
Spinors and Dirac Operators

lecture notes

Fall Term 2023/24

Andreas Čap
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CHAPTER 1

Motivation – low dimensions

There are two basic motivations for the theory of spinors. The original motivation,
coming from physics, is the question of finding a “square root” of the Laplacian. Since
this was first successfully done by P.A.M. Dirac, operators of this type are now called
Dirac operators. The second basic motivation comes from representation theory of the
special orthogonal groups and of their Lie algebras. The two motivations are connected
by the concept of a Clifford algebra and of its representations. In dimensions three and
four, both motivations can be nicely treated in an elementary way using quaternions.
We will also briefly discuss dimensions five and six, at least on the level of special
orthogonal groups.

Dimension three

We start with a quick discussion of the quaternions as introduced by Hamilton in
the 1850s and their relation to linear algebra and geometry in dimension three.

1.1. The quaternions. Recall that the field of complex numbers can be realized
within the algebra M2(R) of real 2 × 2-matrices as the space of matrices of the form(
a −b
b a

)
. Aiming for a complex analog of this, we consider M2(C) and in there the set

H of all matrices of the form

(
z −w
w z

)
. Observe that the determinant of such a matrix

equals |z|2 + |w|2, so non-zero matrices in H are always invertible. By definition, these
matrices form a real subspace of M2(C) of real dimension 4, which is not a complex
subspace, however. A simple direct computation shows that for matrices A,B ∈ H also
the matrix product AB lies in H, so we conclude that H is an associative real algebra
of real dimension 4.

Next, it is easily verified that for A ∈ H, also the adjoint (conjugate transpose)
A∗ lies in H and that AA∗ = A∗A = det(A)I. Since we have observed that any non-
zero matrix in A has non-zero determinant, we conclude that for A 6= 0, we have
A−1 = 1

det(A)
A∗ ∈ H. Since the unit matrix I lies in H, we see that H has all the

properties of a field, except for commutativity of the multiplication, so it is a skew field.
To get closer to the classical picture of the quaternions, we complete the unit element
1 := I of H to a basis by defining

i :=

(
i 0
0 −i

)
j :=

(
0 1
−1 0

)
k :=

(
0 i
i 0

)
.

One immediately verifies that these matrices satisfy the relations i2 = j2 = k2 = −1,
ij = −ji = k, ik = −ki = −j, and jk = −kj = i. Then an element of H can be
uniquely written as a + bi + cj + dk for real numbers a, b, c, d and the product of two
such expressions can be computed from the relations among the basis elements and
bilinearity.
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2 1. MOTIVATION – LOW DIMENSIONS

Now we will change the point of view and correspondingly our notation to emphasize
the analogy to complex numbers. We will view H as an abstract algebra, view R as
the subalgebra formed by real multiples of the unit element, and denote elements by
lower case letters. We write the operation corresponding to A 7→ A∗ as q 7→ q and
call it (quaternionic) conjugation. This evidently implies that pq = q̄p̄ for all p, q ∈ H.

Likewise, we denote A 7→
√

det(A) as q 7→ |q| ∈ R, which implies |pq| = |p||q| for all
p, q. In terms of this operation, we get qq = qq = |q|2 and thus q−1 = 1

|q|2 q for q 6= 0.

Next, one calls q ∈ H real if q = q and purely imaginary if q = −q. By definition,
1 is real, while i, j, and k are purely imaginary. Thus the real quaternions are exactly
the elements of R ⊂ H, while the purely imaginary ones are exactly the real linear
combinations of i, j, and k. We denote the three-dimensional space of purely imaginary
quaternions by im(H). For q ∈ H, we have Re(q) = 1

2
(q+q) ∈ R and im(q)) = 1

2
(q−q) ∈

im(H) and q = Re(q) + im(q). This is the decomposition of q into its real part and its
imaginary part.

By construction, q 7→ |q|2 = qq defines a positive definite real quadratic form on
H, and linear algebra tells us that this can be polarized to an inner product on H.
Explicitly, one obtains 〈p, q〉 = 1

2
(pq + qp) = Re(pq), which again corresponds to a

familiar fact for complex numbers. From this definition, one readily sees that im(H) is
the orthocomplement of R in H and that the basis {1, i, j, k} is orthonormal. Now we
can restrict the inner product to im(H), thus obtaining a three-dimensional Euclidean
vector space, and by linear algebra there is only one such space up to isomorphism.
Using this we can deduce a basic relation that will be crucial in what follows and clarify
the relation to the operations on R3 which are familiar from linear algebra.

Proposition 1.1. Take a, b ∈ R and X, Y ∈ R3 = im(H).
(1) The product (a+X)(b+ Y ) in H has real part ab− 〈X, Y 〉 and imaginary part

bX + aY +X × Y for the usual cross product in R3.
(2) For p, q ∈ im(H) we get pq+ qp = −2〈p, q〉, and in particular q2 = −|q|2. Hence

the elements of any orthonormal basis of im(H) satisfy analogous commutation relations
to i, j, k, and we get a natural orientation on im(H).

Proof. (1) By definition of the unit element, we get a(b + Y ) = ab + aY , and
similarly for (a+X)b, so by bilinearity, it suffices to compute the product XY . Taking
the standard basis {e1, e2, e3} for R3, we get 〈e`, em〉 = δ`m, while the cross product is
skew symmetric and satisfies e` × em = en whenever (`,m, n) is a cyclic permutation of
(1, 2, 3). These are exactly the same relations as for the real and imaginary parts of the
products of two of the elements i, j and k. Thus the claimed equation holds whenever
we insert two elements of our chosen bases and (1) follows by bilinearity of all involved
products.

(2) By definition, we have p = −p and q = −q. Thus we can compute pq + qp as
−pq− qp = −2 Re(pq) = −2〈p, q〉. Hence for an orthonormal basis {p1, p2, p3} of im(H)
we get (p`)

2 = −|p`| = −1 and p`pm = −pmp` for ` 6= m. From part (1) we know that
p1p2 is perpendicular to both p1 and p2 and |p1p2| = 1, so we must have p1p2 = ±p3.
Now positive orientation corresponds to p1p2 = p3 and in this case we get the same
commutation relations as for the ordered basis formed by i, j and k. �

1.2. The Dirac operator on R3. We can now discuss the original motivation for
considering spinors, at least in the case of R3. We won’t discuss the physics background
involved, but just take a mathematical formulation of the problem, which is easy to
understand. Consider the Laplace operator on smooth functions on R3, defined by
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∆(f) := −
∑3

`=1
∂2f
∂x`2

. (The sign is chosen in order to get a positive operator.) The
original question raised by P.A.M. Dirac was whether there is a “square root” of the
Laplacian, i.e. a first order differential operator D such that D ◦D = ∆. As we shall see
soon, such an operator does not exist on real valued functions, but it is no problem to
extend ∆ to a functions with values in Rm or Cm for any m and ask the same question
there. In that form, we can produce solutions rather easily. To simplify notation, we
will write ∂` for ∂

∂x`
in what follows.

Proposition 1.2. Let K be R or C and assume that for some m ≥ 2 we find
matrices A,B ∈Mm(K), which satisfy A2 = B2 = −I and AB = −BA.

Then the differential operator D on C∞(R3,Km) defined on by

Df := A∂1f +B∂2f + AB∂3f

has the property that D ◦D = ∆.

Proof. This is a simple direct computation. For a matrix C, the partial derivatives
of Cf clearly are given by ∂`Cf = C∂`f . Thus we can simply compute D(Df) in terms
of the second partial derivatives of f . Here the coefficients of ∂`∂`f simply are given by
A2, B2 and ABAB = −A2B2 for ` = 1, 2, 3, so these three summands just produce ∆(f).
Since the iterated partial derivatives commute, there are just three further summands
corresponding to ∂1∂2f , ∂1∂3f and ∂2∂3f . The coefficients of these are AB + BA = 0,
AAB + ABA = AAB − AAB = 0 and BAB + ABB = −ABB + ABB = 0, so the
result follows. �

We see from the computation in the proof, that anti-commuting objects are needed
to obtain a square root of the Laplacian. In particular, we see from the proof that things
cannot work out for m = 1. Spinors and Dirac operators are one of the basic origins of
“super structures”, for example Lie superalgebras, in mathematics.

There is an immediate interpretation of Proposition 1.2 in terms of quaternions. If
we have found matrices A,B ∈ Mm(K) as in the Proposition, then we can consider
the unique linear map H → Mm(K), which sends 1 to the unit matrix I, i to A, j to
B and k to AB. Then one immediately checks that this map is a homomorphisms of
algebras, thus defining a representation of the associative algebra H on Km. Indeed,
all the multiplicative relations between i, j and k follow from i2 = j2 = −1 and
ij = −ji = k. For example ik = iij = −j and ki = iji = −iij = j, and so on.
Hence any representation of H on Km defines a square root of the Laplacian on smooth
functions with values in Km. In fact, there is a kind of converse to this result that we
shall discuss in detail later on.

The most basic example of such an operator comes from the representation of H on
C2 that we have used to define H. The resulting operator D on C∞(R3,C2) is called the
Dirac operator of R3. Writing f : R3 → C2 as f =

(
f1
f2

)
for complex valued functions f1

and f2 the operator is explicitly given by

D

(
f1

f2

)
=

(
i 0
0 −i

)(
∂1f1

∂1f2

)
+

(
0 1
−1 0

)(
∂2f1

∂2f2

)
+

(
0 i
i 0

)(
∂3f1

∂3f2

)
=

(
i∂1f1 + ∂2f2 + i∂3f2

−i∂1f2 − ∂2f1 + i∂3f1

)
.

Observe that, while the Laplacian simply acts component-wise by definition, the Dirac
operator mixes components in an intricate way. Also the appearance of C2 is very
surprising in our context, and it is not at all clear initially how this is related to the
basic geometry of R3 (i.e. the flat Riemannian metric defined by the standard inner
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product) which determines the Laplace operator. Understanding these issues will be a
main goal of this course.

1.3. The Clifford algebra of R3. It is rather evident that the result of Proposition
1.2 is only a special case. Suppose that one has three matrices A,B,C ∈ Mm(K) such
that A2 = B2 = C2 = −I and which anti-commute pairwise, i.e. satisfy AB = −BA,
AC = −CA and BC = −CB. Then the proof of Proposition 1.2 shows the the operator
D on C∞(R3,Km) defined by Df := A∂1f + B∂2f + C∂3f again satisfies D ◦D = ∆.
Now the necessary property can be neatly formulated in terms of the Euclidean vector
space (R3, 〈 , 〉): Mapping the elements of the standard basis to A, B, and C, we obtain
a linear map ϕ : R3 → Mm(K). The required commutation relations simply mean that
for v, w ∈ {e1, e2, e3}, we get

(1.1) ϕ(v)ϕ(w) + ϕ(w)ϕ(v) = −2〈v, w〉I.
Since ϕ is a linear map and matrix multiplication and the inner product are bilinear, we
readily see that both sides of this equation are bilinear in v and w. This immediately
implies that this equations holds for all elements of a basis of R3 if and only if it holds
for all v, w ∈ R3. Equation (1.1) is usually phrased as the fact that “ϕ satisfies the
Clifford relations”.

So to define an analog of the Dirac operator on Km-valued functions, we need a
linear map ϕ : R3 → Mm(K) which satisfies the Clifford relations. Now observe that
the Clifford relations make sense in any associative algebra A which has a unit element.
Hence we can ask for linear maps to such algebras which satisfy the Clifford relations.
Surprisingly, on that level, this problem has a universal solution, which in the case of
R3 can be easily described explicitly. Namely, we consider the space H ⊕ H, which
is an associative algebra under the component-wise operations and has (1, 1) as its
unit element. (This is not a skew-field, however, since only elements for which both
components are non-zero are invertible.) Now we define ϕ : R3 → H ⊕ H by ϕ(e1) =
(i,−i), ϕ(e2) = (j,−j) and ϕ(e3) = (k,−k).

Proposition 1.3. (1) The map ϕ satisfies the Clifford relations.
(2) If A is a unital associative algebra and ψ : R3 → A satisfies the Clifford relations,

then there is a unique homomorphism ψ̃ : H ⊕ H → A of unital associative algebras
such that ψ = ψ̃ ◦ ϕ.

Proof. (1) As we have noted above, it suffices to verify that the images of the
elements of the standard basis square to −1 and the images of different elements anti-
commute. This can be verified by simple direct computations. For example (i,−i) ·
(i,−i) = (−1,−1), while (i,−i) · (j,−j) = (k, k) and (j,−j) · (i,−i) = (−k,−k) by the
standard quaternion relations.

(2) Completing the computations from (1), we see that

ϕ(e1)ϕ(e2)ϕ(e3) = (k, k) · (k,−k) = (−1, 1).

Hence we conclude that the elements 1, ϕ(e`) for ` = 1, 2, 3, ϕ(e`)ϕ(em) for 1 ≤ ` <
m ≤ 3 and ϕ(e1)ϕ(e2)ϕ(e3) form a basis for the 8-dimensional space H⊕H.

Now suppose that we have given a unital associative algebra A and a linear map
ψ : R3 → A, which satisfies the Clifford relations. Then we define ψ̃ : H × H → A on
the above basis in an obvious way, which is forced if we want it to be a homomorphism:
We send 1 to the unit of A, ϕ(e`) to ψ(e`), ϕ(e`) · ϕ(em) to ψ(e`) · ψ(em) (product

in A) and likewise for the triple product. Of course, this defines a linear map ψ̃ as

required and by construction ψ = ψ̃ ◦ ϕ. Thus it remains to verify that ψ̃ is an algebra



DIMENSION THREE 5

homomorphism and by bilinearity it is sufficient to check that it is compatible with the
products of basis elements.

This can be sorted out directly by observing that all such products are completely
determined by the Clifford relations. For example, we have ψ̃(ϕ(e`)) = ψ(e`) by def-

inition and likewise for em. Then compatibility of ψ̃ with the product ϕ(e`) · ϕ(em)
holds by definition if ` < m, by the fact that the corresponding elements square to
−1 in both algebras for ` = m and by the fact that the anti-commute in both alge-
bras and by definition for ` > m. Similarly, one can deal with products of the form
ϕ(e`) · (ϕ(em) · ϕ(en)) for m < n. If ` = m, then the Clifford relations shows that this
equals −ϕ(en) and if ` = n, we obtain ϕ(em). Finally if (`,m, n) is a permutation of
(1, 2, 3) then the Clifford relations show that the product equals the sign of that per-
mutation times ϕ(e1) ·ϕ(e2) ·ϕ(e3). Since the same relations hold for the corresponding
elements in A, we again get compatibility with the products, and so on. �

Similarly to the discussion in Section 1.2, this shows that to get a square root of the
Laplacian on Km-valued functions on R3 as discussed above, one needs a homomorphism
H⊕H→Mm(K) of unital associative algebras. The algebra H⊕H is called the Clifford
Algebra of (R3, 〈 , 〉), and a homomorphism as above defines a representation of this
algebra on Km.

1.4. Quaternions and SO(3). We have already noted in Section 1.1 that on the
three dimensional space im(H) we have a natural inner product and an orientation.
This shows that the quaternions are related to inner product geometry in dimension 3.
We next show that this relation also has a nice interpretation in terms of group theory.

Consider the set Sp(1) := {q ∈ H : |q| = 1} of unit quaternions, which evidently
closed under quaternionic multiplication and contains the unit element 1. For a unit
quaternion q, we get q−1 = q ∈ Sp(1), so we conclude that Sp(1) is a group under
quaternion multiplication. By definition, Sp(1) is the unit sphere in H ∼= R4, so we can
naturally view it as the submanifold S3 ⊂ R4. Since the multiplication of quaternions is
bilinear over R, its restriction defines a smooth map S3 × S3 → S3, and hence Sp(1) is
a Lie group. Alternatively, in the presentation as matrices we started from, it is readily
verified that Sp(1) ∼= SU(2), the group of unitary 2× 2-matrices of determinant 1. We
can also readily read off the Lie algebra sp(1) of this group. Since the tangent space to
S3 in a point is just the hyperplane orthogonal to that point, we see that sp(1) = im(H).

Since quaternionic multiplication is R-bilinear, we can determine the adjoint action
of Sp(1) on its Lie algebra as in the case of matrix groups, so this is simply given by
Ad(q)(p) = qpq−1 = qpq. Observe that p = −p immediately implies that qpq̄ = −qpq̄,
so we do not leave the space of purely imaginary quaternions. Differentiating this (using
bilinearity once more), we conclude that the Lie bracket on sp(1) is given by [p, q] =
pq − qp. As before, one checks immediately that p, q ∈ im(H) implies pq − qp ∈ im(H).
Using this, we can now describe the relation of Sp(1) to the special orthogonal group
of im(H), which is isomorphic to SO(3).

Theorem 1.4. For any unit quaternion q ∈ Sp(1) the endomorphism Ad(q) of
im(H) defined by p 7→ qpq is orthogonal. Mapping q → Ad(q) defines a surjective
smooth homomorphism Sp(1)→ SO(im(H)) of Lie groups, whose kernel equals {±1}.

Hence SO(3) is isomorphic to Sp(1)/Z2 = SU(2)/Z2 as a Lie group and to the
projective space RP 3 as a manifold.

Proof. Since |q| = 1 we also get |q| = 1 and hence |qpq| = |p| for each p ∈ im(H).
This already implies that the map Ad(q) is orthogonal for each q ∈ Sp(1). For q1, q2 ∈
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Sp(1), we get q1q2 = q̄2q̄1, which immediately shows that Ad(q1q2) = Ad(q1) ◦ Ad(q2)
so we obtain a homomorphism from Sp(1) to the orthogonal group O(im(H)). As a
manifold, Sp(1) ∼= S3 and thus is connected, which implies that the image has to be
contained in the connected component SO(im(H)) of the identity.

The derivative of Ad : Sp(1) → GL(sp(1)) is ad : sp(1) → gl(sp(1)), so this maps
p1 ∈ im(H) to p2 7→ [p1, p2] = p1p2 − p2p1. Putting p = ai + bj + ck one immediately
computes directly that the matrix representation of ad(p) with respect to the orthonor-

mal basis {i, j, k} of im(H) is given by
(

0 2c 2b
−2c 0 −2a
−2b 2a 0

)
. This shows that ad defines a

linear isomorphism from sp(1) onto the space o(im(H)) of skew symmetric endomor-
phisms. It is a basic result of Lie theory, that this implies that Ad is surjective, a local
diffeomorphism, and induces an isomorphism between Sp(1)/ ker(Ad) and SO(3).

The kernel of Ad consists of those q ∈ Sp(1), such that qp = pq for all p ∈ im(H).
Expanding q as a linear combination of 1, i, j and k one sees immediately that q
commutes with i if and only if has trivial j-component and k-component. Commuting
with i and j thus implies that q has to be real, so we see that ker(Ad) = Sp(1) ∩ R =
{±1}. As a manifold Sp(1)/{±1} is obtained by taking S3 and identifying each point
x ∈ S3 with −x ∈ S3, which implies the last statement of the theorem. �

Given a homomorphism SO(3)→ H for some Lie group H, we can always compose
with the quotient homomorphism Sp(1)→ SO(3) to obtain a homomorphism Sp(1)→
H. This composition of course maps −I to the neutral element e. Conversely, given a
homomorphism Sp(1)→ H with this property, it factorizes to Sp(1)/{±I} ∼= SO(3). In
particular, this applies to representations, so representations of SO(3) can be identified
with those representations of Sp(1), in which −I acts trivially, so this is a proper
subclass. Indeed, using that Sp(1) ∼= SU(2) is a compact real form of SL(2,C), it
is easy to see that the irreducible complex finite dimensional representations of SU(2)
are exactly the symmetry powers S`C2 of the standard representation C2 for ` ≥ 0.
Evidently, −I acts trivially in S`C2 if and only if ` is even, so loosely speaking, there
are only half as many complex representations of SO(3) as of Sp(1). As we shall see
in detail later on, representations of these groups give rise to geometric objects on
Riemannian manifolds respectively on Riemannian spin manifolds in dimension 3. The
simplest example of an “additional” representation of Sp(1) is C2 itself, and this gives
rise to the geometric objects on which the basic Dirac operator acts.

Finally recall that the sphere S3 (and indeed each sphere Sn for n ≥ 2) is a simply
connected topological space. Hence Sp(1) is a simply connected Lie group, so Lie theory
tells us that there is a perfect correspondence between homomorphisms from sp(1) to
the Lie algebra g of any Lie group G and Lie group homomorphisms Sp(1) → G. The
above discussion shows that this fails to be true for SO(3).

Dimensions 4 to 6

All the phenomena we have discussed in dimension 3 above, have analogs in all
higher dimensions. In particular, there always is a quotient homomorphism from a
simply connected Lie group Spin(n) onto SO(n) whose kernel has two elements. This
is the spin group, which is the universal covering group of SO(n). This group then
has representations which do not correspond to representations of SO(n). A general
construction of these groups requires a general version of Clifford algebras, which are
again related to questions of defining square roots of Laplace operators and so on.
However, up to dimension 6, there are direct descriptions of the spin groups as other
classical Lie groups, and we briefly discuss those next.
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1.5. Dimension 4. The universal covering group Spin(4) of SO(4) can also be
described in terms of quaternions. It turns out that in dimension 4 (and only in that
dimension) this universal covering group decomposes as a product of two subgroups.
This gives special features to Riemannian geometry in dimension 4 which also play an
important role in theoretical physics.

Proposition 1.5. For q1, q2 ∈ Sp(1), the linear map ϕq1,q2 : H → H defined by
ϕq1,q2(p) := q1pq2 is orthogonal. Mapping (q1, q2) to ϕq1,q2 defines a surjective homomor-
phism Sp(1)× Sp(1)→ SO(4) of Lie groups whose kernel consists of the two elements
(1, 1) and (−1,−1). Hence SO(4) is isomorphic to (SU(2)× SU(2))/Z2.

Proof. Since |q1| = |q2| = 1, we see that |q1pq2| = |p|, which already shows that
ϕq1,q2 is orthogonal. The definition readily implies that (q1, q2) 7→ ϕq1,q2 is a group
homomorphism and smoothness clearly follows from bilinearity of the multiplication of
quaternions. Since Sp(1)×Sp(1) is connected, we see that the image of this homomor-
phism must be contained in SO(4). The Lie algebra of Sp(1) × Sp(1) is sp(1) × sp(1)
and the derivative of ϕ sends a pair (p1, p2) of purely imaginary quaternions to the map
ϕ′p1,p2 defined by q 7→ p1q − qp2. If ϕ′p1,p2 = 0, then evaluating on q = 1 shows that
p1 = p2. But restricting ϕ′p,p to im(H), we get the map ad(p) from Theorem 1.4, which
vanishes for p = 0 only.

So we see that the derivative ϕ′ is injective, and since dim(so(4)) = 6 it has to be
bijective. Lie theory then implies that ϕ maps onto SO(4) and induces an isomorphism
(Sp(1)×Sp(1))/ ker(ϕ)→ SO(4). The kernel of ϕ clearly contains (1, 1) and (−1,−1).
Conversely, if q1pq2 = p for all p ∈ H, we can first put p = 1 to conclude q1 = q2. But
then ϕq,q|im(H) = Ad(q) and this is the identity if an only if q = ±1. �

Similarly as for dimension three, this result implies that homomorphisms from SO(4)
to any Lie group G are in bijective correspondence with homomorphisms Sp(1) ×
Sp(1) → G for which (−1,−1) lies in the kernel. In particular, we can apply this
to representations, showing that again, roughly speaking, SO(4) has half as many rep-
resentations as Sp(1)×Sp(1). In particular, there are two basic “new” representations,
namely that standard representations of the two factors Sp(1) ∼= SU(2) on C2. These
are commonly denoted by S+ and S− and called the half-spin representations. Observe
that these two representations carry Hermitian inner products which are invariant un-
der the action of Sp(1) ∼= SU(2). Now the natural action of (g1, g2) on LC(S−, S+) is
given by ((g1, g2) · f)(v) = g1 · f(g−1

2 · v). Hence we see that the basic representation
R4 = H of SO(4) can be viewed as a subspace of LC(S−, S+) of real dimension 4 which
is invariant under the natural action of Sp(1)× Sp(1).

The fact that the universal covering group of SO(4) decomposes into a products of
subgroups comes as a big surprise, nothing like that is available in any other dimension.
Representation theory tells us that representations of Sp(1)×Sp(1) can be built up from
tensor products of representations of the individual factors. So a typical representation
has the form V ⊗W with (g1, g2) · (v ⊗ w) = (g1 · v)⊗ (g2 · w). Restricting to complex
representations we are left with the cases V = S`C2 and W = SmC2 and we see that
(−1,−1) acts trivially in V ⊗W if and only if `+m is even, thus confirming the above
claim that half of the representations descend to SO(4).

We can also describe the 4-dimensional analogs of the other things we did in dimen-
sion 3 directly. To define a square root of the Laplacian on C∞(R4,Km), we now
need 4 matrices A` ∈ Mm(K) which all square to −I and pairwise anti-commute.
Given these we can define Df :=

∑4
`=1A`∂`f as before and compute directly that



8 1. MOTIVATION – LOW DIMENSIONS

D2f = −
∑4

`=1(∂`)
2f = ∆(f). The simplest example this time is the basic Dirac op-

erator defined on C∞(R4,C4), we C4 should be viewed as S+ ⊕ S−. Thus we write
f : R4 → C4 as f =

(
f1
f2

)
, where now the components are C2-valued and define

D :=
(

0 D+

D− 0

)
, where D± is the operator on C∞(R4,C2) defined by

D±(f) := ±∂0f +

(
i 0
0 −i

)
∂1f +

(
0 1
−1 0

)
∂2f +

(
0 i
i 0

)
∂3f.

Using the commutation relations between the basic matrices one easily verifies directly
that D+ ◦ D− = D− ◦ D+ = ∆ on C∞(R4,C2), which easily implies that D2 = ∆ as
claimed. Of course, we could collect all that together to give an explicit formula for D,
but this becomes a bit tedious.

We can recast these computations in a slightly different way, which leads directly to
the description of the Clifford algebra of R4. In order to do this, we first observe that
there is no problem in considering the space Mn(H) of n×n-matrices, whose entries are
quaternions, and multiply such matrices in the usual way (taking care that quaternions
do not commute). Indeed, viewing Hn as a right module over H, the usual arguments
from linear algebra show that Mn(H) can be identified with the space of maps Hn → Hn

which are linear over the quaternions. Matrix multiplication then again corresponds to
composition of linear maps, thus making Mn(H) into an associative algebra with unit
element I.

In particular, we can consider the algebra M2(H), which has real dimension 16.
For any q ∈ H, we can consider the matrix Aq :=

(
0 q
−q 0

)
, and verify directly that

(Aq)
2 = −|q|2I. Simple direct computations then show that the matrices A1, Ai, Aj

and Ak are pair-wise anti-commutative. This shows that the map H→ M2(H) defined
by q 7→ Aq satisfies the 4-dimensional version of the Clifford relations, namely

(1.2) Aq1Aq2 + Aq2Aq1 = −2〈q1, q2〉I.

It is also easy to verify directly that the unit matrix I together with the ordered products
of different elements from {A1, Ai, Aj, Ak} define a basis of the vector space M2(H).
Using this, one proves the 4-dimensional analog of Proposition 1.3: Given any unital
associative algebra A and a linear map ϕ : H→ A which satisfies the Clifford relations
(1.2), there is a unique homomorphism ϕ̃ : M2(H)→ A such that ϕ(q) = ϕ̃(Aq) for all
q ∈ H.

1.6. Dimensions 5 and 6. For completeness, we briefly explain how two-fold cov-
ering groups for SO(5) and SO(6) can be constructed from classical groups. One can
also describe basic Dirac operators and Clifford algebras (which happen to be isomor-
phic to M4(C) in dimension 5 and to M8(R) in dimension 6) directly, but we do not go
into that.

Here the basic idea applies directly to dimension 6 and with some additional input to
dimension 5. For K = R or C, consider the vector space K4 and its second exterior power
Λ2K4 which has dimension

(
4
2

)
= 6. The wedge product defines a bilinear map Λ2K4 ×

Λ2K4 → Λ4K4, which is symmetric since the wedge product of 2-forms is commutative.
Now the natural representation of SL(4,K) on K4 gives rise to representations on Λ2K4

and Λ4K4. The latter space has dimension 1, so the second representation is trivial.
Fixing a non-zero element of Λ4K4 (which essentially means fixing a volume form on
K4) we can view the wedge product as a symmetric bilinear form on Λ2K4 ∼= K6. By
definition of the action, we get g ·(v1∧v2) = (g ·v1)∧(g ·v2), which easily implies that the
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action of SL(4,K) is orthogonal for this bilinear form. Hence, we get a homomorphism
from SL(4,K) to the orthogonal group of a K-bilinear form in dimension 6.

To get to dimension 5, one fixes a symplectic inner product on K4, i.e. a skew
symmetric bilinear map ω : K4 ×K4 → K, which is non-degenerate. By linear algebra,
there is a unique such form on each vector space of even dimension up to isomorphism.
Next, one defines Sp(4,K) to be the subgroup of SL(4,K) consisting of all g such that
ω(g ·v, g ·w) = ω(v, w) for all v, w ∈ K4. This clearly is a closed subgroup and thus a Lie
subgroup of SL(4,K) which turns out to be connected. The corresponding Lie algebra
sp(4,K) consists of those X ∈ sl(4,K), for which ω(Xv,w) +ω(v,Xw) = 0. This easily
implies that the dimension of Sp(4,K) is 10. Now we can view ω as defining a linear
map Λ2K4 → K via v1 ∧ v2 7→ ω(v1, v2), whose kernel is a subspace Λ2

0K4 ⊂ Λ2K4 of
dimension 5. By construction, this subspace is invariant under the action of Sp(4,K),
so one obtains a homomorphism from Sp(4,K) to the orthogonal group of a symmetric
bilinear form on a 5-dimensional space.

One can carry out this construction directly for SL(4,R) and Sp(4,R), but the
result is not quite what we need. It is easy to verify directly that the wedge product
is non-degenerate both on Λ2R4 and on Λ2

0R4, but the signatures are (3, 3) and (2, 3),
respectively. So we obtain homomorphisms SL(4,R)→ O(3, 3) and Sp(4,R)→ O(2, 3)
whose images have to be contained in the connected component of the identity. In both
cases, one verifies directly that the derivatives of the homomorphism is injective and
since both groups have dimensions 15, respectively 10, it has to be a linear isomorphism.
This implies that the homomorphisms are surjective onto the connected components of
the identity and in both cases, one verifies that the kernel consists of ± id.

To get the analogous results for definite signature, one has to work with real sub-
groups of SL(4,C) and Sp(4,C), which leave appropriate real subspaces in Λ2C4 ∼= C6

invariant. For dimension 6, we consider SU(4) ⊂ SL(4,C). With a bit of work, one
shows that Λ2C4 decomposes into the direct sum of two real subspaces of real dimension
6, which are invariant under the action of SU(4) and on which the wedge product is
positive definite respectively negative definite. Restricting to the first subspace gives
rise to a homomorphism SU(4) → O(6) and similarly as described above, one proves
that this is a surjection onto SO(6) with kernel {± id} (observing that both groups have
real dimension 15).

The story in dimension 5 is again related to quaternions. The inclusion H ↪→M2(C)
we started from in Section 1.1 defines an inclusion M2(H) ↪→ M4(C) (just think of a
4× 4-matrix written as a collection of 4 blocks of size 2× 2). Now for A ∈ M2(H), we
define A∗ as the conjugate (in the quaternionic sense) transpose of A. It is easy to see the
this operation still satisfies (AB)∗ = B∗A∗ and thus Sp(2) := {A ∈ M2(H) : A∗A = I}
can be viewed as a closed subgroup of GL(4,C) and thus is a Lie group. One then
proves that Sp(2) has real dimension 10 and is contained in the subgroup Sp(4,C), so
it has a natural action on Λ2

0C4 ∼= C5. Then one shows that Λ2
0C4 splits as a direct

sum of two real subspaces of dimension 5, which are invariant under the action of Sp(2)
and on which the wedge product is positive definite and negative definite, respectively.
Restricting to the first subspace defines a homomorphism Sp(2) → O(5) and similarly
as before, one verifies that this maps onto SO(5) and has kernel {±I}.





CHAPTER 2

The geometric perspective

In this chapter, we explain why Riemannian manifolds are the appropriate general
setting for analog of the Laplace operators on R3 and R4 that we considered in Section
1.2 and 1.5. We will phrase this in terms of vector bundles associated to the orthonormal
frame bundle. This approach has the advantage that it directly indicates how a two–fold
covering of the special orthogonal group leads to additional geometric objects and to
analogs of the Dirac operators from Sections 1.2 and 1.5.

2.1. Riemannian manifolds. Let us return to the Laplacian on Rn, defined by

∆f := −
∑n

i=1
∂2f
∂x2i

. As indicated in Section 1.2, this not only makes sense on real valued

functions but also on functions with values in Rm and we will deal with smooth functions
only. Trying to generalize this to smooth manifolds, let us first check which ingredients
are actually needed on Rn. The most natural description there is that ∆(f) is minus
the trace of the second derivative D2f . Note however, that for each x ∈ Rn, D2f(x) is
a symmetric bilinear form on Rn and not a linear map Rn → Rn. Forming a trace of a
bilinear form b on Rn is only possible using the inner product 〈 , 〉 on Rn.

There are several equivalent definitions of tr(b) ∈ R. Either one observes that
there is a unique linear map A : Rn → Rn such that b(v, w) = 〈v, A(w)〉 and defines
tr(b) := tr(A). Equivalently, one may observe that for an orthonormal basis {v1, . . . , vn}
of Rn, the value

∑n
i=1 b(vi, vi) is independent of the basis and coincides with tr(b). The

latter formula also shows that tr(b) depends only on the symmetric part of b and that
∆(f)(x) = − tr(D2f(x)). In either formulation, we can proceed in the same way if f is
only defined on an open subset U ⊂ Rn, since then still D2f(x) is a symmetric bilinear
form on Rn for each x ∈ U .

Trying to generalize this to manifolds, the last observation shows that the natural
replacement for the vector space Rn is provided by the tangent spaces of M . Hence
instead of the inner product on Rn, we should use a family of inner products on the
tangent spaces on M . Requiring that these inner products depend smoothly on the base
point in an obvious sense, one arrives at the notion of a Riemannian metric:

Definition 2.1. Let M be a smooth manifold.
(1) A pseudo-Riemannian metric on M is a function g, which assigns to each point

x ∈ M a non-degenerate, symmetric bilinear form gx : TxM × TxM → R such that for
any vector fields ξ, η ∈ X(M), the map g(ξ, η) : M → R defined by x 7→ gx(ξ(x), η(x))
is smooth.

(2) We say that g is a Riemannian metric if for each x ∈M , the bilinear form gx is
positive definite.

(3) A (pseudo-)Riemannian manifold (M, g) is a smooth manifold M together with
a (pseudo-)Riemannian metric g on M .

In the usual language, this just means that g is a smooth
(

0
2

)
-tensor field on M ,

for which all values are symmetric and non-degenerate or positive definite, respectively.
Given a pseudo-Riemannian metric g on M , then for any smooth

(
0
2

)
-tensor field b on

11
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M , one defines tr(b) in each point as above and then concludes that tr(b) : M → R is a
smooth function.

This is not quite enough to define a Laplacian on functions on a pseudo-Riemannian
manifold (M, g). It is no problem to form the derivative of a smooth function f : M → R
on a smooth manifold M which to each x ∈ M assigns a linear map TxM → R. This
can either be viewed as the tangent map Tf : TM → TR = R × R for which the first
component is f , or as the exterior derivative df ∈ Ω1(M), which equivalently encodes
the second component of Tf . To form a second derivative, one would have to pass to
TTf : TTM → TTR, which then encodes f and its first two derivatives. The double
tangent bundles occurring in this formulation are not easy to handle, and in particular
it is unclear how to form something like a trace in this situation. On functions (and
also on differential forms) one can bypass this problem and use constructions from linear
algebra together with the exterior derivative to define a Laplacian, compare with Section
1.6 of [Riem].

However, Riemannian geometry offers a nice solution to this problem, which can be
used for arbitrary tensor fields. The right concept here is the one of a natural vector
bundle E → M , which we will discuss in more detail below. For each point x ∈ M ,
such a bundle has a fiber Ex which is a finite dimensional vector space and a section s is
a map which associates to each x ∈ M an element s(x) ∈ Ex which depends smoothly
on x. Now there is the concept of the covariant derivative which can be applied to any
such section. For a section s of E, the covariant derivative ∇s is a section of the bundle
T ∗M ⊗E, whose fiber at a point x is (TxM)∗⊗Ex = L(TxM,Ex). This turns out to be
a natural vector bundle again, so one can apply the covariant derivative again and form
∇2s = ∇(∇s), which is a section of the bundle T ∗M ⊗T ∗M ⊗E. The fiber of the latter
bundle at x ∈M is the space of bilinear maps TxM×TxM → Ex. The above discussion
can be easily modified to associate to such a bilinear map a trace (with respect to gx)
which is an element of Ex. The upshot of this is that one can define a section ∆s of E
via ∆s(x) = − tr(∇2s(x)) ∈ Ex and thus a Laplace operator on sections of E.

Fiber bundles and vector bundles

2.2. Bundles. To start making these considerations precise, we first introduce the
basic concepts related to bundles. Basically, a fiber bundle over M is a manifold that
locally looks like a product of M with a fixed manifold S (the standard fiber of the
bundle). An important class of such bundles are vector bundles, for which the standard
fiber is a vector space, and the isomorphism to a product can be chosen in a way
compatible with the vector space structure. The standard example of a vector bundle
over M is the tangent bundle TM .

Definition 2.2. Let M , E and S be smooth manifolds and let p : E → M be a
smooth map.

(1) A fiber bundle chart (U, ψ) for p : E →M with standard fiber S is an open subset
U ⊂M together with a diffeomorphism ψ : p−1(U)→ U × S such that pr1 ◦ψ = p.

(2) For two fiber bundle charts (U1, ψ1) and (U2, ψ2) such that U12 := U1 ∩ U2 6= ∅,
the transition function ψ12 : U12 × S → S is the smooth map characterized by the fact
that for x ∈ U12 and y ∈ S, one has ψ1(ψ−1

2 (x, y)) = (x, ψ12(x, y)).
(3) A fiber bundle atlas for p : E → M is a collection {(Uα, ψα) : α ∈ I} of fiber

bundle charts such that the sets Uα form an open covering of M . If such an atlas exists,
then p : E → M is called a fiber bundle with total space E, base M , standard fiber S
and bundle projection p. For x ∈M , the fiber of E over x is Ex := p−1(x) ⊂ E.



FIBER BUNDLES AND VECTOR BUNDLES 13

(4) A smooth section of a fiber bundle p : E → M is a smooth map s : M → E
such that p ◦ s = idM . Otherwise put, s associates to each point x ∈ M an element
s(x) ∈ Ex. A local smooth section of p : E → M is a smooth map s : U → E defined
on an open subset U ⊂M such that p ◦ s = idU .

Let us now specialize to the case that as a standard fiber we take a finite dimensional
vector space V over K = R or C. Then in the context of the following notions, we use
the name vector bundle chart rather than fiber bundle chart.

(5) Two vector bundle charts (U1, ψ1) and (U2, ψ2) are called compatible if either
U12 = U1 ∩ U2 is empty or the transition function ψ12 : U12 × V → V is linear in the
second variable.

(6) A vector bundle atlas is a fiber bundle atlas consisting of vector bundle charts
which are mutually compatible. Two vector bundle atlases are called equivalent if their
charts are mutually compatible. A K-vector bundle p : E → M is then a fiber bundle
endowed with an equivalence class of vector bundle atlases.

From these definitions, it follows readily that the bundle projection p : E → M
of any fiber bundle is a surjective submersion (since the projection onto one factor in
a product has this property). This in turn implies that the fiber Ex over each point
x ∈ M is a smooth submanifold of E which is diffeomorphic to the standard fiber S.
If (U, ψ) is a fiber bundle chart for p : E → M and f : U → S is any smooth map,
then x 7→ ψ−1(x, f(x)) defines a local smooth section of E. However, in general a fiber
bundle does not admit global smooth sections. It is common to call bundle charts local
trivializations and talk about locally trivial bundles. A bundle is called trivial, if it is
globally isomorphic to a product.

Let us also point out here that a vector bundle is not just a fiber bundle, whose
standard fiber is a finite dimensional vector space V . In a fiber bundle p : E →M with
standard fiber V , we see from above that each fiber Ex is diffeomorphic to V , but trying
to carry over the vector space structure from V to Ex, one obtains different results for
different fiber bundle charts. In the case of a vector bundle, the situation is different.
Taking x ∈ M and two elements y, z ∈ Ex and λ ∈ K, we can choose a vector bundle
chart (U, ψ) with x ∈ U . Then ψ(y) = (x, v) and ψ(z) = (x,w) for some elements
v, w ∈ V and we define y + λz := ψ−1(x, v + λw). A short computation shows that the
definition is chosen in such a way that any vector bundle chart compatible to (U, ψ) will
lead to the same element, so y + λz is unambiguously defined in a vector bundle. Thus
any fiber Ex is canonically a K-vector space, which is linearly isomorphic to V .

This also has important consequences for sections. If p : E → M is a K-vector
bundle, then for sections s1, s2 : M → E, one puts (s1 + s2)(x) := s1(x) + s2(x)
and immediately observes that this defines a smooth section of E. Similarly, one can
multiply sections by elements of K, but these may even depend on the point. Explicitly,
for a section s of E and a smooth function f : M → K, fs(x) := f(x)s(x) defines a
smooth section of E. This shows that the space Γ(E) of all smooth sections of E is a
K-vector space and a module over the commutative ring C∞(M,K), and implies that
any vector bundle admits many global smooth sections. Indeed, given a vector bundle
chart (U, ψ), we have seen above that local sections of E defined on U are in bijective
correspondence with smooth functions U → V . Given x ∈ U , we can find an open
neighborhood W of x in M such that W ⊂ U and a bump function f : M → [0, 1]
whose support is contained in U and which is identically one on W . Given a local
section s of E defined on U , we can form fs, which again is a smooth section defined on
U . But since the support of f is contained in U , we can extend it by zero outside of U ,
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to define a global section fs of E, which agrees with s on W . This shows that the space
Γ(E) is always infinite dimensional. In fact, the usual technique of gluing local smooth
objects to global smooth objects using partitions of unity applies without problems to
sections of any vector bundle.

Example 2.2. As mentioned above, the standard example of a vector bundle is the
tangent bundle p : TM → M . The standard constructions of the tangent bundle also
illustrate that one can use a vector bundle atlas to make the total space into a smooth
manifold rather than starting from a manifold structure on the total space. This is a
line of argument that we will use frequently. To review how TM is constructed, recall
that one first defines, for each point x ∈ M , the tangent space TxM at x. Then one
defines TM to be the (disjoint) union of these tangent spaces and endows it with the
obvious projection p : TM → M , which sends TxM to x. Now consider a chart (U, u)
for M , so U ⊂ M is open and u is a diffeomorphism from U onto an open subset
u(U) ⊂ Rn, where n = dim(M). Then the tangent map Tu is a bijection between
TU = p−1(U) ⊂ TM and u(U)× Rn.

Now starting from a countable atlas {(Ui, ui) : i ∈ N} for M , one defines a topology
on TM by declaring a subset W ⊂ TM to be open, if and only if Tui(W ∩ p−1(Ui))
is open in ui(Ui) × Rn for each i ∈ N. It is easy to verify that this defines a topology
on TM which is Hausdorff and second countable, that each of the sets p−1(Ui) is open
in TM and that each Tui is a homeomorphism. Now by definition, Uij = Ui ∩ Uj
is open, and if it is non-empty, the chart changes uij : ui(Uij) → uj(Uij), which are
characterized by ui(y) = uij(uj(y)) for all y ∈ Uij, are all smooth. Moreover, if for
x ∈ Uij and ξ ∈ TxM , we denote the second component of Tuj(ξ) by v ∈ Rn, Tui(ξ) =
(uij(uj(x)), Duij(uj(x))(v)). Since both uij and Duij are smooth maps, we can use the
maps Tui as charts, thus making TM into a smooth manifold such that p : TM → M
is smooth. It is easy to see that this manifold structure is independent of the atlas we
have chosen initially.

But now we can just use the second components of these charts to define diffeomor-
phisms p−1(Ui) → Ui × Rn, which are given by ξ 7→ (p(ξ), Tp(ξ)ui · ξ). The transition
functions between two such charts are clearly given by (x, v) 7→ (x,Duij(uj(x))(v)), so
they are linear in the second variable. Thus we have found a family of compatible vector
bundle charts on TM and it is easy to see that any other atlas for M gives rise to an
equivalent vector bundle atlas for TM . So we see that we have made TM into a vector
bundle in a canonical way.

2.3. Local frames. Recall that a chart (U, u) on M gives rise to a family of local
vector fields ∂i := ∂

∂ui
defined on U . These are characterized by the fact that Txu·∂i(x) =

(x, ei) for each x ∈ U , where ei denotes the ith vector in the standard basis of Rn.
This implies that the fields ∂i(x) form a basis for TxM for any x ∈ U , which depends
smoothly on x. Consequently, given a vector field ξ ∈ X(M), there are smooth functions
ξi : U → R for i = 1, . . . , n such that ξ|U =

∑n
i=1 ξ

i∂i. This is a special case of a local
frame for a vector bundle:

Definition 2.3. (1) Let p : E → M be a smooth K-vector bundle with standard
fiber V and put m := dim(V ). Then a local frame for E defined on an open subset
U ⊂ M is a family {σ1, . . . , σm} of local sections of E defined on U such that for each
x ∈ U the values σ1(x), . . . , σm(x) form a K-basis for the vector space Ex. A global
frame for E is a local frame defined on all of M .

(2) In the case of the tangent bundle TM , local frames obtained from charts for M
as discussed above are called holonomic, other local frames are called non-holonomic.
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To formulate the next result, recall that the group GL(m,K) of invertible m ×m-
matrices forms an open subset of the space Mm(K) of all m × m-matrices which can

be identified with Km2
. Hence GL(m,K) is a smooth manifold and a map A from a

smooth manifold M to GL(m,R) is smooth if and only if for A(x) = (aij(x)) (upper

index numbers rows, lower index columns) each of the aij is a smooth map M → K. This
readily implies that matrix multiplication is smooth as a map GL(m,K)×GL(m,K)→
GL(m,K), while matrix inversion is smooth as a map GL(m,K)→ GL(m,K). (Indeed,
matrix multiplication is polynomial in the entries of the matrix by definition, while
matrix inversion is a rational function by Cramer’s rule.) This says that GL(m,K)
is a Lie group and a fundamental result of Lie theory says that any closed subgroup
of GL(m,K) automatically is a smooth submanifold and thus itself a Lie group, see
Theorem 1.11 of [LieG].

Theorem 2.3. Let p : E → M be a K-vector bundle with standard fiber V and
dim(V ) = m, fix a K-basis {v1, . . . , vm} for V , let U ⊂M be an open subset.

(1) If ϕ : p−1(U) → U × V is a vector bundle chart for E defined on U , then for
i = 1, . . . ,m putting σi(x) = ϕ−1(x, vi) one obtains a smooth local frame {σi} for E
defined on U .

(2) Conversely, given a smooth local frame {σi} for E defined on U , there a unique
vector bundle chart ϕ defined on U , for which (1) leads to the given local frame {σi}.
Moreover, for any local smooth section s of E defined on U , there are smooth functions
s1, . . . , sm : U → K such that s =

∑
i s
iσi.

(3) Given a local frame {σi} defined on U and a smooth function A : U → GL(m,K),
A(x) = (aij(x)), then putting τj :=

∑
k a

k
jσk defines a local frame {τi} on U . Moreover,

any local frame for E defined on U is of this form.

Proof. (1) Since x 7→ (x, vi) is a smooth map U → U×V and ϕ is a diffeomorphism,
σi : U → E is a smooth map. By definition, we have p(ϕ−1(x, v)) = x for each v ∈ V
and thus p ◦ σi = idU , so each σi is a smooth section of E defined on U . The definition
of the vector space structure on Ex exactly says that mapping y ∈ Ex to the second
component of ϕ(y) is a linear isomorphism. Since this linear isomorphism maps the set
{σi(x)} to the basis {vi} of V , it is a basis. Thus the σi form a local frame, and the
proof of (1) is complete.

Let us next assume that W ⊂M is any open subset and that {τ1, . . . , τm} is a local
frame for E defined on W . Then for a local section s : W → E of E and each x ∈ W ,
we have s(x) ∈ Ex, so there are unique elements si(x) ∈ K for i = 1, . . . , n such that
s(x) =

∑
i s
i(x)τi(x). This defines functions si : W → K and we claim that these are

smooth. This is a local question, so for x0 ∈ W , we can take a vector bundle chart
(U,ϕ) for E with x0 ∈ U ⊂ W . Let {σi} be the local frame for E obtained from (U,ϕ)
as in (1). Then the second component of ϕ ◦ s|U is a smooth map U → V . Writing this
as
∑

i f
ivi for smooth functions f : U → K we get s|U =

∑
i f

iσi.
Similarly, for each j = 1, . . . ,m, we obtain smooth functions aij : U → K such

that τj|U =
∑

i a
i
jσi. Evaluating this in a point x ∈ U the fact that both {σi(x)} and

{τj(x)} are bases of Ex implies that the matrix (aij(x)) is invertible, so A(x) = (aij(x))
defines a smooth function U → GL(m,K). From above we know that matrix inversion
is smooth, so writing A(x)−1 = (bij(x)) each of the functions bij : U → K is smooth,

too. But by construction, we get σi =
∑

j b
j
iτj and hence s =

∑
i,j f

ibjiτj. But this

shows that sj|U =
∑

i(f
ibji ), so this is smooth. This completes the proof of the second

statement in (2).
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The first statement in (3) is obvious, since each τj : U → E is a smooth section of E
by construction and invertibility of A(x) implies that {τj(x)} is a basis of Ex for each
x ∈ U . For the second statement, we assume that we have given a second fram τj and
apply the second part of (2) to obtain a smooth function A = (aij) : U → Mn(R) such

that τj =
∑

i a
i
jσi. As above, we conclude that the matrix A(x) is invertible for each x,

so we get a smooth function to GL(m,K).
So it remains to prove the first statement in (2). Assuming that {τj} is a smooth

local frame defined on an arbitrary open subset W ⊂M . Then we can define a smooth
map W × V → p−1(W ) by mapping (x,

∑
i λivi) to

∑
i λiτi(x) ∈ Ex. Since this is

evidently bijective, we can take its inverse ϕ : p−1(W )→ W ×V , which by construction
satisfies pr1 ◦ϕ = p. To complete the proof, we have to show that ϕ is smooth and
compatible with the vector bundle charts for E. So given x0 ∈ W , we take a vector
bundle chart (U, ψ) with x0 ∈ U ⊂ W and the local frame {σi} determined by the
chart (U, ψ). By part (3), we know that there are smooth functions aij : U → K such

that σj =
∑

i a
i
jτi|U . But this exactly says that ϕ(ψ−1(x, vj)) = (x,

∑
i a

i
j(x)vi) for each

x ∈ U , and the second component in the right hand side equals A(x)tvj. This implies
both smoothness of ϕ on p−1(U) and compatibility with the chart (U, ψ). �

This already indicates that general vector bundle charts for TM are more flexible
than those obtained from local charts for M . For example, on the unit circle S1,
there exists a nowhere vanishing vector field, which forms a global frame for TS1.
Consequently, there is a global vector bundle chart TS1 → S1 × R, but of course the
smooth manifold S1 does not admit a global chart. Similar arguments apply to the
tangent bundle of the torus and of any Lie group.

Principal bundles and associated bundles

2.4. Frame bundles and principal bundles. Given a K-vector bundle p : E →
M , we next construct a bundle whose local sections are exactly the local frames of E.
As we shall soon see, we can not only recover E from that bundle but also get a whole
class of related bundles.

For a point x ∈ M , we define PxE to be the set of all K-linear isomorphisms ux :
V → Ex, where V is the standard fiber of E. Observe that for a linear automorphism
A ∈ GL(V ) and ux ∈ PxE, we also have ux ◦ A ∈ PxE. Moreover, if vx is another
element of PxE, then A := (ux)

−1 ◦ vx ∈ GL(V ) and vx = ux ◦A, so choosing a point in
PxE gives rise to a bijection PxE ∼= GL(V ). Now define PE to be the (disjoint) union
of the spaces PxE and endow this with the obvious projection π : PE → M , which
sends PxE to x.

Next suppose that (U,ϕ) is a vector bundle chart for E, and consider the inverse
ϕ−1 : U × V → p−1(U). Restricted to each of the spaces {x} × V for x ∈ U , this
defines a linear isomorphism ux : V → Ex. Consequently, we obtain a bijection ψ−1 :
U×GL(V )→ π−1(U) by sending (x,A) to ux◦A ∈ PxE and this satisfies π◦ψ−1 = pr1.
Now we proceed similarly as in the case of the tangent bundle described in Section 2.2.
We take a countable atlas (Ui, ϕi) for E (which exists since M is a Lindelöff space) and
use the induced bijections ψi : π−1(Ui) → Ui × GL(V ) to defined a topology on PE,
which is easily seen to be second countable.

Next it is easy to compute the transition functions between the local trivializations
of PE obtained from compatible vector bundle charts for E. Let U be the intersection
of the domains of definition of two such charts ϕ1 and ϕ2 with transition function
ϕ12 : U × V → V . By definition, this is linear in the second variable, so we can view it
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as a smooth map U → L(V, V ) and clearly the values actually lie in GL(V ). Writing
this function as f : U → GL(V ), we get ϕ1(ϕ−1

2 (x, v)) = (x, f(x)(v)), which in the
language introduced above means that (u1

x)
−1 ◦ u2

x = f(x) or u2
x = u1

x ◦ f(x). Otherwise
put, ψ1(ψ−1

2 (x,A)) = ψ1(u1
x ◦ f(x) ◦ A) = (x, f(x) ◦ A), and the transition functions

are given by left translations in the group GL(V ), so in particular, they are smooth.
Loosely speaking, E and PE have the “same transition functions”.

Thus, we can use the countable vector bundle atlas from above to make PE into a
smooth manifold, and then clearly π : PE →M is a smooth fiber bundle with standard
fiber GL(V ). As above, any vector bundle chart for E gives rise to a local trivialization
of PE, and for any two local trivializations obtained in this way, the transition functions
are given by a left translation by a smooth function with values in GL(V ). The bundle
PE is called the frame bundle of E. The reason for this is that, as we have seen
above, the inverse of any vector bundle chart defines a local smooth section of PE and
conversely, local smooth sections of PE give rise to vector bundle charts for E. But
(after a choice of basis for the standard fiber) such charts are equivalent by Theorem 2.3
to local frames of E. Explicitly, given a local section σ of PE defined on U ⊂M , each
σ(x) is a linear isomorphism V → Ex and the frame on U corresponding to σ consists
of the sections si defined by si(x) = σi(x)(vi), where {v1, . . . , vn} is the fixed basis of V .

In particular, we can apply this construction to the tangent bundle TM of an n-
dimensional manifold M . The resulting bundle is denoted by PM , it has structure
group GL(m,R) and is called the (linear) frame bundle of M . All these frame bundles
are special instances of the following general concept

Definition 2.4. Let G be a Lie group and let p : P →M be a smooth fiber bundle
with standard fiber G.

(1) Two local trivializations (U1, ψ1) and (U2, ψ2) for P are said to be compatible
principal bundle charts if either U12 = U1 ∩U2 is empty or the corresponding transition
function ψ12 : U12 × G → G has the form ψ12(x, g) = f(x) · g for a smooth function
f : U12 → G.

(2) A principal bundle atlas is a fiber bundle atlas consisting of compatible principal
bundle charts. Two such atlases are said to be equivalent if their charts are mutually
compatible. A principal fiber bundle with structure group G (or, for short a principal
G-bundle) is a fiber bundle p : P →M with fiber G together with an equivalence class
of principal bundles atlases.

In contrast to the case of vector bundles, the fibers of a principal G-bundle p : P →
M do not inherit a Lie group structure, although they are diffeomorphic to G. The
reason for this simply is that the transition functions are left translations in G and
these are not group homomorphisms. The best way to think about the fibers is as the
Lie group analogs of affine spaces, which are identified with G after selecting a base
point. (The usual technical term is that the fibers are principal homogeneous spaces of
G.) The example one should keep in mind is the set of all bases for a vector space V ,
which can be identified with GL(V ) after selecting one basis. Still there are interesting
structures on a principal bundle p : P → M derived from the group structure on G,
namely the principal right action and the fundamental vector fields.

Proposition 2.4. Let p : P → M be a principal fiber bundle with structure group
G, and let g be the Lie algebra of G.

(1) There is a natural smooth right action r : P ×G→ G written as r(u, g) := u · g,
which is characterized by the fact that for each principal bundle chart (U, ψ) and each
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x ∈ U , we have ψ−1(x, h) · g = ψ−1(x, hg). The orbits of this action are exactly the
fibers of the bundle.

(2) For any X ∈ g, there is a smooth vector field ζX ∈ X(P ) such that for each
u ∈ P , we get ζX(u) = d

dt
|t=0u · exp(tX), where exp : g → G is the exponential map of

G. For each u ∈ P , the map X 7→ ζX(u) defines a linear isomorphism from g onto the
subspace ker(Tup) ⊂ TuP .

Proof. (1) Consider a point u ∈ P , an element g ∈ G and two compatible principal
bundle charts (Ui, ψi) with i = 1, 2 and put x := p(u) ∈ U12. Then for an appropriate
function ψ12 : U12 → G, we get ψ−1

2 (x, h) = ψ−1
1 (x, ψ12(x) · h). This immediately shows

that both charts lead to the same element u · g. Hence we get a well defined map
P × G → P , such that v · e = v and v · (gh) = (v · g) · h. Since the claim on the
orbits is evidently true, it remains to show smoothness to complete the proof of (1).
This is a local question and since for a principal bundle chart ψ : p−1(U) → U × G
we get ψ ◦ ρ = (idU ×µ) ◦ (ψ × idG), where µ : G × G → G is the multiplication map,
smoothness follows.

(2) From (1), we conclude that for u ∈ P , g 7→ u·g defines a smooth map ru : G→ P
such that p◦ru is the constant map to x = p(u). This shows that ζX(u) is a well defined
tangent vector in u, which is given by Teru · X for X ∈ g = TeG. Thus X 7→ ζX(u)
is a linear map g → TuP and since p ◦ ru is constant, this has values in ker(Tup). For
a principal bundle chart (U, ψ) with x ∈ U suppose that ψ(u) = (x, h). Then the
second component of ψ ◦ ru maps g to hg, so this is left translation by h and thus a
diffeomorphism, which shows that Teru is injective. Since p is a submersion, we get
dim(ker(Tup)) = dim(P ) − dim(M) = dim(g), so X 7→ ζX(u) is a linear isomorphism
from g onto ker(Tup).

For fixed X ∈ g, ζX defines a map P → TP such that ζX(u) lies in TuP , so we
only have to verify that this is smooth to complete the proof. But from the description
above, it easily follows that we can write ζX : P → TP as the composition of the smooth
map Tρ : TP × TG → TP with the map P → TP × TG which sends each u ∈ P to
(0u, X) ∈ TuP × TeG. Since the latter map is clearly smooth, we get the result. �

Using the principal right action, we can easily show that for a principal bundle local
smooth sections are equivalent to local principal bundle charts. In particular, this shows
that principal bundles usually do not admit global smooth sections.

Corollary 2.4. Let G be a Lie group with neutral element e and let p : P → M
be a principal G-bundle.

Then for a principal chart (U, ψ), σ(x) := ψ−1(x, e) is a local smooth section of P
defined on U . Conversely, a smooth local section of P defined on U gives rise to a local
trivialization ψ : p−1(U)→ U ×G.

Proof. The first part immediately follows from smoothness of ψ. Conversely, given
a local section σ of P defined on U , we define α : U ×G→ p−1(U) by α(x, g) = σ(x) · g.
Then α clearly is a smooth bijection, so it suffices to prove that α−1 is smooth, too.
This is a local question, so given x ∈ U , we can choose a principal bundle chart (Ũ , ψ̃)

with x ∈ Ũ ⊂ U and prove that α−1 ◦ ψ̃−1 : Ũ × G → Ũ × G is smooth. But
smoothness of σ shows that ψ̃ ◦ σ(x) = (x, f(x)) for a smooth map f : Ũ → G. Thus

ψ̃ ◦ α(x, g) = (x, f(x)g) and hence α−1 ◦ ψ̃−1(x, g) = (x, f(x)−1g) and this is smooth
since the inversion in G is smooth. �

2.5. Principal subbundles. An advantage of the approach via frame bundles is
that one can easily encode additional structures on a manifold (or, more generally on



PRINCIPAL BUNDLES AND ASSOCIATED BUNDLES 19

a vector bundle) via subbundles of the frame bundle. Let us first give the general
definition.

Definition 2.5. Let G be a Lie group, H ⊂ G be a closed Lie subgroup and let
p : P →M be a G-principal bundle.

A principal subbundle with structure group H is a subset Q ⊂ P with the following
properties:

(i) For each u ∈ Q with p(u) = x, the intersection p−1(x) ∩ Q coincides with
{u · h : h ∈ H}.

(ii) For each x ∈ M , there exists an open neighborhood U of x in M and a local
smooth section σ of P such that σ(y) ∈ Q for all y ∈ U .

Alternatively, Q is called a reduction of P to the structure group H ⊂ G.

Applying Corollary 2.4 to local sections σ as in part (ii) of the definition, one obtains
local charts ψ : p−1(U)→ U×G which restrict to bijections p−1(U)∩Q→ U×H. This
shows that Q is a smooth submanifold of P and that the restriction of p to Q makes Q
into a principal H-bundle over M . Alternatively, one can define a reduction of structure
group of p : P → M to be a principal H-bundle q : Q → M together with a smooth
map F : Q→ P such that p ◦ F = q and such that F (u · h) = F (u) · h for each u ∈ Q
and each h ∈ H. From these properties, one readily verifies that F is injective and that
F (Q) ⊂ P satisfies all conditions of Definition 2.5.

We discuss the relation between structures and reductions only in the case of the tan-
gent bundle and just in a few simple examples. We consider the subgroups GL+(n,R) :=
{A : det(A) > 0} and O(n) = {A : AtA = I} of GL(n,R) and their intersection, which
equals SO(n) since for A ∈ O(n) one has det(A) = ±1. The key issue to observe
that these are the subgroups of those linear automorphisms of Rn, which preserve the
standard orientation, the standard inner product, and both these data, respectively.

Proposition 2.5. Let M be a smooth manifold of dimension n and let PM →M
be its frame bundle, which has structure group G := GL(n,R).

(1) M is orientable if and only if there is a principal subbundle P+M ⊂ PM corre-
sponding to GL+(n,R), and an orientation on M is equivalent to the choice of such a
subbundle.

(2) A Riemannian metric on M is equivalent to a principal subbundle OM ⊂ PM
corresponding to the orthogonal group O(n) ⊂ G.

(3) On an orientable manifold M , the choice of an orientation and a Riemannian
metric is equivalent to the choice of a principal subbundle SOM ⊂ PM corresponding
to SO(n) ⊂ G.

Proof. (1) It suffices to prove the second part, since orientability just means exis-
tence of an orientation. We use the definition of an orientation as a family of orienta-
tions of all tangent spaces which are compatible in the sense that locally around each
point x ∈ M , there is a local frame whose values in each point is positively oriented.
Given such an orientation, we define P+M ⊂ PM by saying that a linear isomorphism
u : Rn → TxM lies in P+M if and only if the image of the standard basis of Rn under u
is a positively oriented basis of TxM . It is well known that then there exist local charts
which provide positively oriented local frames. Via Corollary 2.4, any principal bundle
chart for PM constructed from such a local chart provides a local smooth section of
PM which has values in P+M . On the other hand, fixing u ∈ P+M with p(u) = x, a
linear isomorphism û : Rn → TxM lies in P+M if and only if A = u−1 ◦ û : Rn → Rn

lies in GL+(n,R). Since û = u ◦ A, this verifies property (i) of Definition 2.5.



20 2. THE GEOMETRIC PERSPECTIVE

Conversely, given a principal subbundle P+M ⊂ PM we define a basis of TxM to be
positively oriented if and only if the unique linear isomorphism Rn → TxM that maps
the standard basis to the given one lies in P+M . One easily verifies that this defines
an orientation on TxM and that these orientations are compatible.

(2) If g is a Riemannian metric on M , then for each x ∈ M , gx is an inner product
on TxM . Linear algebra implies that there exists a linear isomorphism ux : Rn → TxM
which is orthogonal with respect to the standard inner product on Rn and gx on TxM .
Equivalently, one chooses a basis for TxM which is orthogonal for gx and defines ux
to be the unique linear isomorphism mapping the standard basis of Rn to that basis.
Given g, we define OM ⊂ PM to be the subset of all orthogonal isomorphisms. It then
easily follows as above that for ux ∈ OM a linear isomorphism ûx : Rn → TxM lies in
OM if and only if A := (ux)

−1 ◦ ûx ∈ O(n).
Here the existence of local smooth sections is slightly more difficult, since these can-

not come form local coordinates in general. By Theorem 2.3, what we have to construct
are local frames {ξ1, . . . , ξn} for TM , whose values in each point are orthonormal. But
this can be easily done starting from any local frame using the Gram–Schmidt process.
So let us start with a local coordinate frame {∂1, . . . , ∂n} defined on an open subset
U ⊂ M . Then f := g(∂1, ∂1) : U → R is a positive smooth function so also 1√

f
is

smooth. Thus ξ1 := 1√
f
∂1, satisfies g(ξ1, ξ1) = 1. Next, define ξ̃2 := ∂2 − g(ξ1, ∂2)ξ1,

which clearly is smooth and and by construction satisfies g(ξ1, ξ̃2) = 0. Moreover, ξ̃2 is
nowhere vanishing, since ∂1 and ∂2 are linearly independent in each point, so we can
norm it as above to obtain ξ2. Proceeding similarly, we obtain an orthonormal frame,
which then defines a smooth local section of PM which has values in OM .

Conversely, if we have given OM ⊂ PM and a point x ∈ M , we choose a linear
isomorphism ux : Rn → TxM lying in OM and define gx on TxM by gx(ξ, η) :=
〈(ux)−1(ξ), (ux)

−1(η)〉. This evidently is a positive definite inner product on TxM and
since any other such isomorphism is of the form ux◦A with A ∈ O(n), gx is independent
of the choice of ux. So it remains to show that x 7→ gx is smooth, i.e. that for smooth
vector fields ξ, η ∈ X(M), the function x 7→ gx(ξ(x), η(x)) is smooth. This is a local
question, so we may restrict to an open subset U ⊂M on which there is a local smooth
section σ of PM which has values in OM . This exactly means that σ defines a local
frame {ξ1, . . . , ξn} for TM defined on U , which is orthonormal for g, i.e. such that the
functions g(ξi, ξj) are identically zero for i 6= j and identically 1 for i = j. But then we
can write ξ|U as

∑
fiξi and η|U as

∑
i giξi for smooth functions f1, . . . , fn, g1, . . . , gn :

U → R, and g(ξ, η) =
∑
figi and this is smooth.

(3) This is just a combination of (1) and (2). �

In view of (2), any Riemannian manifold (M, g) comes with a canonical principal
bundle OM → M with structure group O(n), which is called the orthonormal frame
bundle of (M, g). For oriented Riemannian manifolds, we obtain the oriented orthonor-
mal frame bundle SOM , which has structure group SO(n).

2.6. Associated bundles. Given a vector bundle p : E →M with standard fiber
V and the frame bundle π : PE → M of E as constructed above, there is an easy way
to reconstruct E from PE. For a point x ∈ M , an element u ∈ PE with π(u) = x by
definition is a linear isomorphism V → Ex. Hence there is an obvious map PE×V → E
defined by (u, v) 7→ u(v) for u ∈ PE and v ∈ V . This map is evidently surjective and
since u(v) ∈ Ep(u), we see that u1(v1) = u2(v2) is only possible if p(u1) = p(u2). If this
is the case, then we know that u2 = u1 ◦ A for a unique element A ∈ GL(V ), and then
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u2(v2) = u1(Av2), so this equals u1(v1) if and only if v2 = A−1v1. This means that we
can identify E with the set of equivalence classes of the equivalence relation on PE×V
defined by (u1, v1) ∼ (u2, v2) iff there is an element A ∈ GL(V ) such that u2 = u1 ◦ A
and v2 = A−1v1. Otherwise put, this is the space of orbits of the right action of GL(V )
on PE × V defined by (u, v) · A = (u ◦ A,A−1v).

Now it turns out that it is easy to also deduce the vector bundle structure on E
from this description. Moreover, the whole result vastly generalizes in more than one
way. We can not only replace the frame bundle of a vector bundle by an arbitrary
principal G-bundle, but also replace the natural action of GL(V ) on V by an arbitrary
representation of G on a vector space or even by a smooth left action of G on a manifold.
In this way, a single principal fiber bundle (or a single vector bundle via its frame bundle)
gives rise to a large family of bundles over the same base manifold.

Recall that a smooth left action of G on a manifold S is a smooth map ` : G×S → S,
which we also write as (g, y) 7→ g · y such that e · y = y and (gh) · y = g · (h · y) holds for
all g, h ∈ G and y ∈ S. A representation of G on a finite dimensional K-vector space V
is a smooth left action of G on V by linear maps. Equivalently, such a representation
can be described as a smooth homomorphism G → GL(V ). Using these concepts, we
can now describe the general version of the construction.

Consider a principal G-bundle p : P →M and a smooth left action ` : G× S → S.
Then we define a smooth map (P × S) × G → P × S by (u, y) · g := (u · g, g−1 · y),
where we use the principal right action in the first component and the given action ` in
the second component. One immediately verifies that this is a smooth right action of
G, and we define P ×G S to be the set of orbits of this action, i.e. the quotient of P ×S
by the equivalence relation (u1, y1) ∼ (u2, y2)⇔ ∃g ∈ G : (u2, y2) = (u1, y1) · g. Writing
[(u, y)] for the equivalence class of (u, y), there are natural maps q : P × F → P ×G F
and π : P ×G F →M defined by q(u, y) = [(u, y)] and π([(u, y)]) = p(u).

Theorem 2.6. Let p : P → M be a principal fiber bundle with structure group G,
and let ` : G× S → S be a smooth left action of G on a manifold S. Then we have:

(1) The space P ×G S naturally is a smooth manifold and π : P ×G S → M is a
smooth fiber bundle with standard fiber S.

(2) If we deal with a representation G× V → V , then π : P ×G V →M canonically
is a vector bundle over M .

Proof. The basic point here is that any principal bundle chart ψ : p−1(U)→ U×G
for P induces a fiber bundle chart ϕ : π−1(U)→ U × S, which is a vector bundle chart
in the case of a representation. Consider the composition ϕ̃ defined as

p−1(U)× S ψ×idS−→ U ×G× S idU ×`−→ U × S.

This is clearly smooth and since (ψ−1(x, e), y) is mapped to (x, y), it is surjective.
Moreover, the first component of ϕ̃(u, y) is p(u). Thus, (u1, y1) and (u2, y2) can have
the same image only if p(u2) = p(u1) and hence u2 = u1 · g for some g ∈ G. But then
denoting ψ(u1) by (x, h), we get ψ(u2) = (x, hg), so ϕ̃(u1, y1) = ϕ̃(u1, y2) if and only if
hg · v2 = h · v1 or, equivalently, v2 = g−1 · v1. This shows that ϕ̃ descends to a bijection
ϕ : π−1(U)→ U × S.

For two compatible principal bundle charts related as ψ1(ψ−1
2 (x, h)) = (x, ψ12(x)h)

with a smoothG-valued map ψ12, the corresponding charts are related as ϕ1(ϕ−1
2 (x, y)) =

(x, ψ12(x) ·y), where the action in the right hand side is `. This immediately shows that
the chart changes are smooth and they are are linear in the second variable if we start
from a representation. At this stage, we can proceed as before, defining a topology on
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P ×G S either as a quotient of P ×S or via the charts and then use the charts to induce
a manifold structures. For this structure π is visibly smooth and defines a fiber bundle
respectively a vector bundle. �

Definition 2.6. For a principal G-bundle p : P →M and a left action ` : G×S →
S of G, the bundle π : P ×G S →M constructed in Theorem 2.6 is called the associated
bundle to P with respect to the action `. In the case of a representation, one uses the
terminology “associated vector bundle” or “induced vector bundle”.

A crucial fact for our purposes now is that most of the geometric objects one meets
in differential geometry can be interpreted as sections of associated bundles to the linear
frame bundle of a manifold. Let us describe this in a few examples.

Example 2.6. Let M be a smooth manifold of dimension n and let p : PM → M
be the linear frame bundle of M , which has structure group G := GL(n,R). In the
beginning of this section, we have seen that for the obvious action of G on Rn we by
definition get PM ×G Rn ∼= TM with the isomorphism induced by (u, v) 7→ u(v) ∈
Tp(u)M .

Another simple example of a representation of G is provided by the dual space Rn∗ =
L(Rn,R). In order to obtain a left action of G, one has to define (A · λ)(v) := λ(A−1v)
for A ∈ G, λ ∈ Rn∗ and v ∈ Rn. Otherwise put, we have A · λ = λ ◦ A−1. But given
a point u ∈ PM with p(u) =: x and a linear functional λ ∈ Rn∗, we can form λ ◦ u−1,
which is a linear map TxM → R. Since u ·A = u ◦A and A−1 ·λ = λ ◦A, we readily see
that the pair (u · A,A−1 · λ) leads to the same linear functional as (u,A). This easily
implies that the fiber of PM ×G Rn∗ over x ∈ M is the dual space (TxM)∗ and hence
a section of this bundle associates to each x ∈ M a linear functional TxM → R. It is
easy to see the smoothness of such a section exactly means that we get a one-form on
M , so PM ×G Rn∗ is the cotangent bundle T ∗M .

This easily generalizes in several ways. For 1 < k ≤ n, we can consider the vector
space ΛkRn∗ of k-linear, alternating functions (Rn)k → R. This is a representation of G
via (A·α)(v1, . . . , vk) := α(A−1v1, . . . , A

−1vk). As above, a point u ∈ PM with p(u) = x
and an element ϕ ∈ ΛkRn∗ define a k-linear, alternating map ϕ ◦ (u−1)k : (TxM)k → R.
Further, sections of the associated bundle PM ×G ΛkRn∗ are exactly k-forms on M , so
this is the bundle ΛkT ∗M of k-forms.

Taking general multilinear maps on Rn one identifies general tensor fields of type(
`
k

)
with sections of the associated bundle PM ×G (⊗`Rn ⊗ ⊗kRn∗). Any G-invariant

subspace in ⊗`Rn⊗⊗kRn∗, for example maps having appropriate (anti-)symmetry prop-
erties, gives rise to a smooth subbundle and geometric objects as sections.

2.7. Functorial properties. One may expect that the construction of associated
bundles is functorial in two ways, namely with respect to the principal bundle and
with respect to the space used to induce the bundle. We only discuss this for the case
of associated vector bundles, the case of associated fiber bundles is similar. We have
not yet discussed morphisms of fiber bundles, but the concept is rather obvious: If
p : E → M and p̃ : Ẽ → M̃ are arbitrary fiber bundles, the one defines a bundle map
as a smooth map F : E → Ẽ, which maps fibers to fibers. Explicitly, this can be
formulated as the fact that there is a set map f : M → M̃ , called the base map of F
such that p̃ ◦ F = f ◦ p. Assuming this, the facts that p̃ ◦ F is smooth and that p is a
surjective submersion imply that f is smooth, too.

If E and Ẽ are principal bundles with the same structure group G, then a bundle
map F : E → Ẽ is called a principal bundle map if it is equivariant for the principal
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right actions of G, i.e. if F (u · g) = F (u) · g for each u ∈ E and g ∈ G. For bundles
with different structure group, one can similarly require equivariancy with respect to a
fixed homomorphism. For example, the alternative definition of a reduction of structure
group to a subgroup H ⊂ G from Section 2.5 just is as a principal bundle map with
respect to the inclusion homomorphism H → G and with base map idM .

Next, consider K-vector bundles E and Ẽ and a bundle map F : E → Ẽ with base
map f . Then by definition, for each x ∈M , F maps the fiber Ex = p−1(x) to the fiber
Ẽf(x). One calls F a vector bundle map or a vector bundle homomorphism if each of the
induced maps between the fibers is linear over K.

A basic example of a vector bundle homomorphism is given by the tangent map
Tf : TM → TN of a smooth map f : M → N , which then is the base map of
Tf . We can also use this to obtain a fundamental example of a principal bundle map:
Consider two smooth manifolds M and N , which both have dimension n and a local
diffeomorphism f : M → N , i.e. a smooth map such that for each x ∈ M , the tangent
map Txf is a linear isomorphism. Then we define a map Pf : PM → PM between
the frame bundles of the two manifolds with base map f as follows. A point of PM in
the fiber over x ∈ M by definition is a linear isomorphism u : Rn → TxM . But then
Pf(u) := Txf ◦u is a linear isomorphism Rn → Tf(x)N and thus an element of PN which
lies in the fiber over f(x). One easily checks that Pf is smooth and thus defines a fiber
bundle map with base map f . But the principal action of G = GL(n,R) on the frame
bundles is given by composition, so u ·A = u◦A, so Pf(u ·A) = Txf ◦u◦A = Pf(u) ·A,
so Pf is a principal bundle map.

Proposition 2.7. Let p : E → M and p̃ : Ẽ → M̃ be principal G-bundles and let
V and W be representations of the Lie group G.

(1) A principal bundle map F : E → Ẽ with base map f naturally induces a vector
bundle homomorphism FV : E×G V → Ẽ×G V with base map f . The restriction of FV
to each fiber of E ×G V is a linear isomorphism.

(2) A G-equivariant linear map ϕ : V → W naturally induces a vector bundle
homomorphism ϕM : E ×G V → E ×GW with base map idM .

Proof. (1) We can form F × idV : E × V → Ẽ × V and observe that this maps
(u · g, g−1 · v) to (F (u) · g, g−1 · v) by equivariancy of F . Thus there is a well defined
map FV between the orbit spaces. The definitions imply that the natural projection
E × V → E ×G V is a surjective submersion, which implies that FV is smooth, and by
construction it has base map f . The identification of V with a fiber of E ×G V over
x ∈ M is given by v 7→ [(u0, v)] for some element u0 ∈ Ex. Likewise, ũ0 ∈ Ẽf(x) leads

to the identification of the fiber of Ẽ ×G V with V defined by [(ũ0, w)] 7→ w. But then
F (u0) = ũ0 · g for some g ∈ G and FV ([(u0, v)]) = [(ũ0 · g, v)] = [(ũ0, g · v)]. Hence
the map between the fibers of the associated bundles corresponds to the map V → V
defined by v 7→ g · v, so this is a K-linear isomorphism.

(2) Equivariancy of ϕ shows that the map idE ×ϕ : E×V → E×W sends (u·g, g−1·v)
to (u · g, g−1 ·ϕ(v)), so again there is an induced map ϕM between the orbit spaces. As
above, we conclude that ϕM is smooth and clearly it is a bundle map with base map
idM . But then for identifications of the fibers as in the proof of part (1), it is clear that
the maps on the fibers induced by ϕM correspond to ϕ and thus are linear. �

This result provides us with a nice interpretation of the action of local diffeomor-
phisms on tensor fields. From Example 2.6, we know that any tensor bundle over an
n-dimensional manifold M can be realized as EM := PM ×G V for appropriate rep-
resentations V of the group G := GL(n,R). Given another n-manifold N and a local
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diffeomorphism f : M → N , we can form the principal bundle map Pf : PM → PN ,
and then by part (1) of the Proposition get an induced map PfV =: Ef : EM → EN ,
which restricts to a linear isomorphism on each fiber of EM . This allows us to de-
fine a pullback operation sending sections of EN to sections of EM . Given a section
σ ∈ Γ(EN) and a point x ∈M , we can form σ(f(x)) ∈ Ef(x)N and since Ef restricts to
a linear isomorphism ExM → Ef(x)N , there is a unique element f ∗σ(x) ∈ ExM which
is mapped to σ(f(x)) by Ef . This defines a map f ∗σ : M → EM mapping each point
into the fiber over that point and this is characterized by Ef ◦ f ∗σ = σ ◦ f . It is easy
to verify that f ∗σ is indeed a smooth section of EM .

In the case tensor bundles, this leads to the usual action of local diffeomorphisms.
Let us consider the case V = Rn, so EM = TM . The isomorphism PM ×G Rn ∼= TM
comes from [(u, v)] 7→ u(v), and PFV ([(u, v)]) = [(Pf(u), v)] = [(Txf ◦ u, v)], where x is
the base point of u, so this is mapped to Txf(u(v)). This shows that PfV = Tf so we
get the right induced bundle map here. Similar considerations apply to more general
tensor bundles.

Second, these considerations lead to an interesting perspective on Riemannian ge-
ometry. For a smooth manifold M with linear frame bundle PM → M , we know from
Proposition 2.5 that the choice of a Riemannian metric g on M is equivalent to the
choice of a principal subbundle OM ⊂ PM with structure group O(n) ⊂ GL(n,R).
Now any representation V of GL(n,R) can simply be restricted to a representation of
the subgroup O(n) and from the definitions we readily see that the associated bundles
PM ×GL(n,R) V and OM ×O(n) V can be naturally identified. Thus, on a Riemannian
manifold, we can view all tensor bundles as associated bundles to the orthonormal frame
bundle.

But it may happen that two non-isomorphic representations V and W of GL(n,R)
are isomorphic as representations of the subgroup O(n). The simplest example is pro-
vided by the representations Rn and Rn∗, which are isomorphic as representations of
O(n) via v 7→ 〈v, 〉. Indeed for A ∈ O(n), we get 〈Av,w〉 = 〈v, A−1w〉, which ex-
actly says that 〈Av, 〉 = 〈v, 〉 ◦ A−1 and thus our map is O(n)-equivariant. Visibly,
this map is not GL(n,R)-equivariant, and indeed Rn and Rn∗ are non-isomorphic as
representations of GL(n,R). Now part (2) of Proposition 2.7 readily implies that an
isomorphism between two representations induces an isomorphism between the corre-
sponding associated bundles. Thus we see that for a Riemannian manifold the bundles
TM ∼= OM ×O(n) Rn and T ∗M ∼= OM ×O(n) Rn∗ are naturally isomorphic, but the
isomorphism depends on the Riemannian metric. This of course generalizes to other
tensor bundles, compare with Section 1.5 of [Riem].

Similarly, there may be other linear maps between representations of GL(n,R) which
are O(n)-equivariant but not GL(n,R)-equivariant. Consider the representation S2Rn∗

of symmetric bilinear forms on Rn, compare with Example 2.6. As described in Section
2.1, the inner product on Rn gives rise to a trace map tr : S2Rn∗ → R, and it is
easy to verify that this map is O(n)-equivariant (but not GL(n,R)-equivariant). Thus
it defines a bundle map between the corresponding associated bundles, which exactly
leads to the definition of the trace of a symmetric

(
0
2

)
-tensor field on a Riemannian

manifold as described in Section 2.1. This leads to a finer decomposition of the bundle
S2T ∗M on a Riemannian manifold corresponding to the O(n)-invariant decomposition
S2Rn∗

= ker(tr)⊕ R · 〈 , 〉.
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Applications to Riemannian geometry

We close the chapter by a discussion of the Levi-Civita connection in the description
of Riemannian metrics via the orthonormal frame bundle from Proposition 2.5. This
will directly lead to a Laplace operator on sections of any natural vector bundle over
a Riemannian manifold as well as to the concept of generalized Laplacians. We will
also sketch applications of these operators in geometry and topology, thus providing
perspective for the use of (generalized) Dirac operators.

2.8. The Levi-Civita connection. The last crucial bit of information that we
need is that the Levi-Civita connection of a Riemannian manifold can be nicely ex-
pressed in terms of the orthonormal frame bundle. The first step towards this is that
one can describe (local) sections of an associated bundle in terms certain smooth func-
tions on the total space of the principal bundle.

Proposition 2.8. Let p : P → M be a principal G-bundle, ` : G × S → S a
left action of G and π : P ×G S → M the corresponding associated bundle. Then for
any open subset U ⊂ M , local sections of P ×G S → M defined on U are in bijective
correspondence with smooth functions f : p−1(U) → S, which are G-equivariant in the
sense that f(u · g) = g−1 · f(u) for all u ∈ p−1(U).

Proof. The main step here is to understand that this works point wise, then one
just has to verify that smoothness has the same meaning in the two pictures. So suppose
that we have given x ∈ U and points u ∈ P and z ∈ P ×G S such that p(u) = π(z) = x.
We can write z = [(ũ, y)] for some ũ ∈ P with p(ũ) = x. But then there is a unique
element g ∈ G such that u = ũ · g and z = [(u, g−1 · y)]. On the other hand, since
u = u · g implies g = e, we see that [(u, y)] = [(u, ỹ)] implies y = ỹ.

Now we can establish the claimed bijection. Given a local section s of P×GS defined
on U and a point u ∈ p−1(U), we define f(u) ∈ S to be the unique element such that
s(p(u)) = [(u, f(u))]. Since p(u) = p(u ·g), this implies [(u ·g, f(u ·g))] = [(u, f(u))] and
thus f(u · g) = g−1 · f(u). Smoothness of f can be verified locally, so we can work in
a principal bundle chart ψ and the corresponding chart ϕ for P ×G S. On the domain
of this chart, we get (ϕ ◦ s)(x) = (x, α(x)) for a smooth S-valued map α. But α(x) by
definition equals [(ψ−1(x, e), α(x))], so we see that f(ψ−1(x, g)) = g−1 · α(x), so this is
smooth, too.

Conversely, given an equivariant smooth function f : p−1(U) → S, then for each
x ∈ U all elements u ∈ Px lead to the same class [(u, f(u))] and we define this class to
be s(x). Clearly, this defines a map s : U → π−1(U) such that π ◦ s = idU . Smoothness
of s can be verified locally. But in terms of a local smooth section σ of P and the
natural map q : P × S → P ×G S, we can write s = q ◦ (σ, f ◦ σ), so this is smooth,
too. �

Now functions on any manifold with values in some vector space can be differentiated
using vector fields on this manifold. (Just use a basis to obtain real valued functions,
differentiate those and observe that the result is independent of the choice of basis.) The
derivative of an equivariant function f : P → V along a general vector field ξ ∈ X(P ) is
not equivariant. However, if one in addition requires that ξ is G-invariant in the sense
that (rg)∗ξ = ξ for each g ∈ G, then ξ · f is also equivariant: Invariance means that
ξ(u · g) = Trg · ξ(u) and applying this tangent vector to f , we get ξ(u) · (f ◦ rg) =
ξ(u) · (λ(g−1) ◦ f), where we denote by λ(g−1) : V → V the action of g−1 on V . But
this is a linear map, so we end up with ξ(u · g) · f = λ(g−1)(ξ(u) · f), which is exactly
the required equivariancy condition.
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Suppose that ξ̃ ∈ X(P ) is a G-invariant vector field on a principal G-bundle p : P →
M . Then for two points u, û ∈ P in the fiber over x ∈ M , we get an element g ∈ G
such that û = u · g, and hence ξ̃(û) = Trg · ξ̃(u). Since p ◦ rg = p, we conclude that

Tûp·ξ̃(û) = Tup·ξ̃(u) ∈ TxM . Denoting this element by ξ(x), we get a map ξ : M → TM

such that ξ(x) ∈ TxM for all x ∈ M and such that ξ ◦ p = Tp ◦ ξ̃ : P → TM .
In local trivializations, one easily verifies that ξ is smooth and thus defines a vector
field ξ ∈ X(M). This says that ξ̃ ∈ X(P ) is a projectable vector field with projection
ξ ∈ X(M).

There is a general gadget, called a principal connection, which can be chosen on
any principal G-bundle p : P → M and that allows one to revert this process, i.e. to
associate to each vector field ξ ∈ X(M) a G-invariant vector field ξhor ∈ X(P ) that
projects onto ξ. Such a principal connection can be equivalently described in two ways.
On the one hand, one may choose in each tangent space TuP a linear subspace Hu,
which is complementary to ker(Tup) ⊂ TuP . This choice should be G-equivariant in
the sense that for each u ∈ P and g ∈ G, we get Hu·g = Tur

g(Hu). Moreover, the
subspaces Hu should define a smooth distribution on P , in the sense that each point
u ∈ P should have an open neighborhood U ⊂ P for which there are smooth local
vector fields ξ1, . . . , ξn whose values in each point of U span the distinguished subspace.
Since on often refers to ker(Tup) as the vertical subspace of the tangent space, the family
Hu of subspaces is called the horizontal distribution of the principal connection.

The second description of a principal connection is as a differential form γ ∈ Ω1(P, g)
with values in the Lie algebra g of G. This means that γ assigns to each u ∈ P a
linear map TuP → g and this assignment depends smoothly on u in the usual sense.
In addition, γ is required to reproduce the generators of fundamental vector fields,
i.e. for each X ∈ g with fundamental vector field ζX (see Proposition 2.4), one has
γ(ζX(u)) = X for all u ∈ P . Finally, γ should be G-equivariant in the sense that
(rg)∗γ = Ad(g−1) ◦ γ for all g ∈ G.

The relation between the two pictures is more simple than it may look at first
sight. Having give Hu ⊂ TuP , one can uniquely decompose each ξ ∈ TuP as the sum
of an element of Hu and an element of ker(Tup), and the latter component can be
uniquely written as ζX(u) for an element X ∈ g. Putting γ(u)(ξ) = X defines a form
γ ∈ Ω1(P, g), which evidently reproduces the generators of fundamental vector fields.
Conversely, having give γ ∈ Ω1(P, g) such that γ(u) : TuP → g is surjective for each
u, one may define Hu := ker(γ(u)). One then verifies directly that the equivariancy
conditions in the two pictures correspond to each other.

By construction, for each u ∈ P , the tangent map Tup restricts to a linear iso-
morphism Hu → Tp(u)M . Thus given a vector field ξ ∈ M , there is a unique ele-
ment ξhor(u) ∈ Hu such that Tup · ξhor(u) = ξ(p(u)). Equivariancy of H shows that
Tur

g · ξhor(u) ∈ Hu·g ⊂ Tu·gP and since this projects on ξ(p(u)) is has to coincide with
ξhor(u · g), so ξhor is G-invariant. Finally, one easily verifies that ξhor indeed defines a
smooth vector field on P , called the horizontal lift of ξ.

Now the fundamental theorem on the Levi-Civita connection from Riemannian ge-
ometry can be formulated as follows:

Theorem 2.8. For any Riemannian manifold (M, g) of dimension n, there is a
canonical principal connection on the orthonormal frame bundle OM . This is char-
acterized by the fact that for vector fields ξ, η ∈ X(M) the covariant derivative ∇ξη
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corresponds to the O(n)-equivariant function ξhor · f , where ξhor ∈ X(OM) is the hor-
izontal lift of ξ and f : OM → Rn is the O(n)-equivariant function corresponding to
η.

Sketch of proof. This sketch is intended for people familiar with the basic facts
about the Levi-Civita covariant derivative in the usual language of Riemannian geome-
try. An independent proof of existence an uniqueness of the connection building on the
orthonormal frame bundle is given in Appendix A.

The covariant derivative ∇ defines an operator ∇ : X(M)×X(M)→ X(M), written
as (ξ, η) 7→ ∇ξη, which is linear over smooth functions in the first variable and satisfies
a Leibniz rule in the second variable. In particular, for a point x ∈ M , ∇ξη(x) ∈ TxM
depends only on ξ(x) ∈ TxM . Now take a point u ∈ OM over x and choose any tangent

vector ξ̃ ∈ TuOM such that Tup · ξ̃ = ξ(x). Now for a vector field η ∈ X(M), let us
temporarily denote the corresponding equivariant function OM → Rn as f η. Then
consider the map Ψ : X(M)→ Rn defined by Ψ(η) := ξ̃ · f η − u−1(∇ξη(x)). One easily
verifies that this is linear over R.

Next, for a smooth function ϕ : M → R consider ϕη ∈ X(M). From the definitions,
one easily verifies that fϕη = (ϕ ◦ p)f η, and thus

ξ̃ · fϕη = ((Tup · ξ̃) · ϕ)f η + (ϕ ◦ p)ξ̃ · f η = (ξ · ϕ)(x)f η + ϕ(x)ξ̃ · f η.
On the other hand, the Leibniz rule says that ∇ξϕη(x) = ϕ(x)∇ξη(x) + (ξ · ϕ)(x)η(x).
Applying u−1 to the second summand, we simply get (ξ · ϕ)(x)f η(u), which together
with the above shows that Ψ(ϕη) = ϕ(x)Ψ(η).

Now similarly to the characterization of tensor fields, one shows that this implies
that Ψ(η) only depends on η(x), so there is a linear map X : Rn → Rn such that
Ψ(η) = X(u−1(η(x))). Next, we claim that X is skew symmetric with respect to the
standard inner product on Rn. The idea here is that for η1, η2 ∈ X(M), the function

〈f η1 , fη2〉 : OM → R equals g(η1, η2) ◦ p. Differentiating this equation by ξ̃, we get

ξ̃ · 〈f η1 , fη2〉 = (ξ · g(η1, η2))(x). Bilinearity of the inner product shows that the left

hand side equals 〈ξ̃ · f η1 , fη2(u)〉 + 〈f η1(u), ξ̃ · f η2〉. Compatibility of the Levi-Civita
connection with the metric says that the right hand side can be written as

gx(∇ξη1(x), η2(x)) + gx(η1(x),∇ξη2(x)).

The first summand can be written as 〈u−1(∇ξη1(x)), fη2(u)〉 and similarly for the second
one. Rearranging terms then immediately implies that

〈X(f η1(u)), fη2(u)〉 = −〈f η1(u), X(f η2(u))〉
and thus the claimed skew symmetry.

But this means that we can form ξhor(u) := ξ̃ + ζX(u) ∈ TuOM , and Tup · ξhor(u) =
ξ(x). Equivariancy of f η easily implies that ζX(u) · f η = −X(f η(u)) and thus ξhor(u) ·
f η = u−1(∇ξη(x)). Sending ξ(x) to ξhor(u) defines a map TxM → TuOM , which is
right inverse to Tup and easily seen to be linear. Now one defines Hu to be the image
of this map and then verifies that these spaces satisfy all the properties of a principal
connection. �

2.9. (Generalized) Laplacians and some applications. Now we have all in-
gredients at hand to define a broad class of analogs of the Laplacian on vector valued
functions on Rn. Namely, let (M, g) be an n-dimensional Riemannian manifold with
orthonormal frame bundle OM and let V be any representation of O(n). Then we can
consider the associated natural vector bundle EM := OM ×O(n) V and the principal
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connection on OM induced by the Levi-Civita connection. This provides the horizontal
lift ξhor for any vector field ξ ∈ X(M). For a smooth section σ ∈ Γ(EM) corresponding
to fσ : OM → V , also the function ξhor · fσ : OM → V is equivariant and thus cor-
responds to a section ∇ξσ ∈ Γ(EM). The definitions readily imply that for a smooth
function ϕ : M → R, the horizontal lift of ϕξ is given by (ϕ ◦ p)ξhor, which readily
implies that ∇ϕξσ = ϕ∇ξσ. On the other hand fϕσ = (ϕ ◦ p)fσ which implies that
∇ξϕσ = (ξ · ϕ)σ + ϕ∇ξσ. This means that ∇ defines a covariant derivative on EM .

Linearity over smooth functions in ξ again shows that ∇ξσ(x) ∈ ExM depends only
on ξ(x) ∈ TxM . Thus we can view ∇σ(x) as defining a linear map TxM → Ex, or
otherwise put, view ∇σ as a section of the bundle OM ×O(n) L(Rn, V ). In this form,
the covariant derivative can be iterated, i.e. we can form ∇(∇σ) which is a section of
the bundle induced by the representation L(Rn, L(Rn, V )) which is isomorphic to the
space of bilinear maps Rn × Rn → V . Evaluating such a map on the elements of an
orthonormal basis and summing up defines a linear map tr : L(Rn, L(Rn, V )) → V ,
which is easily seen to be O(n)-equivariant. Hence we can define the Laplace operator
∆ : Γ(EM) → Γ(EM) by ∆(σ) := − tr(∇(∇σ)). It turns out that there are several
small variations of this idea, so it is better to use a more general concept.

Definition 2.9. Let (M, g) be a Riemannian manifold and let EM be an associated
bundle to the orthonormal frame bundle OM . A generalized Laplace operator on EM
is an operator ∆ : Γ(EM) → Γ(EM), which is the sum of − tr(∇(∇σ)) and some
differential operator of order at most one.

For what follows, it will be important that there are two different strains of applica-
tions of such operators, which build on different points of view. The more obvious strain
is formed by applications of such operators to Riemannian geometry. In fact, already
the study of the (standard) Laplacian ∆(f) = − tr(∇(∇f)) on smooth functions on a
Riemannian manifold (M, g) forms a substantial part of Riemannian geometry. It turns
out that ∆ can be extended to an essentially self-adjoint, non-negative, unbounded
operator on the Hilbert space L2(M) of L2-functions. If M is compact, then this ex-
tension has discrete spectrum consisting of eigenvalues with finite multiplicity. This
spectrum contains an amazing amount of information on (M, g), and spectral geometry
is devoted to the study of these relations, see e.g. [La15]. For non-compact manifolds,
the spectrum of the Laplacian becomes much more complicated, with both eigenvalues
and essential spectrum showing up. But studying this spectrum still is a very active
area of research, involving topics like scattering theory.

The second line of applications is less obvious but equally important. Here the main
interest is in the topology of a smooth manifold M , on which one chooses a Riemannian
metric is as an auxiliary ingredient. Alternatively, the results can also go in the direction
that existence of Riemannian metrics on M with certain properties imply restrictions
on the topology of M . The model example for this line of application is provided by the
Laplace–Beltrami operator on differential forms on an oriented Riemannian manifold
M . Recall that for any smooth manifold M and any k = 0, . . . , dim(M) − 1, one has
the exterior derivative d : Ωk(M) → Ωk+1(M). These operators satisfy d ◦ d and the
quotient ker(d)/ im(d) in degree k is called the kth de Rham cohomology Hk(M) of M .
These de Rham cohomology spaces of M are fundamental topological invariants.

Let us sketch the construction of the Laplace–Beltrami operator, see Section 1.6 of
[Riem] for details: If M is oriented and endowed with a Riemannian metric g, then
one defines a tensorial operation ∗, the Hode–∗–operator. This maps k-forms to (n−k)-
forms, where n is the dimension of M . The codifferential δ : Ωk(M) → Ωk−1(M) is
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then defined as δ := (−1)nk+n+1 ∗ ◦d ◦ ∗. Having this at hand, the Laplace–Beltrami
operator ∆ : Ωk(M)→ Ωk(M) is defined by ∆ = d◦ δ+ δ ◦d. This is easily seen to be a
generalized Laplacian. The upshot of this construction is that, on a compact manifold,
δ is adjoint to d with respect to natural inner products on the spaces of forms, so ∆
is symmetric with respect to these inner products and ker(∆) = ker(d) ∩ ker(δ), see
Proposition 1.6 of [Riem].

This result also shows that the projection ker(d)→ Hk(M) restricts to an injection
on ker(∆). On a finite dimensional space adjointness of d and δ would directly show that
ker(δ) is the orthocomplement of im(d) and thus ker(d) ∩ ker(δ) is complementary to
im(d) in ker(d). Using functional analysis, it can be proved that, for a compact manifold
M , things also work out for the infinite dimensional space Ωk(M), so the projection
restricts to a linear isomorphism Ωk(M) ⊃ ker(∆)→ Hk(M). Since the spaces Hk(M)
turn out to be finite dimensional for a compact manifold M , the essential quantity
is their dimension, which coincides with the dimension of the kernel of the Laplace
Beltrami operator. This topological interpretation also shows that the dimension of the
kernel of the Laplace–Beltrami operator is independent of the Riemannian metric in
question, which is a very surprising result in its own right.





CHAPTER 3

Spin structures

In this chapter, we introduce the fundamental concepts of spin geometry as an
“extension” of Riemannian geometry. We start by describing the general properties of
spin groups and their spin representations abstractly. For dimensions 3 to 6 we have
found these groups and representations in Chapter 1, for higher dimensions we will for
now assume their existence and describe a general construction in Chapter 4 below.
From the description of Riemannian geometry via the orthonormal frame bundle, one
is lead to the notion of a spin structure as an extension of that bundle. Having given
such a spin structure, we can prove existence of spinor bundles, the spin connection and
the basic Dirac operator rather quickly. We then turn to the questions of existence and
uniqueness of spin structures which are related to algebraic topology.

3.1. Properties of spin groups. Let us collect the properties of the spin groups
we will use in what follows and check that we have indeed found all these data in low
dimensions in Chapter 1. For the rest of this chapter, we will assume that for each
dimension n ≥ 3 there is

• A connected Lie group Spin(n), called the spin group endowed with a surjective
homomorphism ρ : Spin(n) → SO(n) with two-element kernel contained in the
center of Spin(n).
• A specific faithful complex unitary representation S of Spin(n).
• A bilinear map ∗ : Rn × S → S called Clifford multiplication, which satisfies the

Clifford relations from Section 1.3 in the sense that v∗(w∗z)+w∗(v∗z) = −2〈v, w〉z
for all v, w ∈ Rn and z ∈ S. Moreover, this map is equivariant for the natural action
of Spin(n) coming from the given representation on S and the representation on
Rn defined by ρ.

Recall that a representation is called faithful if only the neutral element of the group
acts as the identity map and it is called unitary if there is a positive definite Hermitian
inner product on the representation space for which the group elements act by unitary
maps. Observe that since S is faithful, the non-trivial element of ker(ρ) acts non-
trivially on S. As discussed in Sections 1.4 and 1.5, this shows that S does not come
from a representation of SO(n).

Let us first verify that we have indeed found all that in dimensions 3 and 4 in
Chapter 1. We started by defining H as an associative subalgebra of M2(C). For
n = 3, we have found Spin(3) := SU(2) ⊂ M2(C), so this comes with a natural
faithful unitary representation on S := C2. Further, we have viewed R3 as the subspace
im(H) so this already sits in L(S,S). Explicitly, v ∈ R3 corresponds to the matrix

Av :=

(
iv1 v2 + iv3

−v2 + iv3 −iv1

)
. The considerations in Section 1.3 or a simple direct

computation show that AvAw + AwAv = −2〈v, w〉I2. This exactly means that the
map R3 × C2 → C2 defined by v ∗ z := Avz satisfies the Clifford relations. Finally,
the homomorphism SU(2) → SO(3) from Section 1.4 was characterized by Aρ(B)v =

31
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BAvB
−1, which shows that (ρ(B)v) ∗Bz = BAvB

−1Bz = B(v ∗ z) which is the natural
equivariancy condition.

For n = 4 we have found Spin(4) = SU(2) × SU(2). Denoting the standard rep-
resentations of the two factors on C2 by S+ and S− we get a natural faithful unitary
representation of Spin(4) on S := S+⊕S−. Further, we have viewed R4 as H ⊂M2(C).
Interpreting M2(C) as describing linear maps from S− to S+, we can thus associate to
v ∈ R4 a map fv : S− → S+. Denoting by f ∗v : S+ → S− the adjoint map, we define

∗ : R4 × S → S by v ∗
(
z+

z−

)
:=
(
fv(z−)
−f∗v (z+)

)
. By definition, we get

v ∗
(
w ∗

(
z+

z−

))
+ w ∗

(
v ∗
(
z+

z−

))
=

(
−(fvf

∗
w + fwf

∗
v )(z+)

−(f ∗v fw + f ∗wfv)(z
−)

)
.

Written in terms of quaternions, the terms in the right hand side are −(pq̄ + qp̄) and
−(p̄q + q̄p). These both give −2〈p, q〉 and thus the Clifford relations are satisfied.
The homomorphism SU(2) × SU(2) → SO(4) from Section 1.5 is characterized by
fρ(B1,B2)v = B1fvB

∗
2 and hence f ∗ρ(B1,B2)v = B2f

∗
vB
∗
1 . Using this, we compute

(ρ(B1, B2)v) ∗
(
B1z

+

B2z−

)
=

(
B1fvB

∗
2B2z

−

−B2f ∗vB
∗
1B1z+

)
=

(
B1(fv(z

−))

−B2f ∗v (z+)

)
,

and the right hand side is the action of (B1, B2) on v ∗
(
z+

z−

)
.

As indicated by this discussion, there is a difference between even and odd dimen-
sions. For an odd dimension, let us write n = 2m− 1. Then it turns out that the spin
representation always is a complex irreducible representation S of complex dimension
2m. In particular, we have seen in Section 1.6 that Spin(5) ∼= Sp(2) ⊂ Sp(4,C). The
spin representation S is just the restriction of the standard representation (on C4) of
Sp(4,C) to Sp(2). It is also possible to describe the Clifford multiplication in this pic-
ture, but we don’t go into that. In even dimensions n = 2m, the spinor representation
S is a direct sum S = S+ ⊕ S− of two half-spin representations which are irreducible.
Clifford multiplication exchanges the two factor, so it maps S+ to S− and vice versa.
In dimension 6, we have seen in Section 1.6 that Spin(6) ∼= SU(4) and the half-spin
representations are the basic representation of SU(4) on C4 and its dual C4∗.

Spin structures and the Dirac operator

3.2. Definition of spin structures. Let (M, g) be a smooth, oriented Riemannian
manifold of dimension n ≥ 3. Then from Proposition 2.5 we get the oriented orthonor-
mal frame bundle SOM , which is a principal bundle with structure group SO(n). Now
a spin structure on M is defined as an “extension” of this bundle to a principal bundle
with structure group Spin(n) in a natural sense.

Definition 3.2. (1) A spin structure on an oriented Riemannian manifold (M, g)
is given by

• A principal fiber bundle Q→M with structure group Spin(n).
• A fiber bundle homomorphism Φ : Q → SOM to the oriented orthonormal frame

bundle with base map idM , which is equivariant over the quotient homomorphism
ρ : Spin(n) → SO(n) in the sense that Φ(u · g) = Φ(u) · ρ(g) for each u ∈ Q and
each g ∈ Spin(n).

(2) Given a spin structureQ→M , the spinor bundle Σ→M is defined as the associated
bundle Q×Spin(n) S corresponding to the spin representation S.
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At this stage it is not clear whether a given oriented Riemannian manifold (M, g)
does admit a spin structure, but given such a structure, we can derive several conse-
quences: Via ρ : Spin(n)→ SO(n), any representation of SO(n) can also be viewed as
a representation of Spin(n). In particular, any natural vector bundle on (M, g) in the
sense of Example 2.6 can also be viewed an associated bundle to the Spin(n)-principal
bundle Q → M . By definition, the spin representation S does not descend to SO(n)
since the non-trivial element in ker(ρ) acts non-trivially on S. Hence the spinor bundle
Σ→M can be viewed as providing “new” geometric objects associated to a spin struc-
ture. Note that for even dimensions, the decomposition S = S+ ⊕ S− gives associated
bundles Σ± →M such that Σ = Σ+ ⊕ Σ−.

It is almost as easy to see that the Levi-Civita connection gives rise to a principal
connection on any spin structure over a Riemannian manifold.

Proposition 3.2. Let (M, g) be a oriented Riemannian manifold and let Φ : Q→
SOM be a spin structure. Then Φ is a local diffeomorphism and a two-fold covering.
Hence the Levi-Civita connection on SOM canonically lifts to a principal connection
on Q, which defines the same covariant derivative on all vector bundles bundles coming
from representations of SO(n).

Proof. Let U ⊂M be an open subset such that Q admits a local section σ defined
on U . Since Φ has base map idM , we see that Φ ◦ σ : U → SOM defines a local
smooth section, too. By Corollary 2.4, we obtain corresponding principal bundle charts
ϕ̃ for Q and ϕ for SO(M) such that ϕ ◦ Φ ◦ ϕ̃−1 : U × Spin(n)→ U × SO(n) satisfies
(x, e) 7→ (x, e) and thus (x, g) 7→ (x, ρ(g)) by equivariancy. Hence each tangent map of
Φ has to be bijective, so it is a local diffeomorphism. Moreover, by construction Φ is
surjective and for each point in SOM , the pre-image consists of exactly two elements,
so Φ is a two-fold covering.

For each u ∈ Q, we have just seen that TuΦ : TuQ → TΦ(u)SOM is a linear iso-
morphism and this preserves the vertical subspaces since Φ is a fiber bundle map.
Hence we can define Hu ⊂ TuQ as the pre-image of the horizontal subspace of the
Levi-Civita connection under TuΦ. For each u, this is complementary to the vertical
subspace. Moreover, for g ∈ Spin(n) we have Φ ◦ rg = rρ(g) ◦ Φ, which implies that
Tu·gΦ(Tur

g(Hu)) = TΦ(u)r
ρ(g)(TuΦ(Hu)). Equivariancy of the Levi-Civita connection

shows that the right hand side coincides with the horizontal subspace of the Levi-Civita
connection in Φ(u) · ρ(g) = Φ(u · g). Thus we conclude that Tur

g(Hu) = Hu·g, so we
have indeed defined a principal connection on Q.

Now given a representation V of SO(n), we view it as a representation of Spin(n)
via ρ. As discussed above, we can identify the bundles Q×Spin(n) V and SOM ×SO(n) V
via [(u, v)] 7→ [(Φ(u), v)]. Denoting that bundle by E, Proposition 2.8 tells us that a
section s ∈ Γ(E) corresponds to an SO(n)-equivariant smooth function f : SO(M) →
V . Similarly, it corresponds to a Spin(n)-equivariant function Q → V , but from the
construction it is clear that this function is just f ◦ Φ. For ξ ∈ X(M), we have the
horizontal lift ξhor ∈ X(Q) and the covariant derivative of s with respect to the lifted
connection corresponds to u 7→ ξhor(u) · (f ◦ Φ) = (TuΦ(ξhor(u))) · f . But from the
description above it is clear that TuΦ(ξhor(u)) is the horizontal lift of ξ in Φ(u) with
respect to the Levi-Civita connection. So we just get the value in Φ(u) of the function
corresponding to the covariant derivative with respect to the Levi-Civita connection. �

The principal connection on Q is often called the spin-connection, but we will just
view it as an extension of the Levi-Civita connection. Therefore we will also denote all
covariant derivatives with respect to either of the two principal connections by ∇.
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3.3. The Dirac operator. Given a spin structure Q → M over an oriented Rie-
mannian manifold (M, g), we can form the spin bundle Σ = Q×Spin(n)S over M which is
a complex vector bundle. From Proposition 3.2 we know that there is a natural covariant
derivative on sections of this spin bundle, which are usually called spinors. As discussed
in Section 2.9 for tensor bundles, given a section ψ ∈ Γ(Σ), we can interpret the covari-
ant derivative ∇ψ as a section of the vector bundle L(TM,Σ) = Q ×Spin(n) L(Rn,S).
Hence it is no problem to form another covariant derivative to get ∇∇ψ, which is
a section of the Q ×Spin(n) L(Rn, L(Rn,S)). Continuing as in Section 2.9, there is a
Spin(n)-equivariant trace map L(Rn, L(Rn,S)) → S. Using this, we can define the
Laplace operator on Spinors as ∆ψ := − tr(∇2ψ).

But in the case of spinors, there is another way to proceed. By linear algebra,
L(Rn,S) ∼= Rn∗ ⊗S and Rn∗ ∼= Rn as a representation of SO(n) and hence of Spin(n).
The Clifford multiplication from Section 3.1 defines a Spin(n)-equivariant bilinear map
∗ : Rn × S → S which corresponds to a linear map Rn ⊗ S → S. Hence we obtain
a Spin(n)-equivariant map L(Rn,S) → S, which we can describe more explicitly as
follows.

Lemma 3.3. For a linear map α : Rn → S and a positively oriented orthonormal
basis {e1, . . . , en} of Rn, consider the expression C(α) :=

∑n
i=1 ei ∗ α(ei) ∈ S. Then

this is independent of the choice of basis and defines a Spin(n)-equivariant map C :
L(Rn,S)→ S.

Proof. Any positively oriented orthonormal basis is of the form {A(e1), . . . , A(en)}
for a matrix A ∈ SO(n). Writing A = (aij) we get A(ei) =

∑
j a

j
iej, and thus∑

iA(ei) ∗ α(A(ei)) =
∑

i,j,k a
j
ia
k
i ej ∗ α(ek),

where we have used linearity of α. But since A is orthogonal, it satisfies At = A−1, so∑
i a

j
ia
k
i = δjk, so we see that we again get

∑
j ej ∗ α(ej).

This is also the key towards equivariancy. Indeed, for h ∈ Spin(n), we have

(h · α)(v) = h · α(ρ(h)−1(v))),

and this is mapped to
∑

i ei ∗ h · α(ρ(h)−1(ei)). Replacing the basis {ei} by {ρ(h)(ei)},
we see that this expression equals

∑
i(ρ(h)(ei) ∗ (h ·α(ei)). Equivariancy of the Clifford

multiplication tells us that this equals
∑

i h · (ei ∗ α(ei)). Since h acts by linear maps,
this equals h · (

∑
i ei ∗ α(ei)) which is exactly the claimed equivariancy. �

We will call the map C : L(Rn,S) → S the Clifford action, since in essence, it is
just the Clifford multiplication. This is all we need to define the Dirac operator.

Definition 3.3. Given a spin structure Q→M on an oriented Riemannian mani-
fold (M, g) with spinor bundle Σ→M , we define the Dirac operator /D : Γ(Σ)→ Γ(Σ)
by /D(ψ) := C(∇ψ). Here C : L(TM,Σ) → Σ is the vector bundle map induced by the
Clifford action.

Proposition 3.3. Let Q → M be a spin structure on an oriented Riemannian
manifold (M, g), let Σ → M be the associated spinor bundle and /D : Γ(Σ) → Γ(Σ) be
the Dirac operator.

(1) For a local orthonormal frame {ξ1, . . . , ξn} defined on U ⊂M and ψ ∈ Γ(Σ), we
get /D(ψ)|U =

∑
i ξi ∗ ∇ξiψ.

(2) For even n, the Dirac operator maps Γ(Σ+) to Γ(Σ−) and vice versa.
(3) The square of the Dirac operator is a generalized Laplacian, i.e. the operators

/D ◦ /D and ∆ differ by a first order operator.
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Proof. By definition, /D(ψ) corresponds to the function Q → S given by C ◦ f ,
where f : Q → L(Rn,S) corresponds to ∇ψ. On the other hand, denoting by Ũ ⊂ Q
the preimage of U , the vector fields ξi correspond to functions fi : Ũ → Rn, whose
values in each point of Ũ form an orthonormal basis of Rn. By Lemma 3.3, we thus
get C(f(u)) =

∑
i fi(u) ∗ f(u)(fi(u)) for each u ∈ Ũ . But by construction, the function

Ũ → S defined by u 7→ f(u)(fi(u)) represents ∇ξiψ|U , so (1) follows.
(2) A section ψ ∈ Γ(Σ+) corresponds to a function with values in S+ ⊂ S and of

course than also the derivative of this function in direction of a vector field has values
in S+. Thus we see that ∇ψ ∈ Γ(L(TM,S+)). Computing locally using (1), we see
that ∇ξiψ ∈ Γ(Σ+) and the result follows since the Clifford multiplication exchanges
the spinor bundles.

(3) The main ingredient here is differtiating bilinear maps. For ξ, η ∈ X(M) and
ψ ∈ Γ(Σ) we first claim that ∇ξ(η∗ψ) = (∇ξη)∗ψ+η∗(∇ξψ). Denoting by f : Q→ Rn

and g : Q → S the functions corresponding to η and ψ, we see that η ∗ ψ corresponds
to ∗ ◦ (f, g), where ∗ is the Clifford multiplication Rn × S → S. To get the function
corresponding to ∇ξ(η ∗ ψ) we have to differentiate this with respect to the horizontal
lift ξhor of ξ. Since ∗ is bilinear, we get ξhor · (∗ ◦ (f, g)) = ∗ ◦ (ξhor · f, g) + ∗ ◦ (f, ξhor · g),
which implies our claim.

Next, we claim that (∇∇ψ)(ξ, η) = ∇ξ∇ηψ − ∇∇ξηψ. Here we use bilinearity
evaluation map L(Rn,S)× Rn → S as above to conclude that

∇ξ((∇ψ)(η)) = (∇ξ(∇ψ))(η) + (∇ψ)(∇ξη),

which exactly gives the claimed formula.
Now we compute locally using (1) to get

/D( /Dψ) =
∑

i ξi ∗ (∇ξi(
∑

j ξj ∗ ∇ξjψ) =
∑

i,j ξi ∗
(
(∇ξiξj) ∗ ∇ξjψ + ξj ∗ ∇ξi∇ξjψ

)
.

Expanding the sum in the last bracket according to bilinearity of ∗, the first term
evidently produces a first order operator, so we can ignore it and only deal with the
term

∑
i,j ξi ∗ (ξj ∗ ∇ξi∇ξjψ). Now the function corresponding to ∇ξi∇ξjψ is obtained

by differentiating the function corresponding to ψ with two horizontal lifts of vector
fields. Subtracting the same term with the two vector fields exchanged, one gets the
derivative with respect to the Lie bracket, which is a first order operator. Hence up to
a first order operator, we may replace ∇ξi∇ξjψ by 1/2(∇ξi∇ξjψ +∇ξj∇ξiψ). But then

1
2

∑
i,j ξi ∗ ξj ∗ (∇ξi∇ξjψ +∇ξj∇ξiψ) = 1

2

∑
i,j(ξi ∗ ξi ∗ ∇ξi∇ξjψ + ξj ∗ ξi ∗ ∇ξi∇ξjψ)

=−
∑

i,j g(ξi, ξj)∇ξi∇ξjψ = −
∑

i∇ξi∇ξiψ,

where we have used the Clifford relation in the last but one step. But from above, we
see that the last expression differs from − tr(∇∇ψ) = ∆ψ by a first order operator. �

Remark 3.3. It turns out that the relation between /D
2

and ∆ is significantly
simpler than the above computations suggest. Indeed, invoking a bit of Riemannian
geometry it is visible that things can be simplified. We have used an arbitrary local
orthonormal frame {ξi} in the computation, but working in a point x ∈ M , one can
do better. By starting with normal coordinates around x and then orthonormalizing
the resulting coordinate frame, one may assume that ∇ξiξj(x) = 0. This shows that
many of the first order contributions occurring in our computation actually vanish in
x. For the last part of the computation, it is already visible (for those who know about
these things) that a curvature term will show up in the computation. Indeed things
work out very nicely, which is a major reason for the importance of the Dirac operator
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in Riemannian geometry: The resulting curvature term turns out to be simply given
by multiplication by a multiple the scalar curvature r of the underlying Riemannian

metric. This is the famous Schrödinger–Lichnerowicz formula, /D
2

= ∆ + r
4
, see Section

3.6 of [BGV92] or Theorem 17 of [Ma12].
This result has immediate strong consequences for metrics of positive scalar curva-

ture (i.e. manifolds which satisfy r ≥ 0 and r 6= 0). It is easy to see that for the natural
Hermitian inner product on spinors, one has 〈∆ψ, ψ〉 = 〈∇ψ,∇ψ〉 ≥ 0. For a metric of

positive sectional curvature, we can use this to see that
∫
M
/D

2
ψ > 0, so in this case the

Dirac operator must have trivial kernel. Via the index theorem, which we will discuss in
a bit more detail later, this leads to topological obstructions to the existence of metrics
of positive scalar curvature.

There are lots of other applications of the Dirac operator in Riemannian geometry.
On the one hand, there is a big theory of differential equations on spinors derived
from the Dirac operator and on the geometric meaning of existence of solutions to
these equations. On the other hand, the ideas about the spectrum of the Laplace
operator have a counterpart for the Dirac operator and a lot is known in that direction.
Discussions of applications of Dirac operators in Riemannian geometry can for example
be found in the books [BHMMM15] and [Fr00].

Existence and uniqueness of spin structures

3.4. Open coverings and Čech cochains. The questions of existence and unique-
ness of spin structures are closely related to algebraic topology. For our purposes it will
be most appropriate to use an approach to cohomology theory which was introduced
by E. Čech and is based on open coverings. We will not go into details on the relation
to other approaches to cohomology.

We need a notion of open coverings for which the same open set may occur several
times in a covering. Hence we define an open covering of a topological space X as a
function which associated to each element i of some index set I an open subset Ui ⊂ X
in such a way that ∪i∈IUi = X. We will also write the cover as a tuple, U = (Ui)i∈I .
Given two open coverings U = (Ui)i∈I and V = (Vj)j∈J of X, we write V ≤ U and say
that V is a refinement of U if each of the sets in V is contained on of the sets in U .
Otherwise put, there has to be a refinement map µ : J → I such that Vj ⊂ Uµ(j) for
any j ∈ J .

Definition 3.4. Let U = (Ui)i∈I be an open covering of a topological space X.
(1) For k ≥ 0, a k-simplex σ of U is a k + 1-tuple (i0, . . . , ik) of elements of I such

that the open subset |σ| := ∩k`=0Ui` is non-empty. The set |σ| ⊂ X is called the support
of σ.

(2) Given an abelian group (G,+), a Čech k-cochain of U with coefficients in G
is a function c, which associates to each k-simplex σ of U a locally constant function
c(σ) = cσ : |σ| → G. The space of all such cochains, which clearly is an abelian group
under pointwise addition, is denoted by Ck(U , G).

(3) Given a k-simplex σ = (i0, . . . , ik) of U and an integer j with 0 ≤ j ≤ k. Then
the jth side σj of σ is the (k − 1)-simplex (i0, . . . , ij−1, ij+1, . . . , ik), so we simply leave
out the index ij. Observe that by definition |σ| ⊂ |σj| for each j.

(4) The Čech coboundary operator ∂ = ∂k : Ck(U , G)→ Ck+1(U , G) is defined by

∂c(σ) =
∑k+1

j=0(−1)jc(σj)||σ|.
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In what follows, we will use the convention that putting a hat over an element in a
tuple means that this element has to be left out. So in this notation, we can write that
jth side of σ = (i0, . . . , ik) as σj = (i0, . . . , îj, . . . , ik). To get things started, we have to
prove that the Čech coboundary operator is a differential, i.e. applying it twice, we get
zero.

Lemma 3.4. Each Čech coboundary operator is a homomorphism and they satisfy
∂k ◦ ∂k−1 = 0. Thus for each k, we have subgroups im(∂k−1) ⊂ ker(∂k) ⊂ Ck(U , G).

Proof. The fact that each ∂k is a homomorphism is clear from the definition. Next,
take a k + 1-simplex σ = (i0, . . . , ik+1) of U = (Ui)i∈I and consider its jth side σj, as
well as the `th side (σj)` of σj for 0 ≤ j ≤ k + 1 and 0 ≤ ` ≤ k. If ` < j, this simply

is (i0, . . . , î`, . . . , îj, . . . , ik) while for ` ≥ j, it is (i0, . . . , îj, . . . , î`+1, . . . , ik). This readily
shows that for ` < j we get (σj)` = (σ`)j−1. Using this and suppressing restrictions, we
compute for c ∈ Ck−1(U , G) as follows:

∂(∂c)(σ) =
∑k+1

j=0(−1)j∂c(σj) =
∑k+1

j=0

∑k
`=0(−1)`+jc((σj)`)

=
∑k+1

j=0

∑
`<j(−1)`+jc((σj)`) +

∑k+1
j=0

∑
`≥j(−1)`+jc((σ`)j−1).

Now we can change the order of summation in the second term and then rename j − 1
to j, to see that this equals

∑k+1
`=0

∑
j<`(−1)`+j+1(σ`)j and thus cancels with the first

sum. The last statement then obviously follows. �

Elements of ker(∂k) ⊂ Ck(U , G) are called k-cocycles, and elements of im(∂k−1) ⊂
Ck(U , G) are called k-coboundaries of the covering U with coefficients inG. The quotient
space Hk(U , G) := ker(∂k)/ im(∂k−1) is called the kth Čech cohomology group of the
covering U with coefficients in G.

Example 3.4. (1) It is easy to determine H0(U , G), which even turns out to be
independent of the covering U . Indeed, a 0-simplex of U = (Ui)i∈I is just one index
i ∈ U , so a zero cochain c ∈ C0(U , G) simply is a collection of locally constant functions
ci : Ui → G. In degree zero, there are no coboundaries, so H0(U , G) = ker(∂0). A
1-simplex of U is just a pair (i, j) of indices such that Uij := Ui ∩ Uj 6= ∅. Now by
definition, ∂c((i, j)) = cj|Uij − ci|Uij . Supposing that this vanishes, we define a function
f : X → G as follows: For x ∈ X, there exist an index i ∈ I such that x ∈ Ui and
we define f(x) = ci(x). Since ∂c = 0, this is independent of the choice of i, and since
f |Ui = ci, we see that f is locally constant.

Conversely, we see that for a locally constant function f : X → G, the rule ci :=
f |Ui defines a 0-cochain, which clearly is a cocycle. So we conclude that H0(U , G) is
isomorphic to the space of locally constant functions X → G. Observe in particular,
that in case that X is a smooth manifold and G = R, this coincides with the de Rham
cohomology in degree zero, since for f ∈ C∞(M,R) the equation df = 0 is equivalent
to f being locally constant.

(2) Another instructive example is the covering U = (U0, U1, U2) of S1 formed by
3 arcs of a bit more of 120 degrees. Thus U01, U02, and U12 are small arcs (and thus
topologically trivial), while the intersection of all three sets is empty. (For those who
know about these things, this is the covering dual to the standard triangulation of S1

as a triangle.) Hence we see that Ck(U , G) = G3 for k = 0, 1 and zero for all other
degrees. In this identification, the only non-trivial coboundary operator is ∂0, which
is explicitly given by ∂0(a, b, c) = (b − a, c − a, c − b). As we have seen above, its
kernel is {(a, a, a) : a ∈ G} ∼= G. On the other hand, the map C1(U , G)→ G given by
(u, v, w) 7→ u−v+w is a homomorphism and visibly vanishes on im(∂0). Conversely, an
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element in the kernel of this homomorphism is of the form (u, u+w,w) = ∂(0, u, u+w).
So we see that Hk(U , G) is isomorphic to G for k = 0, 1 and trivial for all other k.
Again, this coincides with the de Rham cohomology of S1 for G = R.

3.5. Refinements and Čech cohomology. We next have to relate Čech cochains
corresponding to different coverings. The first step is to look at a refinement V = (Vj)j∈J
of a covering U = (Ui)i∈I and consider a refinement map µ : J → I, i.e. a map such that
Vj ⊂ Uµ(j) for each j ∈ J . Now suppose that σ = (j0, . . . , jk) is a k-simplex of V . Then
for each ` = 0, . . . , k, we have µ(j`) ∈ I and ∅ 6= ∩`Vj` ⊂ ∩`Uµ(j`). Thus we see that
µ(σ) := (µ(j0), . . . , µ(jk)) is a k-simplex of U and that |σ| ⊂ |µ(σ)|. By construction, it
is clear that for the sides we get µ(σ`) = (µ(σ))` for each ` = 0, . . . k.

This readily implies that for any abelian group G and any cochain c ∈ Ck(U , G), we
can define µ∗c ∈ Ck(V , G) by (µ∗c)(σ) := c(µ(σ))||σ|, thus obtaining a homomorphism
µ∗ : Ck(U , G)→ Ck(V , G). Moreover, the observation on sides shows that µ∗◦∂ = ∂◦µ∗,
so in particular for a cocycle c, also µ∗c is a cocycle and for a coboundary c, also µ∗c is a
coboundary. Hence there is an induced map in cohomology, and we can prove a technical
lemma which implies that this map is independent of the choice of the refinement map
µ.

Lemma 3.5. Let U = (Ui)i∈I be an open covering of a topological space X, let
V = (Vj)j∈J be a refinement of U and consider two refinement maps µ, ν : J → I. Then
for any abelian group G and any k ≥ 0, we can construct a map hk : Ck(U , G) →
Ck−1(V , G) such that for each c ∈ Ck(U , G) we get

ν∗c− µ∗c = ∂(hk(c)) + hk+1(∂c).

In particular, if c is a cocycle, then ν∗c and µ∗c represent the same class in Hk(V , G).

Proof. Let σ = (j0, . . . , jk−1) be a (k − 1)-simplex of V . Then for each ` =
0, . . . , k − 1, we get Vj` ⊂ Uµ(j`) ∩ Uν(j`), so σ̃` := (µ(j0), . . . , µ(j`), ν(j`), . . . , ν(jk−1)) is
a k-simplex of U such that |σ| ⊂ |σ̃`|. Thus we can define hk : Ck(U , G)→ Ck−1(V , G)
by

(hk(c))(σ) :=
∑k−1

`=0 (−1)`c(σ̃`)||σ|.
To see that this has the required property, we have to look at sides. By definition,

(σ̃`)i is (̃σi)
`−1

for i < ` and (̃σi−1)
`

for i > `+ 1, while

(σ̃`)` = (µ(j0), . . . , µ(j`−1), ν(j`), . . . , ν(jk−1))

(σ̃`)`+1 = (µ(j0), . . . , µ(j`), ν(j`+1), . . . , ν(jk−1)).

Using this, we can now compute for a k-simplex σ of V (suppressing the restrictions to
appropriate subsets) as follows.

(hk+1(∂c))(σ) =
∑k

`=0(−1)`∂c(σ̃`) =
∑k

`=0

∑k+1
i=0 (−1)i+`c((σ̃`)i)

=
∑k

`=0

∑
0≤i<`(−1)i+`σ̃i

`−1 +
∑k

`=0

∑
i>`+1(−1)i+`σ̃i−1

`

+
∑k

`=0 c((µ(j0), . . . , µ(j`−1), ν(j`), . . . , ν(jk)))

−
∑k

`=0 c((µ(j0), . . . , µ(j`), ν(j`+1), . . . , ν(jk)))

The last two lines together form a telescopic sum, so only the very first and very last
terms remain, and these exactly give ν∗c(σ) − µ∗c(σ). In the two remaining sums in
the right hand side we swap the sequence of summation. In the first of the two, we in

addition replace `− 1 by ` to get
∑k−1

i=0

∑k
`=i(−1)i+`+1c((̃σi)

`
). In the other sum, we in
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addition replace i− 1 by i and obtain
∑k+1

i=0

∑i−1
`=0(−1)i+`+1c((̃σi)

`
), so these two terms

by definition add up to −∂(hk(c))(σ), which proves the claimed identity.
If ∂c = 0, then we get ν∗c− µ∗c = ∂(hk(c)), which says that ν∗c and µ∗c represent

the same cohomology class. �

The upshot of this is that for a refinement V of a covering U of X and any abelian
group G, there is a canonical homomorphism Hk(U , G) → Hk(V , G) induced by any
choice of refinement map. Using this, one could formally define the Čech cohomology
of X with coefficients in G as the direct limit of the directed family {Hk(U , G)} of sets,
which is indexed by all open coverings of X. The following definition just expresses this
in elementary terms.

Definition 3.5. Let X be a topological space and G an abelian group. Then we
consider the set of all Čech k-cocycles c for some open covering U of X with coefficients
in G. On this set, we define a relation by c1 ∼ c2 iff for the corresponding coverings U1

and U2, there is some joint refinement V with refinement maps µi : V → Ui for i = 1, 2
such that µ∗1c1 and µ∗2c2 represent the same class in Hk(V , G). Since this is independent
of the refinement maps by Lemma 3.5, this is an equivalence relation. The set Hk(X,G)
of equivalence classes is the kth Čech cohomology of X with coefficients in G

From this definition we can easily conclude that the cohomologies have functorial
properties. Suppose that G and H are abelian groups and that α : G → H is a
homomorphism. Then for a topological space X, an open covering U of X, and a cochain
c ∈ Ck(U , G) we can define a cochain α∗c ∈ Ck(U , H): We simply put (α∗c)(σ) :=
α ◦ c(σ) : |σ| → H and this clearly is a locally constant function. Thus we get a map
α∗ : Ck(U , G) → Ck(U , H), and since α is a group homomorphism, the map α∗ is a
group homomorphism, too.

On the other hand, suppose that f : X → Y is a continuous map between topological
spaces. Given an open covering U = (Ui)i∈I of Y , we define f−1(U) := (f−1(Ui))i∈I and
clearly this is on open covering of X. A k-simplex σ of f−1(U) is a tupel (i0, . . . , ik) such
that ∩`f−1(Ui`) 6= ∅. This intersection equals f−1(∩`Ui`), so we can also view (i0, . . . , ik)
as a k-simplex σ̂ of U and |σ| = f−1(|σ̂|). Given c ∈ Ck(U , G), we see that (f ∗c)(σ) :=
c(σ̂) ◦ f defines a locally constant function |σ| → G. Thus we have constructed a map
f ∗ : Ck(U , G)→ Ck(f−1(U), G), which evidently is a group homomorphism.

Proposition 3.5. Let X and Y be topological spaces and let G and H be abelian
groups.

(1) For a homomorphism α : G→ H and any covering U of X the homomorphisms
α∗ : Ck(U , G)→ Ck(U , H) have the property that ∂ ◦ α∗ = α∗ ◦ ∂. Thus for a cocycle c,
also α∗(c) is a cocycle and mapping the equivalence class [c] of c to [α∗(c)] gives rise to
a well defined homomorphism α# : Hk(X,G)→ Hk(X,H) for each k ≥ 0.

(2) For a continuous map f : X → Y and any covering U of Y , the homomorphisms
f ∗ : Ck(U , G) → Ck(f−1(U), G) have the property that ∂ ◦ f ∗ = f ∗ ◦ ∂. Mapping [c] to
[f ∗(c)] gives rise to a well defined homomorphism f# : Hk(Y,G)→ Hk(X,G) for each
k ≥ 0.

Proof. These are simple verifications:
(1) Since α is a homomorphism, α∗(∂c) maps a simplex σ of U to

α(
∑k

`=0(−1)`c(σ`)) =
∑k

`=0(−1)`α(c(σ`)),

and this visibly coincides with ∂(α∗(c))(σ). In particular, ∂c = 0 implies ∂(α∗(c)) = 0,
so for a cocycle c ∈ Ck(U , G), α∗(c) defines a class in Hk(X,H). Now suppose that
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c1 and c2 represent the same class in Hk(X,G). Then there is a refinement V of U
with refinement map µ such that µ∗(c1) = µ∗(c2) + ∂c for some c ∈ Ck−1(V , G). But of
course, we also have α∗ acting on cochains of any degree for V , and from the definitions
it follows readily that α∗(µ

∗(ci)) = µ∗(α∗(ci)) for i = 1, 2. Thus applying α∗ to the
above equation, we get µ∗(α∗(c1)) = µ∗(α∗(c2)) + ∂(α∗(c)), and thus α∗(c1) ∼ α∗(c2).

(2) As we have noted already, a simplex σ = (i0, . . . , ik) of f−1(U) also is a simplex
σ̂ of U and f(|σ|) = |σ̂|. Clearly, for any side σj the simplex σ̂j is exactly the jth side
of σ̂. Thus f ∗(c)(σj) = c(σ̂j) ◦ f for each c ∈ Ck−1(U , G) and each j, which readily
implies that ∂(f ∗(c)) = f ∗(∂c). A refinement map µ identifying V as a refinement
of U also identifies f−1(V) as a refinement of f−1(U). By construction, we then get
µ∗(f ∗(c)) = f ∗(µ∗(c)) and using this, one completes the proof as in (1). �

If we have two homomorphism α : G → H and β : H → K, then the definitions
imply that (β ◦ α)∗ = β∗ ◦ α∗ : Ck(U , G) → Ck(U , K) for each U and each k. Thus
for the homomorphisms in cohomology, we get (β ◦ α)# = β# ◦ α#. In particular, if
α : G→ H is an isomorphism and β = α−1 : H → G, then β ◦α = idG and α ◦β = idH .
Since the identity homomorphism induces the identity in cohomology, we see that in
this case α# and β# are inverse isomorphisms between the cohomologies Hk(X,G) and
Hk(X,H).

Similarly, if we take two continuous maps f : X → Y and g : Y → Z and a covering
U of Z, then f−1(U) is an open covering of Y and (g ◦ f)−1(U) = g−1(f−1(U)) is an
open covering of X. Further, we get (g ◦f)∗ = f ∗ ◦ g∗ : Ck(U , G)→ Ck((g ◦f)−1(U), G)
for each k. As before, this implies that in cohomology we get (g ◦ f)# = f# ◦ g#

and that inverse homeomorphisms between two spaces induce inverse isomorphisms in
cohomology. Thus the Čech cohomology groups are indeed topological invariants of
spaces.

Remark 3.5. If one looks at the constructions we have done so far, it is visible,
that things work in a more general setting. We have used cochains which assign to
each simplex σ of a covering a locally constant function |σ| → G. Instead, one could
assign to σ an element of an abelian group which depends on |σ| as long as there is a
reasonable notion of “restriction” between the groups associated to nested open sets.
This is formalized in the concept of a sheaf of abelian groups, and Čech cohomology
is one of many possibilities of computing the cohomology of such sheaves. In some of
the things we will do, this more general perspective will be visible. Moreover, if one
restricts to cohomology in degree 1, it is even possible to extend to extend the ideas to
non-commutative groups, and again this will be visible in some things we will do.

3.6. Example: Orientations. To prepare for the discussion of spin structures,
we do a simpler example for the use of Čech cohomology. Suppose that we have given a
real vector bundle E →M on a smooth manifold M or equivalently a principal bundle
with structure group GL(n,R) for some n ≥ 1. We want to decide when the bundle E
is orientable and how many orientations it admits.

Proposition 3.6. A real vector bundle p : E → M canonically determines a co-
homology class w1(E) ∈ H1(M,Z2), which vanishes if and only if the bundle E is
orientable. If w1(E) = 0, then the possible orientations of E are parametrized by
H0(M,Z2).

Proof. Choose a vector bundle atlas {(Ui, ϕi) : i ∈ I} for E and let U = (Ui)i∈I
be the corresponding covering of M . A 1-simplex σ of U is a pair (i, j), such that
|σ| = Ui ∩ Uj 6= ∅. Thus there is the transition function πij : |σ| → GL(n,R) and we
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define c(σ)(x) :=
det(ϕij(x))

| det(ϕij(x))| ∈ {−1, 1}. Since ϕij is smooth, this is a continuous and

thus locally constant function from Uij to the multiplicative group Z2.
Now suppose that we have three elements of U such that Uijk 6= ∅. Then for the cor-

responding charts and each x ∈ Uijk, we have ϕi(ϕ
−1
j (x, v)) = (x, ϕij(x)v) and similarly

for the other combination of indices. Computing ϕi(ϕ
−1
k (x, v)) as ϕi(ϕ

−1
j (ϕj(ϕ

−1
k (x, v))))

shows that ϕij(x)ϕjk(x) = ϕik(x). Putting σ = (i, j, k) and taking the signs of the de-
terminants, this reads as c(σ2)c(σ0) = c(σ1) and hence c(σ0)c(σ1)−1c(σ2) = 1. This
exactly says that ∂c(σ) = 0, so c ∈ C1(U ,Z2) is indeed a cocycle and we can form the
cohomology class [c] ∈ H1(X,Z2).

Next, we observe that for a refinement V = (Vj)j∈J of U with refinement map
µ : J → I, we get an associated vector bundle atlas for E. For j ∈ J with µ(j) = i
we have VJ ⊂ Ui, and the restriction ofϕi to p−1(Vj) defines a vector bundle chart. The
resulting transition functions are simply restrictions of the functions ϕij, so they lead
to the cocycle µ∗c.

To compare the cocycles associated to two different vector bundle atlases, we can
first pass to a joint refinement of the coverings defined by the atlases. Given two
atlases {(Ui, ϕi)} and {(Ui, ψi)} corresponding to the same covering U , we see that
ψi ◦ ϕ−1

i : Ui × Rn → Ui × Rn has to be of the form (x, v) 7→ (x, ωi(x)(v)) for a smooth

function ωi : Ui → GL(n,R). Defining c̃ ∈ C0(U ,Z2) by c̃i(x) = det(ωi(x))
| det(ωi(x))| we get a

function Ui → Z2 which is continuous and hence locally constant, so these define an
element c̃ ∈ C0(U ,Z2). Given Uj with Uij 6= ∅, we can compute (on Uij) ψi ◦ϕ−1

j either

as ψi◦ψ−1
j ◦ψj ◦ϕ−1

j or as ψi◦ϕ−1
i ◦ϕi◦ϕ−1

j , which leads to ψij(x)ωj(x) = ωi(x)ϕij(x) for
all x ∈ Uij. Taking signs of determinants, we can commute terms and get for σ = (i, j)
the equation c̃(σ0)||σ|(c̃(σ1)||σ|)−1 = cψ(σ)(cϕ(σ))−1. Since the left hand side is ∂c̃(σ),
this exactly says that the cocycles constructed from the two atlases represent the same
class of H1(M,Z2) and we define this to be w1(E).

If E is oriented, then we can take an oriented atlas, which directly leads to the trivial
cocycle c ∈ C1(U ,Z2), which sends any simplex to the constant function 1, so w1(E) is
trivial. Conversely, if w1(E) is trivial, we can take any atlas {(Ui, ϕi)} for E and form
the corresponding cocycle c as above. Passing to a refinement and the corresponding
atlas if necessary, we may assume that c = ∂c̃ for some c̃ ∈ C0(U ,Z2). This means that
for a simplex σ = (i, j) and all x ∈ Uij, we get

c(σ)(x) =
det(ϕij(x))

| det(ϕij(x))|
= c̃j(x)c̃i(x)−1.

For each i, the function c̃i : Ui → {−1, 1} is locally constant and thus constant on
each connected component of Ui. Now we modify the chart ϕi : p−1(Ui) → Ui × Rn

by multiplying its first component by c̃−1
i and leave the rest unchanged, and call the

result ϕ̂i. This is again a vector bundle atlas, and the transition functions satisfy
det(ϕ̂ij(x)) = det(ϕij(x))c̃j(x)c̃i(x)−1, so these are constant equal to one and thus define
an oriented atlas.

If E is orientable, then one may choose one of two possible orientations on each
connected component of M , so fixing one orientation, these choices correspond to locally
constant functions M → Z2 and hence to H0(M,Z2). �

The cohomology class w1(E) is called the first Stiefel–Whitney class of E. For
a manifold M , one defines the first Stiefel–Whitney class w1(M) of M as w1(TM),
so this vanishes if and only if M is orientable. These are the simplest examples of
characteristic classes of vector bundles and of manifolds. Looking at real line bundles
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(i.e. real vector bundles with one-dimensional fibers), it turns out that E 7→ w1(E)
defines an identification of H1(M,Z2) with the set of isomorphism classes of real line
bundles over M .

3.7. Existence and uniqueness of spin structures. Let (M, g) be a Riemann-
ian manifold. We want to construct a cohomology class w2(M, g) ∈ H2(M,Z2) which
vanishes if and only if there is a spin structure for (M, g). We will not carry out all the
necessary identifications in detail but only sketch some of the steps. The idea here is to
consider the oriented orthonormal frame bundle SOM →M and some principal bundle
atlas {(Ui, ϕi) : i ∈ I} for this bundle with transition functions ϕij : Uij → SO(n). It
turns out that any open covering of M admits a refinement for which each of the open
sets in the covering as well as each non-empty intersection of two such sets is simply
connected. Thus it suffices to consider only coverings with that property here.

We have already observed that the homomorphism ρ : Spin(n) → SO(n) is a
two-fold covering map. This implies that each of the maps ϕij admits a smooth lift
ϕ̃ij : Uij → Spin(n), i.e. we have ϕij = ρ ◦ ϕ̃ij. Now consider a 2-simplex σ = (i, j, k)
of U , i.e. we have Uijk 6= ∅. Then as in the proof of Proposition 3.6, we see that
for each x ∈ Uijk, we get ϕik(x) = ϕij(x)ϕjk(x). Defining c(σ) : Uijk → Spin(n) by
c(σ)(x) := ϕ̃ij(x)ϕ̃jk(x)ϕ̃ik(x)−1 we conclude that ρ(c(σ)(x)) = I for each x, so c(σ)
actually has values in ker(ρ) = Z2. By construction c(σ) is smooth and thus locally
constant, thus defining an element of C2(U ,Z2).

On the other hand, given that one spin structure exists, we want to understand
how many of them there are. We want to understand this up to the natural concept of
isomorphism, which is as follows: Two Spin structures Φ1 : Q1 → SOM and Φ2 : Q2 →
SOM are isomorphic iff there is an isomorphism Ψ : Q1 → Q2 of principal bundles with
base map idM such that Φ2 ◦Ψ = Φ1. Using this we can now formulate.

Theorem 3.7. The cochain c constructed above is a cocycle and the class [c] ∈
H2(M,Z2) is independent of the choice of lifts made in the construction and of the
principal bundle atlas one starts from. This cohomology class vanishes if and only if
(M, g) admits a spin structure. If this is the case, then the set of isomorphism classes
of spin structures is parametrized by the Čech cohomology group H1(M,Z2).

Proof. Let σ = (i, j, k, `) be a 3-simplex of U , so Uijk` 6= ∅. We have to prove that
(using multiplicative notation) for each x ∈ Uijk` we get

cij`(x)cik`(x)−1cijk(x)−1cjk`(x) = 1,

where we have permuted factors, which is possible by commutativity of Z2. When
expanding the product of the two middle terms using the definition of c, we get

ϕ̃i`(x)ϕ̃k`(x)−1ϕ̃ik(x)−1ϕ̃ik(x)ϕ̃jk(x)−1ϕ̃ij(x)−1,

and there is an evident cancellation in this product. Similarly, the expansion of the first
term ends with ϕ̃i`(x)−1, which again causes a cancellation. So our product equals

ϕ̃ij(x)
(
ϕ̃j`(x)ϕ̃k`(x)−1ϕ̃jk(x)−1

)
ϕ̃ij(x)−1ϕ̃jk(x)ϕ̃k`(x)ϕ̃j`(x)−1.

Mapping the expression in brackets to SO(n), one visibly gets the identity element, so
this bracket lies in Z2 ⊂ Spin(n) and thus commutes with any other element of Spin(n).
But commuting it with ϕ̃ij(x)−1 the whole product cancels, so c is indeed a cocycle.

Fixing the initial atlas, the only choice made in the construction was the choice
of smooth lifts ϕ̃ij : Uij → Spin(n) of the transition functions ϕij. Any other lift
is of the form ϕ̂ij(x) = ϕij(x)αij(x) for a smooth and thus locally constant function
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αij : Uij → Z2. Taking these together, we get α ∈ C1(U ,Z2). Using these in the
construction we get

ĉijk(x) = ϕ̃ij(x)αij(x)ϕ̃jk(x)αjk(x)αik(x)−1ϕ̃ik(x)−1.

Using the fact that Z2 lies in the center of Spin(n), this immediately implies that
ĉ = c∂α (in multiplicative notation) so [ĉ] = [c].

To prove independence of the principal bundle atlas we have used in the construction,
we may assume the both atlases have the same underlying covering by passing to a
joint refinement, which in addition satisfies our technical condition. Denoting these by
(Ui, ϕi) and (Ui, ψi) we argue as in the proof of Proposition 3.6 to see that for each
x ∈ Ui and g ∈ SO(n), we get ψi(ϕ

−1
i (x, g)) = (x, ωi(x) · g) for a smooth function

ωi : Ui → SO(n). Since each of the sets Ui is assumed to be simply connected, there
is a smooth lift ω̃i : Ui → Spin(n) for each of these maps. Again as in the proof of
Proposition 3.6 the transition functions of the two principal bundle atlases are related
by ψij(x)ωj(x) = ωi(x)ϕij(x) for each x ∈ Uij. Having chosen lifts ϕ̃ij of the transition

functions, we can now define ψ̃ij(x) = ω̃i(x)ϕ̃ij(x)ω̃j(x)−1 for each x ∈ Uij and see that

ρ(ψ̃ij(x)) = ψij(x) for all x. In view of the above, we only have to compare the cocycles

cϕ and cψ obtained from the two families ϕ̃ij and ψ̃ij.
But this is rather straightforward. For a 2-simplex σ = (i, j, k) of U and x ∈ Uijk we

get cψ(σ)(x) = ψ̃ij(x)ψ̃jk(x)ψ̃ik(x)−1. Inserting the definitions of the functions ψ̃, one
immediately sees that this equals ω̃i(x)cϕ(σ)(x)ω̃i(x)−1. But we know that cϕ(σ)(x) lies
in ker(ρ) ⊂ Spin(n) and thus commutes with any element of Spin(n), so cϕ = cψ.

If (M, g) admits a Spin structure Φ : Q → SOM , we can start from an atlas
{(Ui, ϕ̃i) : i ∈ I} for Q such that the covering {Ui} satisfies our technical condition.
As we have seen in the proof of Proposition 3.2, this gives rise to an atlas (Ui, ϕi) for
SOM such that ϕi(Φ(ϕ̃−1

i (x, g))) = (x, ρ(g)) for each x ∈ Ui and g ∈ Spin(n). But
this immediately implies that the transition functions of these two atlases are related by
ϕij(x) = ρ(ϕ̃ij(x)) for arbitrary i, j and all x ∈ Uij. This shows that starting from the
atlas {(Ui, ϕi) : i ∈ I} for SOM , we can base our constructions on the lifts ϕ̃ij. But these
are transition functions for a principal bundle, so they satisfy ϕ̃ij(x)ϕ̃jk(x) = ϕ̃ik(x) and
thus lead to the cocycle c for which each c(σ) is the constant function 1, and hence to
the trivial cohomology class.

Conversely, assume that we have given (M, g) leading to a trivial cohomology class.
Passing to an appropriate refinement, we may assume that we have an atlas {(Ui, ϕi) :
i ∈ I} for SOM with transition functions ϕij and lifts ϕ̃ij for which the resulting cocycle
c can be written as ∂c̃ for some c̃ ∈ C1(U ,Z2), where U = {Ui : i ∈ I}. By definition
c̃ associates to each 1-simplex (i, j) of U a locally constant function c̃ij : Uij → Z2,
which we can also view as having values in ker(ρ) ⊂ Spin(n). Now define ϕ̂ij(x) =
ϕ̃ij(x)c̃ij(x)−1 for each x ∈ Uij. Then these are again smooth functions Uij → Spin(n)
which satisfy ρ ◦ ϕ̂ij = ϕij for all i, j, so they are lifts of the transition functions, too.
Now by definition, for a 2-simplex σ = (i, j, k) and x ∈ Uijk we get

c(σ)(x) = ϕ̃ij(x)ϕ̃jk(x)ϕ̃ik(x)−1 = ∂c̃(σ)(x) = c̃ij(x)c̃jk(x)c̃ik(x)−1.

Since the elements of Z2 commute with all elements of Spin(n), this can be easily
rewritten as ϕ̂ij(x)ϕ̂jk(x) = ϕ̂ik(x).

To complete the discussion of existence, we show that we can use these functions to
construct a spin structure. We consider the set {(i, x, g) : i ∈ I, x ∈ Ui, g ∈ Spin(n)}
and define a relation by (i, x, g) ∼ (j, y, h) iff x = y (and hence lies in Uij) and g =
ϕ̂ij(x) · h. Using the above property of the functions ϕ̂ij, one immediately verifies that
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this is an equivalence relation, and we define Q to be the set of all equivalence classes.
Writing [(i, x, g)] for such a class, we define a map Φ : Q → SOM by [(i, x, g)] 7→
ϕ−1
i (x, ρ(g)). This is well defined, since for g = ϕ̂ij(x) · h, we get ρ(g) = ϕij(x) · ρ(h)

and thus ϕ−1
i (x, ρ(g)) = ϕ−1

j (x, ρ(h)). The composition q := p ◦ Φ : Q → M is clearly

given by [(i, x, g)] 7→ x, so if [(j, x, g)] ∈ q−1(Ui), then x ∈ Uij. Thus we can define a
map ϕ̂i : q−1(Ui)→ Ui × Spin(n) by ϕ̂i([(j, x, h)]) := (x, ϕ̂ij(x) · h). One easily verifies
that these are bijective and the chart changes are described by the maps ϕ̂ij. Then one
can use this atlas to define a topology and the structure of a smooth manifold on Q
and to make q : Q → M into a principal Spin(n)-bundle. But then it is obvious that
Φ : Q→ SOM is a spin structure for (M, g).

From the above discussion, it is clear that any spin structure with an atlas compatible
to a given atlas {(Ui, ϕi) : i ∈ I} for SO(M) is described by a family of lifts ϕ̃ij : Uij →
Spin(n) of the transition functions ϕij : Uij → SO(n) such that for all i, j, k and all
x ∈ Uijk we get ϕ̃ij(x)ϕ̃jk(x) = ϕ̃ik(x). Given two spin structures, we may assume that
the correspond to the same atlas for SOM by passing to a joint refinement, so it remains
to discuss when two such lifts, say ϕ̃ij and ϕ̂ij lead to isomorphic spin structures. Since
for each i, j we have ρ◦ ϕ̃ij = ρ◦ ϕ̂ij, there must be a smooth and hence locally constant
function eij : Uij → ker(ρ) = Z2 such that ϕ̂ij = ϕ̃ij ·eij. This defines e ∈ C1(M,Z2) and
since both families satisfy the above condition, we get for each i, j, k and each x ∈ Uijk
that eij(x)ejk(x) = eik(x), which says that ∂e = 0. Conversely, given one lift ϕ̃ij and a
cocycle e, we can define ϕ̂ij = ϕ̃ij · eij to get a new lift and thus, as above, a new spin
structure.

To complete the proof, we show that the two spin structures are isomorphic if and
only if e is a coboundary. If we have an isomorphism Ψ : Q1 → Q2, then for each i we
consider the corresponding charts (Ui, ϕ̃i) and (Ui, ϕ̂i) for the two bundles. Then there
must be a smooth map ωi : Ui → Spin(n) such that ϕ̂i(Ψ(ϕ̃−1

i (x, g))) = (x, ωi(x)·g). But
recall that in these charts, Φ is given by id×ρ, so Φ2 maps that element to (x, ρ(ωi(x)·g))
whereas Φ1(ϕ̃−1

i (x, g)) = (x, ρ(g)). Since Φ2 ◦ Ψ = Φ1, we see that ωi has values in
ker(ρ) = Z2. As in the proof of Proposition 3.6, we then get ϕ̂ij(x)ωj(x) = ωi(x)ϕ̃ij(x)
for all x ∈ Uij. This implies that eij(x) = ωj(x)−1ωi(x) for all x ∈ UIj and hence
e = ∂ω. Conversely, if e = ∂ω, we can use the functions ωi : Ui → Z2 ⊂ Spin(n) to
define an isomorphism Q1 → Q2 in charts in an analogous way. �

Definition 3.7. The cohomology class [c] is called the second Stiefel–Whitney class
of (M, g).

It turns out that this cohomology class does actually not depend on the Riemannian
metric but is a topological invariant of the manifold M . Basically, this is due to the
fact that two Riemannian metrics on a smooth manifold can always be deformed into
each other smoothly, which in turn is a consequence of the fact that the space of inner
products on a vector space (or equivalently, the space of positive definite symmetric
matrices) is convex. Since the Stiefel–Whitney class has values in a discrete group, it
looks plausible that it does not change under small deformations of the metric, which
then implies the result.

As mentioned already, the Stiefel–Whitney classes are basic examples of character-
istic classes of vector bundles. There are several equivalent descriptions of such classes,
which look very different from the outset. This is even more true for characteristic
classes like Chern classes and Pontryagin classes, which have values in the cohomology
H∗(M,Z). These also admit nice interpretations in terms of de Rham cohomology.
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3.8. Remarks. There are several more general results an principles that are visible
in the background of what we have done in Sections 3.6 and 3.7 and we conclude the
chapter with some remarks on these.

First of all, as mentioned in Remark 3.5, Čech cohomology makes sense in the more
general setting of sheaves. In particular given a commutative Lie group (or topological
group) G and an open covering U of a topological space X, one may look at cochains
which associate to each simplex σ a continuous map |σ| → G. The coboundary operator
∂ can be defined for such chains in exactly the same way as in Definition 3.4, and one
can define the cohomology groups Hk(X,C( , G)) in the same way as in Sections 3.4
and 3.5. Similarly, one may work with smooth maps in the setting of a Lie group and a
smooth manifold, to obtain Hk(M,C∞( , G)). Indeed, this reduces to the concepts we
have discussed for discrete groups, for a map to a discrete space both smoothness and
continuity are equivalent to being locally constant.

It was also mentioned in Remark 3.5 that in low degrees one can even drop the
requirement that the group in question is commutative. The problem with non-com-
mutativity in general is that defining the coboundary map ∂, one has to worry about
the succession of factors, and the proof that ∂ ◦ ∂ = 0 does not work in general degrees
without the commutativity assumption. This is no problem in degrees 0 an 1. Given a
0-cochain c and a 1-simplex σ = (i, j), one simply defines ∂c(σ)(x) = ci(x)cj(x)−1 for
x ∈ Uij. Similarly, for a 1-cochain c and a 2-simplex σ = (i, j, k) one puts ∂c(σ)(x) =
cij(x)cjk(x)cik(x)−1 for all x ∈ Uijk, and immediately verifies that ∂ ◦∂ = 0. This allows
one to define H1(M,C∞( , G)) as a set even in the non-commutative case, but there is
no natural group structure available, since im(∂) is not a normal subgroup of ker(∂) in
general.

For a Lie group G, a smooth manifold M and a principal G-bundle p : P → M ,
the transition functions ϕij of any principal bundle atlas for P with underlying open
covering U define a cocycle in C1(U , C∞( , G)). As in Proposition 3.6, one shows that
the cocycles associated to different atlases define the same class in H1(M,C∞( , G))
and in the same way, isomorphic principal bundles lead to the same cohomology class.
Conversely, given a cocycle in C1(U , C∞( , G)) one defines an equivalence relation on
{(i, x, g) : x ∈ Ui, g ∈ G} as in the proof of Theorem 3.7 to obtain a principal G-bundle
with an atlas having the given cocycle as its transition functions. This shows that one
may identify the set H1(M,C∞( , G)) with the set of isomorphism classes of principal
G-bundles over M . (However, this is more of a formal observation and not really helpful
in understanding the set of isomorphism classes of principal bundles in general.)

One may use this to get some nice results in the case of discrete groups, however.
If G is discrete, then a principal G-bundle p : P → M is a covering (in the topological
sense) of M . In particular, basic results of algebraic topology imply that such a bundle
is always isomorphic to M×G provided that M is simply connected. Thus, one obtains

Proposition 3.8. If M is a simply connected smooth manifold, then H1(M,G) =
{0} for any discrete group G. In particular, simply connected manifolds are orientable
and if a simply connected manifold admits a spin structure, then this structure is unique
up to isomorphism.

The second general principle that lies behind the proof of Theorem 3.7 is the so-
called long exact cohomology sequence. Suppose that we have a discrete commutative
group G and a subgroup H ⊂ G and consider the quotient G/H. Then the inclusion
i : H ↪→ G and the projection π : G → G/H are homomorphisms and thus induce
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homomorphisms

Hk(X,H)
i#−→ Hk(X,G)

π#−→ Hk(X,G/H)

for each topological space X and each k. It turns out that the image of i# always coin-
cides with the kernel of π#. Now one may define a homomorphism δ : Hk(X,G/H)→
Hk+1(X,H) as follows. Given c ∈ Ck(U , G/H) with ∂c = 0, one can always choose
c̃ ∈ Ck(U , G) such that π∗c̃ = c. Then ∂c̃ ∈ Ck+1(U , G) is non-zero in general, but it
certainly satisfies that π∗∂c̃ = ∂π∗c̃ = 0. Thus ∂c̃ has values in H and hence defines
an element of Ck+1(U , H), which is immediately seen to be a cocycle. Next, one proves
that the class of this cocycle in Hk+1(X,H) depends only on the class [c] ∈ Hk(X,G/H)
so one can define this to be δ([c]). This connecting homomorphism has the congenial
property that its kernel coincides with the image of π# while its image coincides with
the kernel of i#.

The proof of Theorem 3.7 can be viewed as extending this in degree one to a par-
tially non-commutative situation. Namely, putting H := ker(ρ) ⊂ Spin(n) =: G,
we get G/H ∼= SO(n). Then construction in the proof of Theorem 3.7 can be ap-
plied to general principal SO(n)-bundles thus defining a connecting homomorphism
δ : H1(M,C∞( , SO(n))) → H2(M,Z2). This associates to each principal SO(n)-
bundle P a cohomology class w2(P ) ∈ H2(M,Z2) called the second Stiefel–Whitney
class of P . The map ρ# : H1(M,C∞( , Spin(n))) → H1(M,C∞( , SO(n))) has a
simple interpretation in terms of principal bundles: For any Spin(n)-principal bun-
dle, there is an underlying SO(n)-principal bundle (defined either as Q/ ker(ρ) or via
transition functions) and ρ# just is the induced map between isomorphism classes of
principal bundles. The proof of Theorem 3.7 essentially shows that in this situation,
one again has ker(δ) = im(ρ#), i.e. a principal SO(n)-bundle P comes from a principal
Spin(n)-bundle (i.e. it admits a spin structure) if and only if w2(P ) = 0. In addi-
tion, it shows that for each element in im(ρ#) ⊂ H1(M,C∞( , SO(n))) the pre-image
in H1(M,C∞( , Spin(n))) is determined by the image of i#, which again resembles
statements from the long exact cohomology sequence.

At this point, we should mention another fundamental application of these ideas
towards characteristic classes of complex vector bundles. Consider the subgroup Z ⊂
C. The map z 7→ e2πiz induces an isomorphism between the quotient C/Z and the
multiplicative group C \ {0}. Now for a complex line bundle L → M (i.e. a complex
vector bundle with 1-dimensional fiber), the transition functions of a vector bundle atlas
define a cocycle in C1(U , C∞( ,C \ {0})). Restricting to appropriate open coverings U ,
one may locally write ϕij(x) = e2πiaij(x) for smooth function aij : Uij → C. These can
then be used to define a cocycle c via c(σ)(x) = aij(x)ajk(x)aik(x)−1 for σ = (i, j, k)
and x ∈ Uijk. This is easily seen to have values in Z and its class in H2(M,Z) turns
out to be independent of all choices. This is called the first Chern class c1(L) of L
and L 7→ c1(L) defines a bijection from the set of isomorphism classes of complex line
bundles on M to H2(M,Z). (In the proof, one shows using partitions of unity that
H1(M,C∞( ,C)) = 0.) For general complex vector bundles, the first Chern class is
defined analogously starting from the cocycle x 7→ det(ϕij(x)).



CHAPTER 4

Clifford algebras and spin groups

In this chapter, we describe the general construction of the Spin groups Spin(n) for
all n ≥ 3. This builds on a general construction of Clifford algebras, which is based
on multilinear algebra. It turns out that this construction extends without additional
difficulties to a much more general setting than we need. The discussion follows Sections
III.3 and IV.4 of [Ka78] in several places, some parts have been taken from [LM89].
The full classiciation of real Clifford algebras can be found in [Ka78] and in [BT88],
which also explains the terminology for spinors and Clifford algebras used in Physics.

Definition and structure of Clifford algebras

4.1. Clifford algebras. Let V be a vector space over a field K, which we only
assume to be of characteristic different from 2, and let β : V × V → K be a symmetric,
K-bilinear form. Consider an associative unital algebra A over K, i.e. a vector space
endowed with a K-bilinear, associative multiplication A×A→ A, which admits a unit
element 1 ∈ A. The we say that a linear map ϕ : V → A satisfies the Clifford relations
if and only if

(4.1) ∀v, w ∈ V : ϕ(v) · ϕ(w) + ϕ(w) · ϕ(v) = −2β(v, w)1.

As we have noted in Chapter 1 already, bilinearity of the these relations implies that they
are satisfied for all pairs of elements of V if they are satisfied for all pairs of elements of a
fixed basis for V . Observe in particular, that the realations say that ϕ(v)2 = −β(v, v)1
for all v ∈ V , while β(v, w) = 0 implies that ϕ(v) and ϕ(w) anti-commute. Since both
sides of (4.1) are symmetric in v and w, we also conclude that ϕ(v)2 = −β(v, v)1 for
all v ∈ V implies (4.1) for all v, w ∈ V . Observe further that for a homomorphsims
f : A → B of unital associative algebras and a linear map ϕ : V → A, which satisfies
the Clifford relations also f ◦ ϕ : V → B satisfies the Clifford relations. Using tools
from multilinear algebra, it is rather easy to show that the problem of finding linear
maps that satisfy the Clifford relations has a universal solution in this sense:

Proposition 4.1. Let V be a vector space over K and let β be a symmetric, K-
bilinear form. There there is an associative, unital algebra C`(V, β) together with a
linear map j : V → C`(V, β), which satisfies (4.1) with the following universal property.
For any unital associative K-algebra A and any linear map ϕ : V → A, which satisfies
(4.1), there is a unique homomorphism ϕ̃ : C`(V, β)→ A of unital associative algebras
such that ϕ = ϕ̃ ◦ j. This determines (C`(V, β), j) uniquely up to isomorphism.

Suppose that V is finite dimensional and {e1, . . . , en} is a basis for V , which is
orthogonal for β in the sense that β(ei, ej) = 0 for i 6= j. Then the unit 1 and the
products j(e11) · j(ei2) · · · j(eik) with 1 ≤ i1 < i2 < · · · < ik ≤ n together span the vector
space C`(V, β). In particular, dim(C`(V, β)) ≤ 2n in this case.

Proof. Recall that there is the tensor algebra T (V ) = ⊕k≥0⊗k V which is a unital
associative algebra that has a universal property for the obvious inclusion i : V =
⊗1V ↪→ T (V ). Namely, if ϕ : V → A is any linear map with values in a unital
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associative algebra, there is a unique homomorphism ϕ̂ : T (V ) → A of such algebras
such that ϕ = ϕ̂◦i. (One just has to define ϕ̂(v1⊗· · ·⊗vk) as the product ϕ(v1) · · ·ϕ(vk)
in A.)

Now one defines I ⊂ T (V ) to be the ideal generated by all elements of the form
v⊗w+w⊗ v+ 2β(v, w)1 with v, w ∈ V and puts C`(V, β) := T (V )/I. This is a unital
associative K-algebra and we define j : V → C`(V, β) as p◦i, where p : T (V )→ C`(V, β)
is the surjective quotient homomorphism. In T (V ) we have i(v) · i(w) = v ⊗ w, so we
conclude that j(v) · j(w) + j(w) · j(w) = p(v ⊗ w + w ⊗ v). By defintion of I, this
coincides with p(−2β(v, w)1), so j satisfies the Clifford relations. On the other hand, if
a linear map ϕ : V → A satsifies (4.1), then we get

ϕ̂(v ⊗ w + w ⊗ v + 2β(v, w)1) = ϕ(v) · ϕ(w) + ϕ(w) · ϕ(v) + 2β(v, w)1 = 0.

Thus all generators of I lie in the kernel of ϕ̂ and since this kernel is an ideal, we see
that I ⊂ ker(ϕ̂). Hence there is a unique homomorphism ϕ̃ : C`(V, β) → A such that
ϕ̂ = ϕ̃◦p and hence ϕ = ϕ̂◦i = ϕ̃◦j. Thus we see that C`(V, β) has the claimed universal
property, and standard arguments show that this pins down the pair (C`(V, β), j) up
to isomorphism.

For the last part, we observe that the elements ei1 ⊗ · · · ⊗ eik for arbitrary indices
ij span ⊗kV for each k. This means that any element of C`(V, β) can be written as a
linear combination of products of the elements j(ei). But since j satisfies the Clifford
relations, get j(ei)j(ek) = −j(ek)j(ei) for i 6= k and j(ei)

2 = −β(ei, ei)1. Hence we can
order each such product at the expense of a sign and leave out elements which occur
twice at the expense of a multiple, which completes the argument. �

This result has immediate consequences. Let f : (V, β)→ (W, γ) be a K-linear map
which is orthogonal for the bilinear forms in the sense that γ(f(v1), f(v2)) = β(v1, v2)
holds for arbitrary elements v1, v2 ∈ V . Then consider jW ◦ f : V → C`(W, γ), which
satisfies

jW (f(v1)) · jW (f(v2)) + jW (f(v2)) · jW (f(v1)) = −2γ(f(v1), f(v2)) = −2β(v1, v2).

Thus it induces a homomorphism C`(f) : C`(V, β)→ C`(W, γ) such that C`(f) ◦ jV =
jW ◦ f . Together with uniqueness in the universal property, this immediately implies
that C`(g ◦ f) = C`(g) ◦ C`(f) and C`(id) = id. In particular, for W = V , we
obtain a homomorphism from the orthgonal group O(V, β) to the group Aut(C`(V, β))
of automorphisms of the associative Algebra C`(V, β). In particular, we can apply
this to − idV , which gives rise to an involutive automorphism α of C`(V, β). Since
α2 = id, we obtain a splitting C`(V, β) into eigenspaces of α with eigenvalues ±1, which
we denote by C`0(V, β) and C`1(V, β), respectively. Since α is a homomorphism, we
conclude that C`i ·C`j ⊂ C`i+j where we interpret the sum in Z2, so this makes C`(V, β)
into a Z2-graded algebra. In particular, C`0(V, β) is a subalgebra in C`(V, β).

4.2. On the structure of Clifford algebras. For the next steps, we need some
facts on tensor products of algebras. Given two unital associative K-algebras A and B,
one can form the tensor product of the underlying vector spaces and endow it with the
multiplication characterized by (a1⊗ b1) · (a2⊗ b2) = (a1a2)⊗ (b1b2). This makes A⊗B
into an associative algebra with unit element 1A ⊗ 1B. The algebras A and B can be
identified with the subalgebras of A⊗B formed by the elements of the form a⊗ 1B and
1A⊗b, respectively, and by construction any element from the first subalgebra commutes
with any element of the second one. This tensor product has a nice universal property:
Suppose that C is any associative unital K-algebra and that ϕ : A→ C and ψ : B → C
are homomorphisms. Then (a, b) 7→ ϕ(a) · ψ(b) is a bilinear map A × B → C, so it
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induces a linear map A⊗B → C, which maps a⊗ 1B to ϕ(a) and 1A ⊗ b to ψ(b). One
immediately verifies that this induced map is an algebra homomorphism if and only if
ϕ(a) · ψ(b) = ψ(b) · ϕ(a) for all a ∈ A and b ∈ B.

For Z2-graded algebras, there is a modification of this construction, which we will
denote by ⊗̂. Take two Z2-graded algebras A = A0 ⊕ A1 and B = B0 ⊕ B1. Then any
element of A ⊗ B can be written as a finite sum of elements of the form a ⊗ b with a
and b lying in one of the grading components. Denoting their degrees by |a|, |b| ∈ Z2 we
decree that a⊗ b has degree |a|+ |b|. This makes A⊗B into a Z2-graded vector space
with (A⊗B)0 = (A0⊗B0)⊕ (A1⊗B1), while (A⊗B)1 = (A1⊗B0)⊕ (A0⊗B1). Now
we modify the definition of the multiplication by taking the gradings into account. For
elements ai and bj contained in one grading component, we put (a1 ⊗ b1) · (a2 ⊗ b2) :=
(−1)|b1||a2|(a1a2) ⊗ (b1b2). This is compatible with the Z2-grading, associative and has
1A ⊗ 1B as a unit, and we denote the resulting algebra by A⊗̂B.

The universal property here works for a Z2-graded algebra C and homomrophisms
ϕ : A→ C and ψ : B → C which respect the gradings. As above, these induce a linear
map A⊗̂B → C which is compatible with the gradings. This is a homomorphism if
for a ∈ A and b ∈ B, the elements ϕ(a) and ψ(b) commute in the graded sense. This
means that for a and b contained in one grading component, we must have ϕ(a)ψ(b) =
(−1)|a||b|ψ(b)ϕ(a). Using this, we can prove the first core result on the structure of
Clifford algebras.

Theorem 4.2. Starting from (V, β), assume that V = V1 ⊕ V2 for two linear sub-
spaces V1, V2 ⊂ V , which are orthogonal with respect to β, i.e. such that β(v1, v2) = 0
for each v1 ∈ V1 and v2 ∈ V2. Denoting by βi the restriction of β to a bilinear form on
Vi for i = 1, 2, we get C`(V, β) ∼= C`(V1, β1)⊗̂C`(V2, β2) as a Z2-graded algebra.

Proof. Any element v ∈ V can be uniquely written as v = v1 + v2 with vi ∈ Vi
and we define ϕ : V → C`(V1, β1)⊗̂C`(V2, β2) as ϕ(v) := j1(v1)⊗ 1 + 1⊗ j2(v2), where
ji : Vi → C`(Vi, βi) are the canonical maps. Given another element w ∈ V we get
β(v, w) = β1(v1, w1) + β2(v2, w2) and

ϕ(v)ϕ(w) = j1(v1)j1(w1)⊗ 1 + j1(v1)⊗ j2(w2)− j1(w1)⊗ j2(v2) + 1⊗ j2(v2)j2(w2).

Since the two middle terms cancel with the conttibution form ϕ(w)ϕ(v), we conclude
that ϕ satisfies the Clifford relations. Thus there is an induced homomorphism ϕ̃ :
C`(V, β)→ C`(V1, β1)⊗̂C`(V2, β2).

In the other direction, the inclusions ι1 : V1 → V and ι2 : V2 → V are orthogo-
nal, and thus induce homomorphisms C`(ι1) : C`(V1, β1) → C`(V, β) and similarly for
C`(ι2). Choosing orthogonal bases {eik} of the spaces Vi, the union of the two bases is
an orthogonal basis for V . By Proposition 4.1, we know that any element of C`(V1, β1)
can be written as a linear combination of products of elements j1(e1

k) and for a homoge-
neous element, these products either have all an even number of factors or have all an
odd number of factors. By construction, C`(ι1) sends the product j1(e1

k1
) · · · j1(e1

k`
) to

j(e1
k1

) · · · j(e1
k`

). We can describe elements from the image of C`(ι2) similarly. Now by

the Clifford relations, any of the elements j(e1
i ) anti-commutes with any of the elements

j(e2
i ). This shows that the images of C`(ι1) and C`(ι2) satsify the condition needed for

them to induce a homomorphism C`(V1, β1)⊗̂C`(V2, β2)→ C`(V, β).
We claim that these homomorphisms are inverse to each other. Starting from

C`(V, β), the element j(v) for v = v1 +v2 is mapped to j1(v1)⊗1+1⊗j2(v2), which then
is mapped further to j(v1) + j(v2) = j(v). But a homomorphism from C`(V, β) to itself
which sends each j(v) to itself has to be the identity by the uniqueness in the universal
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property. For the other composition, consider an elemente of the form j1(v1) ⊗ 1. By
definition, this is mapped to j(v1) and since 0⊗1 = 0, this is mapped back to j1(v1)⊗1.
Similarly, elements of the form 1⊗j2(v2) are mapped to themselves. But by Proposition
4.1 and standard properties of the tensor product, products of finitely many elements of
these two forms span C`(V1, β1)⊗̂C`(V2, β2). Thus, the other composition is the identity
map, too, and the proof is complete. �

Corollary 4.2. Suppose that K has characteristic different from 2 and that V is
an n-dimensional vector space over K endowed with some symmetric bilinear form β.
Then the canonical map j : V → C`(V, β) is injective and dim(C`(V, β)) = 2n.

Proof. We first prove the statement on dim((V, β)) by induction on n. For n = 1,
let v ∈ V be a non-zero element. Then v is a basis for V and, more generally, the tensor
product of k copies of v is a basis for ⊗kV . This implies that mapping x to v induces an
isomorphism K[x] → T (V ) of algebras. Hence C`(V, β) is isomorphic to K[x]/I where
I is the ideal generated by x2 − β(v, v)1. It is well known that the classes of 1 and x
form a basis for this quotient and hence dim(C`(V, β)) = 2.

For dim(V ) = n > 1, we first claim that we either have β = 0 or there is an
element v1 ∈ V such that β(v1, v1) 6= 0. Indeed, we get β(v + w, v + w) = β(v, v) +
β(w,w) + 2β(v, w) for all v, w ∈ V . Since the characteristic of K is different from 2,
this shows that 0 = β(v, v) for all v ∈ V implies 0 = β(v, w) for all v, w ∈ V . If β = 0,
we choose any decompostion V = V1 ⊕ V2 with dim(V1) = 1 and dim(V2) = n − 1
and this is automatically orthogonal. Otherwise we choose v1 ∈ V with β(v1, v1) 6= 0,
define V1 to be the subspace spanned by V1 and V2 := {v ∈ V : β(v1, v) = 0}. One
immediately verifies that V is the orthgonal direct sum V1 ⊕ V2, so we always get such
a decomposition. Theorem 4.1 then shows that C`(V, β) ∼= C`(V1, β1)⊗̂C`(V2, β2) so its
dimension is the product of the dimensions of the two factors and this completes the
induction.

Now let dim(V ) = n and assume that j is not injective. Then for a basis v1, . . . , vn
for V , the elements j(v1), . . . , j(vn) ∈ C`(V, β) would be linearly dependent. Without
loss of generality, this would imply that j(vn) can be written as a linear combination
of j(v1), . . . , j(vn−1). But as in the proof of Propostion 4.1, this would show that
dim(C`(V, β)) ≤ 2n−1, a contradiction. �

Injectivity of the map j : V → C`(V, β) implies that we can view V as a linear
subspace of C`(V, β) and we will do this from now on without further mentioning. In
particular for elements v1, . . . , vk, we have an element v1 ·v2 · · · vk ∈ C`(V, β), which lies
in C`0(V, β) if k is even and in C`1(V, β) if k is odd.

Remark 4.2. It turns out that there is a nice relation between the Clifford algebra
Cl(V, β) and the exterior algebra Λ∗V for any symmetric bilinear form β. The decompo-
sition T (V ) = ⊕k≥0⊗kV makes T (V ) into a graded algebra, i.e. the product of ⊗kV and
⊗`V is contained in ⊗k+`V . The generators of the ideal I used to construct Cl(V, β) in
Proposition 4.1 are not homogeneous for this grading, since they mix elements of degree
two and zero. Hence there is no induced grading on Cl(V, β), although the Z2-grading
from Section 4.1 is obtained from the grading of T (V ). But there is another way to use
the grading of T (V ). Denoting by p : T (V ) → Cl(V, β) the quotient homomorphism,
we consider for each i ≥ 0, linear subspace F i := p(⊕ik=0 ⊗k V ) ⊂ Cl(V, β). By con-
struction, these spaces satisfy F i ⊂ F i+1 for each i and F i · F j ⊂ F i+j, thus making
Cl(V, β) into a filtered algebra. From Proposition 4.1 it also follows that F i = C`(V, β)
for all i ≥ n.
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For such a filtered algebra, one can form the associated graded algebra. Consider the
vector space ⊕i≥0F i/F i−1, which in our case ends with i = n and can be endowed with
a multiplication as follows. Given elements of x ∈ F i/F i−1 and y ∈ F j/F j−1, we choose
representatives x̂ ∈ F i and ŷ ∈ F j, form x̂ · ŷ ∈ F i+j and project it to F i+j/F i+j−1.
Choosing different representatives, we get x̂+x′ and ŷ+y′ with x′ ∈ F i−1 and y′ ∈ F j−1

and multiplying them gives x̂ · ŷ + x′ · ŷ + x̂ · y′ + x′ · y′. But the last three terms lie
in F i+j−1 respectively even in F i+j−2, so the class in the quotient is independent of the
choice of representatives. Clearly, this associated graded algebra is again associative
and 1 ∈ F0 is a unit element.

Now we can view v ∈ V as an element of F1, and then consider its class in F1/F0.
This defines a linear map ϕ from V to the associated graded algebra. The Clifford
relations for j immediately imply that ϕ(v)ϕ(w) + ϕ(w)ϕ(v) = 0 for all v, w ∈ V , so
there is a unique algebra homomorphism from Λ∗V to this associated graded algebra.
Since C`(V, β) is generated by the elements v it easily follows that this homomorphism
has to be surjective, so since both algebras have the same dimension, it is a linear
isomorphism. Thus for any β, the associated graded algebra to C`(V, β) is isomorphic
to Λ∗V .

Spin groups and the spin representations

4.3. Spin groups. For any associative unital algebra A one can consider the subset
A∗ of invertible elements, i.e. those a ∈ A for which there exists an element a−1 ∈ A
such that a−1 · a = a · a−1 = 1. It follows immediately that the inverse is uniquely
determined. Morover, for invertible elements a and b also the product a · b is invertible
and (a · b)−1 = b−1 · a−1, so A∗ naturally is a group. An invertible element a ∈ A is
not a zero-divisor, i.e. if for some b ∈ A either a · b = 0 or b · a = 0, then b = 0. If
A is finite dimensional, then the converse holds, i.e. if a is not a zero-divisor, then a is
invertible. Indeed, if a is not a zero-divisor, then left and right multiplication by a are
linear maps A → A with trivial kernel, so they have to be surjective. Hence there are
unique elements b, c ∈ A such that a · b = 1 and c · a = 1 and multiplying the latter
equation by b from the right, we get c = b.

If we assume that K = R or C, which we will do from now on, then for finite
dimensional A, the subset A∗ ⊂ A is open and thus a Lie group of dimension dim(A).
Indeed, the map seding a ∈ A to left multiplication by a is a linear map A → L(A,A)
and from above we know that A∗ is the pre-image of the open subset GL(A) under
this map. Via the implicit function theorem, this also implies that the inversion map is
smooth as a map A∗ → A∗.

Let us further specialize to the Clifford algebra C`(V, β) of a finite dimensional,
real vector space V endowed with a non-degenerate, symmetric bilinear form β. As in
Section 4.1 we denote by α the automorphism of C`(V, β) whose ±1-eigenspaces are
C`0(V, β) and C`1(V, β). To construct the associated spin group, we need one more bit
of structure on the Clifford algebra.

Lemma 4.3. There is a unique involutive anti-automorphism of C`(V, β) which we
denote by x 7→ x̄ (so this is linear, x · y = ȳ · x̄ and x̄ = x) such that v̄ = v for all

v ∈ V ⊂ C`(V, β). This satisfies α(x̄) = α(x) and the function N : C`(V, β)→ C`(V, β)
defined by N(x) := α(x̄) · x satisfies N(x · y) = α(ȳ) ·N(x) · y and N(v) = β(v, v) · 1 for
all v ∈ V .

Proof. Let A be the opposite algebra to C`(V, β), i.e. it has the same underlying
vector space but the product x · y in A equals the product y · x in C`(V, β). Viewing
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the canonical map j : V → C`(V, β) as a linear map to A, it satisfies the Clifford
relations, so there is a unique homomorphism C`(V, β)→ A sending v ∈ V ⊂ C`(V, β)
to v viewed as an element of A. A homomorphism C`(V, β) → A simply is an anti-
homomorphism C`(V, β) → C`(V, β), so we have defined the map x 7→ x̄. Moreover,
since α is the homomorphism induced by − id both the homomorphisms C`(V, β)→ A

given by x 7→ α(x̄) and x 7→ α(x) send v ∈ V to −v ∈ A so they agree by uniqueness
in the universal property. Similarly, x 7→ x̄ is a homomorphism from C`(V, β) to itself
which maps each v ∈ V to itself, so it has to be the identity.

By definition N(x · y) = α(ȳ · x̄) · x · y. Using that α is a homomorphism, it follows
immediately that this equals α(ȳ) ·N(x) · y. For v ∈ V , we have v̄ = v and α(v) = −v,
so N(v) = −v · v, which equals β(v, v) · 1 by the Clifford relations. �

Definition 4.3. (1) The map N defined in Lemma 4.3 is called the spinorial norm.
(2) We define subsets

Spin(V, β) ⊂ Pin(V, β) ⊂ Γ̃(V, β) ⊂ C`(V, β)∗

in the group of invertible elements in C`(V, β) as follows. An element x lies in Γ̃(V, β)
iff for each v ∈ V we have α(x)vx−1 ∈ V ⊂ C`(V, β), it lies in Pin(V, β) if in addition
N(x) = ±1, and it lies in Spin(V, β) if it in addition lies in C`0(V, β). These are called
the twisted Clifford group, the pin group, and the spin group of (V, β), respectively. By
Spin(n), we denote the spin group of the standard inner product on Rn.

Theorem 4.3. All three subsets defined above are closed subgroups of C`(V, β)∗ and
thus Lie groups. For x ∈ Γ̃(V, β), defining ρx : V → V as ρx(v) = α(x)vx−1 defines
a smooth representation of Γ̃(V, β) on V . This representation restricts to surjective
homomorphisms Pin(V, β) → O(V, β) and Spin(V, β) → SO(V, β), each of which has
kernel {±1}. Finally, if β is positive definite, then Spin(V, β) is connected.

Proof. For x ∈ C`(V, β)∗, we define a linear map ρ̃x : C`(V, β) → C`(V, β) by
ρ̃x(y) := α(x)yx−1. Clearly this defines a smooth homomorphism ρ̃ : C`(V, β)∗ →
GL(C`(V, β)). The invertible maps that send V to itself form a closed subgroup in
GL(C`(V, β)), whose pre-image is by definition is Γ̃(V, β) ⊂ C`(V, β)∗, so this is a
closed subgroup, too. It is also clear from this description that we obtain a smooth
representation ρ : Γ̃(V, β) → GL(V ) via ρx(v) = α(x)vx−1. Now for x ∈ Γ̃(V, β) and
v ∈ V , we have α(x)vx−1 ∈ V so this element is mapped to its negative by α. Since α
is a homomorphism, we get α(x−1) = α(x)−1, so we conclude that xvα(x)−1 ∈ V , which
shows that α(x) ∈ Γ̃(V, β).

By definition, for t ∈ R\{0}, we get t1 ∈ Γ̃(V, β) and ρt1 = idV . We claim that these
are the only elements in the kernel of ρ. Suppose that x ∈ Γ̃(V, β) satisfies ρx = idV ,
so we have α(x)vx−1 = v and hence α(x)v = vx for all v ∈ V . Now we can write
x = x0 +x1 with xi ∈ C`i(V, β) for i = 0, 1. Looking at the components of the equation
α(x)v = vx in C`i(V, β) for i = 0, 1, we obtain x0v = vx0 and −x1v = vx1. Now choose
an orthogonal basis {ei} of V such that β(ei, ei) 6= 0 for all i. Then we can write x0

as a linear combination of a multiple of 1 and of products of an even number of the
ei. Fixing an index i0 we can split this into the linear combination of those products
which do not involve ei0 and those which involve this vector, arranged in such a way
that ei0 comes first. This gives a representation x0 = ai0 + ei0 · bi0 with ai0 ∈ C`0 and
bi0 ∈ C`1 both being linear combinations of products which do not involve ei0 . This
readily implies that ei0 commutes with ai0 and anti-commutes with bi0 . Thus we obtain
(ai0 + ei0bi0)ei0 = ai0ei0 − e2

i0
bi0 and ei0(ai0 + ei0bi0) = ei0ai0 + e2

i0
bi0 , so x0ei0 = ei0x0
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implies bi0 = 0. But this means that x0 does not contain products involving ei0 and
since this works for each index, x0 has to be a multiple of 1.

Simlarly, we write x1 = ai0 + ei0bi0 where now ai0 ∈ C`1 and bi0 ∈ C`0 so ei0 anti-
commutes with ai0 and commutes with bi0 . Similarly as above, x1ei0 = −ei0x1 implies
bi0 = 0, so x1 may not contain any product involving ei0 . Since this works for each index,
and x1 contains only products with an odd number of factors, this implies x1 = 0, and
the claim follows.

We next claim that for x ∈ Γ̃(V, β), the spinorial norm N(x) is a non-zero multiple of
1. For any x ∈ C`(V, β)∗ we have already observed that α(x−1) = α(x)−1 and similarly,

we get x−1 = (x̄)−1. Now for v ∈ V , we have v̄ = v and α(v) = −v, so x̄ ·v = x̄ · v̄ = v · x
and hence

x̄ · v · α(x̄)−1 = v · x · α(x−1) = α(x−1)vx.

Assuming that x ∈ Γ̃(V, β), we also have x−1 ∈ Γ̃(V, β) and hence α(x−1)vx ∈ V .
Hence our computation shows that α(x̄) ∈ Γ̃(V, β) and that ρα(x̄) = ρx−1 . Thus also

N(x) = α(x̄)x ∈ Γ̃(V, β) and ρN(x) = ρα(x̄) ◦ ρx = idV which proves the claim.

Since N(x) is a multiple of 1 for x ∈ Γ̃(V, β) it commutes with any element of
C`(V, β), so Lemma 4.3 shows that N(xy) = N(x)N(y) for any y ∈ C`(V, β). In
particular, N defines a homomorphism from Γ̃(V, β) to the multiplicative group R\{0}.
Since {±1} is a closed subgroup in R\{0}, the pre-image Pin(V, β) is a closed subgroup
in Γ̃(V, β). Moreover, since N(1) = 1, we get N(x−1) = N(x)−1 and further N(x) =
α(N(x)), which by definition equals N(α(x)). This shows that α restricts to a group
automorphism of Pin(V, β) such that α2 = id and thus the set of fixed points of α forms
a closed subgroup of Pin(V, β), which by definition coincides with Spin(V, β).

Now for v ∈ V we get N(ρx(v)) = N(α(x)vx−1) and expanding this, one imme-
diately verifies that this coincides with N(v) and using Lemma 4.3, this shows that
β(ρx(v), ρx(v)) = β(v, v). Thus ρx ∈ O(V, β) and ρ is a homomorphism Γ̃(V, β) →
O(V, β). Now suppose that v ∈ V is such that β(v, v) = N(v) = ±1. Then v2 =
−β(v, v)1 so v−1 = ∓v and hence α(v)vv−1 = ±v3 = ∓β(v, v)v = −v. On the other
hand, if w ∈ V is such that β(v, w) = 0, then α(v)wv−1 = −vwv−1 = wvv−1 = w.
But this shows that ρ̃v preseves the subspace V , so v ∈ Pin(V, β) and that ρv is the
reflection in the hyperplane v⊥ perpendicular to v.

It is a classical result that any element of O(V, β) can be written as a product of at
most n = dim(V ) such reflections, so ρ : Γ̃(V, β) → O(V, β) and even its restriction to
Pin(V, β) is surjective. The kernel of ρ in Γ̃(V, β) are the non-zero multiples of 1, so
the kernel of the restriction to Pin(V, β) coincides with {±1} ⊂ Spin(V, β). Together
these results imply that any element of Pin(V, β) can be written as x = ±v1 . . . vk for
some elements vi ∈ V such that β(vi, vi) = ±1. Such an element lies in Spin(V ) if and
only if k is even, which is equivalent to ρx being a composition of an even number of
reflections and thus lying in SO(V, β).

We finally claim that there is a smooth curve in Spin(V, β) that connects 1 and−1. If
β is positive definite, then SO(V, β) is connected, so given an element x ∈ Spin(V, β),
there is a continuous curve that connects ρ(x) to the identity. Since ρ is a covering
map, this lifts to a curve that starts in x and ends in ker(ρ) = {±1}. Together with
the above, this shows that Spin(V, β) is connected. In general, it shows that Spin(V, β)
has as many connected components as SO(v, β) (namely two) and Pin(V, β) has as
many components as O(V, β) (namely four). To prove our claim, we take two elements
v1, v2 ∈ V such that β(v1, v2) = 0 and β(v1, v1) = β(v2, v2) = ±1 and for t ∈ R
consider the element xt := cos(t) · 1 + sin(t)v1v2 ∈ C`0(V, β). Now by construction
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(v1v2)2 = −v2
1v

2
2 = −1, which immediately implies that cos(t) · 1− sin(t)v1v2 is inverse

to xt. If v ∈ V is orthogonal to both v1 and v2, then it commutes with v1v2 and hence
with xt = α(xt), so α(xt)vx

−1
t = v. On the other hand, one computes directly that

α(xt)v1x
−1
t and α(xt)v2x

−1
t both are linear combinations of v1 and v2 so xt ∈ Γ̃(V, β).

The definitions also readily imply that xt = x−1
t and hence N(xt) = 1 for all t. Hence

xt ∈ Spin(V ) and of course x0 = 1 and xπ = −1. �

4.4. Complex and real Clifford algebras. To obtain the spin representations of
the spin groups, we have to analyze the structure of complex Clifford algebras in a bit
more detail. We will also indicate how things look in the real case. Recall from linear
algebra that over C, there is up to isomorphism a unique non-degenerate, symmetric
bilinear form on any finite dimensional vector space. From Section 4.1, we conclude that
an orthogonal isomorphism of vector spaces induces an isomorphism of the correspond-
ing Clifford algebras. Thus it suffices to determine the Clifford algebra for the standard
bilinear form (z, w) 7→

∑n
k=1 zkwk on Cn, which we denote by C`(n,C). Over R, non-

degenerate, symmetric bilinear forms are classified by signature (p, q) by Sylvester’s
theorem. A representative form on Rp+q is given by (x, y) 7→

∑p
k=1 xkyk −

∑p+q
k=p+1 xkyk

and we denote the corrresponding Clifford algebra by C`(p, q).
From the proof of Corollary 4.2, we see that C`(1, 0) and C`(0, 1) are isomorphic

to the quotient of R[x] by the ideals generated by x2 + 1 and x2 − 1, respectively. The
first of these is of course isomorphic to C via mapping x to i, so C`(1, 0) ∼= C with
C`0(1, 0) spanned by 1 and C`1(1, 0) spanned by i. Similarly, C`(0, 1) ∼= R ⊕ R (with
component-wise operations) via the map sending x to (1,−1), so the latter element
spans C`1(0, 1) while the unit element (1, 1) spans C`0(0, 1). For C, we use C[x]/x2 + 1
but in the complex case, this can be identified with C ⊕ C by sending x to (i,−i). So
we get C`(1,C) = C⊕C with C`0 and C`1 spanned by (1, 1) and (1,−1), respectively.
Using this, we can now inductively derive a description of all complex Clifford algebras.

Theorem 4.4. For each n ≥ 1 there are isomorphisms of algebras

C`(2n,C) ∼= C`0(2n+ 1,C) ∼= M2n(C)

C`(2n− 1,C) ∼= C`0(2n,C) ∼= M2n−1(C)⊕M2n−1(C)

Proof. From above, we know that C`(1,C) admits a basis {1, x} such that x2 = −1
and from Theorem 4.2, we know that C`(n + 1,C) ∼= C`(n,C)⊗̂C`(1,C). Now for
z, w ∈ Cn viewed as elements of C`(n,C), we get (z⊗x) · (w⊗x) = −zw⊗x2 = zw⊗1.
Since all these tensor products lie in the degree 0 part, we see that z 7→ z ⊗ x defines
a map from Cn to the alsgebra C`0(n+ 1,C), which satisfies the Clifford relations. By
Proposition 4.1, this induces an algebra homomorphism C`(n,C)→ C`0(n+ 1,C). By
construction C`0(n+1,C) is spanned by elements of the form a⊗x and b⊗1, where a is
a products of an odd number of elements of Cn while b is a product of an even number
of such elements. This shows that our homomorphism is surjective, and since both
algebras have the same dimension, it is an isomorphism. Hence it remains to describe
the full Clifford algebras.

For n = 1, we get C`(2,C) = C`(1,C)⊗̂C`(1,C), so this has a basis consisting of
1⊗1, x⊗1, 1⊗x, and x⊗x = (x⊗1) · (1⊗x) = −(1⊗x) · (x⊗1), where x2 = −1. Now
consider the matrices A := ( 0 1

−1 0 ) and B := ( 0 i
i 0 ). These satisfy A2 = B2 = −I and

AB = −BA = ( i 0
0 −i ), so {I, A,B,AB} is a basis of M2(C). Clearly, the map sending

1 ⊗ 1 to I, x ⊗ 1 to A, 1 ⊗ x to B and x ⊗ x to AB is an isomorphism of algebras, so
C`(2,C) ∼= M2(C).



SPIN GROUPS AND THE SPIN REPRESENTATIONS 55

Next, we claim that C`(n + 2,C) ∼= C`(n,C) ⊗M2(C) as an algebra. View Cn+2

as Cn ⊕ C2 and take an orthonormal basis {w1, w2} for C2. Using the matrices A
and B from above, we define ϕ : Cn+2 → C`(n,C) ⊗M2(C) by ϕ(v) = v ⊗ iBA for
v ∈ Cn, ϕ(w1) := 1⊗ A and ϕ(w2) = 1⊗ B. This shows that ϕ(v1) · ϕ(v2) = v1v2 ⊗ I,
ϕ(w1)2 = ϕ(w2)2 = −1⊗I and ϕ(w1) and ϕ(w2) anti-commute with each other and with
any ϕ(v). Hence ϕ satsifies the Clifford relations, so there is an induced homomorphism
C`(n + 2,C) → C`(n,C) ⊗ M2(C) of algebras. Since ϕ(v)ϕ(w1)ϕ(w2) is a non-zero
multiple of v⊗ 1, we conclude similarly as above that this has to be surjective and thus
a linear isomorphism. In particular, for n = 1, we get C`(3,C) ∼= (C⊕C)⊗M2(C) and
clearly, this is isomorphic to M2(C)⊕M2(C).

To complete the proof by induction, it suffices to show that Mk(C) ⊗ M2(C) ∼=
M2k(C). This is an easy exercise, as the isomorphism can be defined explicitly. Viewing
a (2k)× (2k)-matrix as decomposed into 4 blocks of size k× k, an isomorphism is given
by (

A11 A12

A21 A22

)
7→ A11 ⊗ ( 1 0

0 0 ) + A12 ⊗ ( 0 1
0 0 ) + A21 ⊗ ( 0 0

1 0 ) + A22 ⊗ ( 0 0
0 1 ) .

�

Remark 4.4. It is possible to describe the real Clifford algebras using similar
methods, but one has to be more careful about signatures. As we have seen above,
C`(1, 0) ∼= C and C`(0, 1) ∼= R ⊕ R. Similarly to the description of C`(2,C) in the
proof of Theorem 4.4 one easily verifies that C`(1, 1) ∼= M2(R), while C`(2, 0) ∼= H.
It turns out that also C`(0, 2) is isomorphic to M2(R) but with a different Z2-grading
than C`(1, 1). Similarly to the second part of the proof of Theorem 4.4, one verifies
that C`(n, 0)⊗C`(0, 2) ∼= C`(0, n+ 2), C`(p, q)⊗C`(1, 1) ∼= C`(p+ 1, q+ 1) and so on.

For the complex Clifford algebras, Theorem 4.4 shows that there is a distinction
between even and odd dimensions of the underlying vector space. This can be viewed
as a phenomenon of periodicity with period two. Indeed, for a K-algebra A, one can
also interpret A⊗Mn(K) as the algebra Mn(A) of n× n-matrices with entries from A
(with the usual matrix multiplication). In these terms, Theorem 4.4 says that C`(n +
2,C) is (isomorphic to) a matrix algebra over C`(n,C). There is a similar periodicity
phenomenon for real Clifford algebras, but this time the period is 8. In particular
C`(p+ 8, q) and C`(p, q + 8) are both isomorphic to M16(C`(p, q)).

The periodicity in complex and real Clifford algebras is deeply connected to Bott
periodicity in algebraic topology, which is related to homotopy groups of the orthgonal
and unitary groups and to real and complex K-theory, see [Ka78].

4.5. The spin representation(s). We next discuss how to obtain the spin repre-
sentations of the group Spin(n) and prove that they have the properties listed in Section
3.1 in general. The first property listed there is connectedness of Spin(n), which we
have not verified so far, also because it is not true in indefinite signature (where also
the special orthogonal group is not connected). But for n ≥ 2 the group SO(n) is
connected, so since SO(n) = Spin(n)/{±1} we see that Spin(n) can have at most two
connected compoents and to prove connectedness, it suffices to show that 1 and −1 can
be joined by a smooth path lying in Spin(n). But such a path can be easily written out
explicitly by taking two orthormal vectors v, w ∈ Rn and the path in C`0(n, 0) defined
by t 7→ cos(2t) + sin(2t)vw. This evidently equals 1 for t = 0 and −1 for t = π/2, so
it suffices to show that the whole path is contained in Spin(n). But this is true, since
it can be written as (cos(t)v + sin(t)w) · (sin(t)w − cos(t)v) and the vectors multiplied
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here are unit vectors for all t, so they lie in in the pin group and thus their product lies
in Spin(n).

To proceed towards the Spin representations, we consider V := Rn endowed with the
standard inner product 〈 , 〉. The obvious inclusion of Rn into Cn with the standard
complex bilinear form is orthogonal and thus induces a homomorphism C`(n, 0) →
C`(n,C) of real associative algebras which is compatible with the Z2-gradings on the
two algebras. Moreover, the images of an orthonormal basis of V generate C`(n,C) as
a complex unital algebra. Now in Theorem 4.3 we have obtained Spin(n) as a subgroup
of the group of invertible elements of C`0(n, 0), so this is mapped to a subgroup of the
group of invertible elements in C`0(n,C). To proceed further, we have to distinguish
between even and odd dimensions, and we start with the simpler case of odd dimensions.

If n is odd, then Theorem 4.4 tells us that C`0(n,C) ∼= MN(C) (where N = 2m

if n = 2m + 1) so its group of invertible elements is GL(N,C). Thus, we directly
obtain a faithful representation of Spin(n) on CN , on which −1 acts as −I and thus
non-trivially. This is the spin representation S in odd dimensions. Since Spin(n) is
compact it follows from general results that there is a positive definite Hermitian inner
product on CN which is invariant under the action of Spin(n).

Still for odd n, we know from Theorem 4.4 that the full Clifford algebra C`(n,C) is
isomorphic to MN(C)⊕MN(C). Thus this comes with two (non-isomorphic) represen-
tations on CN , say S+ and S−, and Rn ⊂ Cn ⊂ C`(n,C) naturally acts on both these
representations. Now it is easy to see that each of these representations is non-trivial
when restricted to C`0(n,C) and then it is an easy fact that MN(C) has only one non-
trivial representation in dimension N . Hence as representations of C`0(n,C), both S+

and S− are isomorphic to S and we can view the action of Rn as ∗ : Rn × S → S. For
x ∈ Spin(n) ⊂ C`0(n, 0), the action on Rn from the proof of Theorem 4.3 reduces to
ρx(v) = xvx−1. But this exactly says that ρx(v) ∗ (x · ψ) = xvx−1x · ψ = x · (v ∗ ψ),
which exactly is the equivariancy condtion from Section 3.1.

For even dimension, the discussion is similar with small changes. Here C`0(n,C) ∼=
MN(C)⊕MN(C) and C`(n,C) ∼= M2N(C) with N = 2m−1 if n = 2m. This shows that
Spin(n) comes with two basic complex N -dimensional irreducible representations S+

and S− in even dimensions. Moreover, the representation S of C`(n,C) on C2N splits as
S = S+ ⊕ S− when restricted to the subalgebra C`0(n,C) and thus also over Spin(n).
Via the inclusion Rn ↪→ C`(n,C) we get an action on this sum. Since any element of
Rn together with C`0(n,C) generates C`(n,C) one concludes that the action of each
v ∈ Rn has to map S+ to S− and vice versa. Thus we get a Clifford multiplication
∗ : Rn × S → S which exchanges the two summands, and equivariancy follows exactly
as in the odd dimensional case.

Remark 4.5. The construction of the spin representations as complex representa-
tions suggests a generalization of the spin groups, for which there still is a spin represen-
tation. Namely, one defines a Lie group Spinc(n) as the quotient of Spin(n)× U(1) by
the two-element subgroup consisting of (1, 1) and (−1,−1). The natural homomorphism
Spin(n) → SO(n) induces a homomorphism ρc : Spinc(n) → SO(n) whose kernel is
isomorphic to U(1). On the other hand, the complex spin representation of Spin(n)
can be extended to a representation of Spinc(n) by letting U(1) act by complex multi-
plication on the representation space (and observing that −1 ∈ Spin(n) acts as − id in
the spin representation.

Now similar to spin structures as discussed in Chapter 3 there is the concept of a
spinc-structure on a Riemannian manifold (M, g). This is given by a Spinc(n)-principal
bundle Qc → M together with a bundle map to the orthonormal frame bundle OM
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with base map idM which is equivariant with respect to the homomorphism ρc. Having
given such a spinc-structure, one defines the spinor bundle as the associated bundle
with respect to the Spin representation. Via the homomorphism ρc, one obtains a
Clifford multiplication and then defines the Dirac operator exactly as in the case of spin
structures.

It is easy to see that any spin structure Q→M can be extended to a spinc-structure
Qc → M basically by forming a product with U(1) and factorizing appropriately. But
the key about the whole idea is that there are Riemannian manifolds that do admit a
spinc structure but not a spin structure, so one obtains a Dirac operator in a more general
situation. In particular, it turns out that in dimension 4, any orientable Riemannian
manifold does admit a spinc-structure, which is the basis for so-called Seiberg–Witten
invariants.

In general, the question of existence of spinc-structures can be answered in terms
of Čech cohomology. In Theorem 3.7 we have met the second Stifel–Whitney class
w2(M, g) ∈ H2(M,Z2), whose vanishing is equivalent to the existence of a spin structure.
On the other hand, we have seen in Section 3.5 that the quotient homomorphism Z→ Z2

induces a homomorphism H2(M,Z) → H2(M,Z2). It turns out that (M, g) admits a
spinc-structure if and only if w2(M, g) lies in the image of this homomorphism. The
idea for proving this is related to the discussion in the end of Section 3.8. There we have
discussed the first Chern class in the context of complex line bundles, but this can be
equivalently phrased as describing principal bundles with structure group U(1). Taking
an element of H2(M,Z) which is mapped to w2(M, g), one may form a corresponding
U(1)-principal bundle which can then be used to “correct” local lifts of the transition
functions of OM as transitions functions with values in Spinc(n).

4.6. Generalized Dirac operators. We conclude this chapter with a short sketch
of the general concept of Dirac operators and of the local index theorem, which provides
a very powerful application of these ideas. As we have seen in Section 4.1 any orthogonal
map between two innner product spaces induces an algebra homomorphism between the
associated Clifford algebras. In particular, we obtain a natural representation of the
group O(n) on the vector space C`(n, 0) for which each element of O(n) acts by an
algebra homomorphism. Given a Riemannian manifold (M, g), we can thus take the
orthonormal frame bundle OM and form the associated bundle OM ×O(n)C`(n, 0). By
construction, the transitions functions of this bundle are algebra homomoprhisms, so
we can define a fiber-wise multiplication in local trivializations. From the construction
it follows easily that the fiber of this bundle over x ∈ M can be naturally identified
with the Clifford algebra C`(TxM, gx). Thus we call this the bundle of Clifford algebras
and denote it by C`(TM, g). By construction, the Levi-Civita connection induces a
covariant derivative on the bundle C`(TM, g) which is compatible with the fiber-wise
multiplication.

Now one defines a Clifford module on M to be a vector bundle E → M together
with a smooth family of bilinear maps ∗ : TxM × Ex → Ex which satisfies the Clifford
relations in the sense that ξ ∗ η ∗ v+ η ∗ ξ ∗ v = gx(ξ, η)v for all ξ, η ∈ TxM and v ∈ Ex.
This defines a homomorphims C`(TxM, gx)→ L(Ex, Ex) thus making E into a bundle
of modules over the bundle C`(TM, g) of algebras. If we assume that E is associated
to either the orthonormal frame bundle OM or, in case that M is oriented, to a fixed
spin structure Q→ M , then we also have an induced connection on E, and we denote
all these connections by ∇. Then we can define a Dirac operator on Γ(E) similarly as
in Section 3.3 via D(s) =

∑
i ξi ∗∇ξis, where {ξi} is a local orthonormal frame for TM .
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As in the proof of Proposition 3.3 one verifies that D ◦D is a generalized Laplacian on
E.

To proceed towards the index theorem, one assumes that E comes with a Z2-gading
E = E0 ⊕ E1 such that ∗ maps TM × E0 to E1 and vice versa. (This corresponds
to the concept of a Z2-graded module over a Z2-graded algebra.) Assuming this, we
see that the resulting Dirac operator is built up from D0 : Γ(E0) → Γ(E1) and D1 :
Γ(E1)→ Γ(E0) while D2 is the sum of two operators preserving sections of each of the
subbundles. Under small technical assumptions one can the use the fact that D2 is a
generalized Laplacian to prove that on a compact manifold M , both D0 and D1 have
finite dimensional kerel, so there is a well defined integer ind(D) := dim(ker(D0)) −
dim(ker(D1)), called the index of the Dirac operator D.

The Dirac operators /D on Spinors discussed in Section 3.3 plays a central role in
this theory. Basically, it turns out that on a manifold admitting a spin structure, any
Clifford module can be obtained from spinors as introduced in Section 3.3. For example,
given any natural vector bundle W →M , one can form the tensor product S ⊗W and
define ∗ via the action on the first factor. This leads to the twisted Dirac operator /DW

and many important examples of Dirac operators are obtained in that way.
Surprisingly, it turns out that one can use tools from functional analysis, Riemannian

geometry, and algebraic topology to compute the index of such a generalized Dirac
operator as an integral of a certain n-form over the manifold M . This n-form is built up
in a (rather involved) universal way from the Riemann curvature of g and the Clifford
module E, This is the content of the local index theorem, which is discussed in detail in
the book [BGV92]. Again, the twisted Dirac operators /DW provide a very important
special case in these considerations. The local index theorem for generalized Dirac
operators then implies the general index theorem for elliptic operators, which is one
of the cornerstones in the area between (global) analysis, differential geometry, and
algebraic topology.



APPENDIX A

The Levi–Civita connection

In this appendix, we sketch a construction of the Levi-Civita connection associated
to a Riemannian metric as a principal connection on the orthonormal frame bundle.
Background from Riemannian geometry is not formally needed here.

A.1. The soldering form. Recall the description of the orthonormal frame bundle
OM of a Riemannian n-manifold (M, g) from Proposition 2.5. For a point x ∈ M ,
the fiber OxM is the set of all those linear isomorphisms u : Rn → TxM , which are
orthogonal with respect to the standard inner product 〈 , 〉 on Rn and the inner product
gx on TxM . The topology and smooth structure on OM = ∪x∈MOxM comes from the
linear frame bundle PM , so in particular local smooth sections of OM correspond to
smooth local frames for TM with are orthonormal with respect to g.

Denoting by p : OM → M the projection, we have, for each u ∈ OM , the tangent
map Tup : TuOM → TxM , where we put x = p(u). Thus, for each u ∈ OM , we can
define a natural linear map θu : TuOM → Rn as θu := u−1 ◦ Tup, which evidently
satisfies ker(θu) = ker(Tup), the vertical subspace in TuOM . It also follows readily
from the definitions that for ξ, η ∈ TuOM , we have gx(Tup · ξ, Tup · η) = 〈θu(ξ), θu(η)〉.
Finally, it is clear from the construction that for a smooth vector field ξ ∈ X(OM), the
function θ(ξ) : OM → Rn defined by θ(ξ)(u) := θu(ξ(u)) is always smooth, so θ defines
a Rn-valued one-form on OM .

Definition A.1. The form θ ∈ Ω1(OM,Rn) is called the soldering form on the
orthonormal frame bundle.

The soldering form satisfies an obvious compatibility condition with the principal
right action of O(n) on OM , which can be nicely phrased in terms of pullbacks. For
A ∈ O(n), consider the principal right action rA by A as a smooth map OM → OM .
Then one can define the pullback (rA)∗θ as for real valued forms by ((rA)∗θ)(u)(ξ) =
θ(rA(u))(Tur

A · ξ). But since p ◦ rA = p, we get Tu·A(Tur
A · ξ) = Tup · ξ, so we conclude

that ((rA)∗θ)(u) = (u ◦ A)−1(Tup · ξ) = A−1(θu(ξ)). This says that (rA)∗θ = A−1 ◦ θ,
which is usually phrased as “θ is O(n)-equivariant”.

Remark A.1. The soldering form is just an equivalent way to encode the inclusion
of OM into PM , which identifies OM as a reduction of structure group of the linear
frame bundle, see Section 2.5. Indeed, suppose that we have given an abstract principal
O(n)-bundle p : P →M together with a one-form θ ∈ Ω1(M,Rn). Suppose further that
θ is equivariant in the above sense, i.e. satisfies (rA)∗θ = A−1 ◦ θ for all A ∈ O(n) and
strictly horizontal in the sense that ker(θ(u)) = ker(Tup) for each u ∈ P . Then for each
u ∈ P , the linear map θ(u) : TuP → Rn descends to a injection TuP/ ker(Tup) → Rn,
which must be a linear isomorphism, since both spaces have the same dimension. Since
TuP/ ker(Tup) ∼= Tp(u)M , the inverse of this linear isomorphism can be viewed as an
element ι(u) in the fiber PxM of the linear frame bundle at x := p(u).

We can view this construction as defining a map ι : P → PM and equivariancy of
θ exactly says that ι(u · A) = ι(u) ◦ A. This shows that ι maps fibers to fibers and is
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injective on each fiber. One easily verifies that ι is smooth and thus a principal bundle
map, which makes P into a reduction of structure group of PM . By Proposition 2.5,
this such a reduction is the orthonormal frame bundle of a Riemannian metric.

The soldering form can be used to give a nice description of the equivariant smooth
function associated to a vector field on M :

Proposition A.1. Let (M, g) be a Riemannian manifold with orthonormal frame
bundle OM and let θ ∈ Ω1(M,Rn) be the soldering form. Suppose that ξ ∈ X(M)

is a (local) smooth vector field and ξ̃ ∈ X(OM) is a local smooth lift of ξ, i.e. that

Tup · ξ̃(u) = ξ(p(u)) for all u. Then θ(ξ̃) : OM → Rn is the P -equivariant smooth
function corresponding to ξ via Proposition 2.8.

Proof. By definition, θu(ξ̃(u)) = u−1(Tup · ξ̃(u)) = u−1(ξ(p(u))) ∈ Rn. But this is
exactly the element v ∈ Rn such that [(u, v)] = ξ(p(u)) so we exactly get the function
constructed in Proposition 2.8. �

To see that this result is useful, we have to observe that smooth lifts of vector
fields exist both locally and globally. Indeed, we can even find smooth lifts which are
O(n)-invariant in the sense that (rA)∗ξ̃ = ξ̃ for each A ∈ O(n). For a principal bundle
chart ϕ : p−1(U) → U × O(n) and a vector field ξ ∈ X(U), we can define such a

lift via ξ̃(u) := Tuϕ
−1(ξ(p(u)), 0), where we identify T (U × O(n)) with TU × TO(n)

as usual. Otherwise put, ξ̃ = ϕ∗(ξ, 0) and since ϕ ◦ rA = (id, ρA) ◦ ϕ, this readily

implies that (rA)∗ξ̃ = ξ̃. Globally, we can start from ξ ∈ X(M), a principal bundle
atlas {(Ui, ϕi) : i ∈ I} for OM and a partition {fi : i ∈ I} of unity subordinate to

the covering {Ui : i ∈ I} of M . Constructing ξ̃i ∈ X(p−1(Ui)) for each i from ξ̃|Ui as

above, we can define ξ̃ :=
∑

i∈I(fi ◦ p)ξ̃i. This clearly is a lift of ξ and since each fi ◦ p
is constant along the fibers of OM , ξ̃ is again O(n)-invariant.

A.2. The Levi-Civita connection. Having constructed the soldering form θ ∈
Ω1(OM,Rn), we can form the exterior derivative dθ ∈ Ω2(OM,Rn). This can be either
done by viewing θ as an n-tuple (θ1, . . . , θn) of real valued forms and defining dθ as

(dθ1, . . . , dθn), or by directly using the global formula dθ(ξ̃, η̃) = ξ̃ ·θ(η̃)−η̃ ·θ(ξ̃)−θ([ξ̃,̃η])

for vector fields ξ̃, η̃ ∈ X(OM).
Now suppose that γ ∈ Ω1(OM, o(n)) is a principal connection form on OM as

discussed in Section 2.8. This means that for a fundamental vector field ζX with X ∈
o(n), we get γ(ζX) = X and that γ is O(n)-equivariant in the sense that (rA)∗γ =
Ad(A−1) ◦ γ. Here the adjoint action just reduces to conjugation, i.e. Ad(A−1)(X) =
A−1XA for A ∈ O(n) and X ∈ o(n). Then we can look at the combination

(A.1) T (ξ̃, η̃) := dθ(ξ̃, η̃) + γ(ξ̃)(θ(η̃))− γ(η̃)(θ(ξ̃)),

which by construction defines a two-form on OM with values in Rn. Our main result
will be that there is a unique connection form γ such that the two-form T defined by
(A.1) vanishes identically. First we have to clarify some properties of this expression.

Lemma A.2. For any principal connection γ on OM , the two-from T defined by
(A.1) vanishes if one of its entries is vertical. This implies that for each u ∈ OM ,

there is a bilinear, skew-symmetric map τ(u) : Rn × Rn → Rn such that T (ξ̃, η̃)(u) =

τ(u)(θ(ξ̃(u)), θ(η̃(u)). This map satisfies τ(u ◦ A)(v, w) = A−1τ(u)(Av,Aw) for each
A ∈ O(n) and v, w ∈ Rn. In particular, if T vanishes in a point of OM then it vanishes
on the whole fiber through that point.
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Sketch of Proof. One first has to prove that dθ(ζX , η̃) = −Xθ(η̃) for each X ∈
o(n) and η̃ ∈ X(M), which is an infinitesimal version of equivariancy of θ. This uses

the facts that the flow of ζX is rexp(tX), and that the derivative at t = 0 of (FlζXt )∗θ is
the Lie derivative LζXθ. Finally, since θ(ζX) = 0, the Lie derivative can be written as
dθ(ζX , ), which implies the claimed equation.

This exactly says that T (ζX , η̃) = 0 for each η̃ ∈ X(M) and since any vertical tangent
vector in a point can be written as a value of a fundamental vector field, this shows that
T vanishes if one of its entries lies ker(Tp). But this implies that for each u ∈ OM ,
the value T (u) descends to a bilinear map (TuOM/ ker(TuP ))2 → Rn, which is skew
symmetric by definition. Since θ(u) induces a linear isomorphism TuOM/ ker(TuP ) →
Rn we see that there is a map τ(u) as claimed.

For the last part, we use that equivariancy of θ says (rA)∗θ = A−1 ◦ θ for each
A ∈ O(n), which implies that also (rA)∗dθ = A−1 ◦ dθ. On the other hand, we also
know equivariancy of γ, and putting all these together, one easily verifies that

T (u ◦ A)(Tur
A · ξ̃(u), Tur

A · η̃(u)) = A−1T (u)(ξ̃(u), η̃(u)).

Since θ(u ◦ A)(Tur
A · ξ̃(u)) = A−1(θ(u)(ξ̃(u))) and similarly for η̃, this shows that

τ(u◦A)(A−1v,A−1w) = A−1τ(u)(v, w), which is equivalent to the claimed condition. �

Remark A.2. For those having background on Riemannian geometry, we observe
that the form T defined in (A.1) exactly expresses the torsion of the covariant derivative
induced by γ. Fixing γ we can work with the horizontal lift ξhor for a vector field
ξ ∈ X(M). This is characterized by γ(ξhor) = 0 and Tup · ξhor(u) = ξ(p(u)). Evaluating
(A.1) on ξhor and ηhor, the terms involving γ vanish and we are left with

T (ξhor, ηhor) = dθ(ξhor, ηhor) = ξhor · θ(ηhor)− ηhor · θ(ξhor)− θ([ξhor, ηhor]).

Now by Proposition A.1, θ(ηhor) is the equivariant function corresponding to η, so
ξhor · θ(ηhor) is the equivariant function representing the covariant derivative ∇ξη. In
the same way, the second summand represents −∇ηξ. For the last summand, it is well
known that [ξhor, ηhor] is a lift of the Lie bracket [ξ, η] so again by Proposition A.1,
−θ([ξhor, ηhor]) is the function corresponding to −[ξ, η]. Hence the whole expression
(A.1) represents ∇ξη−∇ηξ− [ξ, η] which is the usual definition of the torsion evaluated
on ξ and η.

Now the fundamental theorem on existence and uniqueness of the Levi-Civita con-
nection can be formulated as follows:

Theorem A.2. Let (M, g) be a Riemannian manifold with orthonormal frame bun-
dle OM → M and let θ ∈ Ω1(OM,Rn) be the soldering form. Then there is a unique
principal connection form γ ∈ Ω1(OM, o(n)) on OM such that the two-form T defined
by (A.1) vanishes identically.

Proof. One first has to prove that there is some principal connection γ̂ on OM
(which is a general fact about principal bundles). Let us start with a principal bundle
chart (U,ϕ) for OM . Identifying T (U × G) with TU × TG, we can send a tangent
vector (ξ1, ξ2) ∈ TxU × TAG to TAλA−1 · ξ2 ∈ TIO(n) = o(n) and pull back the resulting
form with ϕ to a o(n)-valued one-form on p−1(U). It is easy to see that this defines a
principal connection on p−1(U) → U . Do this for a principal bundle atlas {(Ui, ϕi) :
i ∈ I} and denote by γ̂i the resulting form on p−1(Ui). Then take a partition {fi} of

unity subordinate to the covering {Ui} of M and define γ̂ ∈ Ω1(OM, o(n)) by γ̂(ξ̃) :=∑
i(fi ◦ p)γi(ξ̃). It is easy to verify that this indeed defines a principal connection on

OM →M .
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Now we need surprising input from linear algebra. Namely, for a linear map α :
Rn → o(n) we can consider the map ∂α : Rn × Rn → Rn defined by ∂α(v, w) :=
α(v)w−α(w)v. This is clearly skew symmetric and bilinear, so we have defined a linear
map ∂ : L(Rn, o(n)) → L(Λ2Rn,Rn), and we claim that this is a linear isomorphism.
Since both spaces have dimension n

(
n
2

)
, it suffices to prove that ∂ has trivial kernel.

Thus suppose that for all v, w, z ∈ Rn, we have

0 = 〈∂α(v, w), z〉 = 〈α(v)w, z〉 − 〈α(w)v, z〉.
This says that the trilinear map Φ(v, w, z) := 〈α(v)w, z〉 is symmetric in the first two
entries. But since α is in o(n), we get Φ(v, w, z) = −〈w, α(v)z〉 = −Φ(v, z, w), so Φ is
skew symmetric in the last two entries. But this already implies formally that Φ = 0
and hence α = 0: We just have to compute

Φ(v, w, z) =− Φ(v, z, w) = −Φ(z, v, w) = Φ(z, w, v)

=Φ(w, z, v) = −Φ(w, v, z) = −Φ(v, w, z).

Now let U ⊂ M be an open subset such that there is a smooth local section σ :
U → OM of OM defined on U . Consider the smooth function τ̂ associated to γ̂ as in
Lemma A.2 and define α : U → L(Rn, o(n)) as ∂−1 ◦ τ̂ ◦ σ. Finally, for each x ∈ U and

ξ̃ ∈ Tσ(x)OM define

γ(σ(x))(ξ̃) := γ̂(σ(x))(ξ̃)− α(σ(x))(θ(σ(x))(ξ̃)).

A vertical vector ζX(σ(x)) is mapped to X by γ̂ and to 0 by θ, so γ(σ(x))(ζX) = X. It is
easy to see that γ can be uniquely extended to anO(n)-equivariant form on p−1(U) which
still reproduces the generators of fundamental vector fields and thus defines a principal
connection on this subset. In a point σ(x), the definition in (A.1) readily implies that
the function τ associated to γ is given by τ(σ(x)) = τ̂(σ(x)) − ∂α(σ(x)) = 0. Lemma
A.2 then implies that T vanishes on all of p−1(U).

Now suppose that we have done this construction over two open subsets U1 and U2

such that U12 = U1 ∩ U2 6= ∅, getting principal connections γ1 and γ2. For a point
u ∈ p−1(U12) consider γ1(u) − γ2(u) : TuOM → o(n). By definition this vanishes
on ζX(u) for all X ∈ o(n), so there has to be a linear map α : Rn → o(n) such that

(γ1(u)−γ2(u))(ξ̃) = α(θ(u)(ξ̃)). But then the definition in (A.1) readily implies that the
functions τ1 and τ2 associated to the two connections satisfy τ2(u) = τ1(u) + ∂α. Since
both these functions vanish identically, we get ∂α = 0 and hence α = 0 by injectivity
of ∂. Thus γ1|p−1(U12) = γ2|p−1(U12) and hence the local principal connections we have
constructed fit together to define a unique global one. �
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