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This talk reports on joint work with Tomás Salač (Prague).
The gradings of simple Lie algebras which give rise to
parabolic contact structutres also define subgroups in certain
groups of conformal symplectic linear automorphisms. In
almost all cases, these are a maximal Lie subalgebras.
We start by showing that a first order G–sturcuture
corresponding to a conformally symplectic group is a locally
conformally symplectic structure if and only if it has vanishing
intrinsic torsion.
The main topic of the talk are the geometric structures
obtained by adding a reduction of structure group to one of
the groups from above to a lcs–structure. Using Kostant’s
theorem, we prove that all these structures admit canonical
compatible linear connections whose torsion satisfies a
normalization condition that we describe explicitly.
This also relates nicely to the theory of special symplectic
connections and thus to exotic affine holonomies.
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Let V be a vector space of even dimension 2n and let ω be a fixed
non–degenerate skew symmetric bilinear form on V . Then we
define

Sp(V ) := {A ∈ GL(V ) : ω(Av ,Aw) = ω(v ,w)}
CSp(V ) := {A ∈ GL(V ) : ω(Av ,Aw) = λω(v ,w) for some λ ∈ R}.

These are Lie subgroups of GL(V ) of dimension n(2n + 1) and
n(2n + 1) + 1, respectively. The corresponding Lie algebras will be
denoted by sp(V ) and csp(V ).
For later use, it will be more useful to view CSp(V ) as the set of
those linear automorphisms of V for which the induced
automorphism of Λ2V ∗ preserves the line spanned by ω.
It is well known, that sp(V ) is a simple Lie algebra and that
sp(V ) ∼= S2V as a representation of Sp(V ). Correspondingly,
csp(V ) = R⊕ sp(V ) is reductive with 1–dimensional center.
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The standard way to study first order structures corresponding to a
subgroup G ⊂ GL(V ) with Lie algebra g ⊂ L(V ,V ) is to consider
the linear map ∂ : L(V , g)→ L(Λ2V ,V ) defined by
∂Φ(X ,Y ) = Φ(X )(Y )− Φ(Y )(X ).

Given a reduction of structure group to CSp(V ) ⊂ GL(V ) on a
manifold of dimension dim(V ) and a compatible connection, this
map computes the change of torsion caused by a change of
connection.

From this description it is clear that the quotient space
L(Λ2V ,V )/ im(∂) is the target space of a first basic invariant, of
such a G –structure, the so–called intrinsic torsion.
Structures with vanishing intrinsic torsion are sometimes called
integrable. By definition, they admit a compatible torsion–free
connection.
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To deal with the general case, one has to choose a G –invariant
complement N to im(∂) in L(Λ2V ,V ). This is usually referred to
as the choice of a normalisation condition on the torsion. Via the
G–structure, the subspace N corresponds to a subbundle in
L(Λ2TM,TM), and one always finds a connection whose torsion
has values in that subbundle. Again by construction the value of
this torsion is an invariant which equivalently encodes the intrinsic
torsion.

The question of uniqueness of connections having this special
torsion is related to the first prolongation g(1) := ker(∂) of g. We
will mainly need the fact that if g(1) = {0}, then compatible
connections are uniquely determined by their torsion, so having
chosen a normalisation condition, one obtains a connection
canonically associated to each G–structure of the type in question.
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Making this explicit for csp(V ) is mainly an exercise in
representation theory. As representations of Sp(V ), we have

L(V , csp(V )) ∼= V ⊗ (R⊕ S2V ) ∼= V ⊕ V ⊕ S3V ⊕W
L(Λ2V ,V ) ∼= Λ2V ⊗ V ∼= V ⊕ V ⊕ Λ3

0V ⊕W .

Here W is an irreducible representation which in the first line is
realized as the trace free part of the kernel of the symmetrization
and in the second line as the tracefree part in the kernel of the
alternation, and the subscript 0 denotes the tracfree part.

It is then easy to check directly that ∂ is nonzero on W and
injective on the two copies of V , so it is an isomorphism between
these components. Thus the first prolongation is isomorphic to
S3V while the intrinsic torsion has values in Λ3

0V .
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To convert this to geometry, we first observe that a first order
structure with group CSp(V ) on a smooth manifold M of
dimension dim(V ) is clearly equivalent to the choice of a line
sub–bundle ` ⊂ Λ2T ∗M such that each non–zero element in ` is
non–degenerate.

A linear connection ∇ on TM is compatible with such a reduction
if ∇ω ∈ Γ(T ∗M ⊗ `) for any ω ∈ Γ(`) ⊂ Ω2M.

To compute the intrinsic torsion of ∇, we have to take its torsion
T a
bc , and then form the tracefree part of ωi [aT i

bc] for a locally

non–vanishing ω = ωab ∈ Γ(`). But ωi [aT i
bc] can be computed as

(dω)abc −∇[aωbc]. Since ∇[aωbc] ∈ Γ(T ∗M ∧ `) by
construction,vanishing of the intrinsic torsion is equivalent to
dω ∈ Γ(T ∗M ∧ `) for any section ω ∈ Γ(`). Equivalently, ` must
locally admit closed sections, i.e. define a locally conformally
symplectic structure.
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Following Cahen and Schwachhöfer, simple Lie algebras lead to a
class of special subalgebras of conformally symplectic Lie algebras.

A contact grading of a simple Lie algebra g is a decomposition
g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 such that [gi , gj ] ⊂ gi+j (with
gk = 0 for |k| > 2), dim(g−2) = 1 and the Lie bracket
[ , ] : g−1 × g−1 → g−2 is non–degenerate.

Up to isomorphism, any complex simple Lie algebra admits a
unique grading of this type, and this induces a contact grading on
most non–compact real forms.

By construction, the bracket defines a non–degenerate line in
Λ2g∗−1, and it is easy to see that the action of g0 on g−1 gives rise
to an inclusion g0 ↪→ csp(g−1).
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Classification

Type Cn is exceptional since g0 = csp(g−1) and will not be
considered in what follows.
Type An: g−1 = Rn ⊕ Rn∗, g0 = gl(n,R)⊕ R
(“lc–bi–Lagrangean”).
Type An: g−1 = Cn, g0 = cu(n) (“lc–almost–Kähler”).
Type Bn, Dn: g−1 = R2 � Rp,q, g0 = gl(2,R)⊕ o(p, q)
(“split–quaternionic”).
Type Dn: g−1 = Hn, g0 = sp(1)⊕ cso∗(2n) (“quaternionic”).
Type G2: g−1 = S3R2, g0 = gl(2,R), dim=4.
Type F4: g−2 = Λ3

0R6, g0 = csp(R4), dim=14.
Type E6: g−1 = Λ3R6, g0 = gl(6,R) plus two more real
forms, dim=20.
Type E7: g−1 = R32, g0 = cspin(12), plus two more real
forms, dim=32.
Type E8: g−1 = R56, g0 = ce7, two real forms, dim=56.

Andreas Čap
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Our main technical tool will be Kostant’s theorem, which allows us
to explicitly and algorithmically compute the cohomology groups of
the nilpotent Lie algebra g− = g−2 ⊕ g−1 with coefficients in the
representation g.

The standard complex for computing this cohomology has the form

. . .
∂K−→ L(Λig−, g)

∂K−→ L(Λi+1g−, g)
∂K−→ . . .

The multilinear maps showing up here can be decomposed
according to homogeneity and the the differentials ∂K preserve
homomgeneities, so each H i (g−g) splits accordingly.

Kostant defined an algebraic Lapalcian � on each of the spaces
L(Λig−, g) such that ker(�) ∼= H i (g−, g) as a module of g0.
Elements in this kernel will be called harmonic.
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Locally conformally symplectic structures
Parabolic lcs–structures

Canonical connections

Maximality

Theorem

If g is not of type An, then g0 is a maximal subalgebra of csp(g−1).

Proof: It is well known that in these cases, g≥0 is a maximal
parabolic subalgebra of g (“only one crossed root”). Kostant’s
theorem then immediately implies that H1(g−, g) is an irreducible
representation of g0.
From the general theory of parabolic geometries, it further follows
that for g not of type Cn, the cohomology has to sit in homogenity
0 and then H1(g−, g) = csp(g−1)/g0 follows from the definition.
Thus any g0–invariant subset of csp(g−1) which properly contains
g0 must be all of csp(g−1).

In the An–case, there are two maximal subalgebras sitting between
g0 and csp(g−1), namely those preserving just one of the two
Lagrangean subspaces.
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Each of the inclusions g0 ↪→ csp(g−1) gives rise to a geometric
structure on smooth manifolds of dimension dim(g−1), which has
an underlying non–degenerate line subbundle ` ⊂ Λ2T ∗M. We will
mainly be interested in the case that this line subbundle actually is
a lcs–structure. (It turns out that in each case, there is a unique
g0–invariant line in Λ2g∗−1.)

Making this explicit is rather easy in each case: In the
bi–Lagrangean case, one has a decomposition TM ∼= E ⊕ F with
both E and F isotropic with respect to every element of `. For the
other An–geometry one needs an almost complex structure on M
for which each element of ` is Hermitian.

The geometry related to so∗(2n) only exists in dimensions divisible
by four. Here one has to add an almost quaternionic structure on
M such that each element of ` is Hermitean in the quaternionic
sense.
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In the split quaternionic cases, it is easiest to describe an almost
split quaternionic structure as an isomorphism TM ∼= E ⊗ F ,
where E and F are auxialliary bundles of ranks 2 and n,
respectively. The compatibility condition is that ` sits inside of
Λ2E ∗ ⊗ S2F ∗ ⊂ Λ2(E ⊗ F )∗, so it is equivalent to a symmetric
bilinear form on F determined up to scale, and there is a notion of
signature in this case.

The structures corresponding to the exceptional Lie algebras can
be described analogously in terms of auxiliary bundles. For
example, the geometry corresponding to E6 exists in dimension 20
and is given by an identification TM ∼= Λ3E , where E is an
auxilliary vector bundle of rank 6. The wedge product determines a
skew symmetric bilinear form on Λ3E with values in the line bundle
Λ6E and thus a line ` ⊂ Λ2(Λ3E )∗.

Andreas Čap



Locally conformally symplectic structures
Parabolic lcs–structures

Canonical connections

To formulate our main result, observe that given a reduction of
structure group to G0 ⊂ GL(g−1), any representation of G0 gives
rise to a natural bundle and any G0–equivariant map between
representations induces a natural bundle map.
In particular, ker(�) ⊂ Λ2g∗−1 ⊗ g−1 gives rise to a smooth
subbundle of Λ2T ∗M ⊗ TM, whose elements are called
algebraically harmonic.
Using this, we can formulate:

Theorem

1 The first prolongation of g0 ⊂ gl(g−1) vanishes.

2 If M carries a parabolic lcs–structure, then there is a unique
linear connection on TM compatible with this structure which
has algebraically harmonic torsion.
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Proof

Denoting by ∂S the Spencer differential and by i the inclusion of
the trace part, the beginning of the homogeneity 1 bit of the
standard complex computing H∗(g−, g) has the form

g1 //

∼= $$HH
HH

HH
HH

HH
g∗−1 ⊗ g0

∂S //

((PPPPPPPPPPPP
Λ2g∗−1

// Λ3g∗−1 ⊗ g−2

g∗−2 ⊗ g−1
∼= //

66nnnnnnnnnnnn
g∗−1 ∧ g∗−2 ⊗ g−2

i

66mmmmmmmmmmmm

If ϕ ∈ g∗−1 ⊗ g0 satisfies ∂Sϕ = 0, then ∂Kϕ ∈ g∗−2 ⊗ g−1. But
then 0 = ∂K∂Kϕ implies ∂Kϕ = 0.
By Kostant’s theorem, there is no first cohomology in homogeneity
one, so ϕ = ∂K (Z ) for some Z ∈ g1. But then ∂KZ |g−2 = 0
implies Z = 0 and thus ϕ = 0, and the first part follows.
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Proof (continued)

g1 //

∼= $$HH
HH

HH
HH

HH
g∗−1 ⊗ g0

∂S //

((PPPPPPPPPPPP
Λ2g∗−1

// Λ3g∗−1 ⊗ g−2

g∗−2 ⊗ g−1
∼= //

66nnnnnnnnnnnn
g∗−1 ∧ g∗−2 ⊗ g−2

i

66mmmmmmmmmmmm

For the second part, assume that ψ ∈ Λ2g∗−1 ⊗ g−1 represents the
torsion of a compatible connection. Then our earlier interpretation
of the lcs–condition is equivalent to ∂Kψ lying in the trace part,
and hence to ψ being the first component of an element in
ker(∂K ). Together with the information on H2(g−, g) provided by
Kostant, a diagram chase shows that there are elements
ψ̂ ∈ ker(�) ⊂ Λ2g∗−1 ⊗ g−1 and ϕ ∈ g∗−1 ⊗ g0 such that

ψ = ψ̂ + ∂Sϕ. By the first part, ϕ is uniquely determined which
implies the result.
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It is easy to make the algebraic harmonicity condition explicit and
to see that the torsions of all compatible connections have the
same harmonic part.

In the almost bi–Lagrangean case (TM = E ⊕ F ), the only
non–vanishing components of an algebraically harmonic torsion are
the components Λ2E → F and Λ2F → E , and these are the
obstructions to integrability of E and F . For the other geometries,
one similarly gets obstructions to integrability of the underlying
complex, quaternionic or split–quaternionic structure. (In the last
two cases,the results are more surprising since there is no
Riemannian metric involved.)

In the case of torsion, one automatically gets a connection with
holnomoy being contained in G0, in the exceptional cases, this
implies exotic holnomy.
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Thank you for your attention!
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	Locally conformally symplectic structures
	Parabolic lcs–structures
	Canonical connections

