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Review of lecture 1

Representation theory imposes strong restrictions on existence
of conformally invariant differential operators. This extends in
a similar fashion to operators acting between irreducbile
bundles for other parabolic geometries.

For a parabolic geometries of type (G ,P) representations of P
induce natural bundles and P–equivariant maps give rise to
natural bundle maps.

This gives rise to “new” geometric objects like the adjoint
tractor bundle AM. Such bundles often come with natural
filtrations or other additional structures.

The Cartan connection gives rise to the fundamental
derivative, D : Γ(AM)× Γ(E )→ Γ(E ) for any natural bundle
E , which is similar to a covariant derivative.

We will now use this to construct invariant operators on
irreducible bundles.
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This is a fairly technical result in pure representation theory, and
I’ll start by explaining its relvance for our puropses. Even more
than the result itself, we will need the algebraic Hodge theory that
Kostant introduced for proving it. Let us recall the neccesary setup:

Choosing a parabolic subalgebra p ⊂ g, we obtain a nilpotent ideal
p+ ⊂ p (the nilradical of p). In particular representations of g and
p can be restricted to p+.

Given a representation W of p+, one defines the Lie algebra
homology H∗(p+,W) via a standard complex (C∗(p+,W), ∂∗) as:

Ck(p+,W) = Λkp+ ⊗W ∂∗ : Ck(p+,W)→ Ck−1(p+,W)

∂∗(Z1 ∧ · · · ∧ Zk ⊗ w) :=
∑

i (−1)iZ1 ∧ · · · Ẑi · · · ∧ Zk ⊗ Zi · w

+
∑

i<j(−1)i+j [Zi ,Zj ] ∧ Z1 ∧ · · · Ẑi · · · Ẑj · · · ∧ Zk ⊗ w .
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If W is a representation of P, then each C∗(p+,W) is a P–module
and the maps ∂∗ are P–equivariant. Hence the homology
H∗(p+,W) carries a natural representation of P. A simple
computation shows that p+ acts trivially on the homoglogy, so this
is a completely reducible representation of P. Kostant’s theorem
describes the representation H∗(p+,V) for an irreducible
representation V of g. Phrased for our purposes, this reads as:

H∗(p+,V) splits into a direct sum of different irreducible
representations of P.

The representations showing up in that sum correspond to
those weights in the affine Weyl orbit of the weight
determined by V, which can be realized by finite dimensional
representations of p.

The homology degree in which a representation occurs is
given by the length of the corresponding Weyl group element.
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Kostant’s Theorem
The BGG machinery

Before continuing, let us convert this to geometry. Given
(p : G → M, ω), V defines a tractor bundle VM → M. Since p+ is
dual to g/p via the Killing form, G ×P p+

∼= T ∗M. So Ck(p+,V)
induces the bundle ΛkT ∗M ⊗ VM of VM–valued k–forms.

The differentials ∂∗ induce natural bundle maps, and one obtains
natural subbundles im(∂∗) ⊂ ker(∂∗) ⊂ ΛkT ∗M ⊗ VM.
These give rise to natural subquotients HVk = ker(∂∗)/ im(∂∗),
which split into direct sums of irreducible bundles.
These summands (for all k) exhaust the bundles in one of the
patterns discussed in lecture 1. This works exactly for affine Weyl
orbits which contain a dominant integral weight.

So we have a conceptual way to construct all bundles in one
pattern from forms with values in a tractor bundle. The hope then
is to construct the operators in the pattern from analogs of the
exterior derivative.
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Kostant’s algebraic Hodge theory

It turns out that there is a grading on g of the form
g = g−k ⊕ · · · ⊕ g0 ⊕ · · · ⊕ gk , which is compatible with the Lie
bracket, such that p = ⊕i≥0gi and p+ = ⊕i≥1gi . In particular, for
each `, g` := ⊕i≥`gi is a p–invariant subspace of g.

As a representation of g0, we have g/p ∼= g− = ⊕i<0gi . Hence,
over g0, we have Ck(p+,V) ∼= C k(g−,V), and one obtains Lie
algebra cohomology differentials ∂ : C∗(p+,V)→ C∗+1(p+,V)
such that ∂ ◦ ∂ = 0.

It turns out that ∂ and ∂∗ are adjoint with respect to a certain
inner product, which implies that for � := ∂∗∂ + ∂∂∗, one obtains
a Hodge decomposition Ck(p+,V) = im(∂∗)⊕ ker(�)⊕ im(∂)
with the first two summands adding up to ker(∂∗) and the last two
summands adding up to ker(∂).
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Since ∂ and � are only invariant for the action of g0 (respectively
a corresponding subgroup G0 ⊂ P), they do not directly admit
geomtric counterparts. But there this a conceptual way to obtian
such counterparts:

Simiarly to g, V admits a grading such that gi · Vj ⊂ gi+j .
This induces a P–invariant filtration on V.

Hence there are G0–invariant gradings and P–invariant
filtrations on the spaces Ck(p+,V) (by homogeneity), which
both are preserved by ∂∗, ∂ and �.

One can pass to the associated graded P–modules
gr(Ck(p+,V)), which are isomorphic to Ck(p+,V) as
G0–modules but have trivial P+–action.

Then ∂∗, ∂ and � can be viewed as P–equivariant maps on
the associated graded spaces, thus allowing geometric
counterparts.
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The bundles ΛkT ∗M ⊗ VM are filtered by smooth subbundles, and
this filtration is preserved by ∂∗, hence inducing iltrations on the
subbundles im(∂∗) ⊂ ker(∂∗). Hence there are the associated
graded bundles gr(ΛkT ∗M ⊗ VM) and ∂∗ induces a bundle map
∂∗ on them.

By construction, gr(ΛkT ∗M ⊗ VM) is induced by gr(Ck(p+,V)),
so there we have natural bundle maps ∂ and � and a (point–wise)
algebraic Hodge–decomposition.

We also get an induced filtration on Ωk(M,VM) and we assume
that D : Ωk(M,VM)→ Ωk+1(M,VM) is a linear operator
preserving this filtration.If ϕ is homogenous of degree ≥ `, so is
D(ϕ) and gr`(D(ϕ)) depends only on gr`(ϕ).Hence there is an
induced linear operator
gr0(D) : Γ(gr(ΛkT ∗M ⊗ VM))→ Γ(gr(Λk+1T ∗M ⊗ VM)).
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Now suppose that D is compressible, i.e. filtration preserving and
such that gr0(D) = ∂. Then the restriction of ∂∗D defines an
operator Γ(ker(∂∗))→ Γ(im(∂∗)). Denoting by πH the tensorial
projection Γ(ker(∂∗))→ Γ(HVk ), we get:

1 πH restricts to a linear isomorphism ker(∂∗D)→ Γ(HVk ).

2 The inverse of this isomorphism is induced by a an operator S
which can be written as a (universal) polynomial in ∂∗D.

3 One obtains an induced operator D : Γ(HVk )→ Γ(HVk+1) by
putting D(α) := πH(D(S(α))).

Idea of proof for 1 : Show ker(∂∗D) ∩ Γ(im(∂∗)) = {0}. Suppose
that ∂∗D∂∗ψ = 0 and ∂∗ψ is homogeneous of degree ≥ `. Apply
gr` to conclude that 0 = ∂∗∂(gr`(∂

∗ψ)). But on Γ(im(∂∗)), ∂∗∂
coincides with � and thus is injective by the Hodge decomposition.
So gr`(∂

∗ψ) = 0 and ∂∗ψ is homogenous of one higher degree.
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The twisted exterior derivative

Observe that Ωk(M,VM) ⊂ Γ(ΛkA∗M ⊗ VM). Start constructing
a compressible operator on the latter bundle. For a section ϕ, form
Dϕ and alternate to obtain a section of Λk+1A∗M ⊗ VM. The Lie
algebra cohomology differential for g acts on the spaces Λ∗g∗ ⊗ V,
thus inducing natural bundle maps ∂g between the same bundles.

Theorem

ϕ 7→ Alt(Dϕ) + ∂gϕ maps Ωk(M,VM) to Ωk+1(M,VM), and
defines a compressible differential operator dV of order 1.

Applying the BGG construction to dV , one obtains a sequence
DV : Γ(HV∗ )→ Γ(HV∗+1) of invariant differential operators.
In degree 0, dV defines a linear connection ∇V on VM, the
tractor connection.
An operator D is compressible iff D = dV + E for some E
raising homogeneous degree. In particular, this applies to d∇.
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