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The basic setup
A reduction theorem

Applications

We work in the setting of AHS–structures (parabolic
geometries corresponding to |1|–gradings), fix one such
structure and a tractor bundle.

Under cohomological conditions, which can be checked using
Kostant’s version of the Bott–Borel–Weyl theorem, we prove
a technical reduction theorem for flat connections.

This can be used as a replacement for Se–Ashi’s theory in
proofs of Fubini–Griffiths–Harris rigidity in the style of
Hwang–Yamaguchi and Landsberg–Robles.

Via prolongation procedures, it also leads to results on first
BGG operators for non–projective AHS–structures.
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|1|–graded Lie algebras

Consider a semisimple Lie algebra g endowed with a grading of the
form g = g−1 ⊕ g0 ⊕ g1 such that no simple ideal is contained in
g0. Then p = g0 ⊕ g1 is a parabolic subalgebra with nilradical g1,
which leads to a complete classification of such gradings.

Let G be a Lie group with Lie algebra g, P ⊂ G a subgroup
corresponding to p. For g ∈ P, we have Ad(g)(p) ⊂ p and
Ad(g)(g1) ⊂ g1. Let G0 ⊂ P be the subgroup consisting of those
g for which Ad(g)(gi ) ⊂ gi for all i = −1, 0, 1.
It then turns out that Ad : G0 → GL(g−1) is infinitesimally
effective. Hence on manifolds of dimensions dim(g−1) the notion
of first order G0–structures makes sense. Further, P is the
semidirect product of G0 and g1

∼= g∗−1.
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Andreas Čap Cohomology and PDE’s



The basic setup
A reduction theorem

Applications

|1|–graded Lie algebras

Consider a semisimple Lie algebra g endowed with a grading of the
form g = g−1 ⊕ g0 ⊕ g1 such that no simple ideal is contained in
g0. Then p = g0 ⊕ g1 is a parabolic subalgebra with nilradical g1,
which leads to a complete classification of such gradings.
Let G be a Lie group with Lie algebra g, P ⊂ G a subgroup
corresponding to p. For g ∈ P, we have Ad(g)(p) ⊂ p and
Ad(g)(g1) ⊂ g1. Let G0 ⊂ P be the subgroup consisting of those
g for which Ad(g)(gi ) ⊂ gi for all i = −1, 0, 1.
It then turns out that Ad : G0 → GL(g−1) is infinitesimally
effective. Hence on manifolds of dimensions dim(g−1) the notion
of first order G0–structures makes sense. Further, P is the
semidirect product of G0 and g1

∼= g∗−1.
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AHS–structures

Under a cohomological condition, first order G0–structures as
discussed above are equivalent to normal Cartan geometries of
type (G ,P). This means that the principal G0–bundle and the
soldering form defining a G0–structure canonicallly extend to a
principal P–bundle and a normal Cartan connection.

Examples

G = SO(p + 1, q + 1), G0 = CO(p, q) conformal

G = PSL(p + q, R), G0 = S(GL(p, R)× GL(q, R)) almost
Grassmannian

G = SL(n + 1, H), G0 = Sp(1)GL(n, H) almost quaternionic

G = PGL(n + 1, R), G0 = GL(n, R) Cartan geometries are
equivalent to projective structures, but not to G0–structures
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More setup

Let V be a representation of G (or simplicity assumed to be
effective with values in SL(V)), and let ρ : g → sl(V) the
infinitesmial representation.

Via the action of the grading element, V splits as
V = V0 ⊕ · · · ⊕ VN in such a way that gi · Vj ⊂ Vi+j . This
splitting is G0–invariant.

According to homogeneity, we get an induced G0–invariant
splitting sl(V) = sl−N(V)⊕ · · · ⊕ slN(V).

Via ρ, we view g as a Lie subalgebra in sl(V) and gi ⊂ sli (V).
This g–invariant subspace admits a g–invariant complement
g⊥ ⊂ sl(V), which decomposes as g⊥ = ⊕g⊥i .

We put Vi := ⊕j≥iVj and similarly for all the other spaces. This
endows each of them with a P–invariant filtration.
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For each i ≥ 0, there is a natural subgroup SLi (V) ⊂ SL(V) with
Lie algebra sli (V). The group SL0(V) consits of all filtration
preserving automorphisms of V. For i > 0, the maps in SLi (V) are
congruent to the identity modulo maps which move up in the
filtration by i degrees.

The crucial ingredients for our purposes are subgroups
P# ⊂ G#

0 ⊂ SL0(V). We define G#
0 as the subgroup generated by

G0 and SL1(V) and P# as the subgroup generated by P and
SL2(V). The Lie algebras of these subgroups are g0 ⊕ sl1(V) and
p⊕ sl2(V), respectively.
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Underlying structures

Let M be a smooth manifold of dimension dim(g−1) and let
V → M be a vector bundle modelled on V with a preferred volume
form. Then we naturally get a frame bundle SL(V) for V with
structure group SL(V). Principal connections on this frame bundle
are equivalent to volume preserving linear connections on V.

Proposition

Suppose that γ is a principal connection on SL(V) and that

j : G#
0 → SL(V) is a reduction to the structure group G#

0 such
that j∗γ is injective on each tangent space and has values in
g−1 ⊕ sl0(V).
Then the g−1–component of j∗γ descends to a soldering form on
G0 := G#

0 /SL1(V) → M, making it into a first order G0–structure.
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Lie algebra cohomology

In the reduction theorem, we need assumptions on the Lie algebra
cohomology group H1(g−1, g

⊥). This space is a subquotient of
L(g−1, g

⊥) and hence decomposes according to homogeneous
degrees of linear maps. In particular, we get spaces H1(g−1, g

⊥)i
and H1(g−1, g

⊥)i for all i .

Although the g–representations g⊥ quickly become very
complicated, Kostant’s version of the BBW–theorem can be used
to obtain general information.

Lemma

If none of the simple ideals of g is of projective type, then
H1(g−1, g

⊥)2 = 0. If in addition none of the simple ideals is of
conformal type, then also H1(g−1, g

⊥)1 = 0.
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The reduction theorem

Step 1

Suppose that γ is a principal connection on SL(V) and that

j : G#
0 → SL(V) is a reduction to the structure group G#

0 such
that j∗γ is injective and has values in g−1 ⊕ sl0(V).
If γ is flat and H1(g−1, g

⊥)1 = 0, then there is a reduction

P# ↪→ G#
0 to the structure group P# with the same underlying

G0–structure, such that j̃∗γ is injective and has values in
g−1 ⊕ g0 ⊕ sl1(V).

Step 2

Suppose that we have a reduction as in the result of step 1 and
that H1(g−1, g

⊥)2 = 0. Then there is a reduction G ↪→ P# to the
structure group P with the same underlying G0–structure, such
that ĵ∗γ has values in g and defines a flat Cartan connection on G.
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sketch of proof

We sketch the proof of step 1, the second step is proved similarly.

Let G0 → M be the underlying G0–structure of G#
0 . Since

SL1(V) is a contractible group, there is a global

G0–equivariant section σ : G0 → G#
0 .

The main aim is to modify σ to a section σ̂ in such a way that
σ̂∗j∗γ has values in g−1 ⊕ g0 ⊕ sl1(V). Since this subspace is
normalized by P# we get a redution with the required
properties for P# := G0 ×G0 P#.

To modify σ, we first decompose

σ∗j∗γ = γ−1 + (γ0 + γ⊥0 ) + (γ1 + γ⊥1 ) + γ⊥2 + . . .

according to the decomposition of g−1 ⊕ sl0(V).
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Since γ is flat, σ∗j∗γ satisfies the Maurer–Cartan equation.
Looking at the component in sl−1(V) = g−1 ⊕ g⊥−1, we get for
all ξ, η ∈ X(G0)

0 = dγ−1(ξ, η) + [γ0(ξ), γ−1(η)] + [γ−1(ξ), γ0(η)]

0 = [γ⊥0 (ξ), γ−1(η)] + [γ−1(ξ), γ
⊥
0 (η)]

In a point, γ⊥0 (ξ) = ϕ(γ−1(ξ)) for some linear map
ϕ : g−1 → g⊥0 , and the second equation shows that ∂ϕ = 0.

Since H1(g−1, g
⊥)1 = 0, there is an element Z ∈ g⊥1 such that

ϕ = ∂Z (easily seen to be unique). A direct computation then
shows that σ̂(u) = σ(u) exp(Z (u)) does the job.

The further steps are similar, and the first line in the equation
shows that in the end one obtains a flat Cartan connection.
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Andreas Čap Cohomology and PDE’s



The basic setup
A reduction theorem

Applications

Since γ is flat, σ∗j∗γ satisfies the Maurer–Cartan equation.
Looking at the component in sl−1(V) = g−1 ⊕ g⊥−1, we get for
all ξ, η ∈ X(G0)

0 = dγ−1(ξ, η) + [γ0(ξ), γ−1(η)] + [γ−1(ξ), γ0(η)]

0 = [γ⊥0 (ξ), γ−1(η)] + [γ−1(ξ), γ
⊥
0 (η)]

In a point, γ⊥0 (ξ) = ϕ(γ−1(ξ)) for some linear map
ϕ : g−1 → g⊥0 , and the second equation shows that ∂ϕ = 0.

Since H1(g−1, g
⊥)1 = 0, there is an element Z ∈ g⊥1 such that

ϕ = ∂Z (easily seen to be unique). A direct computation then
shows that σ̂(u) = σ(u) exp(Z (u)) does the job.

The further steps are similar, and the first line in the equation
shows that in the end one obtains a flat Cartan connection.
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Fubini–Griffiths–Harris rigidity

Assume that G is complex, none of the simple ideals of g is of
projective or conformal type and that V is a complex
representation such that dim(VN) = 1. Then P is the stabilizer of
the line VN in G , and the representation induces an embedding of
the generalized flag variety G/P into the projectivization PV. Via
T (G/P) ∼= G ×P g−1, the kernel of the Fubini form F2,2 for this
embedding corresponds to a cone in g−1, and G0 ⊂ GL(g−1) is the
subgroup of maps preserving this cone.

Suppose that X ⊂ PV is a subvariety of dimension dim(G/P)
which, in a generic point x , has the same Fubini form F2,2 as G/P.
Restrict the canonical principal bundle p : SL(V) → PV to X , and
let ω be the Maurer–Cartan form of SL(V). Consider the set of
points in this restrictions in which ω has values in g−1 ⊕ sl0(V).
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For each such point g we get an induced isomorphism
Tp(g)X → g−1, and we further restrict to those g , for which this
isomorphism maps the kernel of the Fubini form F2,2 to the
distinguished cone. Multiplication from the right defines an action
of G#

0 on this subset, which is easily seen to be free and transitive
on each fiber.

Hence we get a principal bundle G#
0 over a dense open subset of

X , which defines a reduction to the structure group G#
0 . Denoting

by P̃ the stabilizer of VN in SL(V), the extension
Ẽ := SL(V)×P̃ SL(V) → PV carries a flat principal connection

induced by ω. Now G#
0 ↪→ Ẽ satisfies the assumptions of the

reduction theorem, so we get a reduction to P for which ω pulls
back to a flat Cartan connection. This gives a local isomorphism
to (the natural embedding of) G/P.
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BGG operators with maximal kernel

Let p0 : G0 → M be a first order G0–structure. As discussed
before, this canonically extends to a normal Cartan geometry
(G → M, ω) of type (G ,P).

The representation V gives rise to natural vector bundle
V := G ×P V → M. Since V is the restriction of a representation of
G , the Cartan connection ω induces a linear connection ∇V on V.
These are the so–called tractor bundles and tractor connections.

The Kostant codifferential induces natural bundle maps
∂∗ : ΛkT ∗M ⊗ V → Λk−1T ∗M ⊗ V for all k. The subquotients
ker(∂∗)/ im(∂∗) turn out to be isomorphic to
G0 ×G0 Hk(g−1, V) =: Hk and the cohomologies are computable
using Kostant’s theorem.
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The P–invariant filtration {Vi} of V induces a filtration {V i} of V
by smooth subbundles. In particular, V/V1 ∼= G0 ×G0 V0. The
BGG machinery can be used to construct a differential operator
L : Γ(V/V1) → Γ(V) such that ∂∗ ◦ ∇V ◦ L = 0 and hence ∇V ◦ L
induces an invariant operator D : Γ(V/V1) → Γ(H1), which is
always overdetermined. For example, these include all the
conformal Killing operators.

The construction also implies that the obvious projection and L
induce inverse bijections

ker(D) ↔ {s ∈ Γ(V) : ∇Vs ∈ Γ(im(∂∗))}

If G0 → M is locally flat, then the connection ∇V is flat and one
shows that ∇Vs ∈ Γ(im(∂∗)) is only possible if ∇Vs = 0. Hence in
these cases, the machinery provides a system in closed form which
is equivalent to D(ϕ) = 0 and dim(ker(D)) = dim(V).
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In the general case, one can use prolongation procedures by
[BCEG] or [HSSS] to construct a vector bundle map
C : V → T ∗M ⊗ V such that the linear connection ∇̂ := ∇V + C
has the property that ∇̂s = 0 is equivalent to ∇Vs ∈ Γ(im(∂∗)).
Thus, dim(ker(D)) ≤ dim(V) always holds.

By construction, the (volume preserving) frame bundle of V can be
written as SL(V) := G ×P SL(V) and the tractor connection ∇V is
induced by a principal connection γ on P which under the natural
map G → SL(V) pulls back to ω. Putting G#

0 = G ×P G#
0 and

P# := G ×P P#, we get a reductions P# ↪→ G#
0 ↪→ SL(V). The

pullback of γ under these has values in g−1 ⊕ sl0(V) and
g−1 ⊕ g0 ⊕ sl1(V), respectively.
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The prolongation procedures are set up in such a way that C (V i ) is
always contained in T ∗M ⊗ V i and for torsion free geometries, it is
even contained in T ∗M ⊗ V i+1. Otherwise put, C can be viewed
as a one–form on M with values in gl0(V) respectively sl1(V).

The upshot of this is that the principal connection γ̂ corresponding
to ∇̂ = ∇V + C aways admits a reduction to G#

0 and in the torsion
free case even to P#. If dim(ker(D)) = dim(V), then of course the
connection ∇̂ must be flat. It is easy to see that replacing C by its
tracefree part (which has values in sl0(V)) the resulting connection
is still flat. If the assumptions of the reduction theorem are
satisfied, then we obtain a flat Cartan geometry of type (G ,P),
whose underlying G0–structure is the same as for G, so the original
structure must have been flat. Hence we conclude
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Theorem

Consider a parabolic geometry (p : G → M, ω) of type (G ,P)
corresponding to a |1|–grading of g such that none of the simple
ideals of g is contained in g0 or of projective type. For a
infinitesimally faithful representation V of g assume that the kernel
of the corresponding first BGG–operator D has dimension dim(V).
If either none of the simple ideals of g is of conformal type or the
geometry is torsion free, then (p : G → M, ω) must be locally flat.
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