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This first lecture starts with an introduction to the general
concept of a Cartan geometry associated to a homogeneous
space.

In particular, I will outline how Riemannian geometry can be
encoded in that way.

The example of conformal structures shows how Cartan
geometries can be used to encode “higher order information”
leading to unusual geometric objects.

The homogeneous model for conformal structures is of rather
special type (a generalized flag manifold) and taking more
general homogeneous spaces of this type leads to parabolic
geometries.
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In the spirit of F. Klein’s Erlangen program, a classical
geometry is specified by a homogeneous space G/P.

If G is a Lie group, there is a definition of an associated
geometric structure due to E. Cartan based on the following.

p : G → G/P is an P-principal bundle that carries the left
Maurer-Cartan form ω ∈ Ω1(G , g) with g = Lie(G ).

The left actions of elements of G are exactly the
diffeomorphisms of G/P that admit a P-equivariant lift
Φ : G → G such that Φ∗ω = ω.

Observe that dω(ξ, η) + [ω(ξ), ω(η)] = 0 by the
Maurer-Cartan equation.

The definition of a Cartan geometry is obtained by replacing G/P
by a manifold M of the same dimension and requiring exactly
those properties of the Maurer Cartan form that make sense in the
general setting.
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Definition

(1) A Cartan geometry of type (G ,P) on a smooth manifold M is
given by a principal P-bundle p : G → M and a Cartan connection
ω ∈ Ω1(G, g), i.e.

each ω(u) : TuG → g is a linear isomorphism

(rg )∗ω = Ad(g)−1 ◦ ω for all g ∈ P (equivariancy)

ω(ζX ) = X for all X ∈ p ⊂ g (fundamental fields)

(2) The curvature K ∈ Ω2(G, g) of the geometry (G, ω) is defined
by K (ξ, η) = dω(ξ, η) + [ω(ξ), ω(η)].

Such geometries exist only for dim(M) = dim(G/P).

There is an obvious notion of morphisms, and morphisms
induce local diffeomorphisms between the base spaces.

The curvature of a Cartan geometry vanishes identically if and
only if it is locally isomorphic to its homogeneous model G/P.
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Example

The nature of the concept of Cartan geometries is illustrated nicely
by the example related to Euclidean geometry. Put G = Euc(n)
and P = O(n), so G/P is Euclidean space En. Consider an
n-manifold M and a Cartan geometry (p : G → M, ω) of type G/P.

g = o(n)⊕ Rn (semi-direct sum) and splitting ω = γ ⊕ θ
accordingly, both components are O(n)-equivariant

θ is equivalent to making G the orthonormal frame bundle of
a Riemannian metric g on M

γ defines a metric linear connection ∇ on TM

The curvature K encodes curvature and torsion of ∇.

Existence and uniqueness of the Levi-Civita connection ⇐⇒
n-dimensional Riemannian manifolds are (categorically) equivalent
to Cartan geometries of type (G ,P) for which K has values in
p ⊂ g. This similarly works for G = O(n + 1) and G = O(n, 1).
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General features of Cartan geometries

K defines a fundamental and complete invariant

representations of P induce natural vector bundles

For the representation on g/p induced by Ad, one obtains
G ×P (g/p) ∼= TM, so all tensor bundles are associated.

Starting from distinguished curves in G/P, one obtains
general notions of distinguished curves in Cartan geometries.

Natural notion of infinitesimal automorphisms of a Cartan
geometry in X(G). Automorphisms of (G, ω) form a Lie group
of dimension ≤ dim(G ) with Lie algebra formed by complete
infinitesimal automorphisms.

Several constructions relating geometries of different type
(Correspondence spaces, Fefferman constructions, extension
functors).
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The conformal sphere

Put G := SO0(n + 1, 1) for a Lorentzian inner product on Rn+2.
Then G acts transitively on Sn, viewed as a space of isotropic rays.
Hence Sn = G/P, where P ⊂ G is the stabilizer of one such ray.
Elementary arguments show that the action `g of g ∈ G on Sn

sends the round metric of Sn to a conformally related metric.

Denoting by o ∈ Sn the point fixed by P, the map g 7→ To`g
defines a surjective homomorphism P → G0 := CO(n).

The kernel of this homomorphism is normal subgroup P+ ⊂ P
isomorphic to Rn∗ and P = G0 n P+.

For any g ∈ P+, `g coincides with idSn to first order in o, but
for g 6= e, they are different on any open neighborhood of o.
In particular, there is no G -invariant linear connection on TSn.

This “higher order issue” will be crucial in what follows.
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Let (p : G → M, ω) be a Cartan geometry of type (G ,P).
Factoring by the action of P+ ⊂ P, we obtain G0 := G/P+ and
p0 : G0 → M is a principal bundle with structure group
P/P+

∼= CO(n). Projecting the values of ω to g/p ∼= Rn, the
result descends to a strictly horizontal form θ ∈ Ω1(G0,Rn)G0 .
Hence we obtain an underlying conformal structure on M (i.e. an
inner product up to scale on each tangent space).

Theorem (E. Cartan)

Any conformal structure arises in this way. Imposing a
normalization condition on the curvature K makes the inducing
Cartan geometry unique up to isomorphism and one obtains an
equivalence of categories.

There are two approaches to proving this, which are very different
in spirit. Since each of them has interesting advantages, we’ll
sketch both of them, starting with the classical approach.
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Sketch of classical proof

Starting from a conformal structure (G0, θ), one first observes
that there are torsion-free principal connections γ on G0.

For each u0 ∈ G0, the values γ(u0) form an n-dimensional
affine space. Attaching this to u0 one constructs a bundle
G → M and extending the action of G0 on G0 defines a
principal right action of P on G.

Using the connection forms of the γ, one defines a natural
form ω0 ∈ Ω1(G, g0). For each u ∈ G over u0, θ(u0)⊕ ω0(u)
defines a linear isomorphism Tu0G0 → g−1 ⊕ g0.

The possible lifts to a linear isomorphism TuG → g that is
compatible with fundamental fields form an affine space and
the corresponding curvature K always has values in g0 ⊕ g1.

One then shows that there is a unique such lift for which the
g0-component of K has vanishing Ricci-type contraction.
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Sketch of “abstract” proof

Starting from (G0, θ), define G := G0 ×G0 P, so G/P+
∼= G0.

Choose a principal principal connection on G and use it and θ
to define a Cartan connection ω̂ on G. Then (G, ω̂) has
underlying structure (G0, θ).

Cartan connections on G inducing θ form an affine space and
there is a concept of homogeneity, which also applies to
curvature. The change of curvature in lowest homogeneity is
tensorial and induced by a Lie algebra cohomology differential.

Finding a normalization condition becomes a purely algebraic
problem. Having done this, one can normalize ω̂ homogeneity
by homogeneity to obtain a normal Cartan connection ω on G.

Using information on H1(Rn, g) one shows that two normal
Cartan connections on G that induce θ are related by an
automorphism covering the identity on (G0, θ).
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tractor bundles

We know that for the representation of P on g/p induced by Ad,
we get G ×P (g/p) ∼= TM. This representation factors through
P → P/P+

∼= G0, so to recover higher order information, other
constructions are needed:

Via equivariant extension, the Cartan connection ω induces a
principal connection ω̃ on G̃ := G ×P G . Taking a representation V
of G and restricting to P, we obtain VM := G ×P V = G̃ ×G V, so
this inherits a canonical linear connection. (“tractor bundles and
tractor connections”)

Choosing g in the conformal class, its Levi-Civita connection
∇ defines a section G0 → G.

Using this, one identifies VM with a bundle associated to G0

and describes the canonical connection in terms of ∇.

It can be made explicit how all this changes when rescaling g .

Andreas Čap
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The abstract proof is robust and in particular applies to all pairs
(G ,P) where G is semisimple and P ⊂ G is a parabolic subgroup.
Here the relevant information on Lie algebra cohomology is
provided by Kostant’s theorem. Interpretations in the spirit of the
classical proof can then be recovered via so-called Weyl structures.

Parabolic subgroups are characterized by the fact that there is a
Lie algebra grading g = ⊕k

i=−kgi such that p = ⊕i≥0gi . Putting

gi := ⊕j≥igj makes g into a filtered Lie algebra. Since p = g0, the
filtration is P-invariant and there are natural subgroups
G0,P+ ⊂ P corresponding to g0 and p+ := g1.

Filtrations and associated graded objects are crucial for the theory.
Recall that for a filtration by smooth subbundles
TM = T−kM ⊃ T−k+1M ⊃ · · · ⊃ T−1M such that
[Γ(T iM), Γ(T jM)] ⊂ T i+jM the Lie bracket induces a tensorial
bracket on gr(TxM) = ⊕i (T

i
xM/T i+1

x M) (“symbol algebra at x”).
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The underlying structure for parabolic geometries

Given a type (G ,P) corresponding to g = ⊕igi , the underlying
structure consists of

1 A filtration TM = T−kM ⊃ T−k+1M ⊃ · · · ⊃ T−1M such
that gr(TM) becomes a locally trivial bundle of Lie algebras
modeled on g− = ⊕i<0gi .

2 This then has a natural frame bundle with structure group
Autgr (g−) that contains G0 as a subgroup and the second
ingredient is a reduction to that structure group.

A standard example arises from G = SU(n + 1, 1) with P the
stabilizer of an isotropic complex line. Here g− is a Heisenberg
algebra, so 1 is a contact structure H ⊂ TM. G0 consists of
those automorphisms that are complex linear on g−1

∼= Cn, so 2

is an almost complex structure on H.
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Conformal structures are among the examples in which 1 is
vacuous, and one obtains just a G0-structure (“AHS structures”).
There are examples for which 2 is vacuous since G0 = Autgr (g−),
e.g. various generic distributions.

Projective structures are one of two examples in which the Cartan
geometry is not determined by the underlying structure. Here
G = SL(n + 1,R) and P is the stabilizer of a ray in Rn+1, so
G0 = GL+(n,R). Then G0 → M is the full oriented frame bundle
of M. Any G0-equivariant section G0 → G pulls back the
g0-component of ω to a principal connection on G0.

Hence there is a class of distinguished connections on TM. It turns
out that they all are torsion-free and have the same geodesics up
to parametrization. This leads to a “projective equivalence class”
of torsion-free connections, which is equivalently encoded by the
Cartan geometry.
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