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This talk reports on joint work arXiv:1208.5510 and
arXiv:1211.5477 with Karin Melnick (Univ. of Maryland).

Apart from results stating that large groups of automorphisms
of certain geometric structures are only possible for “simple”
geometries, there are also cases in which existence of a single
(infinitesimal) automorphism of special type implies
restrictions on a geometry, c.f. results on essential conformal
isometries.

We study infinitesimal automorphisms whose flow has a higher
order fixed point. The basic invariant of such a fixed point is
its isotropy, which is a covector in the fixed point. To this,
one can associate subsets in the tangent space and thus via
normal coordinates in the manifold. On some of these
subsets, one obtains an explicit description of the flow, on
some one gets restrictions on harmonic curvature quantities
from an analysis of the dynamics of the flow.
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We consider geometric structures which can be equivalently
described by Cartan geometries of some fixed type (G ,P), where
G is a semisimple Lie group and P ⊂ G a parabolic subgroup.
Such a structure on a manifold M gives rise to a principal
P–bundle p : G → M and a canonical Cartan connection
ω ∈ Ω1(G, g), where g is the Lie algebra of G .

The equivalence to the Cartan geometry in particular implies that
automorphisms ϕ of our geometric structure are in bijective
correspondence with principal bundle automorphisms Φ : G → G
such that Φ∗ω = ω via p ◦ Φ = ϕ ◦ p. General results then imply
that the automorphisms Φ form a Lie group Aut(G, ω) whose
dimension is ≤ dim(G ).
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There is a similar equivalence for infinitesimal automorphisms. In
the Cartan picture, such an automorphism is described as a
P–invariant vector field Ξ ∈ X(G) such that LΞω = 0. Via the
Cartan connection ω, P–invariant vector fields on G are identified
with sections of the adjoint tractor bundle AM := G ×P g.

A P–invariant vector field Ξ on G is automatically projectable to
some ξ ∈ X(M). Correspondingly, there is a projection
Π : AM → TM, so ξ = Π(s), where s ∈ Γ(AM) corresponds to Ξ.

The kernel of Π is a natural subbundle A0M ⊂ AM, and the flow
of ξ has a fixed point in x ∈ M if and only if s(x) ∈ A0

xM ⊂ AxM.

In the parabolic case, A0M is part of a natural filtration

AM = A−kM ⊃ · · · ⊃ A0M ⊃ · · · ⊃ AkM

by smooth subbundles, where k ≥ 1 is determined by the type of
geometry.
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Definition

(1) An infinitesimal automorphism s ∈ Γ(AM) of a parabolic
geometry (p : G → M, ω) has a higher order fixed point in x ∈ M
iff s(x) ∈ A1

xM ⊂ AxM.
(2) An infinitesimal automorphism s ∈ Γ(AM) is called special if it
has at least one higher order fixed point.

If k = 1 then this condition means that the flow equals the identity
to first order, for k > 1, one has to use weighted order. Any special
infinitesimal automorphism is essential (as introduced by J. Alt).

It is a general fact on parabolic geometries that A1M is naturally
isomorphic to T ∗M. Hence if s ∈ Γ(AM) has a higher order fixed
point in x , then we can view s(x) as an element of T ∗x M called the
isotropy of s at x .
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The filtration of AM actually is induced by a filtration

g = g−k ⊃ · · · ⊃ g0 ⊃ · · · ⊃ gk

making the Lie algebra g of G into a filtered Lie algebra such that
g0 = p and g1 = p+, the nilradical of p.

Choosing u ∈ Gx , the isotropy s(x) ∈ A1
xM corresponds to an

element Z ∈ p+. The P–orbit of Z in p+ is independent of all
choices and thus a fundamental invariant of a higher order fixed
point. This is called the geometric type of the isotropy.

To deal with an example of a parabolic geometry, the possible
geometric types have to be discussed separately. There are usually
only very few geometric types. Note that if k > 1, then each gi for
i = 2, . . . , k is a P–invariant subspace of p+. Hence a geometric
type is either contained in gi or disjoint from it.
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Given Z ∈ p+ corresponding to the isotropy α, we define 3 subsets
Cg(Z ) ⊂ Fg(Z ) and Tg(Z ) of g as follows:

Cg(Z ) := {X ∈ g : [X ,Z ] = 0}
Fg(Z ) := {X ∈ g : ad(X )`(Z ) ∈ p ∀`}
Finally, Tg(Z ) consists of those X ∈ g which extend Z to an
sl2–triple, i.e. such that A = [Z ,X ] satisfies [A,Z ] = 2Z and
[A,X ] = −2X .

Notice that Cg(Z ) is a linear subspace and Fg(Z ) is closed under
multiplication by scalars. While Tg(Z ) is just some subset, it is
always non–empty by the Jacobson–Morozov theorem.

It turns out that via TM = G ×P (g/p) these canonically determine
subsets C (α) ⊂ F (α) and T (α) of the tangent space TxM.
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The crucial tool to understand the flow is a comparison theorem by
C. Frances and K. Melnick. Take an infinitesimal automorphism
s ∈ Γ(AM) with a higher order fixed point in x ∈ M and a point
u ∈ Gx for which the isotropy α corresponds to Z ∈ p+. This is
compared to the infinitesimal automorphism of G → G/P
determined by the right invariant vector field RZ , which has a
higher order fixed point at o = eP ∈ G/P and whose flow at time
t is given by left translation by etZ as follows:

Suppose that X ∈ g is such that the curve c(r) := erXP in G/P
only gets reparametrized by the flow etZ as c ◦ ψt . Then let c̃(r)
be the flow line in G of the vector field ω−1(X ) starting in u. Then
locally around r = 0, the flow of ξ = Π(s) also only reparametrizes
p ◦ c̃ as p ◦ c̃ ◦ ψt .
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The projections of the flow lines of ω–constant vector fields to M
are called exponential curves of the geometry. If X lies in a certain
subalgebra g− of g, these curves are even distinguished curves,
e.g. conformal circles or chains. For X in Cg(Z ) or in Fg(Z ),
application of the comparison theorem is very easy:

Proposition

Let s ∈ Γ(AM) be an infinitesimal isomorphism with a higher order
fixed point in x ∈ M with isotropy α ∈ T ∗x M.
(1) For ξ ∈ F (α) ⊂ TxM, there is an exponential curve emanating
in x in direction ξ which consists of fixed points of the flow of s.
(2) If ξ ∈ C (α) ⊂ F (α) then the curve consists of higher order
fixed points with isotropy of the same geometric type as α.

In case that X can even be chosen in g− (which holds in all
examples we will discuss) on can replace “exponential curve” by
“distinguished curve”.
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For X ∈ Tg(Z ), applying the comparison theorem is slightly more
complicated. Since Z , A = [Z ,X ], and X form an sl2–triple, they
determine a homomorphism sl(2,R)→ g which locally integrates
to SL(2,R). Then an explicit computation in SL(2,R) can be used
to deduce:

Proposition

Let s ∈ Γ(AM) be an infinitesimal isomorphism with a higher order
fixed point in x ∈ M with isotropy α ∈ T ∗x M.
For ξ ∈ T (α), there is an exponential curve c emanating in x in
direction ξ such that the flow ϕt of s satisfies ϕt(c(r)) = c( r

1+rt )
for |r | sufficiently small and all rt > 0.

Again one obtains a distinguished curve if X ∈ g−. One can also
phrase the description of the flow in terms of exponential or even
normal coordinates, showing that one gets a full description the
intersection of an open neighborhood of 0 with F (α) ∪ (R · T (α)).
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For the next step, consider Z ∈ p+ and assume that X ∈ Tg(Z ) is
such that A = [Z ,X ] ∈ g0. Suppose further that W is a
representation of g0 on which A acts diagonalizably. Then let
Wss(A) ⊂Wst(A) ⊂W be the sum of all eigenspaces with
negative respectively non–positive eigenvalues.

If W actually is a completely reducible representation of P, then it
gives rise to a natural bundle G ×P W and sections of such a
bundle correspond to P–equivariant functions G →W. Via the
comparison theorem, one can compute the action of the flow ϕt of
s on such a section along the distinguished exponential curve from
above. If this section describes a harmonic curvature quantity, then
it must be ϕt–invariant, which implies strong restrictions on the
values:
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Theorem

Let s ∈ Γ(AM) be an infinitesimal automorphism with a higher
order fixed point in x ∈ M with isotropy α ∈ T ∗x M. Suppose that
u ∈ Gx is such that the element Z ∈ p+ corresponding to α and
X ∈ Tg(Z ) satisfy the above assumptions. Let c(r) be the flow
line of ω−1(X ) starting in u and let f : G →W be the equivariant
function corresponding to a harmonic curvature component.

(1) f (c(r)) ∈Wst(A) for sufficiently small r .
(2) If f (u) = 0, f (c(r)) ∈Wss(A) for sufficiently small r .
(3) If A acts diagonalizablz on g− with non–positive eigenvalues
and zero–eigenspace Cg(Z ) ∩ g−, f (u) = 0, and Wss(A) = 0, then
f vanishes on an open neighborhood of c((0, ε)) for some ε > 0.
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To analyze specific cases, one now only has to do computations in
the Lie algebra g, depending on a fixed element Z ∈ p+ (or rather
its geometric type). The simplest possible case is:

Suppose that Z ∈ p+ is such that for each X ∈ Tg(Z ) we have
Wst([Z ,X ]) = 0 and that R · T (α) is dense in some open
neighborhood of zero in TxM. Then the geometry has to be locally
flat on an open neighborhood of x . Hence the local behavior
special infinitesimal automorphisms with isotropy of this geometric
type can be fully understood via the homogeneous model.

This happens for projective structures (only one geometric type of
isotropy) and for arbitrary parabolic contact structures provided
that the isotropy α vanishes on the contact subbundle
(i.e. Z ∈ g2). In both cases T (α) is the affine hyperplane
{ξ : α(ξ) = 1} and [Z ,X ] is a positive multiple of the grading
element.
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The next weaker result is local flatness on an open subset which
has the higher order fixed point in its closure. (Hence there is no
description of the local behavior around the higher order fixed
point via the homogeneous model.) Again, there is a rather simple
case, but this contains very important examples:

Suppose that Z ∈ p+ is such that for one X ∈ Tg(Z ) ∩ g− and
A = [Z ,X ] we have Wst(A) = 0 and the conditions on the action
of A on g− are satisfied. Then for the distinguished exponential
curve c determined by the element ξ ∈ T (α) corresponding to X ,
the geometry is locally flat on an open neighborhood of c((0, ε)).

This holds for non–null isotropy on conformal structures and on
partially integrable almost CR structures. In both cases, T (α)
consists of a single element and [Z ,X ] is a positive multiple of the
grading element.
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In case that Wst([Z ,X ]) 6= 0 there still is a way to prove local
flatness results. Given Z ∈ p+ we have to require that
∩X∈Tg(Z)∩g−Wst([Z ,X ]) = 0 to deduce vanishing of the harmonic
curvature component in the fixed point. If we then find at least
one such X such that A = [Z ,X ] satisfies Wss(A) = 0 and the
condition on the action on g−, then one gets local flatness on an
open subset with the higher order fixed point in its closure as
before. This applies in the following cases:

null isotropy on conformal structures

arbitrary isotropy on almost quaternionic structures

rank two isotropy on almost Grassmannian structures

rank one isotropy on (torsion free) Grassmannian structures
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In the case of rank one isotropy on almost Grassmannian
structures, we cannot deduce vanishing of the torsion on an open
subset with the higher order fixed point in its closure, since for the
corresponding representation W one always has Wss([Z ,X ]) 6= 0.
In this case and for null isotropy on almost CR structures we only
get vanishing on the set of higher order fixed points (which has
positive dimension in these two cases).
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