
CHAPTER 2

Some more advanced topics

Having the core notions of Riemannian geometry at hand, we briefly discuss “how
things go on from here” in different directions. There is a certain dependence between
the different topics, but this is not too strong, so to a large extent the individual sections
of this chapter can be studied independently of each other.

Moving frames – Examples

We start by discussing the fundamentals of E. Cartan’s moving frame method. This
gives a systematic way for computing the Levi–Civita connection and the Riemann
curvature tensor of a Riemannian manifold in terms of local orthonormal frames and
coframes. This is built on the calculus of differential forms.

2.1. Local orthonormal frames and coframes. One of the basic difficulties in
Riemannian geometry is that it is impossible to choose local coordinates which are well
adapted to a Riemannian metric. This is basically due to the fact that the Riemann
curvature tensor constructed in 1.13 is a local invariant of a Riemannian metric, which
tells us that Riemannian metrics in general do not locally look the same. For example,
suppose that one has a local chart (U, u) on a Riemannian manifold such that the
corresponding coordinate vector fields ∂i form an orthonormal basis of TxM for each
x ∈ U . Then (compare with Proposition 2.7 below) u is an isometry to the subset
u(U) ⊂ Rn with the restriction of the usual metric on Rn. As observed in 1.13, such an
isometry can only exist if the Riemann curvature vanishes identically on U .

A possible replacement for adapted coordinates are local orthonormal frames, which
we have met in 1.4. Given a Riemannian manifold (M, g) of dimension n and an open
subset U ⊂M , a local orthonormal frame for U is a family {s1, . . . , sn} of vector fields
defined on U such that g(si, sj) = δij on U . This means that for each x ∈ U , the tangent
vectors s1(x), . . . , sn(x) ∈ TxM form an orthonormal basis for TxM (with respect to gx).
In Proposition 1.4 we have proved that local orthonormal frames always exist. Since
there is a better calculus for differential forms available than for vector fields, it is better
to use the dual concept defined as follows.

Definition 2.1. Let (M, g) be a Riemannian manifold of dimension n and let
U ⊂ M be an open subset. A local orthonormal coframe on U is a family {σ1, . . . , σn}
of one–forms defined on U such that g|U =

∑n
i=1 σ

i ⊗ σi.

Lemma 2.1. Let (M, g) be a Riemannian manifold of dimension n and let U ⊂ M
be an open subset. A family {σ1, . . . σn} of elements of Ω1(U) is a local orthonormal
coframe if and only if for each x ∈ U the elements σ1(x), . . . , σn(x) form a basis for
T ∗xM , for which the dual basis of TxM is orthonormal. In particular, local orthonormal
coframes always exist.

Proof. This is just a linear algebra statement. Starting with a local orthonormal
coframe, we get gx =

∑
i σ

i(x) ⊗ σi(x), so non–degeneracy of gx implies that for each
ξ ∈ TxM , there is at least one i such that σi(x)(ξ) 6= 0. This implies that the σi(x) are
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linearly independent an thus form a basis of T ∗xM . Denoting the dual basis by si we
conclude that gx(si, sj) =

∑
k σ

k(x)(si)σ
k(x)(sj) = δij so the dual basis is orthonormal.

Conversely, suppose that σ1, . . . , σn is a family of one–forms satisfying the condition
on the values in x. Then gx and

∑
i σ

i(x) ⊗ σi(x) agree whenever one inserts two
elements of the basis dual to {σ1(x), . . . , σn(x)} and hence on all pairs of vectors.

In particular, we see that we can obtain a local orthonormal coframe by forming
the dual basis to a local orthonormal frame in each point, so existence follows from
Proposition 1.4. �

From now on, we will usually work in a local orthonormal coframe {σ1, . . . , σn} with
dual orthonormal frame {s1, . . . , sn}, so σi(sj) = δij. This simply means that any vector

field ξ in the domain of the frames can be written as ξ =
∑

i σ
i(ξ)si. Likewise, a one–

form can, in the domain of the frames, be written as ϕ =
∑

j ϕ(sj)σ
j, and similarly for

more complicated tensor fields.
It is actually possible to develop the fundamentals of Riemannian geometry in the

language of local orthonormal coframes. One defines objects in terms of such a coframe
and then proves that different coframes lead to the same object. In particular, texts
taking this approach contain lots of computations on how various quantities behave
under a change of frame. In the approach we take, such computations are not needed,
since we only compute quantities which we already know to be well defined in terms of
a local coframe.

2.2. Connection and curvature in a moving frame. Consider a local orthonor-
mal coframe {σ1, . . . , σn} for a Riemannian manifold (M, g) defined on U ⊂ M with
dual frame {s1, . . . , sn}. To describe the Levi–Civita connection in the frame, we ob-
serve that for each ξ ∈ X(U) and each i = 1, . . . , n, ∇ξsi is a smooth vector field on U ,

so we can write it as
∑

j ω
j
i (ξ)sj for smooth functions ωji (ξ), i = 1, . . . , n, which depend

on ξ. But by definition for a smooth function f ∈ C∞(U,R), we have ∇fξsi, and hence

ωji (fξ) = fωji (ξ) for all i, j. Thus each ωji actually is a smooth one–form on U , and

it is natural to view (ωji ) as a matrix of one–forms on U , which is called the matrix of
connection forms associated to the coframe {σi}.

It is even easier to describe the Riemann curvature tensor in a local frame. Namely,
given vector fields ξ, η ∈ X(U), we expand R(ξ, η)(si) =

∑
j Ωj

i (ξ, η)sj. The fact that R

is a tensor immediately implies that Ωj
i actually is a two–form on U for each i and j.

Hence we also view (Ωj
i ) as a matrix of two–forms, called the matrix of curvature forms

associated to the coframe {σi}.

Proposition 2.2. (1) The matrix (ωij) of connection forms associated to a local

orthonormal coframe {σi} is skew symmetric, i.e. ωij = −ωji and for each i = 1, . . . , n
it satisfies the equation

0 = dσi +
∑

j ω
i
j ∧ σj.

These two properties uniquely determine (ωji ).
(2) The corresponding matrix (Ωi

j) of curvature forms is also skew symmetric and
it is given by

Ωi
j = dωij +

∑
k ω

i
k ∧ ωkj .

Proof. (1) By definition, we have

ωji (ξ) = σj(∇ξsi) = g(∇ξsi, sj).



MOVING FRAMES – EXAMPLES 27

But since g(si, sj) is always constant, compatibility of ∇ with g implies that 0 =

g(∇ξsi, sj) + g(si,∇ξsj) and thus ωji (ξ) = −ωij(ξ), so skew symmetry follows.

For a vector field η ∈ X(U), we have noted in 2.1 that η =
∑

j σ
j(η)sj. Hence we

compute

∇ξη =
∑

j∇ξ(σ
j(η)sj) =

∑
j(ξ · σj(η))sj +

∑
j,k σ

j(η)ωkj (ξ)sk.

Otherwise put, we get

σi(∇ξη) = ξ · σi(η) +
∑

j σ
j(η)ωij(ξ).

Now subtract the analogous term with ξ and η exchanged and further subtract σi([ξ, η])
from both sides. Then in the left hand side, we get zero by torsion freeness of ∇. In the
right hand side, we can use the definition of the exterior derivative to conclude that

0 = dσi(ξ, η) +
∑

j

(
ωij(ξ)σ

j(η)− ωij(η)σj(ξ)
)
,

and the last term just represents
∑

j(ω
i
j ∧ σj)(ξ, η).

To prove the statement on uniqueness, we consider the difference of two skew sym-
metric matrices of one–forms, which both satisfy the equations. Then this is a matrix
(τ ji ) of one–forms such that τ ij = −τ ji and such that

∑
j τ

i
j ∧σj = 0 for each i = 1, . . . , n.

Now evaluate the last expression on (sk, s`) to get 0 = τ i`(sk)− τ ik(s`). Hence if we put
Φijk := τ ij(sk), we get Φijk = −Φijk and Φijk = Φikj and we know from the proof of

Proposition 1.1 that this implies Φijk = 0 and hence τ ij = 0 for all i and j.

(2) By definition,

Ωj
i (ξ, η) = σj(R(ξ, η)(si)) = g(R(ξ, η)(si), sj),

so skew symmetry follows from part (2) of Proposition 1.13. From the defining equation
∇ηsi =

∑
k ω

k
i (η)sk, we conclude that

∇ξ∇ηsi =
∑

k(ξ · ωki (η))sk +
∑

k,` ω
k
i (η)ω`k(ξ)s`,

and hence
σj(∇ξ∇ηsi) = ξ · ωji (η) +

∑
k ω

j
k(ξ)ω

k
i (η).

To obtain Ωi
j(ξ, η) we have to subtract the corresponding term with ξ and η exchanged

and further subtract σj(∇[ξ,η]si) = ωji ([ξ, η]). Now the result follows immediately from
the definition of the exterior derivative and of the wedge product. �

2.3. Examples. (1) Flat space: In Euclidean space En, we take one of the global
charts from 1.1 to identify En with Rn. Then the corresponding coordinate vector fields
∂i form a global orthonormal frame. The dual coframe is simply given by σi = dxi for
i = 1, . . . , n. Since dσi = 0 for all i, we conclude that both the matrix (ωij) of connection

forms and the matrix (Ωi
j) of curvature forms vanish identically in this frame.

(2) The sphere: Let us consider the unit sphere Sn := {x ∈ Rn+1 : 〈x, x〉 = 1}
with the Riemannian metric induced from Rn+1. To get simple formulae, we use a
particularly nice chart, the stereographic projection. Let N = en+1 ∈ Sn be the north
pole, put U := Sn \ {N} and define u : U → Rn by

u(x) = u(x1, . . . , xn+1) = 1
1−xn+1 (x1, . . . , xn)

(To interpret this geometrically, one views Rn as the affine hyperplane through −N
which is orthogonal to N and one maps each point x ∈ Sn to the intersection of the ray
from N through x with that affine hyperplane.) One immediately verifies that the map

(u1, . . . , un) 7→ 1
〈u,u〉+1

(2u1, . . . , 2un, 〈u, u〉 − 1)
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is inverse to u. The ith partial derivative of this mapping is given by

−2ui

(1+〈u,u〉)2 (2u, 〈u, u〉 − 1) + 1
1+〈u,u〉(2ei, 2u

i),

which shows that we can write ∂
∂ui

as

−2ui

(1+〈u,u〉)2

(∑n
j=1 2uj ∂

∂xj
+ (〈u, u〉 − 1) ∂

∂xn+1

)
+ 2

1+〈y,y〉

(
∂
∂xi

+ ui ∂
∂xn+1

)
.

Now we can compute the inner products of these vector fields using that the fields ∂
∂xj

are
orthonormal. The bracket in the first summand is independent of i and inserting it twice
into the metric, one gets 4〈u, u〉 + (〈u, u〉 − 1)2 = (1 + 〈u, u〉)2. So the contributions

to g( ∂
∂ui
, ∂
∂uk

) is given by 4uiuk

(1+〈u,u〉)2 . Likewise from the second terms, one obtains a

contribution of 4
(1+〈u,u〉)2 (δik + uiuk). Finally, the terms mixing the two summands give

a contribution of −8uiuk

(1+〈u,u〉)2 . Altogether, we see that

g( ∂
∂ui
, ∂
∂uk

) = 4
(1+〈u,u〉)2 δik.

Putting f(u) = 1
2
(1 + 〈u, u〉), we see that {f(u) ∂

∂ui
} is a local orthonormal frame and

hence the one–forms σi := 1
f(u)

dui form a local orthonormal coframe.

Consequently, dσi = − 1
f2
df ∧ dui and since df =

∑
j u

jduj this can be written

as
∑

j
uj

f2
dui ∧ duj =

∑
j u

jσi ∧ σj. This can be written as −
∑

j ω
i
j ∧ σj for ωij =

uiσj − ujσi = ui

f
duj − uj

f
dui, which evidently satisfies ωji = −ωij and thus gives the

matrix of connection forms associated to our coframe.
This immediately gives

dωij = − ui

f2
df ∧ duj + uj

f2
df ∧ dui + 2

f
dui ∧ duj.

On the other hand, using df =
∑

k u
kduk, we compute∑

k(
ui

f
duk − uk

f
dui) ∧ (u

k

f
duj − uj

f
duk) = ui

f2
df ∧ duj − uj

f2
df ∧ dui −

∑
(uk)2

f2
dui ∧ duj.

Hence we directly get Ωi
j = 1

f2
dui ∧ duj = σi ∧ σj. To understand the form of the

curvature more explicitly, we look at elements sa of the orthonormal frame. By defini-
tion of the matrix of curvature forms, we have R(ξ, η)(sj) =

∑
i Ω

i
j(ξ, η)si and hence

g(R(ξ, η)(sj), si) = Ωi
j(ξ, η). Thus we can compute g(R(sa, sb)(sc), sd) as

Ωd
c(sa, sb) = σd(sa)σ

c(sb)− σc(sa)σd(sa) = g(sa, sd)g(sb, sc)− g(sa, sc)g(sb, sd).

Since this is a tensorial expression, it holds for arbitrary vector fields instead of the
elements of the frame, which shows that in abstract index notation, we have Rij

a
`gka =

gikgj`− gi`gjk respectively Rij
k
` = δki gj`− δkj gi`. This is the simplest way to construct a

tensor with curvature symmetries out of the metric. We will later say that the sphere
has constant (positive) sectional curvature.

(3) Hyperbolic space: Although this example is quite different from the sphere,
the computations will quickly become very similar. We consider the open unit ball
{x ∈ Rn : 〈x, x〉 < 1} and define a metric there as g := 4

(1−〈x,x〉)2 g0, where g0 is the

restriction of the flat metric. (As we define it here, this may seem rather artificial, but
it arises from several other pictures in a natural way.) Putting f(x) := 1

2
(1 − 〈x, x〉)

we see that the vector fields f∂i form an orthonormal frame, and the corresponding
orthonormal coframe is obtained by putting σi := 1

f
dxi. The only difference compared to

the case of the sphere now is that df = −
∑
xidxi, so there is a sign change compared to

the case of the sphere. This sign change carries over to dσi and hence to ωij, so this time
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we get ωij = −xiσj + xjσi = −xi

f
dxj + xj

f
dxi. As in the case of the sphere, one directly

verifies that this leads to Ωi
j = −σi∧σj, so again there is a sign change compared to the

sphere. As in the case of the sphere, one then verifies that Rij
a
`gka = −gikgj` + gi`gjk

respectively Rij
k
` = −δki gj` + δkj gi`. We will say that hyperbolic space has constant

negative sectional curvature.

Geodesics, distance and completeness

One of the fundamental facts in Euclidean geometry is the fact that a line segment
provides the shortest path connecting two points. Since the analogs of straight lines in
general Riemannian manifolds are the geodesics, it is a natural question whether any
two points can be connected by a geodesic and whether this is a (or even the) shortest
curve connecting the two points.

The geodesics of a Riemannian metric also lead to a natural notion of complete-
ness for Riemannian manifolds. It turns out that completeness is closely related to the
interpretation of geodesics as shortest curves. Using this relation, this concept of com-
pleteness turns out to be equivalent to completeness in the sense of metric spaces. This
result is called the Hopf–Rinow theorem, and it is one of the cornerstones of Riemannian
geometry.

2.4. The first variational formula. We start with an elementary characterization
of geodesics which is a first step towards identifying them as “shortest curves”. As we
have note in 1.7, the arclength of a curve is invariant under reparametrizations, which
make it less suitable for the purpose of characterizing curves, so we use the energy
instead. We study the behavior of the energy under a variation of curves. Given a
smooth curve c : [a, b]→M , such a variation is a smooth mapping γ : [a, b]× (−ε, ε)→
M such that γ(t, 0) = c(t). Evidently, we can view such a variation as a smooth family
{cs : [a, b]→ M : |s| < ε} of curves by putting cs(t) := γ(t, s). The “direction” of such
a variation can be described by r(t) := ∂

∂s
|s=0γ(t, s). This evidently is a vector field

along c called the variational vector field determined by γ. A particularly interesting
case is provided by variations fixing the endpoints, where one in addition requires that
γ(a, s) = c(a) and γ(b, s) = c(b) for all s. The infinitesimal version of this condition of
course is r(a) = r(b) = 0.

Given a variation γ of c, we can consider the resulting variation of energy, i.e. look at

E(s) := 1
2

∫ b
a
g(γ(t, s))(γ′(t, s), γ′(t, s))dt, where we write γ′(t, s) for ∂

∂t
γ(t, s). Evidently,

this is a smooth function (−ε, ε) → R, so we can try to compute the infinitesimal
variation d

ds
|s=0E(s) of energy. The result is very appealing:

Proposition 2.4 (First variational formula). Let γ be a smooth variation of c :
[a, b] → M with variation vector field r. Then the infinitesimal variation of energy is
given by

d
ds
|s=0E(s) = −

∫ b

a

g(c(t))(∇c′c
′(t), r(t))dt+ g(c(b))(c′(b), r(b))− g(c(a))(c′(a), r(a)).

In particular, a smooth curve c is a critical point for the energy under all variations
with fixed endpoints if and only if c is a geodesic.

Proof. The formula on [a, b] clearly follows from the analogous formula on small
sub–intervals of [a, b]. Thus, we may restrict to the case that γ has values in the domain
U of a chart (U, u) for M . Passing to the image of that chart, we may restrict to the
case that M = Rn but endowed with an arbitrary Riemannian metric g. Using the



30 2. SOME MORE ADVANCED TOPICS

standard trivialization of the tangent bundle, we may view vector fields as Rn–valued
functions and g as a function with values in the space of symmetric bilinear forms which
has values in the open subset of positive definite forms. Now forming

d
ds
E(s) = 1

2
d
ds

∫ b

a

g(γ(t, s))(γ′(t, s), γ′(t, s)),

we may first exchange the derivative with the integral. But since the integrand comes
from a trilinear map, we ca write d

ds
(g(γ(t, s))(γ′(t, s), γ′(t, s))) as

Dg(γ(t, s))( ∂
∂s
γ(t, s))(γ′(t, s), γ′(t, s)) + 2g(γ(t, s))( ∂

∂s
γ′(t, s), γ′(t, s)).

At s = 0, ∂
∂s
γ(t, s) = r(t) and since partial derivatives commute, we get ∂

∂s
γ′(t, s) = r′(t)

there. To compute the contribution of the second summand to the integral for s = 0,

we have to determine
∫ b
a
g(c(t))(r′(t), c′(t))dt. Integrating this by parts, we obtain

−
∫ b

a

(
Dg(c(t))(c′(t))(r(t), c′(t)) + g(c(t))(r(t), c′′(t))

)
dt+

[
g(c(t))(r(t), c′(t))

]b
a

.

On the other hand, Proposition 1.11 shows that ∇c′c
′(t) = c′′(t) + Γ(c(t))(c′(t), c′(t)),

where Γ is obtained from the Christoffel symbols. Finally, the formula for the Christoffel
symbols in part (2) of Proposition 1.10 reads as

g(x)(Γ(ξ, ξ), η) = 2(Dg(x)(ξ))(ξ, η)− (Dg(x)(η))(ξ, ξ),

which implies the claim. �

The computation in the proof actually allows an elementary approach to the con-
struction of the Levi–Civita connection. Motivated by the computation, one shows
that, in the domain of a chart, one can write 2(Dg(x)(ξ))(ξ, η) − (Dg(x)(η))(ξ, ξ) as
g(x)(Qx(ξ), η) for a quadratic form Qx. This then determines a symmetric bilinear form
Γx such that Qx(ξ) = Γx(ξ, ξ). Then one can use these forms to define a covariant de-
rivative in charts and verify directly that the definitions in different charts coincide, so
one obtains a globally defined covariant derivative.

2.5. Minimizing curves. Given a point x in a Riemannian manifold (M, g) we
have seen in Proposition 1.12 that there is an open neighborhood of zero in TxM on
which the exponential map expx restricts to a diffeomorphism onto an open neighbor-
hood of x in M . In particular, there is a number ε > 0 such that expx restricts to a
diffeomorphism from the ball of radius ε (with respect to gx) in TxM onto a neighbor-
hood U of x in M . Now any point y ∈ U can be written as exp(X) for some X in that
ball, and hence t 7→ expx(tX) defines a geodesic c : [0, 1] → M such that c(0) = x and
c(1) = y. So any point in U can be joined to x by a geodesic.

On the other hand, for 0 < δ < ε, we can consider the sphere of radius δ in TxM .
Its image under expx is called the geodesic sphere Sδ(x) of radius δ around x.

Lemma 2.5 (Gauß). Let x be a point in a Riemannian manifold (M, g) and let ε > 0
be chosen in such a way that expx restricts to a diffeomorphism from the ε–ball around 0
in TxM onto an open neighborhood U of x in M . Then for each 0 < δ < ε, the geodesic
sphere Sδ(x) is a smooth submanifold in M and the geodesics through x intersect this
submanifold orthogonally.

Proof. Since any sphere in TxM is a submanifold in any ball containing it, and
Sδ(x) is the image of one of these spheres under a diffeomorphism, it is a submanifold,
too. Now take any smooth curve v(s) in the sphere of radius δ in TxM and for t ∈ [0, 1]
define γ(t, s) := expx(tv(s)). This is a smooth variation of the curve c(t) = expx(tv(0))
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which is a geodesic. But it is also true that for each fixed s, the curve cs(t) = expx(tv(s))
is a geodesic. Thus g(cs(t))(c

′
s(t), c

′
s(t)) is constant and its value at t = 0 of course is

gx(v(s), v(s)) = δ2. In particular, the energy of this variation is constant in s, so
0 = d

ds
|s=0E(s).

But we can also compute this infinitesimal variation using the first variational for-
mula, and since c is a geodesic, only the boundary terms survive in this formula.
Moreover, ∂

∂s
γ(t, s) := (Ttv(s)) expx(t

d
ds
v(s)), so the variation vector field r satisfies

r(0) = 0 and r(1) = Tv(0) expx ·v′(0). Thus the first variational formula simply tells
us that 0 = g(expx(v(0)))(c′(1), ξ) for any tangent vector ξ which can be written as
Tv(0) expx ·v′(0). By construction, any vector tangent to Sδ(x) can be written in this
form, so the whole tangent space of the geodesic sphere is orthogonal to the tangent
vector c′(1) of the geodesic c. �

Now by a minimizing curve, we mean a piece–wise smooth curve c : [a, b] → M
which is a shortest connection between its endpoints, i.e. satisfies d(c(a), c(b)) = L(c).
We can next prove that for nearby points, minimizing curves exist and are geodesics
(up to parametrization).

Proposition 2.5. Let (M, g) a Riemannian manifold, x ∈ M a point and ε > 0
a number such that expx restricts to a diffeomorphism from Bε(0) := {ξ ∈ TxM :
gx(ξ, ξ) < ε2} onto an open neighborhood U of x in M .

(1) Let u : [a, b] → (0, ε) and v : [a, b] → TxM be smooth functions such that
gx(v(t), v(t)) = 1 for all t and put c(t) := expx(u(t)v(t)). Then the arc length of c
satisfies L(c) ≥ |u(b)− u(a)| and equality holds if and only if u is monotonous and v is
constant.

(2) For y = expx(ξ) ∈ U , the geodesic t 7→ expx(tξ) is a minimizing curve joining x
to y, and up to reparametrizations it is the unique such curve.

Proof. (1) By construction, we get c′(t) = T expx ·(u′(t)v(t)+u(t)v′(t)). Along the
line spanned by v(t), the vector T expx ·v(t) is the speed vector of a geodesic, whence
we conclude that g(T expx ·(u′(t)v(t)), T expx ·(u′(t)v(t))) = |u′(t)|2. On the other hand,
T expx ·(u(t)v′(t)) is tangent to Su(t)(x) and hence orthogonal to T expx ·(u′(t)v(t)) by
Lemma 2.5. Hence we get g(c′(t), c′(t)) ≥ |u′(t)|2 with equality only for if v′(t) = 0.

Hence we obtain L(c) ≥
∫ b
a
|u′(t)|dt ≥ |

∫ b
a
u′(t)dt| = |u(b) − u(a)| as claimed. The

first inequality becomes an equality if and only if v′(t) = 0 for all t i.e. iff v is constant.
The second inequality becomes an equality if and only if u′(t) has constant sign and
hence u is monotonous.

(2) By assumption, y ∈ Sρ(x) for some ρ < ε. Of course have d(x, y) ≤ ρ, since the
geodesic joining x to y has length ρ. From (1) we conclude that a curve joining x to y
which stays in Sρ ∪ expx(Bρ(0)) has length at least ρ, since outside of x, any such curve
can be written in the form used in (1). But any curve leaving this set has to have larger
length, since the part up to the first intersection with Sρ(x) already has length ρ. This
shows that d(x, y) = ρ, so the geodesic is a minimizing curve.

Conversely, a minimizing curve connecting x to y must stay in Sρ∪expx(Bρ(0)). Now
it follows immediately from the definition that the restriction of a minimizing curve to
a smaller interval is still minimizing. Applying the equality part of (1) outside of x
shows that a minimizing curve there must be of the form expx(u(t)v) for a monotonous
function u, and hence a reparametrization of the geodesic expx(tv). �

We can further use this to conclude that short pieces of minimizing curves always
are geodesics.



32 2. SOME MORE ADVANCED TOPICS

Corollary 2.5. Let c : [a, b]→M be a piece–wise smooth minimizing curve. Then
for each t ∈ (a, b), there are a′ < t < b′ such that c|(a′,b′) is a reparametrization of a
geodesic. In particular, c can be parametrized smoothly.

Proof. Given t, we claim that we can find a′ < t and ε > 0 such that expc(a′)
restricts to a diffeomorphism on Bε(0) ⊂ Tc(a′)M and such that c(t) is contained in the
image of this ball. Having shown that, openness implies that there is a b′ > t such that
c([a′, b′]) is contained in this image. As we have noticed above already, c|[a′,b′] is also
minimizing, so the result follows from the last part of Proposition 2.5.

To prove the claim, recall the by part (4) of Proposition 1.12, there is an open neigh-
borhood V of the zero section in TM on which (π, exp) restricts to a diffeomorphism on
V . This implies that we can find an open neighborhood W of c(t) in M and a number
ε > 0 such that U := {ξ : π(ξ) ∈ W, |ξ| < ε} ⊂ V , where the norm of ξ is taken
with respect to gπ(ξ). Continuity of c then implies that we can choose a′ < t such that
c(a′) ∈ W and (c(a′), c(t)) ∈ (π, exp)(U), which shows that a′ and ε have the required
properties. �

2.6. Completeness and the Hopf–Rinow theorem. In our discussion of ge-
odesics in 1.12, we have proved existence of local solutions to the geodesic equation.
The natural completeness condition coming from geodesics is that all these solutions
are defined for all times.

Definition 2.6. A Riemannian metric g on a smooth manifold M is called (geodesi-
cally) complete if for any x ∈M and ξ ∈ TxM , there exists a geodesic c : R→M such
that c(0) = x and c′(0) = ξ. In this case, (M, g) is called a (geodesically) complete
Riemannian manifold.

The Hopf–Rinow theorem shows that the notion of geodesic completeness is equiv-
alent to completeness of the metric space (M,dg) and at the same time proves an
important property of complete Riemannian manifolds.

Theorem 2.6 (Hopf-Rinow). Let (M, g) be a connected smooth Riemannian man-
ifold and let dg be the distance function associated to g as in Proposition 1.7. Then the
following conditions are equivalent

(i) The metric g is geodesically complete.
(ii) (M,dg) is a complete metric space, i.e. any Cauchy–sequence converges.
(iii) (M,dg) has the Heine–Borel property, i.e. bounded closed subsets are compact.
(iv) There exists a point x ∈M such that expx is defined on all of TxM .

Moreover, these equivalent conditions imply
(v) For any two points x, y ∈M , there is a minimizing geodesic connecting x to y.

Proof. It is clear that (i) implies (iv), and the fact that (iii) implies (ii) is a general
result for metric spaces. (A Cauchy sequence is a bounded set, so (iii) implies that its
closure is compact. Hence there is a convergent subsequence, which already implies that
the initial Cauchy sequence converges.)

(ii)⇒(i): Assume that (ii) holds and that c is a geodesic in M , whose maximal
interval (a, b) of definition is finite. Without loss of generality, we may assume that
g(c′(t), c′(t)) (which is constant since c is a geodesic) is equal to one. This implies
that for all s, t ∈ (a, b) we have dg(c(s), c(t)) ≤ |t − s|. It suffices to show that the
domain of definition of c can be extended on one side. Thus assume that b < ∞,
choose a sequence ti converging to b and consider the sequence (c(ti)) in (M,dg). By
construction, this is a Cauchy sequence, so there is a point x ∈ M such that c(ti)
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converges to x. As in the proof of Corollary 2.5 we can find an index i and a number ε
such that expc(ti) is defined on Bε(0) ⊂ Tc(ti)M and such that x lies in the image of this
ball. Then γ(s) := expc(ti)(sc

′(ti)) is a well defined geodesic for |s| < ε. But γ(0) = c(ti)
and γ′(0) = c′(ti) so γ(s) = c(ti + s) as long as ti + s ∈ (a, b). But by assumption
b < ti + ε, so we obtain an extension of the domain of definition to (a, ti + ε), which is
a contradiction.

We next claim that if for a point x ∈M , expx is defined on all of TxM , then for any
point y ∈M , there is a minimizing geodesic connecting x to y. Put r = dg(x, y), choose
ε > 0 such that expx restricts to a diffeomorphism on Bε(0) ⊂ TxM and fix δ < ε. Then
the geodesic sphere Sδ(x) ⊂ M is the image of a compact submanifold of Bε(0) under
a diffeomorphism and hence compact. Thus there is a point z ∈ Sδ(x) at which the
continuous function dg( , y) attains its minimum. From Proposition 2.5 we know that
any point in Sδ(x) has distance δ from x. Together with the fact that any piece–wise
smooth curve from x to y has to intersect Sδ(x), this easily implies that dg(z, y) = r−δ.

Now there is a unique unit vector ξ ∈ TxM such that z = expx(δξ) and we consider
the geodesic c(t) := expx(tξ) emanating from x in direction ξ. By construction, this
satisfies gc(t)(c

′(t), c′(t)) = 1, so it is parametrized by arclength. Now we define A :=
{t ∈ [δ, r] : dg(c(t), y) = r − t}, and we want to show that r ∈ A, which implies that
c(r) = y, and hence the claim. As observed above, dg(z, y) = r − δ, so δ ∈ A and A is
non–empty. Moreover, A ⊂ [δ, r] is the subset on which two continuous functions agree,
so it is closed.

Therefore, putting s0 := sup(A), we get s0 ∈ A. If s0 < r, then we can find a δ′ < r
satisfying the conditions of Lemma 2.5 for the point c(s0). As above, the geodesic sphere
Sδ′(c(s0)) contains a point z′ which has minimal distance to y, and dg(z

′, y) = r−s0−δ′.
But this implies that dg(z

′, x) ≥ s0 + δ′. As above, we can write z′ = expc(s0)(δ
′ξ′) for

a unit vector ξ′ ∈ Tc(s0)M , and we denote by c̃ the corresponding unit speed geodesic
emanating from c(s0). This shows that first going from x to c(s0) via c and then going to
z′ via c̃ is a minimizing curve connecting x to z′. By Corollary 2.5 this has to coincide
with a geodesic on a neighborhood of s0, which is only possible if ξ′ = c′(s0). But
this implies that s0 + δ′ ∈ A, which is a contradiction. Thus the proof of the claim is
complete.

Using this claim, we can now prove that (iv) implies (iii), which completes the proof
of the equivalences. Indeed, if K ⊂M is bounded then there is a constant C such that
dg(x, y) ≤ C for all y ∈ K, where x is the point occurring in (iv). But by the claim, this
implies that K is contained in the image of the closed ball of radius C in TxM under
expx, which is compact by continuity of expx. Hence if K is closed, it is compact, too.

Having the equivalence at hand, we see that if (iv) is satisfied for one point x ∈M ,
it implies (i), which in turn says that (iv) is satisfied for any point of M . Hence (v)
follows from the claim. �

Corollary 2.6. (1) Any compact Riemannian manifold is complete.
(2) If M is a closed submanifold of Rn for some n, and one endows M with the

Riemannian metric g induced from the inner product of Rn, then (M, g) is complete.
(3) If (M, g) is a complete Riemannian manifold, then for each x ∈ M , the expo-

nential map defines a surjection expx : TxM →M .

Proof. (1) Follows from the well known fact that compact metric spaces are auto-
matically complete.

For (2), observe that for a smooth curve in M connecting two points x and y, the
arclength is always at least the Euclidean distance between x and y. But this shows
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that any subset in M which is bounded with respect to dg is also bounded with respect
to Euclidean distance, so closed subsets with this property are automatically compact.

(3) immediately follows from condition (v) in the Hopf–Rinow theorem. �

It turns out that hyperbolic space as discussed in part (3) of 2.3 is a complete
Riemannian manifold. This example nicely illustrates two general phenomena. Starting
from the unit ball in Rn with the restriction g0 of the flat metric (which evidently is not
complete), we have obtained the hyperbolic metric as a so–called conformal rescaling,
i.e. g = fg0 for a positive smooth function f . Rescaling a metric conformally does change
the notion of length, but it does not change the notions of angles, so in particular, one
obtains the same concept of orthogonality. Now the general phenomenon mentioned
above is that given an arbitrary Riemannian manifold (M, g0), one can always find a
positive smooth function f : M → R such that g := fg0 defines a complete Riemannian
metric on M . Intuitively, one can think about this as “moving the missing points to
infinity”.

The second phenomenon is a kind of converse of this. By the Hopf–Rinow theorem,
for a non–compact, complete Riemannian manifold (M, g), M must be unbounded with
respect to the distance function dg. In the case of hyperbolic space, we can also start
with the hyperbolic metric g and view g0 as a conformal rescaling of g, in which the
manifold becomes bounded. Again this works in general, so any Riemannian metric can
be rescaled to one leading to a bounded distance on M (which then has to be incomplete
unless M is compact).

Covariant derivative of tensor fields

The covariant derivative and parallel transport can be extended to tensor fields,
basically by requiring certain naturality properties. This for example allows us to form
the covariant derivative of the curvature. Moreover, we can iterate covariant derivatives
and thus construct higher order differential operators.

2.7. Basic notions. The extension of the covariant derivative is determined by
requiring certain naturality properties. On the one hand, for smooth functions, one
already has an appropriate operation given by the usual action of vector fields on smooth
functions. Let us denote by T `k (M) the space of smooth

(
`
k

)
–tensor fields on a smooth

manifold M . Then we want to use the Levi–Civita connection to define operators
∇ : X(M)×T `k (M)→ T `k (M) with properties analogous to the covariant derivative. In
particular, ∇ should be linear over smooth functions in the X(M) component.

It turns out that the only thing to require in addition is a compatibility with tensor
products and with contractions. This then pins down the whole operation completely.

Proposition 2.7. Suppose that ∇ is a linear connection on the tangent bundle
of a smooth manifold M . Then this extends uniquely to a family of operators ∇ :
X(M)× T k` (M)→ T k` (M) which are linear over smooth functions in the first variable,
commute with contractions, and satisfy ∇ξ(s ⊗ t) = (∇ξs) ⊗ t + s ⊗ ∇ξt as well as
∇ξf = ξ · f for f ∈ T 0

0 (M) = C∞(M,R).

Proof. Let us first look at the case of T 0
1 (M) = Ω1(M). Given ξ, η ∈ X(M) and

ϕ ∈ Ω1(M) we can write the smooth function ϕ(η) as the result of the only possible
contraction applied to ϕ ⊗ η ∈ T 1

1 (M). If an extension with the required properties
exists, then the contraction of (∇ξϕ)⊗η+ϕ⊗ (∇ξη) has to coincide with ξ ·ϕ(η). Thus
we try defining ∇ξϕ as a map X(M)→ C∞(M,R) by

∇ξϕ(η) := ξ · ϕ(η)− ϕ(∇ξη).
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This map is immediately seen to be linear over smooth functions in η, so we have defined
∇ξϕ ∈ Ω1(M). Moreover, the definition readily implies that ∇fξϕ = f∇ξϕ and that

(∇ξ(fϕ))(η) = f∇ξϕ(η) + (ξ · f)ϕ(η)

and hence ∇ξfϕ = f∇ξϕ+ (ξ · f)ϕ.
Having this at hand, the general definition of the covariant derivative is motivated

in the same way. Given t ∈ T `k and ξ ∈ X(M), we define ∇ξt as a (k + `)–linear map
X(M)k × Ω1(M)` → C∞(M,R) by

(2)

(∇ξt)(η1, . . . , ηk, ϕ
1, . . . , ϕ`) := ξ · t(η1, . . . , ηk, ϕ

1, . . . , ϕ`)

−
∑k

i=1 t(η1, . . . ,∇ξηi, . . . , ηk, ϕ
1, . . . , ϕ`)

−
∑`

j=1 t(η1, . . . , ηk, ϕ
1, . . . ,∇ξϕ

j, . . . , ϕ`).

Similarly as above, one verifies directly that this map is linear over smooth functions
in each ηi and each ϕj, so we have defined ∇ξt ∈ T `k (M). We also see directly from
the formula that ∇fξt = f∇ξt. As in the case of one–forms, this formula is forced from
the properties we want to achieve, since one can view t(η1, . . . , ϕ`) as an appropriate
contraction of t ⊗ η1 ⊗ · · · ⊗ ϕ`. This shows the the required properties pin down the
covariant derivative completely.

So it remains to prove the compatibility with tensor products and with contractions
in general. Concerning tensor products, we take t ∈ T `k (M) and s ∈ T `′k′ (M) and
ξ ∈ X(M) and expand the defining equation for ∇ξ(t⊗ s)(η1, . . . , ηk+k′ , ϕ

1, . . . , ϕ`+`
′
) as

in (2). By definition (t⊗ s)(η1, . . . , ηk+k′ , ϕ
1, . . . , ϕ`+`

′
) is given by

t(η1, . . . , ηk, ϕ
1, . . . , ϕ`)s(ηk+1, . . . , ηk+k′ , ϕ

`+1, . . . , ϕ`+`
′
).

Applying ξ to this product of smooth functions, we apply the Leibniz rule. The first
term in the result adds up with those terms in which the covariant derivatives hits one
of the first k η’s or one of the first ` ϕ’s to

(∇ξt)(η1, . . . , ηk, ϕ
1, . . . , ϕ`)s(ηk+1, . . . , ηk+k′ , ϕ

`+1, . . . , ϕ`+`
′
).

This is exactly the action of (∇ξt) ⊗ s on the given vector fields an one–forms. In the
same way, the remaining terms add up to the action of t ⊗ ∇ξs, so the compatibility
with tensor products is proved.

Let us next look at the basic contraction, which can be viewed as a tensorial operator
C : T 1

1 (M) → C∞(M,R). Given η ∈ X(M) and ϕ ∈ Ω1(M), we get η ⊗ ϕ ∈ T 1
1 (M)

and C(η ⊗ ϕ) = ϕ(η). The definition of ∇ on Ω1(M) together with compatibility with
the tensor product shows that

C(∇ξ(η ⊗ ϕ)) = ξ · ϕ(η) = ∇ξ(C(η ⊗ ϕ)).

The definition in (2) also implies that the covariant derivative on tensor fields is a local
operator. But locally any element of T 1

1 (M) can be written as a finite sum of such
tensor products, so compatibility of ∇ with C follows.

Now let us consider a general contraction T `k (M)→ T `−1
k−1 (M), say the one contract-

ing the ith upper index into the jth lower one. On a tensor field of the form t⊗ ψ ⊗ s
with t ∈ T i−1

j−1 (M), ψ ∈ T 1
1 (M) and s ∈ T `−ik−j (M), this contraction is given by C(ψ)t⊗s.

For ξ ∈ X(M) we then conclude that the contraction of ∇ξ(t⊗ ψ ⊗ s) is given by

C(ψ)(∇ξt)⊗ s+ C(∇ξψ)t⊗ s+ C(ψ)t⊗∇ξs.

Since we have verified C(∇ξψ) = ξ · C(ψ) already, we see that this coincides with
∇ξ(C(ψ)t ⊗ s). Locally, any element of T `k (M) can be written as a finite sum of such
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tensor products, so compatibility of the contraction with the covariant derivative holds
in general. Since general contractions can be obtained by iterating contractions of a
single pair of indices, the proof is complete. �

Remark 2.7. (1) For a smooth function f and a tensor field t, f ⊗ t is just the
product ft, so ∇ξ(ft) = (ξ · f)t + f∇ξt holds in general as a consequence of the
compatibility with tensor products.

(2) Given a tensor field g ∈ T 0
2 (M), the formula for the covariant derivative from

the proof reads as

(∇ξg)(η, ζ) = ξ · g(η, ζ)− g(∇ξη, ζ)− g(η,∇ξζ).

Hence the condition that a linear connection ∇ on TM is metric with respect to a
Riemannian metric g on M reads as ∇ξg = 0 for the induced connection and any vector
field ξ.

2.8. Parallel tensor fields. From the formula (2) for the covariant derivative in
the proof of Proposition 2.7, we can easily derive a description in local coordinates. In
the domain of a chart (U, u), a tensor field t ∈ T `k (M) is determined by the functions
ti1...i`j1...jk

which can be obtained as

ti1,...,i`j1...jk
= t(∂j1 , . . . , ∂jk , du

i1 , . . . , dui`).

Writing ξ ∈ X(M) as
∑

i ξ
i∂i in the domain of the chart, we by definition get ∇ξ∂j =∑

i,a ξ
iΓaij∂a. Likewise, we can expand ∇ξdu

i =
∑

j(∇ξdu
i)(∂j)du

j, which easily leads

to ∇ξdu
i =

∑
j,a ξ

jΓijadu
a. Together, these observations immediately imply that

(∇ξt)
i1...i`
j1...jk

= ξ · ti1...i`j1...jk
−
∑

i,a ξ
iΓaij1t

i1...i`
aj2...jk

− · · · −
∑

i,a ξ
iΓaijkt

i1...i`
j1...jk−1a

−
∑

j,a ξ
jΓi1jat

ai2...i`
j1...jk

− · · · −
∑

j,a ξ
jΓi`jat

i1...i`−1a
j1...jk

.

As in the case of vector fields, this implies that to compute ∇ξt(x), it suffices to know t
along the flow line of ξ through x. Consequently, we can mimic the developments in 1.11
in the case of tensor fields. Given a smooth curve c : I →M , we define

(
`
k

)
–tensor fields

along c and then obtain a well defined linear operator t 7→ ∇c′t on the space of such
tensor fields. In particular, there is the concept of a tensor field being parallel along a
curve. Since in local coordinates being parallel is again a system of first order ODEs, for
a ∈ I and x = c(a) ∈M , we can uniquely extend any element t0 ∈ ⊗`TxM ⊗⊗kT ∗xM to
a
(
`
k

)
–tensor field along c which is parallel along c. For [a, b] ⊂ I, this gives rise to a well

defined parallel transport of tensors along c. From the construction, one easily verifies
that this is exactly the map which gets functorially induced by the parallel transport of
vector fields.

For the Levi–Civita connection of a Riemannian manifold (M, g) we have noted
above that the induced connection on T 0

2 (M) has the property that ∇ξg = 0 for any ξ.
A tensor field with this property is called parallel since it is parallel along any smooth
curve. Surprisingly, parallel tensor fields of any type on a Riemannian manifold can be
described provided that on knows the holonomy of the metric as introduced in 1.11.
Given a point x ∈ M , we have introduced there the holonomy group Holx(M) of M
at x, which is a subgroup of the orthogonal group O(TxM). Observe that any linear
automorphism of TxM induces a linear automorphism of each of the tensor powers
⊗`TxM ⊗ ⊗kT ∗xM . Hence any element of the holonomy group acts on the values of
tensor fields of any type at x.
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Proposition 2.8. Let (M, g) be a connected Riemannian manifold and let x ∈ M
be a point.

(1) A parallel tensor field t ∈ T `k (M) is uniquely determined by its value t(x) ∈
⊗`TxM ⊗⊗kT ∗xM .

(2) Given an element t0 ∈ ⊗`TxM ⊗ ⊗kT ∗xM , there is a parallel tensor field t ∈
T `k (M) such that t(x) = t0 if and only if t0 is mapped to itself by any element of the
holonomy group Holx(M) of M at x.

Proof. (1) If t ∈ T `k (M) is parallel, it is parallel along each smooth curve. Given
a point y in M , connectedness of M implies that there is a smooth curve c : [a, b]→M
such that c(a) = x and c(b) = y. But then we must have t(y) = Ptc(t(x)).

(2) The necessity of the condition follows readily since t is parallel along each smooth
curve. To prove sufficiency, one observes that the fact that t0 is preserved by any element
of Holx(M) is equivalent to the fact that for two curves c and c̃ connecting x to some
point y ∈ M , we get Ptc(t0) = Ptc̃(t0). This is because transporting t0 to y parallely
along c and transporting the result back to x parallely along c̃ is the parallel transport
along the pice–wise smooth closed curve obtained by first running through c and then
backwards through c̃. Hence this is given by the action of an element of the holonomy
group.

Knowing this, we can extend t0 to a tensor field t by defining t(y) as Ptc(t0) for any
pice–wise smooth curve c connecting x to y. It is easy to see that the result is smooth
and it is parallel along any smooth curve by construction. �

Note that the statement that g is parallel fits nicely into the picture, since any
element of Holx(M) is orthogonal with respect to gx and this exactly means that the
induced map on ⊗2T ∗xM preserves gx.

2.9. Natural differential operators. We can interpret the covariant derivative
as a linear differential operator (even in the case of vector fields). In this picture the
covariant derivative can be iterated, thus providing the possibility to construct operators
of higher order.

The first observation we need is that for a tensor field t ∈ T `k (M) we can consider
the (k + `+ 1)–linear map ∇t : X(M)k+1 × Ω1(M)` → C∞(M,R) defined by

(∇t)(η0, . . . , ηk, ϕ1, . . . , ϕ`) := (∇η0t)(η1, . . . , ηk, ϕ1, . . . , ϕ`).

From Proposition 2.7 we know that ∇η0t is a tensor field, so this is linear over smooth
functions in all entries but η0. But in Proposition 2.7 we have also seen that ∇fη0t =
f∇η0t, so ∇t ∈ T `k+1(M). But then it is clear that we can form ∇2t = ∇(∇t) ∈ T `k+2,
and more generally, ∇rt for any integer r.

In these terms, there is a natural interpretation of the curvature. Namely, for ζ ∈
X(M), we can consider ∇2ζ ∈ T 1

2 (M). To compute this, we have to observe that
∇ζ ∈ T 1

1 (M) is, as a bilinear map X(M)×Ω1(M)→ C∞(M,R) given by (∇ζ)(η, ϕ) =
ϕ(∇ηζ). Consequently, we get

(∇2ζ)(ξ, η, ϕ) = (∇ξ(∇ζ))(η, ϕ) = ξ · (ϕ(∇ηζ))− ϕ(∇∇ξηζ)− (∇ξϕ)(∇ηζ).

The first and last term add up to ϕ(∇ξ∇ηζ), which implies that, as a bilinear map
X(M)× X(M)→ X(M), we obtain

(∇2ζ)(ξ, η) = ∇ξ∇ηζ −∇∇ξηζ.
In view of torsion–freeness, this implies that

R(ξ, η)(ζ) = (∇2ζ)(ξ, η)− (∇2ζ)(η, ξ),
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which interprets the curvature as the alternation of the square of a covariant derivative.
In the context of abstract index notation, one can use an expression like ∇jt

i1...i`
j1...jk

to

denote ∇t for a tensor field t = ti1...i`j1...jk
∈ T `k(M). This has to be handled with care, since

one has to decide which terms are really differentiated. The usual convention is that if
there are no brackets, then a covariant derivative acts on all terms to its right. Thus
∇jξ

iϕk represents ∇(ξ ⊗ ϕ) and the compatibility of the covariant derivative with the
tensor product can be written as ∇jξ

iϕk = (∇jξ
i)ϕk + ξi∇jϕk. Alternatively, the first

of these summands can be written as ϕk∇jξ
i.

In these terms, one can now easily describe some operators. For example, the fact
that ∇ξf = ξ · f for a smooth function f immediately implies that ∇f = df . Likewise,
for a one–form ϕ = ϕi, we have by definition

(∇ϕ)(ξ, η) = (∇ξϕ)(η) = ξ · ϕ(η)− ϕ(∇ξη).

Torsion–freeness of∇ together with the global formula for the exterior derivative implies
that

dϕ(ξ, η) = (∇ϕ)(ξ, η)− (∇ϕ)(η, ξ),

so in abstract index notation the exterior derivative can be written as ϕi 7→ 2∇[iϕj]. One
can also verify that for a one–form ϕ = ϕi the codifferential is given by δϕ = gij∇iϕj.
Together with the observation on the exterior derivative of functions from above, this
shows that for a smooth function f , the Laplacian is given by ∆f = gij∇i∇jf .

As an example of a natural differential operator, let us study the so–called Killing
operator on one–forms. This is the operator mapping Ω1(M) to the space of symmetric(

0
2

)
–tensor fields, defined by ϕi 7→ ∇(iϕj). One calls one–forms which lie in the kernel

of this operator Killing one–forms and the vector fields dual to these (i.e. given by
ξi = gijϕj) are called Killing vector fields.

Proposition 2.9. Let (M, g) be a Riemannian manifold. Then we have
(1) For ϕ = ϕi ∈ Ω1(M) the following conditions are equivalent

(i) ϕ is a Killing one–form
(ii) ∇ϕ = 1

2
dϕ

(iii) Each local flow of the dual vector field ξi = gijϕj is a local isometry for g.

(2) If M is connected, then ϕ is uniquely determined by the values ϕ(x) and ∇ϕ(x)
for any point x ∈ M . In particular, the space of Killing one–forms has dimension at

most n(n+1)
2

, where n = dim(M).

Proof. (1) By definition ϕ is a is a Killing one–form if and only if ∇iϕj has trivial
symmetrization and thus is skew symmetric. Since we have observed already that
dϕ = 2∇[iϕj] we see that (i) and (ii) are equivalent. On the other hand, it follows
from general properties of the Lie derivative that the local flows of ξ are isometries
(i.e. satisfy (Flξt )

∗g = g whenever the flow is defined), if and only if Lξg = 0. Now
the Lie derivative on tensor fields satisfies similar naturality properties as the covariant
derivative, in particular,

(Lξg)(η, ζ) = ξ · g(η, ζ)− g([ξ, η], ζ)− g(η, [ξ, ζ]).

By torsion–freeness of the Levi–Civita connection, we can write [ξ, η] = ∇ξη−∇ηξ, and
likewise for the other bracket. But then the fact that ∇ is metric shows that we end up
with

(Lξg)(η, ζ) = g(∇ηξ, ζ) + g(η,∇ζξ),

and the right hand side is the symmetrization of gai∇jξ
a = ∇jϕi. Hence we see that (i)

is equivalent to (iii).
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(2) Suppose that ϕi is a Killing one–form, and put µij = 1
2
dϕ = ∇iϕj. Now a nice

trick allows us to compute ∇iµjk (as a consequence of the equation satisfied by ϕ).
Namely, by construction, we have dµ = 0. Similarly to the case of one–forms discussed
above, one verifies that dµ can be computed as the complete alternation of∇iµjk. Hence
we conclude that

∇iµjk = −∇kµij −∇jµki = ∇k∇jϕi −∇j∇kϕi.

Similarly to the case of vector fields, one now verifies that the commutator of covariant
derivatives can be expressed via the curvature. More precisely, one verifies that

∇k∇jϕi −∇j∇kϕi = Rjk
`
iϕ`.

Thus we conclude that for the pair
(
ϕi
µjk

)
we can compute the component–wise covariant

derivative in terms of the values of the components and the (known) curvature of g.
Along a smooth curve, this gives a first order ODE on the pair

(
ϕi
µjk

)
, so the values along

the curve are determined from the value of the pair in one point. Since M is connected,
this implies the claim. �

Decomposing and interpreting curvature

From the discussion of curvature symmetries in 1.13, it is already visible that the
Riemann curvature tensor is a rather complicated object. Therefore, constructing sim-
pler objects out of the Riemann tensor is important for many applications.

2.10. Flat manifolds. Before we start decomposing the Riemann curvature ten-
sor, we discuss the geometric meaning of vanishing of the curvature. Observe that by
Lemma 1.10, the covariant derivative is a local operator. The definition of curvature
in 1.13 then implies that the curvature is a local invariant of a Riemannian manifold,
i.e. the restriction of the curvature to an open subset U depends only on the restriction
of the metric to U . Hence vanishing of the curvature is a local condition, so we can only
hope for local characterizations of this property. We first need a lemma, which is not
related to Riemannian geometry, but rather nice in its own right.

Lemma 2.10. Let M be a smooth manifold of dimension n and let x ∈M be a point.
Suppose that ξ1, . . . , ξn are vector fields defined on an open neighborhood of x such that
[ξi, ξj] = 0 for all i and j and such that {ξ1(x), . . . , ξn(x)} is a basis for TxM . Then
there is a local chart (U, u) for M with x ∈ U such that for each i, ξi|U coincides with
the coordinate vector field ∂i.

Proof. It is well known that vanishing of the Lie brackets implies that the flows
of the vector fields ξi mutually commute, see Section 2.15 of [DG1]. Now consider the
map

ϕ(t1, . . . , tn) := Flξ1t1 ◦ . . . ◦ Flξntn (x),

which is defined on some open neighborhood of 0 in Rn. The ith partial derivative of
ϕ can be computed as d

ds
|s=0ϕ(t1, . . . , ti + s, . . . , tn). Inserting into the definition and

using that Flξi
ti+s

= Flξis ◦Flξi
ti

as well as the fact that the flows commute, this can be
written as

d
ds
|s=0 Flξis (ϕ(t1, . . . , tn)) = ξi(ϕ(t1, . . . , tn)).

Now the assumption that the ξi(x) form a basis of TxM shows that T0ϕ is invertible, so
ϕ is a diffeomorphism on some neighborhood of 0. The inverse of this diffeomorphism
then defines a chart with the required properties. �

Using this, we can now characterize vanishing of the Riemann curvature tensor.
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Proposition 2.10. Let (M, g) be a Riemannian manifold of dimension n. Then
for a point x ∈M , the following conditions are equivalent

(1) The Riemann curvature tensor vanishes on an open neighborhood of x.
(2) There is a chart (U, u) for M with x ∈ U such that the coordinate vector fields

∂i form an orthonormal basis of each tangent space.
(3) There are vector fields {ξ1, . . . , ξn} defined on a neighborhood of x which are all

parallel, i.e. such that ∇ηξi = 0 for any η ∈ X(M) and any i = 1, . . . , n and such that
{ξ1(x), . . . , ξn(x)} is a basis for TxM .

(4) There is an isometric diffeomorphism from an open neighborhood of x in M onto
an open subset of Euclidean space.

Proof. (3)⇒(2): Let us first orthonormalize the basis {ξ1(x), . . . , ξn(x)} and write
the corresponding orthonormal basis as ηj(x) =

∑
i a

i
jξi(x) with aij ∈ R. Putting

ηj =
∑

i a
i
jξi we of course get ∇ηηj = 0 for each j and any η ∈ X(M) since the aij

are constant. Since ∇ is metric, this implies that for all i, j, the functions g(ηi, ηj) are
constant, so the ηi are orthonormal wherever they are defined.

On the other hand, we in particular get ∇ηiηj = 0 for all i and j, which by torsion
freeness implies [ηi, ηj] = 0 for all i and j. By the lemma, there is a chart (U, u) around
x, such that ∂i = ηi for all i, so (2) holds.

(2)⇒(4): By definition, the chart map u is a diffeomorphism from the open neigh-
borhood U of x onto an open subset of Rn. Moreover for y ∈ U , the tangent map
Tyu maps the orthonormal basis {∂i(y)} to the standard basis of Rn. Hence Tyu is
orthogonal, so u is an isometry.

(4)⇒(1): This is clear since by Proposition 1.14, any isometry is compatible with
the Riemann curvature tensors, and the curvature vanishes on Rn.

(1)⇒(3): Since this is a local question, it suffices to do this locally around 0 ∈ Rn

for an arbitrary Riemannian metric g on Rn with vanishing curvature. We denote
by x1, . . . , xn the standard coordinates and by ∂i the corresponding coordinate vector
fields. Choose an orthonormal basis ξ1(0), . . . , ξn(0) of T0Rn and extend each of these
tangent vectors to a vector field ξi on Rn as follows. To get ξi(x

1, . . . , xn), first translate
ξi(0) parallely along the line t 7→ (t, 0, . . . , 0) to the point (x1, 0, . . . , 0) then translate
parallely along t 7→ (x1, t, 0, . . . , 0) to (x1, x2, 0, . . . , 0) and so on. So we have to prove
that the resulting vector fields ξi are all parallel.

Now by construction ξi is parallel along each of the lines t 7→ (y1, . . . , yn−1, t), so
∇∂nξi = 0. The same argument shows that ∇∂n−1ξi vanishes on the subspace of all
points with last coordinate equal to 0. But vanishing of the curvature together with
[∂n−1, ∂n] = 0 implies that ∇∂n∇∂n−1ξi = ∇∂n−1∇∂nξ = 0. Hence ∇∂n−1ξi is parallel
along each of the lines t 7→ (y1, . . . , yn−1, t) and vanishes for t = 0, so it vanishes
identically. Next ∇∂n−2ξi vanishes in all points for which the last two coordinates are
zero, and using vanishing of the curvature one first shows that this extends to all points
with vanishing last coordinate and then to all of Rn. Iteratively, we get ∇∂jξi = 0 for
all i and j, so the ξi are indeed parallel. �

2.11. Sectional curvature and space forms. The concept of sectional curvature
is on the one hand motivated by the relation between Gauß curvature and the Riemann
curvature tensor for surfaces in R3, see Proposition 3.7 in [DG1]. On the other hand, as
we have noted in Proposition 1.13, the Riemann tensor can be interpreted as a bilinear
form on Λ2TM , so one can look at the values of this form on the wedge product of two
tangent vectors.
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In view of the symmetries of the Riemann tensor, it does not make sense to insert
four copies of a tangent vector into R. However, given two tangent vectors ξ and η
in TxM , there is an essentially unique way to insert them into the curvature. A slight
variation of this idea with nicer properties is the following.

Definition 2.11. (1) Let (M, g) be a Riemannian manifold with curvature tensor
R. Then for a point x ∈ M and two linearly independent tangent vectors ξ, η ∈ TxM ,
one defines the sectional curvature by

K(x)(ξ, η) :=
gx(Rx(ξ, η)(η), ξ)

gx(ξ, ξ)gx(η, η)− gx(ξ, η)2
∈ R.

(2) One says that g has constant sectional curvature a if and only if K(x)(ξ, η) = a for
all x, ξ and η.

The motivation for the denominator in this definition is that K(x)(ξ, η) depends
only on the plane in TxM spanned by the two vectors ξ and η. Indeed, replacing ξ and
η by aξ + bη, cξ + dη, the skew symmetry properties of R show that the numerator of
the expression for K(x) gets multiplied by (ad− bc)2. On the other hand, the square of
the area of the parallelogram spanned by ξ and η can be computed as |ξ|2|η|2 sin2(α) =
|ξ|2|η|2(1 − cos2(α)), where α is the angle between the two vectors, and this is exactly
the denominator in the expression for K(x). We also conclude that this denominator is
non–zero provided that ξ and η are linearly independent.

This also implies that it is sufficient to consider K(x)(ξ, η) for orthonormal tangent
vectors, and K(x)(ξ, η) = gx(Rx(ξ, η)(η), ξ) in this case. Now the explicit formula for
the curvatures of the sphere and of hyperbolic space from 2.3 show that the sphere has
constant sectional curvature +1, while hyperbolic space has constant sectional curvature
−1. Of course, Rn has constant sectional curvature 0. These three basic examples are
called the space forms and in some sense they are the simplest Riemannian manifolds.

Other constant values of sectional curvature are not terribly interesting, since one
may always rescale the metric by a positive constant. Since the Levi–Civita connection
of g is also metric for any constant positive multiple of g, it follows that such a constant
rescaling does not change the Levi–Civita connection and hence also the Riemann tensor
remains unchanged. However, passing from the Riemann tensor to sectional curvature
involves the metric which implies that passing from g to ag means passing from K to
1
a
K.

It can be shown in general that any manifold of constant sectional curvature 1
(respectively−1) is locally isometric to Sn (respectivelyHn), while manifolds of constant
sectional curvature 0 are flat and thus locally isometric to Rn by Proposition 2.10.
Finally, it turns out that if in each point, the sectional curvature has the same value
for all planes in the tangent space, then the metric automatically has constant sectional
curvature.

2.12. The covariant derivative of the curvature. Aparat from constant sec-
tional curvature as discussed in 2.11, there is a second idea to define a concept of
“constant curvature” for a Riemannian manifold. Namely, we can consider the Rie-
mann curvature tensor R as a

(
1
3

)
–tensor field and form its covariant derivative ∇R,

which then is a tensor field of type
(

1
4

)
. Before we study vanishing of this tensor field,

we prove the so–called second Bianchi identity (or differential Bianchi identity) which
is the last main symmetry property of the curvature tensor.

Proposition 2.12 (Second Bianchi identity). Let (M, g) be a Riemannian manifold
with Riemann curvature tensor R. Then the covariant derivative of the Riemann tensor
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satisfies

0 = (∇ξR)(η, ζ) + (∇ζR)(ξ, η) + (∇ηR)(ζ, ξ)

for all ξ, η, ζ ∈ X(M). In abstract index notation, this reads as 0 = ∇[iRjk]
`
m.

Proof. This is most easliy verified in terms of the expression of the curvature in a
local orthonormal frame, but also in this setting quite a bit of computation is needed.
Apply the exterior derivative to the defining equation

Ωi
j = dωij +

∑
k ω

i
k ∧ ωkj

for the curvature two–forms and reinsert for the dω. This gives

dΩi
j =

∑
k Ωi

k ∧ ωkj −
∑

k ω
i
k ∧ Ωk

j −
∑

k,` ω
i
` ∧ ω`k ∧ ωkj +

∑
k,` ω

i
k ∧ ωk` ∧ ω`j,

and clearly the last two sums cancel. This is already the second Bianchi identity in the
moving frame from, and we have to interpret it in terms of covariant derivatives. Recall
from 2.2 that Ωi

j(η, ζ) = g(R(η, ζ)(sj), si), where the si are the elements of the given
orthonormal frame. Differentiating this smooth function with ξ ∈ X(M), we obtain

ξ · Ωi
j(η, ζ) = g(∇ξR(η, ζ)(sj), si) + g(R(η, ζ)(sj),∇ξsi).

The naturality properties of the covariant derivative from Propostion 2.7 imply that

∇ξR(η, ζ)(sj) = ((∇ξR)(η, ζ))(sj) +R(∇ξη, ζ)(sj) +R(η,∇ξζ)(sj) +R(η, ζ)(∇ξsj).

Now by definition ∇ξsj =
∑

k ω
k
j (ξ)sk and likewise we can insert for ∇ξsi above. In-

serting all that above, we obtain

ξ · Ωi
j(η, ζ) = g(((∇ξR)(η, ζ))(sj), si) + Ωi

j(∇ξη, ζ)− Ωi
j(∇ξζ, η)

+
∑

k ω
k
j (ξ)Ωi

k(η, ζ) +
∑

k ω
k
i (ξ)Ωk

j (η, ζ).

Summing this up over all cyclic permutations of ξ, η and ζ the second an third terms
in the right hand side add up to

Ωi
j([ξ, η], ζ) + Ωi

j([η, ζ], ξ) + Ωi
j([ζ, ξ], η),

and bringing this to the other side, we obtain dΩi
j(ξ, η, ζ) on the left hand side. On the

other hand, summing the last two terms in the right hand side and using ωki = −ωik,
one gets

(
∑

k ω
k
j ∧ Ωi

k −
∑
ωik ∧ Ωk

j )(ξ, η, ζ).

Hence we conclude that the sum over all cyclic permutations of ξ, η and ζ of

g(((∇ξR)(η, ζ))(sj), si)

vanishes for all i and j, which implies the claim. �

Now let us study the condition of parallel curvature for Riemannian manifolds. It
turns out that this is related to so called symmetries. Here by a symmetry in a point
x of a smooth manifold M one means a local diffeomorphism σ = σx defined on a
neighborhood of x such that σ(x) = x and Txσ = − idTxM . Note that in case that
(M, g) is a Riemannian manifold and σ is an isometry for g, these conditions determine
σ locally around x. Indeed, in this case, we must have σ(expx(ξ)) = expx(−ξ) for all
ξ ∈ TxM such that the left hand side is defined, compare with 1.14. Conversely, we can
clearly define a local symmetry at x by expx ◦ − (expx)

−1, which is called the geodetic
reflection in x.
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Definition 2.12. Let (M, g) be a connected Riemannian manifold.
(1) (M, g) is called a locally symmetric space if and only if for each point x ∈ M ,

the geodetic reflection defines an isometry on some open neighborhood of x.
(2) (M, g) is called a symmetric space if and only if for each point x ∈ M , the

geodetic reflection in x extends to a globally defined isometry of M .

Now it turns out that (M, g) is a locally symmetric space if and only if the Riemann
curvature tensor R of g is parallel, i.e. iff ∇R = 0. The necessity of this condition is
easy to see. If the geodestic reflection defines an isometry σx on an open neighborhood
U of x, then (σx)

∗(∇R) = ∇R, see Proposition 1.14. But the action of (σx)
∗(∇R)(x) on

three tangent vectors in TxM is given by hitting the tangent vectors with Txσx = − id,
so (σx)

∗(∇R)(x) = −∇R(x). The sufficiency is more complicated to prove.
Second, it turns out that the difference between locally symmetric spaces and sym-

metric spaces comes from topology. Indeed, one can prove that a simply connected
locally symmetric space automatically is a symmetric space. In particular, given a lo-

cally symmetric space (M, g) one can form the universal covering space M̃ . This is

a simply connected space endowed with a covering map p : M̃ → M . This covering

map is a local homeomorphism, so one can use charts of M to make M̃ into a smooth
manifold in such a way that p becomes a local diffeomorphism. Further, one can pull

back the tensor field g on M to M̃ to obtain a Riemannian metric g̃ on M̃ and then

p becomes a local isometry. By construction, (M̃, g̃) is a locally symmetric space and
thus a symmetric space by simple connectedness.

To analyze symmetric spaces, one first proves that they are homogenous, i.e. for two
points x and y in a symmetric space (M, g), there always is an isometry f : M → M
such that f(x) = y. This follows easily from the same fact in the case that x and y
can be connected by a geodesic, which is obvious since x is mapped to y by reflecting
in the middle point between x and y on that geodesic. Now one can prove that the
group of isometries of a Riemannian manifold is always a Lie group, so a homogeneous
Riemannian manifold is realized as a homogeneous space of its isometry group. One
can then study the condition of being symmetric in terms of Lie theory, which leads
to a complete classification of symmetric spaces. Locally symmetric spaces are then
obtained by further quotenting by discrete subgroups of the isometry group, and a lot
is known about such subgroups.

Apart from the fact that they provide many interesting examples of Riemannian
manifolds (indculding spheres and hyperbolic spaces, and Grassmann manifolds) they
also play an important role in holonomy theory. In fact, in the classification of holonomy
groups mentioned in 1.11 and 2.8, one always has to distinguish between the case of
locally symmetric spaces and manifold for which the curvature tensor is not parallel.
For the locally symmetric case, the classification of symmetric spaces in terms of Lie
theory also gives a classification of holonomy groups, in the other case, the possible
holonomy groups are classified by a classical theorem of M. Berger.

2.13. Decomposing the curvature tensor. An idea to obtain simpler objects
from the Riemann curvature tensor is to try taking traces. Due to the symmetries of the
curvature tensor, there is initially only one trace (up to sign) which has the potential
to be non–zero. Writing the curvature tensor as Rij

k
` a contraction is defined by either

choosing one of the lower indices and contracting k into it or by choosing two of the
lower indices and contrating them with the inverse metric. Now the skew symmetry
results from part (2) of Proposition 1.13 on the one hand imply that gijRij

k
` = 0 and
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Rij
k
k = 0 as well as the fact that the remaining contractions (k into i or j, or ` with i

or j with the inverse metric) all agree up to sign.

Definition 2.13. Let (M, g) be a smooth Riemannian manifold of dimension n ≥ 3
with Riemann curvature tensor Rij

k
`.

(1) The Ricci curvature of g is the
(

0
2

)
–tensor field Ric defined by Ricij := Rki

k
j.

(2) The scalar curvature of g is the smooth functionR onM defined byR := gij Ricij.
(3) The Schouten tensor of g is defined by Pij := 1

n−2
(Ricij − 1

2(n−1)
Rgij).

(4) The Weyl curvature of g is the
(

1
3

)
–tensorfeld W defined by

Wij
k
` := Rij

k
` −
(
2δk[iPj]` − 2g`[iPj]ag

ak
)
.

(5) The metric g is called Ricci flat if Ricij = 0.
(6) The metric g is called an Einstein metric if its Ricci curvature (or equivalently

its Schouten tensor) is proportional to the metric, i.e. if Ricij = 1
n
Rgij.

Let us next verify the basic properites of these quantitites.

Proposition 2.13. For any Riemannian manifold (M, g) the following hold.
(1) The Ricci curvature and the Schouten tensor are both symmetric and they satisfy

Ricij = (n−2)Pij+Pgij, where P = gijPij = 1
2(n−1)

R is the trace of the Schouten tensor.

(2) The Weyl curvature has all symmetries of the Riemann curvature tensor as in
parts (2) – (4) of Proposition 1.13 and in addition is totally tracefree, i.e. we have

Wij
k
` = W[ij]

k
` Wij

a
`gka = Wij

a
[`gk]a Wij

a
`gka = W`k

a
igja W[ij

k
`] = 0 Wki

k
j = 0

Proof. (1) By defintion, the Ricci curvature can be written as Ricij = gk`Rki
a
jg`a.

From Proposition 1.13, we know that Rki
a
jg`a = Rj`

a
kgia = R`j

a
i gka and applying gk` to

the last expression, we by definition get Ricji. Symmtry of the Schouten tensor then
follows by definition.

From the definition of the Schouten tensor, it follows readily that Ricij = (n−2)Pij+
1

2(n−1)
Rgij. Contracting this equations with gij, we see that R = (n − 2)P + n

2(n−1)
R,

and hence n−2
2(n−1)

R = (n− 2)P, which implies the claim.

(2) Lowering the index k in the definition of the Weyl curvature, we see that Wij
a
`gka

is obtained from Rij
a
`gka by subtracting

2gk[iPj]` − 2g`[iPj]k.

From this form it is evident that this term is skew symmetric in i and j as well as in k
and `. Morover, if we expand the alternations, symmetry of g and P implies that each
of the resulting terms is symmetric in two of the three indices i, j and `. Therefore, the
complete alternation of this expression over these three indices vanishes, so R[ij

k
`] = 0

implies W[ij
k
`] = 0. In the proof of Proposition 1.13, we have seen that the symmetries

derived so far imply that Wij
a
`gka = W`k

a
igja, so it remains to prove that Wkj

k
` = 0.

To do this, we expand the alternations in the definition of the Weyl curvature to obtain

Wij
k
` = Rij

k
` − δki Pj` + δkjPi` + g`iPjag

ak − g`jPiagak.

Contracting the indices i and k, we get

Wkj
k
` = Ricj`−nPj` + Pj` + Pj` − gj`P,

which equals Ricj`−((n− 2)Pj` + Pg`) = 0. �
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In view of this result we can reinterpret the definiton of the Weyl curvature as a the
decomposition

Rij
k
` = Wij

k
` +
(
2δk[iPj]` − 2g`[iPj]ag

ak
)

of the Riemann curvature into a tracefree part and a trace–part. This trace part can
be equivalently be described by Ricij or by Pij, and it again splits into a tracefree part
and trace part as Ricij = (Ricij − 1

n
Rgij) + 1

n
Rgij and similarly for Pij. By definition,

the metric is Einstein if and only if the tracefree part of the Ricci curvature vanishes
identically.

Forming a constraction of the second Bianchi identity from Proposition 2.12, one
sees that ∇iR = 1

2
gjk∇j Ricik. In the case of an Einstein metric, the right hand side

becomes 1
2n
∇iR, so we conclude that for an Einstein metric, the scalar curvature is

constant. This constant value is referred to as the Einstein–constant of the metric, it is
mainly of interest whether this is postive, negative or zero (“Ricci–flat metrics”).

Example 2.13. Consider the metric on the sphere Sn from example (2) of 2.3, so
Rij

k
` = δki gj` − δkj gi`. This gives Ricj` = (n − 1)gj` and R = n(n − 1), which implies

that the metric on the sphere is Einstein with positive scalar curvature.
Inserting this into the definitions, we obtain Pij = 1

n−2
((n − 1)gij + n

2
gij) = 1

2
gij.

Inserting into the definition shows that the Weyl curvature of the sphere vanishes. So
also from our current point of view, these are the simplest possible curvature tensors.

Likewise, hyperbolic space has vanishing Weyl curvature, and is Einstein with neg-
ative scalar curvature R = −n(n− 1).

The part of the curvature tensor which is most easily to interpret is the Weyl cur-
vature. This is related to the concept of conformal rescaling that we have met in 2.6.
There we said that two metrics g and ĝ on a manifold M are conformal to each other if
and only if there is a positive smooth function f on M such that ĝ = fg. This defines
an equivalence relation on the set of Riemannian metrics on M . It turns out that con-
formal metrics have the same Weyl curvature, so one says that the Weyl curvature is a
conformal invariant. It further turns out that the Weyl curvature vanishes identically
if and only if the metric is (locally) conformally flat, i.e. if each point in M admits an
open neighborhood on which the metric is conformal to a flat metric as characterized
in Proposition 2.10.

This gives a simple explanation why the Weyl curvatures of the sphere and of hy-
perbolic space vanish. For hyperbolic space, we have defined the hyperbolic metric as
a conformal rescaling of the flat metric on the ball. Likewise, the computation in 2.3
shows that in the chart defined by stereographic projection, the metric on a sphere is a
conformal rescaling of the flat metric on Rn, so again this is evidently conformally flat.

2.14. Curvature and normal coordinates. We complete this part by a short
discussion of the relation between normal coordinates and the curvature tensor. This is
useful for understanding “how well” normal coordinates are adapted to the Riemannian
manifold in a point. On the other hand, it provides explanations for the meanings of
the values in a point of several curvature quantities.

Recall from 1.12 that normal coordinates centered at x are obtained by using the
inverse of expx as a chart and an orthonormal basis of TxM to identify this space with
Rn. In the resulting local coordinates, the point x corresponds to 0 ∈ Rn and we
consider the local coordinate expression gij of the metric in these coordinates. Now
first of all, since T0 expx = idTxM , we see that gij(0) = δij. Second, we know that
the radial lines in normal coordinates correspond to geodesics. This means that if
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X is a linear combination of the coordinate vector fields ∂i with constant coefficients,
then ∇XX(0) = 0. This implies that ΓU(X,X) vanishes in the point 0, and since ΓU is
symmetric, polarization implies that ΓU vanishes in 0. Hence all the Christoffel symbols
Γkij vanish at the origin. From the definition in 1.11, we conclude that this implies that
∂i · gj` + ∂j · gi` − ∂` · gij vanishes in 0 for all indices i, j and `. Adding the same term
with i and ` exchanged, we see that 2∂j · gi` vanishes in 0, so all partial derivatives of
the components gij vanish at the origin.

This says that the flat metric in normal coordinates approximates g in x to first order,
but this is already as good as things can get. We can see this by deriving the coordinate
expression for the curvature tensor, which shows that the values of its components in 0
can be computed from the Christoffel symbols and their partial derivatives in 0. Hence
they depend only on the partial derivatives of the gij up to second order, so we cannot
have vanishing second order partials in 0 unless the curvature vanishes in x.

Lemma 2.14. In arbitray local coordinates, the Riemann curvature tensor is in
terms of the Christoffel symbols given by

R(∂i, ∂j)(∂`) =
∑

k

(
∂i · Γkj` − ∂j · Γki` +

∑
a

(
Γaj`Γ

k
ia − Γai`Γ

k
ja

))
.

Proof. By definition of the Christoffel symbols, ∇∂j∂` =
∑

k Γkj`∂k, and hence

∇∂i∇∂j∂` =
∑

k

(
(∂i · Γkj`)∂k − Γkj`∇∂i∂k

)
.

Expanding the covariant derivative in terms of Christoffel symbols, and using that
[∂i, ∂j] = 0, the claimed formula then follows from the definition of curvature. �

In the special case of normal coordinates, we see that the components of the cur-
vature tensor are given by Rij

k
`(0) = ∂i · Γkj`(0) − ∂j · Γki`(0). In fact it turns out that

the relation between the curvature and the second derivatives of the functions gij is
much simpler than one would expect. To formulate this, we consider the functions
Rijk` := g(R(∂i, ∂j)(∂k), ∂`). The values of these functions in a point are exactly the
first non–trivial Taylor coefficients of the functions gij:

Theorem 2.14. The Taylor expansion of the components gij of the metric in normal
coordinates (u1, . . . , un) centered in x in the point u = 0 is given by

gij(u) = δij + 1
3
Rik`j(x)uiuj +O(|u|3).

The proof of this and the following consequences is beyond the scope of this course,
we refer to ??. Having derived this Taylor development, one can construct various
expansions which lead to the values of various curvature quantities at x as Taylor
coefficients. We list these expansions without detailed proofs.

Let us start with sectional curvature as discussed in 2.11. Here we have to specify
a two–dimensional subspace E ⊂ TxM , and the sectional curvature associated to this
plane is given by inserting an orthonormal basis {ξ, η} of E into the formula from
Definition 2.11. We denote the resulting value by K(x)(E). To interpret this, we take
a small radius r > 0 and let Cr ⊂M be the image under expx of the circle of Radius r
in E ⊂ TxM . Let L(r) denote the arclength of this smooth closed curve in M . Then it
turns out that

L(r) = 2πr − π
3
K(x)(E)r3 +O(r4).

In particular, for positive sectional curvature, the circles are shorter than their Euclidean
counterparts while for negative sectional curvature they are longer.
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Next, the Ricci curvature in x measures the infinitesimal growth of the volume
density

√
det(gij(u)). More precisely, one has√

det(gij(u)) = 1− 1
6

Ricij(x)uiuj +O(|u|3).

So positive definite Ricci curvature (as in the case of the sphere) means that the volume
element gets smaller when leaving the origin.

Finally, scalar curvature R(x) can be interpreted in terms of the growth of volumes
of geodesic balls and spheres. Let us denote by ωn the volume of the unit ball in Rn.
Then for sufficiently small r, we let Br(x) denote the image under expx of the ball of
radius r in TxM , while by Sr(x) we denote the geodesic sphere of radius r. Then it
turns out that the volume of Br(x) and the area of Sr(x) grow as

Vol(Br(x)) = ωnr
n

(
1− 1

6(n+2)
R(x)r2 +O(r3)

)
Vol(Sr(x)) = nωnr

n−1 − 1
6
R(x)ωnr

n+1 +O(rn+2).


