x1, . . . , xn the standard coordinates and by ∂i the corresponding coordinate vector
fields. Choose an orthonormal basis ξ1(0), . . . , ξn(0) of T0Rn and extend each of these
tangent vectors to a vector field ξi on Rn as follows. To get ξi(x

1, . . . , xn), first translate
ξi(0) parallely along the line t 7→ (t, 0, . . . , 0) to the point (x1, 0, . . . , 0) then translate
parallely along t 7→ (x1, t, 0, . . . , 0) to (x1, x2, 0, . . . , 0) and so on. So we have to prove
that the resulting vector fields ξi are all parallel.

Now by construction ξi is parallel along each of the lines t 7→ (y1, . . . , yn−1, t), so
∇∂nξi = 0. The same argument shows that ∇∂n−1ξi vanishes on the subspace of all
points with last coordinate equal to 0. But vanishing of the curvature together with
[∂n−1, ∂n] = 0 implies that ∇∂n∇∂n−1ξi = ∇∂n−1∇∂nξ = 0. Hence ∇∂n−1ξi is parallel
along each of the lines t 7→ (y1, . . . , yn−1, t) and vanishes for t = 0, so it vanishes
identically. Next ∇∂n−2ξi vanishes in all points for which the last two coordinates are
zero, and using vanishing of the curvature one first shows that this extends to all points
with vanishing last coordinate and then to all of Rn. Iteratively, we get ∇∂jξi = 0 for
all i and j, so the ξi are indeed parallel. �
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2.11. Sectional curvature and space forms. The concept of sectional curvature
is on the one hand motivated by the relation between Gauß curvature and the Riemann
curvature tensor for surfaces in R3. On the other hand, as we have noted in Proposition
1.13, the Riemann tensor can be interpreted as a bilinear form on Λ2TM , so one can
look at the values of this form on the wedge product of two tangent vectors.

In view of the symmetries of the Riemann tensor, it does not make sense to insert
four copies of a tangent vector into R. However, given two tangent vectors ξ and η
in TxM , there is an essentially unique way to insert them into the curvature. A slight
variation of this idea with nicer properties is the following.

Definition 2.11. (1) Let (M, g) be a Riemannian manifold with curvature tensor
R. Then for a point x ∈M and two linearly independent tangent vectors X, Y ∈ TxM ,
one defines the sectional curvature by

(2.5) K(x)(X, Y ) :=
gx(Rx(X, Y )(Y ), X)

gx(X,X)gx(Y, Y )− gx(X, Y )2
∈ R.

(2) One says that g has constant sectional curvature a ∈ R if and only if K(x)(X, Y ) = a
for all x, X and Y .

Observe first that by the Cauchy-Schwarz inequality for the inner product gx, the
denominator in (2.5) is non-zero since X and Y are linearly independent. The mo-
tivation for this denominator is that K(x)(X, Y ) depends only on the plane in TxM
spanned by the two vectors. Indeed, replacing X and Y by aX + bY and cX + dY ,
the skew symmetry properties of R show that the numerator in (2.5) gets multiplied by
(ad− bc)2. On the other hand, the square of the area of the parallelogram spanned by
X and Y can be computed as |X|2|Y |2 sin2(α) = |X|2|Y |2(1− cos2(α)), where α is the
angle between the two vectors, and this is exactly the denominator in (2.5).

This also implies that it is sufficient to consider K(x)(X, Y ) for orthonormal tangent
vectors, and K(x)(X, Y ) = gx(Rx(X, Y )(Y ), X) in this case. Now the explicit formula
for the curvatures of the sphere and of hyperbolic space from 2.3 show that the sphere has
constant sectional curvature +1, while hyperbolic space has constant sectional curvature
−1. Of course, Rn has constant sectional curvature 0. These three basic examples are
called the space forms and in some sense they are the simplest Riemannian manifolds.

Other constant values of sectional curvature are not terribly interesting, since one
may always rescale the metric by a positive constant. Since the Levi-Civita connection
of g is also metric for any constant positive multiple of g, it follows that such a constant
rescaling does not change the Levi-Civita connection and hence also the Riemann tensor
remains unchanged. However, passing from the Riemann tensor to sectional curvature
involves the metric which implies that passing from g to ag means passing from K to
1
a
K.

It can be shown in general that any manifold of constant sectional curvature 1
(respectively−1) is locally isometric to Sn (respectivelyHn), while manifolds of constant
sectional curvature 0 are flat and thus locally isometric to Rn by Proposition 2.10.
Finally, it turns out that if in each point, the sectional curvature has the same value
for all planes in the tangent space, then the metric automatically has constant sectional
curvature.

2.12. The covariant derivative of the curvature. Aparat from constant sec-
tional curvature as discussed in 2.11, there is a second idea to define a concept of
“constant curvature” for a Riemannian manifold. Namely, we can consider the Rie-
mann curvature tensor R as a

(
1
3

)
-tensor field and form its covariant derivative ∇R,
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which then is a tensor field of type
(

1
4

)
. Before we study vanishing of this tensor field,

we prove the so-called second Bianchi identity (or differential Bianchi identity) which
is the last main symmetry property of the curvature tensor.

Proposition 2.12 (Second Bianchi identity). Let (M, g) be a Riemannian manifold
with Riemann curvature tensor R. Then the covariant derivative of the Riemann tensor
satisfies

0 = (∇ξR)(η, ζ) + (∇ζR)(ξ, η) + (∇ηR)(ζ, ξ)

for all ξ, η, ζ ∈ X(M). In abstract index notation, this reads as 0 = ∇[iRjk]
`
m.

Proof. This is most easliy verified in terms of the expression of the curvature in a
local orthonormal frame, but also in this setting quite a bit of computation is needed.
Apply the exterior derivative to the defining equation

Ωi
j = dωij +

∑
k ω

i
k ∧ ωkj

for the curvature two-forms and reinsert for terms involving dω’s. This gives

dΩi
j =

∑
k Ωi

k ∧ ωkj −
∑

k ω
i
k ∧ Ωk

j −
∑

k,` ω
i
` ∧ ω`k ∧ ωkj +

∑
k,` ω

i
k ∧ ωk` ∧ ω`j,

and clearly the last two sums cancel. This is already the second Bianchi identity in the
moving frame from, and we have to interpret it in terms of covariant derivatives. Recall
from 2.2 that Ωi

j(η, ζ) = g(R(η, ζ)(sj), si), where the si are the elements of the given
orthonormal frame. Differentiating this smooth function with ξ ∈ X(M), we obtain

ξ · Ωi
j(η, ζ) = g(∇ξR(η, ζ)(sj), si) + g(R(η, ζ)(sj),∇ξsi).

The naturality properties of the covariant derivative from Propostion 2.7 imply that

∇ξR(η, ζ)(sj) = ((∇ξR)(η, ζ))(sj) +R(∇ξη, ζ)(sj) +R(η,∇ξζ)(sj) +R(η, ζ)(∇ξsj).

Now by definition ∇ξsj =
∑

k ω
k
j (ξ)sk and likewise we can insert for ∇ξsi above. In-

serting all that above, we obtain

ξ · Ωi
j(η, ζ) = g(((∇ξR)(η, ζ))(sj), si) + Ωi

j(∇ξη, ζ)− Ωi
j(∇ξζ, η)

+
∑

k ω
k
j (ξ)Ωi

k(η, ζ) +
∑

k ω
k
i (ξ)Ωk

j (η, ζ).

Summing this up over all cyclic permutations of ξ, η and ζ the second and third terms
in the right hand side add up to

Ωi
j([ξ, η], ζ) + Ωi

j([η, ζ], ξ) + Ωi
j([ζ, ξ], η),

and bringing this to the other side, we obtain dΩi
j(ξ, η, ζ) on the left hand side. On the

other hand, summing the last two terms in the right hand side and using ωki = −ωik,
one gets

(
∑

k ω
k
j ∧ Ωi

k −
∑
ωik ∧ Ωk

j )(ξ, η, ζ).

Hence we conclude that the sum over all cyclic permutations of ξ, η and ζ of

g(((∇ξR)(η, ζ))(sj), si)

vanishes for all i and j, which implies the claim. �

Now let us study the condition of parallel curvature for Riemannian manifolds. It
turns out that this is related to so called symmetries. Here by a symmetry in a point
x of a smooth manifold M one means a local diffeomorphism σ = σx defined on a
neighborhood of x such that σ(x) = x and Txσ = − idTxM . Note that in case that
(M, g) is a Riemannian manifold and σ is an isometry for g, these conditions determine
σ locally around x. Indeed, in this case, we must have σ(expx(ξ)) = expx(−ξ) for all
ξ ∈ TxM such that the left hand side is defined, compare with 1.14. Conversely, we can
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clearly define a local symmetry at x by expx ◦ − (expx)
−1 on any geodesic ball around

x. This is called the geodetic reflection in x, but it is not a (local) isometry in general.

Definition 2.12. Let (M, g) be a connected Riemannian manifold.
(1) (M, g) is called a locally symmetric space if and only if for each point x ∈ M ,

the geodetic reflection defines an isometry on some open neighborhood of x.
(2) (M, g) is called a symmetric space if and only if for each point x ∈ M , the

geodetic reflection in x extends to a globally defined isometry of M .

It turns out that (M, g) is a locally symmetric space if and only if the Riemann
curvature tensor R of g is parallel, i.e. iff ∇R = 0. The necessity of this condition is
easy to see. If the geodestic reflection defines an isometry σx on an open neighborhood
U of x, then (σx)

∗(∇R) = ∇R, see Proposition 1.14. But the action of (σx)
∗(∇R)(x) on

three tangent vectors in TxM is given by hitting the tangent vectors with Txσx = − id,
so (σx)

∗(∇R)(x) = −∇R(x). The sufficiency is much more complicated to prove.
Second, it turns out that the difference between locally symmetric spaces and sym-

metric spaces comes from topology. Indeed, one can prove that a simply connected
locally symmetric space automatically is a symmetric space. In particular, given a lo-

cally symmetric space (M, g) one can form the universal covering space M̃ . This is

a simply connected space endowed with a covering map p : M̃ → M . This covering

map is a local homeomorphism, so one can use charts of M to make M̃ into a smooth
manifold in such a way that p becomes a local diffeomorphism. Further, one can pull

back the tensor field g on M to M̃ to obtain a Riemannian metric g̃ on M̃ and then

p becomes a local isometry. By construction, (M̃, g̃) is a locally symmetric space and
thus a symmetric space by simple connectedness.

To analyze symmetric spaces, one first proves that they are homogenous, i.e. for two
points x and y in a symmetric space (M, g), there always is an isometry f : M → M
such that f(x) = y. This follows easily from the same fact in the case that x and y
can be connected by a geodesic, which is obvious since x is mapped to y by reflecting
in the middle point between x and y on that geodesic. Now there is a general result
(“Meyers–Steerod Theorem”) that says that the group of isometries of a Riemannian
manifold is always a Lie group. The Lie algebra of this group turns out to be isomorphic
to the space of those vector fields dual to Killing one-forms (as in Proposition 2.9) which
are complete. Thus a homogeneous Riemannian manifold is realized as a homogeneous
space of its isometry group. One can then study the condition of being symmetric in
terms of Lie theory, which leads to a complete classification of symmetric spaces. Locally
symmetric spaces are then obtained by further quotenting by discrete subgroups of the
isometry group, and a lot is known about such subgroups.

Apart from the fact that they provide many interesting examples of Riemannian
manifolds (indculding spheres, hyperbolic spaces, and Grassmann manifolds) they also
play an important role in holonomy theory. In fact, in the classification of holonomy
groups mentioned in 1.11 and 2.8, one always has to distinguish between the case of
locally symmetric spaces and manifold for which the curvature tensor is not parallel.
For the locally symmetric case, the classification of symmetric spaces in terms of Lie
theory also gives a classification of holonomy groups, in the other case, the possible
holonomy groups are classified by a classical theorem of M. Berger.

2.13. Decomposing the curvature tensor. An idea to obtain simpler objects
from the Riemann curvature tensor is to try taking traces. Due to the symmetries of the
curvature tensor, there is initially only one trace (up to sign) which has the potential
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to be non-zero. Writing the curvature tensor as Rij
k
` a contraction is defined by either

choosing one of the lower indices and contracting k into it or by choosing two of the
lower indices and contrating them with the inverse metric. Now the skew symmetry
results from part (2) of Proposition 1.13 on the one hand imply that gijRij

k
` = 0 and

Rij
k
k = 0 as well as the fact that the remaining contractions (k into i or j, or ` with i

or j with the inverse metric) all agree up to sign.

Definition 2.13. Let (M, g) be a smooth Riemannian manifold of dimension n ≥ 3
with Riemann curvature tensor Rij

k
`.

(1) The Ricci curvature of g is the
(

0
2

)
-tensor field Ric defined by Ricij := Rki

k
j.

(2) The scalar curvature of g is the smooth functionR onM defined byR := gij Ricij.
(3) The Schouten tensor of g is defined by Pij := 1

n−2
(Ricij − 1

2(n−1)
Rgij).

(4) The Weyl curvature of g is the
(

1
3

)
-tensorfeld W defined by

Wij
k
` := Rij

k
` −
(
2δk[iPj]` − 2g`[iPj]ag

ak
)
.

(5) The metric g is called Ricci flat if Ricij = 0.
(6) The metric g is called an Einstein metric if its Ricci curvature (or equivalently

its Schouten tensor) is proportional to the metric, i.e. if Ricij = 1
n
Rgij.

Let us next verify the basic properites of these quantitites.

Proposition 2.13. For any Riemannian manifold (M, g) the following hold.
(1) The Ricci curvature and the Schouten tensor are both symmetric and they satisfy

Ricij = (n−2)Pij+Pgij, where P = gijPij = 1
2(n−1)

R is the trace of the Schouten tensor.

(2) The Weyl curvature has all symmetries of the Riemann curvature tensor as in
parts (2) – (4) of Proposition 1.13 and in addition is totally tracefree, i.e. we have

Wij
k
` = W[ij]

k
` Wij

a
`gka = Wij

a
[`gk]a Wij

a
`gka = W`k

a
igja W[ij

k
`] = 0 Wki

k
j = 0

Proof. (1) By defintion, the Ricci curvature can be written as Ricij = gk`Rki
a
jg`a.

From Proposition 1.13, we know that Rki
a
jg`a = Rj`

a
kgia = R`j

a
i gka and applying gk` to

the last expression, we by definition get Ricji. Symmtry of the Schouten tensor then
follows by definition.

From the definition of the Schouten tensor, it follows readily that Ricij = (n−2)Pij+
1

2(n−1)
Rgij. Contracting this equations with gij, we see that R = (n − 2)P + n

2(n−1)
R,

and hence n−2
2(n−1)

R = (n− 2)P, which implies the claim.

(2) Lowering the index k in the definition of the Weyl curvature, we see that Wij
a
`gka

is obtained from Rij
a
`gka by subtracting

2gk[iPj]` − 2g`[iPj]k.

From this form it is evident that this term is skew symmetric in i and j as well as in k
and `. Morover, if we expand the alternations, symmetry of g and P implies that each
of the resulting terms is symmetric in two of the three indices i, j and `. Therefore, the
complete alternation of this expression over these three indices vanishes, so R[ij

k
`] = 0

implies W[ij
k
`] = 0. In the proof of Proposition 1.13, we have seen that the symmetries

derived so far imply that Wij
a
`gka = W`k

a
igja, so it remains to prove that Wkj

k
` = 0.

To do this, we expand the alternations in the definition of the Weyl curvature to obtain

Wij
k
` = Rij

k
` − δki Pj` + δkjPi` + g`iPjag

ak − g`jPiagak.
Contracting the indices i and k, we get

Wkj
k
` = Ricj`−nPj` + Pj` + Pj` − gj`P,
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which equals Ricj`−((n− 2)Pj` + Pgj`) = 0. �

In view of this result we can reinterpret the definiton of the Weyl curvature as a the
decomposition

Rij
k
` = Wij

k
` +
(
2δk[iPj]` − 2g`[iPj]ag

ak
)

of the Riemann curvature into a trace-free part and a trace part. This trace part can
be equivalently be described by Ricij or by Pij, and it again splits into a trace-free part
and trace part as Ricij = (Ricij − 1

n
Rgij) + 1

n
Rgij and similarly for Pij. By definition,

the metric is Einstein if and only if the tracefree part of the Ricci curvature vanishes
identically.

Forming a constraction of the second Bianchi identity from Proposition 2.12, one
sees that ∇iR = 1

2
gjk∇j Ricik. In the case of an Einstein metric, the right hand side

becomes 1
2n
∇iR, so we conclude that for an Einstein metric, the scalar curvature is

constant. This constant value is referred to as the Einstein constant of the metric, it is
mainly of interest whether this is postive, negative or zero (“Ricci-flat metrics”).

Example 2.13. Consider the metric on the sphere Sn from example (2) of 2.3, so
Rij

k
` = δki gj` − δkj gi`. This gives Ricj` = (n − 1)gj` and R = n(n − 1), which implies

that the metric on the sphere is Einstein with positive scalar curvature.
Inserting this into the definitions, we obtain Pij = 1

n−2
((n − 1)gij + n

2
gij) = 1

2
gij.

Inserting into the definition shows that the Weyl curvature of the sphere vanishes. So
also from our current point of view, these are the simplest possible curvature tensors.

Likewise, hyperbolic space has vanishing Weyl curvature, and is Einstein with neg-
ative scalar curvature R = −n(n− 1).

The part of the curvature tensor which is most easily to interpret is the Weyl cur-
vature. This is related to the concept of conformal rescaling that we have met in 2.6.
There we said that two metrics g and ĝ on a manifold M are conformal to each other if
and only if there is a positive smooth function f on M such that ĝ = fg. This defines
an equivalence relation on the set of Riemannian metrics on M . It turns out that con-
formal metrics have the same Weyl curvature, so one says that the Weyl curvature is a
conformal invariant. It further turns out that the Weyl curvature vanishes identically
if and only if the metric is (locally) conformally flat, i.e. if each point in M admits an
open neighborhood on which the metric is conformal to a flat metric as characterized
in Proposition 2.10.

This gives a simple explanation why the Weyl curvatures of the sphere and of hy-
perbolic space vanish. For hyperbolic space, we have defined the hyperbolic metric as
a conformal rescaling of the flat metric on the ball. Likewise, the computation in 2.3
shows that in the chart defined by stereographic projection, the metric on a sphere is a
conformal rescaling of the flat metric on Rn, so again this is evidently conformally flat.

2.14. Curvature and normal coordinates. We complete this part by a short
discussion of the relation between normal coordinates and the curvature tensor. This is
useful for understanding “how well” normal coordinates are adapted to the Riemannian
manifold in a point. On the other hand, it provides explanations for the meanings of
the values in a point of several curvature quantities.

Recall from 1.12 that normal coordinates centered at x are obtained by using the
inverse of expx as a chart and an orthonormal basis of TxM to identify this space with
Rn. In the resulting local coordinates, the point x corresponds to 0 ∈ Rn and we
consider the local coordinate expression gij of the metric in these coordinates. Now
first of all, since T0 expx = idTxM , we see that gij(0) = δij. Second, we know that



46 2. SOME MORE ADVANCED TOPICS

the radial lines in normal coordinates correspond to geodesics. This means that if
X is a linear combination of the coordinate vector fields ∂i with constant coefficients,
then ∇XX(0) = 0. This implies that ΓU(X,X) vanishes in the point 0, and since ΓU is
symmetric, polarization implies that ΓU vanishes in 0. Hence all the Christoffel symbols
Γkij vanish at the origin. From the definition in 1.11, we conclude that this implies that
∂i · gj` + ∂j · gi` − ∂` · gij vanishes in 0 for all indices i, j and `. Adding the same term
with i and ` exchanged, we see that 2∂j · gi` vanishes in 0, so all partial derivatives of
the components gij vanish at the origin.

This says that the flat metric in normal coordinates approximates g in x to first order,
but this is already as good as things can get. We can see this by deriving the coordinate
expression for the curvature tensor, which shows that the values of its components in 0
can be computed from the Christoffel symbols and their partial derivatives in 0. Hence
they depend only on the partial derivatives of the gij up to second order, so we cannot
have vanishing second order partials in 0 unless the curvature vanishes in x.

Lemma 2.14. In arbitray local coordinates, the Riemann curvature tensor is in
terms of the Christoffel symbols given by

R(∂i, ∂j)(∂`) =
∑

k

(
∂i(Γ

k
j`)− ∂j(Γki`) +

∑
a

(
Γaj`Γ

k
ia − Γai`Γ

k
ja

))
∂k.

Proof. By definition of the Christoffel symbols, ∇∂j∂` =
∑

k Γkj`∂k, and hence

∇∂i∇∂j∂` =
∑

k

(
(∂i · Γkj`)∂k − Γkj`∇∂i∂k

)
.

Expanding the covariant derivative in terms of Christoffel symbols, and using that
[∂i, ∂j] = 0, the claimed formula then follows from the definition of curvature. �

In the special case of normal coordinates, we see that the components of the cur-
vature tensor are given by Rij

k
`(0) = ∂i · Γkj`(0) − ∂j · Γki`(0). In fact it turns out that

the relation between the curvature and the second derivatives of the functions gij is
much simpler than one would expect. To formulate this, we consider the functions
Rijk` := g(R(∂i, ∂j)(∂k), ∂`). The values of these functions in a point are exactly the
first non-trivial Taylor coefficients of the functions gij:

Theorem 2.14. The Taylor expansion of the components gij of the metric in normal
coordinates (u1, . . . , un) centered in x in the point u = 0 is given by

gij(u) = δij + 1
3
Rik`j(x)uku` +O(|u|3).

The proof of this and the following consequences is beyond the scope of this course.
Having derived this Taylor development, one can construct various expansions which
lead to the values of various curvature quantities at x as Taylor coefficients. We list
these expansions without detailed proofs.

Let us start with sectional curvature as discussed in 2.11. Here we have to specify
a two-dimensional subspace E ⊂ TxM , and the sectional curvature associated to this
plane is given by inserting an orthonormal basis {X, Y } of E into the formula from
Definition 2.11. We denote the resulting value by K(x)(E). To interpret this, we take
a small radius r > 0 and let Cr ⊂M be the image under expx of the circle of Radius r
in E ⊂ TxM . Let L(r) denote the arclength of this smooth closed curve in M . Then it
turns out that

L(r) = 2πr − π
3
K(x)(E)r3 +O(r4).

In particular, for positive sectional curvature, the circles are shorter than their Euclidean
counterparts while for negative sectional curvature they are longer.
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Next, the Ricci curvature in x measures the infinitesimal growth of the volume
density

√
det(gij(u)). More precisely, one has√

det(gij(u)) = 1− 1
6

Ricij(x)uiuj +O(|u|3).

So positive definite Ricci curvature (as in the case of the sphere) means that the volume
element gets smaller when leaving the origin.

Finally, scalar curvature R(x) can be interpreted in terms of the growth of volumes
of geodesic balls and spheres. Let us denote by ωn the volume of the unit ball in Rn.
Then for sufficiently small r, we let Br(x) denote the image under expx of the ball of
radius r in TxM , while by Sr(x) we denote the geodesic sphere of radius r. Then it
turns out that the volume of Br(x) and the area of Sr(x) grow as

Vol(Br(x)) = ωnr
n

(
1− 1

6(n+2)
R(x)r2 +O(r3)

)
Vol(Sr(x)) = nωnr

n−1 − 1
6
R(x)ωnr

n+1 +O(rn+2).
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