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Applications

based on the joint article SIGMA 3 (2007), paper 111 with
V. Souček and joint work in progress with him and A.R. Gover

Curved Casimir operators offer a new, systematic approach to
the construction of invariant differential operators for
parabolic geometries and in particular for conformal structures.

These operators are defined on all natural bundles, they lead
to standard and non–standard operators and apply both in
regular and singular infinitesimal character.

Constructing invariant operators out of curved Casimirs
usually boils down to finite dimensional representation theory.
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V. Souček and joint work in progress with him and A.R. Gover

Curved Casimir operators offer a new, systematic approach to
the construction of invariant differential operators for
parabolic geometries and in particular for conformal structures.

These operators are defined on all natural bundles, they lead
to standard and non–standard operators and apply both in
regular and singular infinitesimal character.

Constructing invariant operators out of curved Casimirs
usually boils down to finite dimensional representation theory.
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Intuitively, these are operators intrinsic to a conformal structure.
More formally, they are defined as having a universal formula in
terms of any metric in the conformal class, which is independent of
the choice of metric. This only makes sense on bundles associated
functorially to a conformal structure.

natural bundles 1

Conformal structures can be defined as G–structures with structure
group G0 = CO(n) (or CSO(n), or CSpin(n)), so

Representations of G0 give rise to natural bundles and
G0–equivariant maps induce natural bundle maps.

The bundles obtained in this way are conformally weighted
tensor and spinor bundles.

G0 is reductive, so any representation and consequently any
natural bundle splits into a direct sum of irreducibles.
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connection to representation theory

The sphere Sn can be viewed as the space of null–lines in the
Lorentzian space Rn+1,1, and the standard conformal structure on
Sn can be constructed from the Lorentz metric.

The homogeneous model

The group G = SO(n + 1, 1) acts on Sn by conformal isometries.
This action is transitive, thus inducing a diffeomorphism
Sn ∼= G/P, where P ⊂ G is the stabilizer of an isotropic line in
Rn+1,1. For any natural bundle E → Sn for the conformal
structure on Sn, the space Γ(E ) naturally is a representation of G .

The subgroup P ⊂ G is a parabolic subgroup in the sense of
representation theory. The theory of curved Casimir operators
extends to other geometries modeled on the quotients of
semisimple Lie groups by parabolic subgroups (“parabolic
geometries”).
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Let E → Sn be the natural vector bundle associated to an
irreducible representation of G0 (“irreducible bundle”). Then the
natural representation of G on Γ(E ) is a principal series
representation and hence well understood. Even better,
homomorphisms between such representations which are differential
operators are related by a duality to homomorphisms between
generalized Verma modules, which are completely understood.

Results

Operators occur in patterns that can be nicely described by
representation theory.

For a fixed irreducible bundle E , there are at most 3 invariant
operators with values in irreducible bundles defined on Γ(E ).
E.g. on unweighted functions in even dimensions n = 2m,
there is only the exterior derivative and the critical GJMS
operator of order n.
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Cartan connections

To work in an invariant setting, one has to leave the realm of
irreducible bundles. For Sn = G/P, any representation of P gives
rise to a bundle on which G naturally acts. For example,
restrictions of representations of G lead to bundles which are
G–equivariantly trivial, and hence admit G–invariant linear
connections.

It turns out that P ∼= G0 o P+, where G0 = CO(n) and P+
∼= Rn∗

is Abelian, so P is naturally an extension of G0. This group also
plays a crucial role in the curved case:

Theorem (E. Cartan)

Let (M, [g ]) be a conformal manifold of dimension n ≥ 3. Then
the conformal frame bundle of M can be naturally extended to a
principal P–bundle, on which there is a canonical Cartan
connection. This leads to an equivalence of categories.
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Natural bundles 2

Any representation of P gives rise to a natural vector bundle on
conformal manifolds by forming associated bundles to the Cartan
bundle. P–equivariant maps between such representations give rise
to natural bundle maps.

Completely reducible representations are exactly those coming
from G0

∼= P/P+ via the quotient homomorphism.

Restrictions to P of representations of G give rise to so–called
tractor bundles.

Under very mild conditions, a representation V of P admits a
P–invariant filtration V = V0 ⊃ V1 ⊃ · · · ⊃ VN such that for
each i the representation Vi/Vi+1 is completely reducible.

This carries over to natural bundles.
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Andreas Čap Curved Casimir operators



Background on conformally invariant operators
Curved Casimir operators

Applications

Let E → G/P be a homogeneous vector bundle corresponding to a
representation V of P. Then Γ(E ) ∼= C∞(G , V)P and the
quadratic Casimir element in U(g) acts on this representation as
the differential operator C(f ) := −

∑
i RXi

· RX i · f , where {Xi}
and {X i} are dual bases for g with respect to the Killing form, and
RX is the right invariant vector field generated by X .

Some tractor calculus

Consider a conformal structure with Cartan bundle G → M, and
put g = so(n + 1, 1).

adjoint tractor bundle AM = G ×P g

sections of AM correspond to P–invariant vector fields on G
For any natural bundle E → M, this induces the fundamental
derivative D : Γ(E ) → Γ(A∗M ⊗ E ). For σ ∈ Γ(E ) and
s ∈ Γ(AM) we write Dsσ for Dσ(s).
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Andreas Čap Curved Casimir operators



Background on conformally invariant operators
Curved Casimir operators

Applications

Definition of the curved Casimir operator

The Killing form induces a non–degenerate invariant bilinear form
on g and hence also on g∗. This induces a natural bundle map
B : A∗M ⊗A∗M → M × R.

Definition/Proposition

For any natural vector bundle E → M, C(σ) := (B ⊗ idE )(D2σ)
defines an invariant differential operator C : Γ(E ) → Γ(E ). On the
homogeneous model G/P, this operator specializes to the action of
the quadratic Casimir, so it is called the curved Casimir operator.

From this definition it follows immediately that C is a differential
operator of order at most 2, which is natural with respect to all
bundle maps coming from P–equivariant maps between the
inducing representations.
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For a local frame {si} for AM with dual frame {s i}, one has
C(σ) =

∑
i D

2σ(s i , si ). Using special local frames, which are nicely
adapted to the natural filtration of AM, one proves:

Theorem

(1) On any natural bundle E , C has order at most one, and its
symbol is induced by the action of p+ on the representation
inducing E .
(2) On an irreducible bundle, C acts by a scalar multiple of the
identity, and the scalar can be computed from the highest weight
of the inducing representation.

There are also explicit formulae for the action of C on tractor
bundles and tractor bundle valued forms, which nicely relate it to
tractor connections and BGG sequences.
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The basic construction principle

Let V be a representation of P with P–invariant filtration {Vi}
such that all subquotients Vi/Vi+1 are completely reducible.

For each index i , let α1
i , . . . , α

ni
i be the different scalars by

which C acts on sections of the bundles induced by the
irreducible components of Vi/Vi+1.

For a conformal manifold M, the bundle VM induced by V is
naturally filtered by smooth subbundles V iM. By naturality, C
respects the sections of any of these subbundles.

Now define Lj := (C − α1
j ) ◦ . . . ◦ (C − α

nj

j ). Then Lj preserves

each of the subspaces Γ(V iM). Restricting to Γ(V jM), the
induced operator on Γ(V jM/V j+1M) vanishes by
construction, so Lj(Γ(V jM)) ⊂ Γ(V j+1M).
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j ) ◦ . . . ◦ (C − α

nj

j ). Then Lj preserves

each of the subspaces Γ(V iM). Restricting to Γ(V jM), the
induced operator on Γ(V jM/V j+1M) vanishes by
construction, so Lj(Γ(V jM)) ⊂ Γ(V j+1M).

Andreas Čap Curved Casimir operators



Background on conformally invariant operators
Curved Casimir operators

Applications

The basic construction principle

Let V be a representation of P with P–invariant filtration {Vi}
such that all subquotients Vi/Vi+1 are completely reducible.

For each index i , let α1
i , . . . , α

ni
i be the different scalars by

which C acts on sections of the bundles induced by the
irreducible components of Vi/Vi+1.

For a conformal manifold M, the bundle VM induced by V is
naturally filtered by smooth subbundles V iM. By naturality, C
respects the sections of any of these subbundles.

Now define Lj := (C − α1
j ) ◦ . . . ◦ (C − α

nj

j ). Then Lj preserves

each of the subspaces Γ(V iM). Restricting to Γ(V jM), the
induced operator on Γ(V jM/V j+1M) vanishes by
construction, so Lj(Γ(V jM)) ⊂ Γ(V j+1M).
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The basic construction principle II

Now fix indices i < j , and let πj be the bundle map induced
by the projection Vi → Vi/Vj+1. Consider the composition
πj+1 ◦ Lj ◦ . . . ◦ Li+1.

This defines an operator Γ(V iM) → Γ(V iM/V j+1M). A
moment of thought shows that it vanishes on Γ(V i+1M) and
hence factorizes to Γ(V iM/V i+1M). Choosing an irreducible
component W in Vi/Vi+1, we can then restrict to Γ(WM) to
obtain an operator L : Γ(WM) → Γ(V iM/V j+1M), which is
natural by construction.

Let α be the scalar by which C acts on Γ(WM). Then the behavior
of L depends on whether α is different from all the αk

` or not. Let
us first assume that α 6= αk

` for all i < ` ≤ j and all k.
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Splitting operators

The natural projection Vi → Vi/Vi+1 induces a bundle map
π : V iM → V iM/V i+1M, which also makes sense on
V iM/V j+1M.

By naturality

π ◦ L = π ◦
∏

i<`≤j

∏
1≤k≤nj

(C − αk
` ),

is obtained by first applying π and then the given polynomial in C,
but for the curved Casimir operator on Γ(WM). Hence this acts by
the scalar ∏

i<`≤j

∏
1≤k≤nj

(α− αk
` ) 6= 0.

Up to this nonzero factor, the operator L defines a differential
splitting of the tensorial operator on sections induced by π. Such
splitting operators are the basis for the curved translation principle
and for the machinery of BGG sequences.
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Now let us assume that (with appropriate numeration) α = α1
j .

Let W̃ ⊂ Vj/Vj+1 be the sum of the irreducible components
corresponding to this scalar, and let W̃M be the induced bundle.
Then we claim that the operator L automatically has values in
Γ(W̃M), so we directly obtain an invariant operator between
irreducible bundles.

This follows readily by writing Lj = (C − α1
j ) ◦ L′j and

L = πj+1 ◦ L′j ◦ Lj−1 ◦ . . . ◦ Li+1 ◦ (C − α1
j )

By naturality, C − α1
j = C − α maps sections of V iM whose

projection to V iM/V i+1M has values in WM to sections of
V i+1M. These are then mapped to V jM by Lj−1 ◦ . . . ◦ Li+1, and
those components whose projection to V jM/V j+1M does not
have values in W̃M are mapped to sections of V j+1M by L′j .
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Example: Weighted standard tractors

Here V = Rn+1,1[w ] (tensor product with densities of weight w),
which corresponds to the weighted standard tractor bundle EA[w ].
This has a filtration V = V−1 ⊃ V0 ⊃ V1 with V1 = R[w − 1],
V0/V1 ∼= Rn∗[w + 1] and V/V0 ∼= R[w + 1]. Hence there are just
three relevant scalars α, α0, and α1 (depending on w). In
particular, α = α0 for w = −1 and α = α1 for w = −n

2 .

Up to a constant, the operator L : E [w + 1] → EA[w ] induced by
(C − α1) ◦ (C − α0) is exactly the tractor D–operator. If
w 6= −1,−n

2 , then this is a splitting operator. For w = −1, it
specializes to the exterior derivative, while for w = −n

2 it gives the
Yamabe–operator.
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Similarly, one constructs an operator L : E [w + 2] → E(AB)0 [w ]
which is a splitting operator for generic w , while for w = −n

2 it
specializes to a conformally invariant square of the Laplacian in
dimensions n 6= 4.

In the same way, one obtains L : E [w + 3] → E(ABC)0 [w ] which is a
splitting operator for generic w , while for w = −n

2 it specializes to
a conformally invariant cube of the Laplacian in dimensions
n 6= 4, 6, 10.
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A general theorem

For k > 0 consider V = Sk
0 Rn+1,1[w ]. This has an invariant

filtration of the form V = V−k ⊃ · · · ⊃ Vk such that
V−k/V−k+1 ∼= R[w + k] and Vk ∼= R[w − k]. For any irreducible
representation W, consider the tensor product V⊗W. This has a
similar composition series starting with W[w + k] and ending with
W[w − k], which both are irreducible. Denoting by E the
irreducible bundle corresponding to W, there is a unique weight w0

such that C acts by the same scalar on sections of E [w0 + k] and
E [w0 − k].

Theorem

For any irreducible bundle E , the general construction produces an
operator Γ(E [w0 + k]) → Γ(E [w0 − k]) of order 2k which has
nonzero symbol of that order except in finitely many dimensions.
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