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This talk reports on joint work in progress with Rod Gover
(Auckland) and Matthias Hammerl (Vienna).

Geometric overdetermined systems of PDE play an important
ingredient in the study of geometric structures. Prototypical
examples of such systems are the infinitesimal automorphism
equation for many types of structures, the twistor equation on
spinors, the equation describing rescalings to Einstein metrics,
and the conformal Killing equations on vectors, differential
forms and tensors.

For some of these equations, strong restrictions on the zero
sets of solutions are known classically. Questions on zeros of
infinitesimal automorphism and the related questions on
essential conformal isometries are intensively studied.

All these systems can be obtained using the machinery of
BGG sequences.
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The machinery of BGG sequences not only provides a uniform
construction for such systems intrinsic to a parabolic
geometry. It also gives rise to a class of special solutions of
these systems (“normal solutions”), which are related to
parallel sections of so–called tractor bundles.

Via normal Weyl structures one obtains a comparison between
a general (curved) geometry and the homogeneous model of
the geometry, which relates any special solution on the curved
geometry to one on the homogeneous model. This in
particular leads to a detailed description of the zero sets of
special solutions.

A non–linear analog of this technique can be used to study
holonomy reductions, see the talk by Matthias Hammerl.

Andreas Čap Weyl structures & BGG solutions



Parabolic geometries and normal Weyl structures
First BGG operators and special solutions

The comparison map
Examples for projective structures

Contents

1 Parabolic geometries and normal Weyl structures

2 First BGG operators and special solutions

3 The comparison map

4 Examples for projective structures
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Let G be a semisimple Lie group and P ⊂ G a parabolic subgroup.
Then a parabolic geometry of type (G ,P) on a smooth manifold
M with dim(M) = dim(G/P) by definition consists of a principal
fiber bundle p : G → M with structure group P and a Cartan
connection ω ∈ Ω1(G, g), where g is the Lie algebra of G .

Assuming the conditions of regularity and normality, such parabolic
geometries provide equivalent ways to encode geometric structures.
Well known examples of structures that can be described in this
way include classical projective, conformal, and almost quaternionic
structures, CR structures of hypersurface type, path geometries,
quaternionic contact structures, and several types of generic
distributions. The details of this equivalence do not play any role
for the purpose of this lecture.
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normal Weyl structures

The Cartan connection ω in particular gives rise to a trivialization
TG ∼= G × g of the tangent bundle of G, with the vertical
subbundle VG corresponding to G × p. Here p ⊂ g denotes the Lie
algebra of the subgroup P ⊂ G . Now there always is a subalgebra
g− ⊂ g which forms a complementary subspace to p.

Fixing a point u0 ∈ G and putting x0 = p(u0) ∈ M, we get a
canonical local section of p : G → M mapping x0 to u0: For
X ∈ g−, we get the constant vector field X̃ ∈ X(G) characterized
by ω(X̃ ) = X , and we can consider its flow. Restricting to a

suitable open neighborhood V of zero in g−, ϕ(X ) := FlX̃1 (u0)
defines a smooth map ϕ : V → G such that p ◦ ϕ is a
diffeomorphism onto an open neighborhood U of x0 in M.
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Consequences

Choosing a basis for g−, we obtain local coordinates on U
(“normal coordinates”).

We can specify a smooth section of G|U by mapping p(ϕ(X ))
to ϕ(X ). This gives rise to a trivialization of G|U .

Given any representation W of P, we can form the the
associated bundle G ×P W, and we get an induced
trivialization of this bundle over U (“normal trivializations”).
The resulting trivializations are compatible with any natural
bundle map, which comes from a P–equivariant map between
the inducing representations.

Choosing a basis in W, we get a canonical local frame of the
associated bundle G ×P W over U (“normal frames”). Again,
these are compatible with natural bundle maps.
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Note that fixing the point x0 ∈ M, the family of sections obtained
in the above way is parametrized by P ∼= p−1(x0), so there is only
a finite dimensional family.
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For parabolic geometries, there is a special class of natural bundles.
These are called tractor bundles and are characterized by the fact
that they are induced by restrictions to P of representations of G .

Properties of tractor bundles

The Cartan connection induces a linear connection (“(normal)
tractor connection”) on any tractor bundle.

If V is an irreducible representation of G , then is is canonically
filtered by P–invariant subspaces, and in particular it has a
canonical P–irreducible quotient H0.

Correspondingly, the tractor bundle V := G ×P V has a
natural quotient bundle H0 := G ×P H0. We denote by
Π : V → H0 the corresponding natural bundle map.
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The machinery of BGG–sequences uses the tractor connection and
the associated covariant exterior derivative to construct higher
order natural differential operators defined on sections of H0 and
other natural subquotients of the bundles of V–valued differential
forms. We only need very limited information:

The first BGG operator D is defined on sections of H0. The
target bundle, the order, and the principal part of the operator
can be easily computed from representation theory data of V.

If s ∈ Γ(V) is a section which is parallel for the tractor
connection, then Π(s) lies in the kernel of D.

The map Π is injective on parallel sections, and identifies
them with a subspace of solutions of D (“normal solutions”).

On G/P (and geometries locally isomorphic to G/P) the
tractor connection is flat and any solution is normal.
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The main technical ingredient needed for the further study of
normal solutions is easy to prove:

Proposition

Let s ∈ Γ(V) be a section of a tractor bundle, which is parallel for
the tractor connection. Then the function f : U → V
corresponding to s via a normal trivialization is given by
f (p(ϕ(X ))) = exp(−X ) · f (x0).

This simple observation has rather strong consequences, however.
First, we can get quite detailed information about the structure of
potential solutions and for simple tractor bundles, we can even
easily give a complete list of all potential solutions:
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Polynomiality

Theorem

The coordinate functions of any solution of a first BGG operator
with respect to a normal frame are polynomials in the normal
coordinates. The degree of these polynomials is bounded by the
length of the natural P–invariant filtration of the representation V.

Idea of proof: For a parallel section s ∈ Γ(V) polynomiality of the
coordinates in any normal frame follows from the fact that any
X ∈ g− acts by a nilpotent endomorphism on V with nilpotence
index bounded by the filtration length. Thus the result follows for
normal frames of H0 which are obtained by projections from V,
and then the general result follows easily.
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Lists of potential solutions

To get the flavor, here is the list of potential normal solutions of
the equation ∇(aσbc) = 0 on sections of S2T ∗M(4) on a manifold
endowed with a projective structure. Here {ϕij} is a normal frame
of the bundle, the xi are normal coordinates, and on RPn any
element in the list is a solution. (The tractor bundle in question
consists of tractors with curvature tensor type symmetries.)

ϕij i ≤ j

xkϕij − xjϕik i ≤ j < k

xkϕij − xiϕjk i < j ≤ k

xjxkϕii − xixkϕij − xixjϕik + xi
2ϕjk i < j ≤ k

xkx`ϕij − xjxkϕi` − xix`ϕjk + xixjϕk` i < j < k ≤ `
xjx`ϕik − xjxkϕi` − xix`ϕjk + x`xkϕj` i < j ≤ k < `
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We can interpret the above results in a slightly different way.
Namely, we can combine the inverse of a normal chart for the
homogeneous model G → G/P with a normal chart of a curved
geometry G → M, to obtain a diffeomorphism ψ : U → Ũ where
U ⊂ M is the domain of a normal chart and Ũ ⊂ G/P is an
appropriate open neighborhood of o = eP in G/P.

Theorem

For any normal solution α of a first BGG operator on M, the
diffeomorphism ψ intertwines the coordinate functions of α with
respect to a normal frame with the coordinate functions of a
normal solution α̃ of the same first BGG operator on G/P.

In particular, ψ intertwines the zero sets of α and α̃ so the zero set
of α cannot be more complicated than the one of α̃.
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Important points for the applicability

On G/P tractor bundles are always trivial with flat tractor
connections, so parallel sections and hence normal solutions of
first BGG operators on G/P are very well understood.

While the comparison map cannot be an isomorphism of
parabolic geometries (since one geometry is flat and the other
isn’t) it is more than just a diffeomorphism. In particular, one
can prove compatibility with certain distinguished curves,
which e.g. leads to proofs for zero sets being totally geodesic.

Normal solutions which are sections of density bundles select
(outside of their zero sets) one of the distinguished
connections for the geometry. One can carry over properties
of this connection related to completeness from G/P to M.
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Holonomy reductions

One can describe holonomy reductions of parabolic geometries and
of general Cartan geometries as sections of non–linear analogs of
tractor bundles which are parallel for an induced fiber bundle
connection.

The comparison map can be used to relate holonomy reductions of
curved geometries to holonomy reductions of G/P, which again
are very well understood. This is the main technical input in the
proof of the basic facts on holonomy reductions to be explained in
Matthias Hammerl’s talk.
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Projective structures

Let M be a smooth manifold of dimension n ≥ 2. Two torsion
free connections on TM are called projectively equivalent iff
they have the same unparametrized geodesics.

An equivalence class [∇] of such connections is called a
projective structure on M. This gives rise to a family of
distinguished paths, with one path through each point in each
direction. The comparison map intertwines paths through the
center of the normal chart.

Projective structures can be equivalently described as normal
parabolic geometries of type (G ,P), where G = SL(n + 1,R)
and P ⊂ G is the stabilizer of a line in Rn+1.

Completely reducible representations of P give rise to tensor
bundles. Tractor bundles can be built up from the standard
tractor bundle T corresponding to V = Rn+1 and its dual.
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To any torsion free connection ∇ on TM, one associates the
Rho–tensor Pab = −1

(n−1)(n+1) (nRab + Rba), where Rab is the Ricci
curvature of ∇.

Given an irreducible tensor bundle W and an integer k ≥ 1, there
is a unique first BGG operator of order k defined on a weighted
version of W.

The solutions of these operators on the homogeneous model
G/P = RPn can be nicely described in terms of homogeneous
polynomials.
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Example 1: Ricci flatness

The first BGG equation corresponding to T ∗ = G ×P R(n+1)∗ turns
out to be ∇a∇bσ + Pabσ = 0 on a density σ of weight one.
Outside its zero set, a solution σ determines a connection ∇ in the
projective class with zero Ricci curvature.

On RPn, solutions of this equation simply correspond to linear
functionals λ ∈ R(n+1)∗ and the zero set of the corresponding
density is the projective hyperplane corresponding to the kernel of
λ. In particular, this is totally geodesic, and we conclude:

If σ ∈ Γ(E(1)) satisfies ∇a∇bσ + Pabσ = 0, then its zero set is
either empty or a totally geodesic hypersurface of M. On the dense
open subset where σ 6= 0, one obtains a Ricci flat affine connection
in the projective class.
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Example 2: Klein–Einstein structures

The first BGG equation corresponding to S2T ∗ is the equation

∇(a∇b∇c)σ + 4P(ab∇c)σ + 2(∇(aPbc))σ = 0 (∗)
on a density σ of weight two. Outside its zeros, σ determines a
connection ∇ in the projective class such that ∇aPbc = 0. If Pab is
non–degenerate, it defines a pseudo–Riemannian metric, for which
∇ is the Levi–Civita connection and which is automatically
Einstein. If M is compact, the closure of such a set can thus be
viewed as a compactification of an Einstein manifold.

On RPn, solutions correspond to symmetric bilinear forms on Rn+1

and in the non–degenerate case, the zero set of the corresponding
density is a quadric in RPn, which canonically inherits a conformal
structure. Outside the zero set, Pab is non–degenerate and
connected components of this open subset are geodesically
complete. Thus we obtain:
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Let σ be a solution of (∗) which corresponds to a non–degenerate
bilinear form on T . Then the zero set of σ is either empty or an
embedded hypersurface, which inherits a conformal structure from
the projective structure on M. On each connected component of
of {x ∈ M : σ(x) 6= 0}, one obtains a pseudo–Riemannian Einstein
metric whose Levi–Civita connection lies in the projective class.

If M is compact, these Einstein metrics are geodesically complete.
Taking the closure of such a component defines a compactification
of the Einstein manifold, in which one adds a boundary at infinity
which carries a conformal structure. This is not a conformal
compactification, however.
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