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This talk reports on joint work in progress with T. Mettler
(Frankfurt) that studies the “bundle of Weyl structures”
associated to an AHS-structure (i.e. an irreducible parabolic
geometry).

On the one hand, this produces from an AHS structure a
relatively small space endowed with a nice geometric structure
(which in the torsion-free case includes a split-signature
Einstein metric) that encodes the initial geometry. There is a
natural calculus on that space that allows for efficient study of
its geometric properties.

On the other hand, this is closely connected to the study of
fully nonlinear PDE that are naturally associated to the initial
AHS structure. In the case of projective structure in
dimension two, this provides a connection to theory of convex
projective structures, representation varieties, etc.
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AHS structures are a special class of first order G-structures that
are connected to certain gradings of simple Lie algebras. From the
geometric point of view, they are distinguished by the fact that
they are irreducible and of finite type, but have non-trivial
prolongation. This means that each automorphism is locally
determined by its two-jet in a point, so automorphism groups are
finite dimensional. However, the one-jet in a point does not
determine an automorphism locally in general, so such geometries
to not determine a distinguished connection on the tangent bundle.

The best known example of such structures are conformal,
projective, almost Grassmannian, and almost quaternionic
structures. We will mainly work with the uniform description of
such structures as Cartan geometries, so the precise description of
the structures will not be very important.
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The data needed to define an AHS structure is a grading of a
simple Lie algebra g (different from sl2) of the form
g = g−1 ⊕ g0 ⊕ g1. There is a complete classification of such
gradings, which is equivalent to the classification of Hermitian
symmetric spaces.

For such a grading, any group G with Lie algebra g contains closed
subgroups P ⊂ G with Lie algebra p = g0 ⊕ g1. For g ∈ P, one
has Ad(g)(p) ⊂ p and Ad(g)(g1) ⊂ g1. One defines a closed
subgroup G0 ⊂ P as consisting of those g ∈ P such that
Ad(g)(gi ) ∈ gi for all i . Also, exp restricts to a diffeomorphism
from g1 onto a closed subgroup P+ ⊂ P such that P = G0 n P+.

In particular, Ad defines an infinitesimally injective homomorphism
G0 → GL(g−1), so there is a well-defined notion of G0-structures
on manifolds of dimension dim(g−1). There also is the concept of
a Cartan geometry of type (G ,P) on manifolds of that dimension.
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For a Cartan geometry (p : G → M, ω) of type (G ,P), G → M is a
principal P-bundle. Thus we can form G0 := G/P+ with induced
projection p0 : G0 → M, which is a principal bundle with structure
group P/P+ = G0. The component in g−1 of the Cartan
connection ω ∈ Ω1(G, g), is easily seen to descend to a soldering
form θ ∈ Ω1(G0, g−1), so we obtain an underlying G0-structure.

If g is not of type An then it turns out that any G0-structure is
induced by a unique (up to isomorphism) Cartan geometry for
which ω satisfies a normalization condition. In the An-case, G0 is
the full frame bundle of M and there is a similar correspondence
between projective equivalence classes of affine connections on M
and normal Cartan geometries.

We will view the Cartan picture as the (given) main description of
the geometry and the G0-structure (p0 : G0 → M, θ) as an
underlying structure.
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Weyl structures are a major tool to describe the Cartan geometry
(p : G → M, ω) in terms of the underlying G0-structure. Classically,
a Weyl structure is defined as a G0–equivariant section s : G0 → G
of the obvious projection. It can be shown that such sections exist
globally and form an affine space modeled on Ω1(M).

The components of ω in g0 respectively in g1 can be pulled back
along s to obtain

A principal connection on G0 → M (the Weyl connection)

A form P ∈ Ω1(M,T ∗M) called the Rho-tensor or the
Schouten tensor.

These can be used to interpret operations coming form the Cartan
geometry and to describe the curvature of the Cartan connection ω
in terms of the torsion and curvature of a Weyl connection.
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It is easy to see that any reduction of G → M to the structure
group G0 ⊂ P is given by a Weyl structure. Via this observation
we can use the classical description of reductions of structure
group to describe Weyl structures as smooth sections of a bundle.

Putting A := G/G0 and denoting by π : A→ M the induced
projection, Weyl structures are in bijective correspondence
with smooth sections of π.

A can be identified with G ×P (P/G0), so π : A→ M is a
natural fiber bundle. It can be shown that P/G0 is
diffeomorphic to g1 and in this picture the natural action of
P = G0 n exp(g1) becomes affine.

There are alternative explicit descriptions of A as a subset in
the projectivization of a quotient of a tractor bundle V → M
and as the bundle of connections on the density bundle E [1],
which will be discussed in more detail below.
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From A = G/G0 it readily follows that G → A is a principal
G0-bundle and that one may view ω ∈ Ω1(G, g) as a Cartan
connection on that bundle. In particular, TA ∼= G ×G0 (g/g0),
which immediately leads to a geometric structure on A.

As a representation of G0, g = g0 ⊕ (g−1 ⊕ g1). This shows
that ω induces a linear connection D on each vector bundle
over A that is a associated to G. In addition, TA = L− ⊕ L+

for two natural subbundles L± ⊂ TA of rank n.

Via the Killing form of g, we get g1
∼= g∗−1. Correspondingly,

there is a non-degenerate paring L− × L+ → M × R that is
parallel for D.

Skew symmetrizing this pairing, one gets a natural form
Ω ∈ Ω2(A), while symmetrizing it defines a split signature
metric h on A, which both a parallel for D.
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We conclude that A carries a canonical almost Bi-Lagrangean
structure, with an additional reduction to the structure group G0.
In particular, representations of G0 gives rise to natural vector
bundles on A, and on each of these there is an induced linear
connection D. Let us split this as D = D+ ⊕ D− according to
T ∗A = L∗+ ⊕ L∗−.

For a representation W of G0, the bundle WA := G ×G0 W→ A is
the pullback of WM := G ×P W→ M. Taking pullbacks of
sections defines an inclusion Γ(WM)→ Γ(WA), whose image
coincides with the kernel of D+. Specializing, we obtain
X(M) ↪→ Γ(L−) and Ω1(M) ↪→ Γ(L+), and these images provide
local frames for TA.

On the other hand, the torsion and curvature of D can be
computed from the Cartan curvature of ω by standard methods.
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Using these descriptions, one first proves:

The tensorial map Λ2L− → L+ induced by the Lie bracket of
vector fields is induced by the g1-component of the Cartan
curvature.

The form Ω ∈ Ω2(A) is symplectic if and only if the initial
AHS structure on M is torsion-free.

To analyze D−, one can use the relation of sections of π : A→ M
to Weyl structures. Let us denote by σ 7→ σ̃ the inclusion
Γ(WM)→ Γ(WA) and for a section s : M → A let ∇ be the
corresponding Weyl connection. Then we get:

For ξ ∈ X(M) and σ ∈ Γ(WM), the section D−
ξ̃
σ̃ coincides, along

s(M), with ∇̃ξσ.
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We have noted above that the Canonical connection D associated
to the almost bi-Lagrangean structure on A is always metric for h.
Thus the Levi-Civita connection ∇h of h can be determined by a
standard formula from the torsion of D. This can be done using
that D is induced by ω, viewed as a Cartan connection on G → A.
Using this, one can also analyze the curvature of D and, via the
difference ∇h − D computed above, the curvature of ∇h. This
leads to

Theorem

For a torsion-free AHS structure, consider the induced metric h the
canonical connection D on A. Then

The Ricci-type contraction of the curvature RD of D is
proportional to h.

The metric h is Einstein.
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Any irreducible representation of g has a canonical p-irreducible
quotient. There is a unique fundamental representation V of g, for
which that quotient is one-dimensional, and we assume that V
integrates to G . Restricting V to P, one obtains the basic tractor
bundle V := G ×P V→ M and the irreducible quotient induces the
bundle of 1-densities E [1]→ M. The bundle V carries a natural
decreasing filtration by smooth subbundles {V i}. Using this, the
bundle π : A→ M can be equivalently described as:

The open subbundle in the projectivization P(V/V2)
consisting of lines that are transversal to the hyperplane
subbundle V1/V2.

The bundle QE [1]→ M of linear connections on the bundle of
1-densities.

The latter description nicely corresponds to the parametrization of
Weyl structures by connections on a bundle of scales.
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A local non-vanishing section of E [1] determines a flat connection
on E [1] and thus a local smooth section s of π : A→ M. Now it
turns out that there is a natural fully non-linear PDE on nowhere
vanishing sections of E [1]→ M:

Since V is a fundamental representation, the corresponding
first BGG operator H has order 2 and maps Γ(E [1]) to
Γ(}2T ∗M ⊗ E [1]) (invariant Hessian).

The determinant induces a (non-linear) natural bundle map
S2T ∗M → S2ΛnT ∗M, and the latter turns out to be some
power E [−N] of E [−1] := E [1]∗.

Thus σ 7→ det(H(σ)) is a non-linear invariant operator
Γ(E [1])→ Γ(E [−(N − n)]), and det(H(σ)) = σ−(N−n) is an
invariant PDE of Monge-Ampère type.
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Now this nicely connects to the geometry of Weyl structures. In
the picture of sections s : A→ M, we call a Weyl-structure
Lagrangean if s∗Ω = 0 and non-degenerate if s∗h is
non-degenerate. Equivalently, the Rho tensor of s has to be
symmetric and non-degenerate. The main connection to the
invariant Monge-Ampère equation is

Theorem

Consider a locally flat AHS structure on M. Then a nowhere
vanishing sections of Γ(E [1]) satisfies the invariant Monge-Ampère
equation if and only if the corresponding section s : M → A has
the property that s(M) ⊂ A is a minimal submanifold.

In projective geometry, solutions of the invariant Monge-Ampère
equation are related to convex projective structures, which play an
important role in the study of representation varieties.
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