Lie algebra cohomology and overdetermined systems

Andreas Čap

University of Vienna Faculty of Mathematics

January 2008

- □ → - 4 三

• We work in the setting of AHS-structures (parabolic geometries corresponding to |1|-gradings), fix one such structure and a tractor bundle.

- We work in the setting of AHS-structures (parabolic geometries corresponding to |1|-gradings), fix one such structure and a tractor bundle.
- Under cohomological conditions, which can be checked using Kostant's version of the Bott–Borel–Weyl theorem, we prove a technical reduction theorem for flat connections.

- We work in the setting of AHS-structures (parabolic geometries corresponding to |1|-gradings), fix one such structure and a tractor bundle.
- Under cohomological conditions, which can be checked using Kostant's version of the Bott–Borel–Weyl theorem, we prove a technical reduction theorem for flat connections.
- This can be used as a replacement for Se–Ashi's theory in proofs of Fubini–Griffiths–Harris rigidity in the style of Hwang–Yamaguchi and Landsberg–Robles.

- We work in the setting of AHS-structures (parabolic geometries corresponding to |1|-gradings), fix one such structure and a tractor bundle.
- Under cohomological conditions, which can be checked using Kostant's version of the Bott–Borel–Weyl theorem, we prove a technical reduction theorem for flat connections.
- This can be used as a replacement for Se–Ashi's theory in proofs of Fubini–Griffiths–Harris rigidity in the style of Hwang–Yamaguchi and Landsberg–Robles.
- Via prolongation procedures, it also leads to results on first BGG operators for non-projective AHS-structures.

・ 同・ ・ ヨ・

Contents

- ● ● ●

1 – graded Lie algebras

Consider a semisimple Lie algebra \mathfrak{g} endowed with a grading of the form $\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1$ such that no simple ideal is contained in \mathfrak{g}_0 . Then $\mathfrak{p} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ is a parabolic subalgebra with nilradical \mathfrak{g}_1 , which leads to a complete classification of such gradings.

1 – graded Lie algebras

Consider a semisimple Lie algebra \mathfrak{g} endowed with a grading of the form $\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1$ such that no simple ideal is contained in \mathfrak{g}_0 . Then $\mathfrak{p} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ is a parabolic subalgebra with nilradical \mathfrak{g}_1 , which leads to a complete classification of such gradings. Let G be a Lie group with Lie algebra \mathfrak{g} , $P \subset G$ a subgroup corresponding to \mathfrak{p} . For $g \in P$, we have $\operatorname{Ad}(g)(\mathfrak{g}) \subset \mathfrak{p}$ and $\operatorname{Ad}(g)(\mathfrak{g}_1) \subset \mathfrak{g}_1$. Let $G_0 \subset P$ be the subgroup consisting of those g for which $\operatorname{Ad}(g)(\mathfrak{g}_i) \subset \mathfrak{g}_i$ for all i = -1, 0, 1.

1 – graded Lie algebras

Consider a semisimple Lie algebra \mathfrak{g} endowed with a grading of the form $\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1$ such that no simple ideal is contained in \mathfrak{g}_0 . Then $\mathfrak{p} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ is a parabolic subalgebra with nilradical \mathfrak{g}_1 , which leads to a complete classification of such gradings. Let G be a Lie group with Lie algebra g, $P \subset G$ a subgroup corresponding to \mathfrak{p} . For $g \in P$, we have $\operatorname{Ad}(g)(\mathfrak{p}) \subset \mathfrak{p}$ and $\operatorname{Ad}(g)(\mathfrak{g}_1) \subset \mathfrak{g}_1$. Let $G_0 \subset P$ be the subgroup consisting of those g for which $\operatorname{Ad}(g)(\mathfrak{g}_i) \subset \mathfrak{g}_i$ for all i = -1, 0, 1. It then turns out that Ad : $G_0 \rightarrow GL(\mathfrak{g}_{-1})$ is infinitesimally effective. Hence on manifolds of dimensions $\dim(\mathfrak{g}_{-1})$ the notion of first order G_0 -structures makes sense. Further, P is the semidirect product of G_0 and $\mathfrak{g}_1 \cong \mathfrak{g}_{-1}^*$.

• □ ▶ • □ ▶ • □ ▶ • □

AHS-structures

Under a cohomological condition, first order G_0 -structures as discussed above are equivalent to normal Cartan geometries of type (G, P). This means that the principal G_0 -bundle and the soldering form defining a G_0 -structure canonically extend to a principal P-bundle and a normal Cartan connection.

AHS-structures

Under a cohomological condition, first order G_0 -structures as discussed above are equivalent to normal Cartan geometries of type (G, P). This means that the principal G_0 -bundle and the soldering form defining a G_0 -structure canonically extend to a principal P-bundle and a normal Cartan connection.

Examples

- G = SO(p+1, q+1), $G_0 = CO(p, q)$ conformal
- $G = PSL(p + q, \mathbb{R}), \ G_0 = S(GL(p, \mathbb{R}) \times GL(q, \mathbb{R}))$ almost Grassmannian
- $G = SL(n+1,\mathbb{H}), \ G_0 = Sp(1)GL(n,\mathbb{H})$ almost quaternionic
- G = PGL(n + 1, ℝ), G₀ = GL(n, ℝ) Cartan geometries are equivalent to projective structures, but not to G₀-structures

< ロ > < 同 > < 回 > < 回 >

More setup

Let \mathbb{V} be a representation of G (or simplicity assumed to be effective with values in $SL(\mathbb{V})$), and let $\rho : \mathfrak{g} \to \mathfrak{sl}(\mathbb{V})$ the infinitesmial representation.

< □ > < □ >

More setup

Let \mathbb{V} be a representation of G (or simplicity assumed to be effective with values in $SL(\mathbb{V})$), and let $\rho : \mathfrak{g} \to \mathfrak{sl}(\mathbb{V})$ the infinitesmial representation.

Via the action of the grading element, V splits as
 V = V₀ ⊕ · · · ⊕ V_N in such a way that g_i · V_j ⊂ V_{i+j}. This splitting is G₀-invariant.

▲□ ► ▲ □ ► ▲

More setup

Let \mathbb{V} be a representation of G (or simplicity assumed to be effective with values in $SL(\mathbb{V})$), and let $\rho : \mathfrak{g} \to \mathfrak{sl}(\mathbb{V})$ the infinitesmial representation.

- Via the action of the grading element, V splits as
 V = V₀ ⊕ · · · ⊕ V_N in such a way that g_i · V_j ⊂ V_{i+j}. This splitting is G₀-invariant.
- According to homogeneity, we get an induced G₀-invariant splitting sl(𝒱) = sl_{−N}(𝒱) ⊕ · · · ⊕ sl_N(𝒱).

(人間) ト く ヨ ト く ヨ ト

More setup

Let \mathbb{V} be a representation of G (or simplicity assumed to be effective with values in $SL(\mathbb{V})$), and let $\rho : \mathfrak{g} \to \mathfrak{sl}(\mathbb{V})$ the infinitesmial representation.

- Via the action of the grading element, V splits as
 V = V₀ ⊕ · · · ⊕ V_N in such a way that g_i · V_j ⊂ V_{i+j}. This splitting is G₀-invariant.
- According to homogeneity, we get an induced G_0 -invariant splitting $\mathfrak{sl}(\mathbb{V}) = \mathfrak{sl}_{-N}(\mathbb{V}) \oplus \cdots \oplus \mathfrak{sl}_N(\mathbb{V})$.
- Via ρ, we view g as a Lie subalgebra in sl(V) and g_i ⊂ sl_i(V). This g-invariant subspace admits a g-invariant complement g[⊥] ⊂ sl(V), which decomposes as g[⊥] = ⊕g_i[⊥].

・ロト ・四ト ・ヨト ・ ヨト

More setup

Let \mathbb{V} be a representation of G (or simplicity assumed to be effective with values in $SL(\mathbb{V})$), and let $\rho : \mathfrak{g} \to \mathfrak{sl}(\mathbb{V})$ the infinitesmial representation.

- Via the action of the grading element, \mathbb{V} splits as $\mathbb{V} = \mathbb{V}_0 \oplus \cdots \oplus \mathbb{V}_N$ in such a way that $\mathfrak{g}_i \cdot \mathbb{V}_j \subset \mathbb{V}_{i+j}$. This splitting is G_0 -invariant.
- According to homogeneity, we get an induced G_0 -invariant splitting $\mathfrak{sl}(\mathbb{V}) = \mathfrak{sl}_{-N}(\mathbb{V}) \oplus \cdots \oplus \mathfrak{sl}_N(\mathbb{V})$.
- Via ρ, we view g as a Lie subalgebra in sl(V) and g_i ⊂ sl_i(V). This g-invariant subspace admits a g-invariant complement g[⊥] ⊂ sl(V), which decomposes as g[⊥] = ⊕g_i[⊥].

We put $\mathbb{V}^i := \bigoplus_{j \ge i} \mathbb{V}_j$ and similarly for all the other spaces. This endows each of them with a *P*-invariant filtration.

For each $i \ge 0$, there is a natural subgroup $SL^i(\mathbb{V}) \subset SL(\mathbb{V})$ with Lie algebra $\mathfrak{sl}^i(\mathbb{V})$. The group $SL^0(\mathbb{V})$ consits of all filtration preserving automorphisms of \mathbb{V} . For i > 0, the maps in $SL^i(\mathbb{V})$ are congruent to the identity modulo maps which move up in the filtration by i degrees. For each $i \ge 0$, there is a natural subgroup $SL^i(\mathbb{V}) \subset SL(\mathbb{V})$ with Lie algebra $\mathfrak{sl}^i(\mathbb{V})$. The group $SL^0(\mathbb{V})$ consits of all filtration preserving automorphisms of \mathbb{V} . For i > 0, the maps in $SL^i(\mathbb{V})$ are congruent to the identity modulo maps which move up in the filtration by i degrees.

The crucial ingredients for our purposes are subgroups $P^{\#} \subset G_0^{\#} \subset SL^0(\mathbb{V})$. We define $G_0^{\#}$ as the subgroup generated by G_0 and $SL^1(\mathbb{V})$ and $P^{\#}$ as the subgroup generated by P and $SL^2(\mathbb{V})$. The Lie algebras of these subgroups are $\mathfrak{g}_0 \oplus \mathfrak{sl}^1(\mathbb{V})$ and $\mathfrak{p} \oplus \mathfrak{sl}^2(\mathbb{V})$, respectively.

Structure

The basic setup

3 Applications

Andreas Čap Cohomology and PDE's

- **→** → **→**

Underlying structures

Let M be a smooth manifold of dimension dim (\mathfrak{g}_{-1}) and let $\mathcal{V} \to M$ be a vector bundle modelled on \mathbb{V} with a preferred volume form. Then we naturally get a frame bundle $SL(\mathcal{V})$ for \mathcal{V} with structure group $SL(\mathbb{V})$. Principal connections on this frame bundle are equivalent to volume preserving linear connections on \mathcal{V} .

Underlying structures

Let M be a smooth manifold of dimension dim (\mathfrak{g}_{-1}) and let $\mathcal{V} \to M$ be a vector bundle modelled on \mathbb{V} with a preferred volume form. Then we naturally get a frame bundle $SL(\mathcal{V})$ for \mathcal{V} with structure group $SL(\mathbb{V})$. Principal connections on this frame bundle are equivalent to volume preserving linear connections on \mathcal{V} .

Proposition

Suppose that γ is a principal connection on $SL(\mathcal{V})$ and that $j: \mathcal{G}_0^{\#} \to SL(\mathcal{V})$ is a reduction to the structure group $\mathcal{G}_0^{\#}$ such that $j^*\gamma$ is injective on each tangent space and has values in $\mathfrak{g}_{-1} \oplus \mathfrak{sl}^0(\mathbb{V})$. Then the \mathfrak{g}_{-1} -component of $j^*\gamma$ descends to a soldering form on $\mathcal{G}_0 := \mathcal{G}_0^{\#}/SL^1(\mathbb{V}) \to M$, making it into a first order \mathcal{G}_0 -structure.

| 4 同 🕨 🖌 4 目 🖌 4 目 🖌

Lie algebra cohomology

In the reduction theorem, we need assumptions on the Lie algebra cohomology group $H^1(\mathfrak{g}_{-1},\mathfrak{g}^{\perp})$. This space is a subquotient of $L(\mathfrak{g}_{-1},\mathfrak{g}^{\perp})$ and hence decomposes according to homogeneous degrees of linear maps. In particular, we get spaces $H^1(\mathfrak{g}_{-1},\mathfrak{g}^{\perp})_i$ and $H^1(\mathfrak{g}_{-1},\mathfrak{g}^{\perp})^i$ for all i.

Lie algebra cohomology

In the reduction theorem, we need assumptions on the Lie algebra cohomology group $H^1(\mathfrak{g}_{-1},\mathfrak{g}^{\perp})$. This space is a subquotient of $L(\mathfrak{g}_{-1},\mathfrak{g}^{\perp})$ and hence decomposes according to homogeneous degrees of linear maps. In particular, we get spaces $H^1(\mathfrak{g}_{-1},\mathfrak{g}^{\perp})_i$ and $H^1(\mathfrak{g}_{-1},\mathfrak{g}^{\perp})^i$ for all *i*. Although the \mathfrak{g} -representations \mathfrak{g}^{\perp} quickly become very complicated, Kostant's version of the BBW-theorem can be used to obtain general information.

Lie algebra cohomology

In the reduction theorem, we need assumptions on the Lie algebra cohomology group $H^1(\mathfrak{g}_{-1},\mathfrak{g}^{\perp})$. This space is a subquotient of $L(\mathfrak{g}_{-1},\mathfrak{g}^{\perp})$ and hence decomposes according to homogeneous degrees of linear maps. In particular, we get spaces $H^1(\mathfrak{g}_{-1},\mathfrak{g}^{\perp})_i$ and $H^1(\mathfrak{g}_{-1},\mathfrak{g}^{\perp})^i$ for all *i*. Although the \mathfrak{g} -representations \mathfrak{g}^{\perp} quickly become very complicated, Kostant's version of the BBW-theorem can be used to obtain general information.

Lemma

If none of the simple ideals of \mathfrak{g} is of projective type, then $H^1(\mathfrak{g}_{-1},\mathfrak{g}^{\perp})^2 = 0$. If in addition none of the simple ideals is of conformal type, then also $H^1(\mathfrak{g}_{-1},\mathfrak{g}^{\perp})_1 = 0$.

The reduction theorem

Step 1

Suppose that γ is a principal connection on $SL(\mathcal{V})$ and that $j: \mathcal{G}_0^{\#} \to SL(\mathcal{V})$ is a reduction to the structure group $\mathcal{G}_0^{\#}$ such that $j^*\gamma$ is injective and has values in $\mathfrak{g}_{-1} \oplus \mathfrak{sl}^0(\mathbb{V})$. If γ is flat and $H^1(\mathfrak{g}_{-1}, \mathfrak{g}^{\perp})_1 = 0$, then there is a reduction $\mathcal{P}^{\#} \hookrightarrow \mathcal{G}_0^{\#}$ to the structure group $\mathcal{P}^{\#}$ with the same underlying \mathcal{G}_0 -structure, such that $\tilde{j}^*\gamma$ is injective and has values in $\mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{sl}^1(\mathbb{V})$.

The reduction theorem

Step 1

Suppose that γ is a principal connection on $SL(\mathcal{V})$ and that $j: \mathcal{G}_0^{\#} \to SL(\mathcal{V})$ is a reduction to the structure group $\mathcal{G}_0^{\#}$ such that $j^*\gamma$ is injective and has values in $\mathfrak{g}_{-1} \oplus \mathfrak{sl}^0(\mathbb{V})$. If γ is flat and $H^1(\mathfrak{g}_{-1}, \mathfrak{g}^{\perp})_1 = 0$, then there is a reduction $\mathcal{P}^{\#} \hookrightarrow \mathcal{G}_0^{\#}$ to the structure group $\mathcal{P}^{\#}$ with the same underlying \mathcal{G}_0 -structure, such that $\tilde{j}^*\gamma$ is injective and has values in $\mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{sl}^1(\mathbb{V})$.

Step 2

Suppose that we have a reduction as in the result of step 1 and that $H^1(\mathfrak{g}_{-1},\mathfrak{g}^{\perp})^2 = 0$. Then there is a reduction $\mathcal{G} \hookrightarrow \mathcal{P}^{\#}$ to the structure group P with the same underlying G_0 -structure, such that $\hat{j}^*\gamma$ has values in \mathfrak{g} and defines a flat Cartan connection on \mathcal{G} .

sketch of proof

We sketch the proof of step 1, the second step is proved similarly.

• Let $\mathcal{G}_0 \to M$ be the underlying G_0 -structure of $\mathcal{G}_0^{\#}$. Since $SL^1(\mathbb{V})$ is a contractible group, there is a global G_0 -equivariant section $\sigma : \mathcal{G}_0 \to \mathcal{G}_0^{\#}$.

sketch of proof

We sketch the proof of step 1, the second step is proved similarly.

- Let $\mathcal{G}_0 \to M$ be the underlying G_0 -structure of $\mathcal{G}_0^{\#}$. Since $SL^1(\mathbb{V})$ is a contractible group, there is a global G_0 -equivariant section $\sigma : \mathcal{G}_0 \to \mathcal{G}_0^{\#}$.
- The main aim is to modify σ to a section ô in such a way that ô^{*}j^{*}γ has values in g₋₁ ⊕ g₀ ⊕ sl¹(V). Since this subspace is normalized by P[#] we get a reduction with the required properties for P[#] := G₀ ×_{G₀} P[#].

sketch of proof

We sketch the proof of step 1, the second step is proved similarly.

- Let $\mathcal{G}_0 \to M$ be the underlying G_0 -structure of $\mathcal{G}_0^{\#}$. Since $SL^1(\mathbb{V})$ is a contractible group, there is a global G_0 -equivariant section $\sigma : \mathcal{G}_0 \to \mathcal{G}_0^{\#}$.
- The main aim is to modify σ to a section ô in such a way that ô^{*}j^{*}γ has values in g₋₁ ⊕ g₀ ⊕ sl¹(V). Since this subspace is normalized by P[#] we get a reduction with the required properties for P[#] := G₀ ×_{G₀} P[#].
- To modify σ , we first decompose

$$\sigma^* j^* \gamma = \gamma_{-1} + (\gamma_0 + \gamma_0^{\perp}) + (\gamma_1 + \gamma_1^{\perp}) + \gamma_2^{\perp} + \dots$$

according to the decomposition of $\mathfrak{g}_{-1} \oplus \mathfrak{sl}^0(\mathbb{V})$.

- The basic setup A reduction theorem Applications
- Since γ is flat, $\sigma^* j^* \gamma$ satisfies the Maurer-Cartan equation. Looking at the component in $\mathfrak{sl}_{-1}(\mathbb{V}) = \mathfrak{g}_{-1} \oplus \mathfrak{g}_{-1}^{\perp}$, we get for all $\xi, \eta \in \mathfrak{X}(\mathcal{G}_0)$

$$0 = d\gamma_{-1}(\xi, \eta) + [\gamma_0(\xi), \gamma_{-1}(\eta)] + [\gamma_{-1}(\xi), \gamma_0(\eta)]$$

$$0 = [\gamma_0^{\perp}(\xi), \gamma_{-1}(\eta)] + [\gamma_{-1}(\xi), \gamma_0^{\perp}(\eta)]$$

<ロト < 同ト < 三ト

- The basic setup A reduction theorem Applications
- Since γ is flat, $\sigma^* j^* \gamma$ satisfies the Maurer–Cartan equation. Looking at the component in $\mathfrak{sl}_{-1}(\mathbb{V}) = \mathfrak{g}_{-1} \oplus \mathfrak{g}_{-1}^{\perp}$, we get for all $\xi, \eta \in \mathfrak{X}(\mathcal{G}_0)$

$$0 = d\gamma_{-1}(\xi, \eta) + [\gamma_0(\xi), \gamma_{-1}(\eta)] + [\gamma_{-1}(\xi), \gamma_0(\eta)]$$

$$0 = [\gamma_0^{\perp}(\xi), \gamma_{-1}(\eta)] + [\gamma_{-1}(\xi), \gamma_0^{\perp}(\eta)]$$

• In a point, $\gamma_0^{\perp}(\xi) = \varphi(\gamma_{-1}(\xi))$ for some linear map $\varphi : \mathfrak{g}_{-1} \to \mathfrak{g}_0^{\perp}$, and the second equation shows that $\partial \varphi = 0$.

- The basic setup A reduction theorem Applications
- Since γ is flat, $\sigma^* j^* \gamma$ satisfies the Maurer-Cartan equation. Looking at the component in $\mathfrak{sl}_{-1}(\mathbb{V}) = \mathfrak{g}_{-1} \oplus \mathfrak{g}_{-1}^{\perp}$, we get for all $\xi, \eta \in \mathfrak{X}(\mathcal{G}_0)$

$$0 = d\gamma_{-1}(\xi, \eta) + [\gamma_0(\xi), \gamma_{-1}(\eta)] + [\gamma_{-1}(\xi), \gamma_0(\eta)]$$

$$0 = [\gamma_0^{\perp}(\xi), \gamma_{-1}(\eta)] + [\gamma_{-1}(\xi), \gamma_0^{\perp}(\eta)]$$

- In a point, $\gamma_0^{\perp}(\xi) = \varphi(\gamma_{-1}(\xi))$ for some linear map $\varphi : \mathfrak{g}_{-1} \to \mathfrak{g}_0^{\perp}$, and the second equation shows that $\partial \varphi = 0$.
- Since H¹(g₋₁, g[⊥])₁ = 0, there is an element Z ∈ g₁[⊥] such that φ = ∂Z (easily seen to be unique). A direct computation then shows that ô(u) = σ(u) exp(Z(u)) does the job.

- The basic setup A reduction theorem Applications
- Since γ is flat, $\sigma^* j^* \gamma$ satisfies the Maurer-Cartan equation. Looking at the component in $\mathfrak{sl}_{-1}(\mathbb{V}) = \mathfrak{g}_{-1} \oplus \mathfrak{g}_{-1}^{\perp}$, we get for all $\xi, \eta \in \mathfrak{X}(\mathcal{G}_0)$

$$0 = d\gamma_{-1}(\xi, \eta) + [\gamma_0(\xi), \gamma_{-1}(\eta)] + [\gamma_{-1}(\xi), \gamma_0(\eta)]$$

$$0 = [\gamma_0^{\perp}(\xi), \gamma_{-1}(\eta)] + [\gamma_{-1}(\xi), \gamma_0^{\perp}(\eta)]$$

- In a point, $\gamma_0^{\perp}(\xi) = \varphi(\gamma_{-1}(\xi))$ for some linear map $\varphi : \mathfrak{g}_{-1} \to \mathfrak{g}_0^{\perp}$, and the second equation shows that $\partial \varphi = 0$.
- Since H¹(g₋₁, g[⊥])₁ = 0, there is an element Z ∈ g₁[⊥] such that φ = ∂Z (easily seen to be unique). A direct computation then shows that ô(u) = σ(u) exp(Z(u)) does the job.
- The further steps are similar, and the first line in the equation shows that in the end one obtains a flat Cartan connection.

Structure

The basic setup

P.

Fubini–Griffiths–Harris rigidity

Assume that *G* is complex, none of the simple ideals of \mathfrak{g} is of projective or conformal type and that \mathbb{V} is a complex representation such that $\dim(\mathbb{V}_N) = 1$. Then *P* is the stabilizer of the line \mathbb{V}_N in *G*, and the representation induces an embedding of the generalized flag variety G/P into the projectivization $\mathbb{P}\mathbb{V}$. Via $T(G/P) \cong G \times_P \mathfrak{g}_{-1}$, the kernel of the Fubini form $F_{2,2}$ for this embedding corresponds to a cone in \mathfrak{g}_{-1} , and $G_0 \subset GL(\mathfrak{g}_{-1})$ is the subgroup of maps preserving this cone.

Fubini–Griffiths–Harris rigidity

Assume that *G* is complex, none of the simple ideals of \mathfrak{g} is of projective or conformal type and that \mathbb{V} is a complex representation such that $\dim(\mathbb{V}_N) = 1$. Then *P* is the stabilizer of the line \mathbb{V}_N in *G*, and the representation induces an embedding of the generalized flag variety G/P into the projectivization $\mathbb{P}\mathbb{V}$. Via $T(G/P) \cong G \times_P \mathfrak{g}_{-1}$, the kernel of the Fubini form $F_{2,2}$ for this embedding corresponds to a cone in \mathfrak{g}_{-1} , and $G_0 \subset GL(\mathfrak{g}_{-1})$ is the subgroup of maps preserving this cone.

Suppose that $X \subset \mathbb{PV}$ is a subvariety of dimension dim(G/P)which, in a generic point x, has the same Fubini form $F_{2,2}$ as G/P. Restrict the canonical principal bundle $p : SL(\mathbb{V}) \to \mathbb{PV}$ to X, and let ω be the Maurer–Cartan form of $SL(\mathbb{V})$. Consider the set of points in this restrictions in which ω has values in $\mathfrak{g}_{-1} \oplus \mathfrak{sl}^0(\mathbb{V})$.

For each such point g we get an induced isomorphism $T_{p(g)}X \to \mathfrak{g}_{-1}$, and we further restrict to those g, for which this isomorphism maps the kernel of the Fubini form $F_{2,2}$ to the distinguished cone. Multiplication from the right defines an action of $G_0^{\#}$ on this subset, which is easily seen to be free and transitive on each fiber.

For each such point g we get an induced isomorphism $T_{p(g)}X \to \mathfrak{g}_{-1}$, and we further restrict to those g, for which this isomorphism maps the kernel of the Fubini form $F_{2,2}$ to the distinguished cone. Multiplication from the right defines an action of $G_0^{\#}$ on this subset, which is easily seen to be free and transitive on each fiber.

Hence we get a principal bundle $\mathcal{G}_0^{\#}$ over a dense open subset of X, which defines a reduction to the structure group $G_0^{\#}$. Denoting by \tilde{P} the stabilizer of \mathbb{V}_N in $SL(\mathbb{V})$, the extension $\tilde{E} := SL(\mathbb{V}) \times_{\tilde{P}} SL(\mathbb{V}) \to \mathbb{P}\mathbb{V}$ carries a flat principal connection induced by ω . Now $\mathcal{G}_0^{\#} \hookrightarrow \tilde{E}$ satisfies the assumptions of the reduction theorem, so we get a reduction to P for which ω pulls back to a flat Cartan connection. This gives a local isomorphism to (the natural embedding of) G/P.

BGG operators with maximal kernel

Let $p_0: \mathcal{G}_0 \to M$ be a first order \mathcal{G}_0 -structure. As discussed before, this canonically extends to a normal Cartan geometry $(\mathcal{G} \to M, \omega)$ of type (\mathcal{G}, P) .

▲ 同 ▶ → 三 ▶

BGG operators with maximal kernel

Let $p_0: \mathcal{G}_0 \to M$ be a first order \mathcal{G}_0 -structure. As discussed before, this canonically extends to a normal Cartan geometry $(\mathcal{G} \to M, \omega)$ of type (\mathcal{G}, P) .

The representation \mathbb{V} gives rise to natural vector bundle $\mathcal{V} := \mathcal{G} \times_P \mathbb{V} \to M$. Since \mathbb{V} is the restriction of a representation of G, the Cartan connection ω induces a linear connection $\nabla^{\mathcal{V}}$ on \mathcal{V} . These are the so-called *tractor bundles* and *tractor connections*.

BGG operators with maximal kernel

Let $p_0: \mathcal{G}_0 \to M$ be a first order \mathcal{G}_0 -structure. As discussed before, this canonically extends to a normal Cartan geometry $(\mathcal{G} \to M, \omega)$ of type (\mathcal{G}, P) .

The representation \mathbb{V} gives rise to natural vector bundle $\mathcal{V} := \mathcal{G} \times_P \mathbb{V} \to M$. Since \mathbb{V} is the restriction of a representation of G, the Cartan connection ω induces a linear connection $\nabla^{\mathcal{V}}$ on \mathcal{V} . These are the so-called *tractor bundles* and *tractor connections*.

The Kostant codifferential induces natural bundle maps $\partial^* : \Lambda^k T^* M \otimes \mathcal{V} \to \Lambda^{k-1} T^* M \otimes \mathcal{V}$ for all k. The subquotients $\ker(\partial^*)/\operatorname{im}(\partial^*)$ turn out to be isomorphic to $\mathcal{G}_0 \times_{\mathcal{G}_0} H^k(\mathfrak{g}_{-1}, \mathbb{V}) =: \mathcal{H}^k$ and the cohomologies are computable using Kostant's theorem.

伺 ト く ヨ ト く ヨ ト

The *P*-invariant filtration $\{\mathbb{V}^i\}$ of \mathbb{V} induces a filtration $\{\mathcal{V}^i\}$ of \mathcal{V} by smooth subbundles. In particular, $\mathcal{V}/\mathcal{V}^1 \cong \mathcal{G}_0 \times_{\mathcal{G}_0} \mathbb{V}_0$. The BGG machinery can be used to construct a differential operator $L : \Gamma(\mathcal{V}/\mathcal{V}^1) \to \Gamma(\mathcal{V})$ such that $\partial^* \circ \nabla^{\mathcal{V}} \circ L = 0$ and hence $\nabla^{\mathcal{V}} \circ L$ induces an invariant operator $D : \Gamma(\mathcal{V}/\mathcal{V}^1) \to \Gamma(\mathcal{H}^1)$, which is always overdetermined. For example, these include all the conformal Killing operators.

The *P*-invariant filtration $\{\mathbb{V}^i\}$ of \mathbb{V} induces a filtration $\{\mathcal{V}^i\}$ of \mathcal{V} by smooth subbundles. In particular, $\mathcal{V}/\mathcal{V}^1 \cong \mathcal{G}_0 \times_{\mathcal{G}_0} \mathbb{V}_0$. The BGG machinery can be used to construct a differential operator $L : \Gamma(\mathcal{V}/\mathcal{V}^1) \to \Gamma(\mathcal{V})$ such that $\partial^* \circ \nabla^{\mathcal{V}} \circ L = 0$ and hence $\nabla^{\mathcal{V}} \circ L$ induces an invariant operator $D : \Gamma(\mathcal{V}/\mathcal{V}^1) \to \Gamma(\mathcal{H}^1)$, which is always overdetermined. For example, these include all the conformal Killing operators.

The construction also implies that the obvious projection and L induce inverse bijections

$$\ker(D) \leftrightarrow \{s \in \Gamma(\mathcal{V}) : \nabla^{\mathcal{V}} s \in \Gamma(\operatorname{im}(\partial^*))\}$$

If $\mathcal{G}_0 \to M$ is locally flat, then the connection $\nabla^{\mathcal{V}}$ is flat and one shows that $\nabla^{\mathcal{V}} s \in \Gamma(\operatorname{im}(\partial^*))$ is only possible if $\nabla^{\mathcal{V}} s = 0$. Hence in these cases, the machinery provides a system in closed form which is equivalent to $D(\varphi) = 0$ and $\dim(\ker(D)) = \dim(\mathbb{V})$. In the general case, one can use prolongation procedures by [BCEG] or [HSSS] to construct a vector bundle map $C: \mathcal{V} \to T^*M \otimes \mathcal{V}$ such that the linear connection $\hat{\nabla} := \nabla^{\mathcal{V}} + C$ has the property that $\hat{\nabla}s = 0$ is equivalent to $\nabla^{\mathcal{V}}s \in \Gamma(\operatorname{im}(\partial^*))$. Thus, $\dim(\ker(D)) \leq \dim(\mathbb{V})$ always holds.

In the general case, one can use prolongation procedures by [BCEG] or [HSSS] to construct a vector bundle map $C: \mathcal{V} \to T^*M \otimes \mathcal{V}$ such that the linear connection $\hat{\nabla} := \nabla^{\mathcal{V}} + C$ has the property that $\hat{\nabla}s = 0$ is equivalent to $\nabla^{\mathcal{V}}s \in \Gamma(\operatorname{im}(\partial^*))$. Thus, $\dim(\ker(D)) \leq \dim(\mathbb{V})$ always holds.

By construction, the (volume preserving) frame bundle of \mathcal{V} can be written as $SL(\mathcal{V}) := \mathcal{G} \times_P SL(\mathbb{V})$ and the tractor connection $\nabla^{\mathcal{V}}$ is induced by a principal connection γ on \mathcal{P} which under the natural map $\mathcal{G} \to SL(\mathcal{V})$ pulls back to ω . Putting $\mathcal{G}_0^{\#} = \mathcal{G} \times_P G_0^{\#}$ and $\mathcal{P}^{\#} := \mathcal{G} \times_P P^{\#}$, we get a reductions $\mathcal{P}^{\#} \hookrightarrow \mathcal{G}_0^{\#} \hookrightarrow SL(\mathcal{V})$. The pullback of γ under these has values in $\mathfrak{g}_{-1} \oplus \mathfrak{sl}^0(\mathbb{V})$ and $\mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{sl}^1(\mathbb{V})$, respectively.

・ 同 ト ・ 三 ト ・

The prolongation procedures are set up in such a way that $C(\mathcal{V}^i)$ is always contained in $\mathcal{T}^*M \otimes \mathcal{V}^i$ and for torsion free geometries, it is even contained in $\mathcal{T}^*M \otimes \mathcal{V}^{i+1}$. Otherwise put, C can be viewed as a one-form on M with values in $\mathfrak{gl}^0(\mathcal{V})$ respectively $\mathfrak{sl}^1(\mathcal{V})$. The prolongation procedures are set up in such a way that $C(\mathcal{V}^i)$ is always contained in $\mathcal{T}^*M \otimes \mathcal{V}^i$ and for torsion free geometries, it is even contained in $\mathcal{T}^*M \otimes \mathcal{V}^{i+1}$. Otherwise put, C can be viewed as a one-form on M with values in $\mathfrak{gl}^0(\mathcal{V})$ respectively $\mathfrak{sl}^1(\mathcal{V})$.

The upshot of this is that the principal connection $\hat{\gamma}$ corresponding to $\hat{\nabla} = \nabla^{\mathcal{V}} + C$ aways admits a reduction to $\mathcal{G}_0^{\#}$ and in the torsion free case even to $\mathcal{P}^{\#}$. If dim(ker(D)) = dim(\mathbb{V}), then of course the connection $\hat{\nabla}$ must be flat. It is easy to see that replacing C by its tracefree part (which has values in $\mathfrak{sl}^0(\mathcal{V})$) the resulting connection is still flat. If the assumptions of the reduction theorem are satisfied, then we obtain a flat Cartan geometry of type (G, P), whose underlying G_0 -structure is the same as for \mathcal{G} , so the original structure must have been flat. Hence we conclude

Theorem

Consider a parabolic geometry $(p : \mathcal{G} \to M, \omega)$ of type (G, P) corresponding to a |1|-grading of \mathfrak{g} such that none of the simple ideals of \mathfrak{g} is contained in \mathfrak{g}_0 or of projective type. For a infinitesimally faithful representation \mathbb{V} of \mathfrak{g} assume that the kernel of the corresponding first BGG-operator D has dimension dim (\mathbb{V}) . If either none of the simple ideals of \mathfrak{g} is of conformal type or the geometry is torsion free, then $(p : \mathcal{G} \to M, \omega)$ must be locally flat.