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This talk reports on joint work in progress with Karin Melnick
(University of Maryland).

We study infinitesimal automorphisms of parabolic geometries
such that the corresponding one–parameter group of
automorphisms has a higher order fix point.

This is based on a comparison result by C. Frances, which
relates such automorphisms to an automorphism of the
homogeneous model of the geometry.

To exploit this systematically, one can use the algebraic
structure which is canonically available on tensor bundles of a
parabolic geometry. We will in particular discuss applications
to projective and conformal structures, for which the results
are known but the proofs are new.
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We consider geometric structures which can be equivalently
encoded as Cartan geometries, so on a manifold M, we have a
principal P–bundle p : G → M endowed with a Cartan connection
ω ∈ Ω1(G, g), which trivializes TG. Here we have fixed a Lie group
G with Lie algebra g and a closed subgroup P ⊂ G (determined by
the geometry in question).

Any automorphism of such a geometry uniquely lifts to a
principal bundle automorphism ϕ : G → G such that ϕ∗ω = ω.

Applying this to local flows, we conclude that any infinitesimal
automorphism lifts to a P–invariant vector field ξ ∈ X(G)
such that Lξω = 0.

P–invariant vector fields on G are in bijective correspondence
with sections of the adjoint tractor bundle AM := G ×P g,
and projecting vector fields defines a surjective bundle map
Π : AM → TM.
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It is easy to see that a principal bundle automorphism ϕ : G → G is
locally determined by its value in a single point, so in particular,
under mild assumptions the identity map is the only automorphism
having a fix point on this level. Likewise, on the level of the Cartan
bundle, an infinitesimal automorphism is nowhere vanishing.
On the level of the underlying manifold, fix points of
automorphisms are possible:

x ∈ M is a fix point, iff for each u ∈ p−1(x) ⊂ G, there is an
element b ∈ P such that ϕ(u) = u · b, where the dot denotes
the principal right action.

On the infinitesimal level, fix points of the infinitesimal
automorphism corresponding to σ ∈ Γ(AM) are points x ∈ M
such that Π(σ)(x) = 0.

For certain geometries, there is a natural notion of higher
order fix points, which will be introduced later.
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The basic result we will use is a comparison theorem by C. Frances.
An automorphism of a Cartan geometry (p : G → M, ω) with a fix
point can be, locally around the fix point, related to an
automorphism of the homogeneous model of the geometry.

The homogeneous model

This is the homogeneous space G/P endowed with the principal
P–bundle defined by the canonical projection G → G/P and the
left Maurer–Cartan form as the Cartan connection.

The automorphisms of this geometry are the left translations
by elements of G .

Correspondingly, the infinitesimal automorphisms of the
geometry are exactly the right invariant vector fields RX for
X ∈ g.
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Comparison is built on an analog of the exponential mapping for
Cartan geometries. Since ω trivializes TG, an element X ∈ g
determines the constant vector field X̃ ∈ X(G) via ω(X̃ ) = X .
Fixing a point u0 ∈ G and choosing X ∈ g close enough to zero,

the flow FlX̃t (u0) is defined up to time one, and we put

expu0
(X ) := FlX̃1 (u0). A standard argument shows that expu0

defines a diffeomorphism from an open neighborhood of zero in g
onto an open neighborhood of u0 in G.

Now let ϕ be an automorphism of (G → M, ω). Having a fix point
means that ϕ(u0) = u0 · b0 for some u0 ∈ G and b0 ∈ P. We want
to compare this to an automorphism of the homogeneous model
(G → G/P, ωMC ), and of course we can do this at e ∈ G . So the
right automorphism to compare to is left multiplication by b0. In
particular, we can look at lines in exponential coordinates, which
just get reparametrized by this automorphism.
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Theorem (C. Frances, K. Melnick)

Let ϕ be an automorphism of a Cartan geometry (p : G → M, ω)
and u0 ∈ G a point such that ϕ(u0) = u0 · b0 for some element
b0 ∈ P. Let X ∈ g be an element such that expu0

(sX ) is defined
for s in an interval I ⊂ R around zero.
Suppose that there is a diffeomorphism c : I → I ′ fixing zero for
some interval I ′ and b : I → P is a smooth curve with b(0) = b0

such that in G we have

b0esX = ec(s)Xb(s)

Then the corresponding equation holds in the curved geometry:
expu0

(tX ) is defined for t ∈ I ′ and

ϕ(expu0
(sX )) = expu0

(c(s)X ) · b(t).
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We now specialize to the case that G is semisimple and P ⊂ G is
parabolic in the sense of representation theory. This leads to a
natural concept of higher order fix points and to systematic ways
to apply the comparison theorem.

A parabolic subalgebra p ⊂ g corresponds to a grading
g = g−k ⊕ · · · ⊕ gk of the Lie algebra g such that
p = g0 ⊕ · · · ⊕ gk .

Defining gi := gi ⊕ · · · ⊕ gk , we obtain a filtration
g = g−k ⊃ · · · ⊃ gk of the Lie algebra g. In particular, the
filtration is invariant under the Lie subalgebra p = g0.

Thus we obtain an induced filtration
AM = A−kM ⊃ · · · ⊃ AkM of the adjoint tractor bundle by
smooth subbundles.

ker(Π) = A0M, so AM/A0M ∼= TM and A1M ∼= T ∗M.
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Definition

We say that an infinitesimal automorphism s ∈ Γ(AM) of a
parabolic geometry (G → M, ω) has a higher order fix point in
x0 ∈ M iff s(x0) ∈ A1M ⊂ AM. In this case, s(x0) can be viewed
as an element of T ∗x0

M called the isotropy of s at x0.

Choosing u0 ∈ G with p(u0) = x0 gives rise to a linear isomorphism
T ∗x0

M → p+ := g1. Passing to another point in the same fiber
changes this linear isomorphism by composition with Ad(b) for
some b ∈ P. Hence the isotropy gives rise to a well defined
P–orbit in p+, and there is an initial classification of higher order
fix points by the space of such P–orbits. This is particularly
remarkable in view of a result of E. Vinberg, which says that there
are only finitely many different orbits.

Andreas Čap Comparison for infinitesimal automorphisms



Infinitesimal automorphisms and comparison
The case of parabolic geometries

Examples: Projective and conformal structures

Further fix points

Given Z ∈ p+, and a coset in g/p, we may ask whether there is a
representative X ∈ g of the coset such that [[Z ,X ],X ] = 0 or even
[Z .X ] = 0. These conditions are well behaved with respect to the
adjoint action of P. Given α ∈ T ∗x0

M, we thus get a subset
F ⊂ Tx0M from the first condition and a linear subspace C ⊂ F
from the second.

If [[Z ,X ],X ] = 0, then etZesX = esX etZe−ts[Z ,X ] holds in G
and etZe−ts[Z ,X ] ∈ P.

For an infinitesimal automorphism σ ∈ Γ(AM) with a higher
order fix point, the element Z comes from the isotropy.

If X corresponds to a direction in F , then comparison shows
that we get a curve consisting of fixed points. If the direction
is even in C, then these are higher order fixed points with the
same isotropy.
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sl2–triples

Next we can ask about elements X ∈ g which extend Z ∈ p+ to an
sl2–triple, i.e. such that [[Z ,X ],Z ] = 2Z and [[Z ,X ],X ] = −2X .
Such elements always exist by the Jacobson–Morozov theorem and
it is easy to see that they never lie in p. As before, these elements
determine a subset (not a subspace in general) S ⊂ Tx0M.
As a model we compute in SL(2,R):(

1 t
0 1

)(
1 0
s 1

)
=

(
1 + st t

s 1

)
=

(
1 0
s

1+st 1

)(
1 + st 0

0 (1 + st)−1

)(
1 t

1+st

0 1

)
,

so etZesX = e
s

1+st Xbt(s), where bt(s) = e log(1+st)[Z ,X ]e
t

1+st Z .
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From the comparison theorem, we now conclude that the curve
s 7→ p(expu0

(sX )) in M gets projectively reparametrized by the
flow ϕt . By construction, one can find such a curve emanating
from x0 in each direction lying in S ⊂ Tx0M. Let us denote by
S0 ⊂ S the set of those tangent vectors for which u0 can be
chosen in such a way that X ∈ g− = g−k ⊕ · · · ⊕ g−1. Then the
resulting curve is one of the distinguished curves of the geometry
in question, so one obtains more detailed information.
To proceed further, one observes (ϕt)

∗ω = ω implies that
ϕt(expu(Y )) = expϕt(u)(Y ). Using this for u on the distinguished
curve, one can analyze the behavior close to the initial
distinguished curve in certain directions.

Moreover, bt(s) = e log(1+st)[Z ,X ]e
t

1+st Z determines the action of
the flow ϕt on natural bundles. Since
limt→∞ p(expu0

( s
1+st X )) = x0, one can deduce restrictions on the

curvature, both in the fix point x0 and along the curves in question.
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Projective structures

Here the geometry is given by a projective equivalence class of
torsion free linear connections on TM. Equivalently, it can be
described by a family of unparametrized curves in M with one curve
through each point in each direction, which are the geodesic paths
of the connections in the class. The distinguished curves are these
paths with a distinguished family of projective parametrizations.

Here g/p = Rn and g1 = Rn∗ with the actions of P given by the
standard representation of GL(n,R) and its dual. Hence any two
non–zero elements of g/p respectively of g1 = p+ lie in the same
P–orbit, so all tangent directions respectively cotangent directions
are “equal”.
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Projective structures II

An infinitesimal automorphism s ∈ Γ(AM) has a higher order fix
point in x0 iff ϕt(x0) = x0 and Tx0ϕt = id for all t. There is just
one type of possible isotropy α ∈ T ∗x0

M for such automorphisms. A
simple computation shows that

For 0 6= α ∈ T ∗x0
M, we get F = ker(α) ⊂ Tx0M, C = {0} and

S = S0 = {ξ ∈ Tx0M : α(ξ) = 1}.

Our results show that the hyperplane ker(α) gives rise to a totally
geodesic hypersurface fixed by the flow, with x0 being the only
higher order fix point. in any direction transverse to ker(α), we get
a distinguished curve corresponding to an sl2–triple, which gets
contracted projectively into the fix point. This implies that the
geometry is flat locally around the higher order fix point.
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Conformal structures

We consider conformal equivalence classes of pseudo–Riemannian
metrics of arbitrary signature (p, q) in dimensions n ≥ 3. This can
be described as a parabolic geometry with g/p ∼= Rp,q and
p+
∼= R(p,q)∗ with the P–actions coming from the natural

representations of CO(p, q).
The P–orbits in g±1 are determined by the sign of 〈v , v〉 for v in
the orbit, but the main distinction is between non–null– and
null–directions.
The distinguished curves are conformal circles. For non–null initial
directions, they are determined by their two–jet in one point. In
null–directions, they are null–geodesics which are conformally
invariant up to parametrization.
Higher order fix point again means that ϕt equals the identity to
first order, and we have to distinguish between non–null isotropy
and null isotropy.
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non–null isotropy

If α ∈ T ∗x0
M is non–isotropic, then the hyperplane ker(α) ⊂ Tx0M

is non–degenerate, so Tx0M = ker(α)⊕ ker(α)⊥. A small bit of
linear algebra shows that

For non–null α, F consists of all null–vectors in ker(α), C = {0},
and S = {ξ0} where ξ0 is the unique element in ker(α)⊥ such that
α(ξ0) = 2.

We conclude that null geodesics emanating in directions in ker(α)
are point–wise fixed, but contain no further higher order fix points.
There is a distinguished conformal circle c with initial tangent
vector ξ0 which gets contracted projectively to the fixed point.
This is actually true for an open neighborhood of c , and on this
neighborhood the curvature vanishes.
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null isotropy

Here ker(α) ⊂ Tx0M is degenerate and hence contains the line
ker(α)⊥ dual to α. Again, only linear algebra is needed to show
that

F is consists of all null–vectors in ker(α) and C = ker(α)⊥ ⊂ F .
The subset S ⊂ Tx0M consists of all null–vectors ξ such that
α(ξ) = 1.

So again null–geodesics emanating in directions in ker(α) consist
of fix points, but this time the one emanating in the direction dual
to α consist of higher order fix points with null isotropy. Null
geodesics emanating in directions transverse to ker(α) are
contracted projectively. This can be extended in some directions
leading to an open set on which the curvature has to vanish.
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