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Recap / program

In the first lecture, we have discussed the description of
conformal structures as Cartan geometries and the
generalization to parabolic geometries.

Today’s lecture will start with a fundamental example of
geometric compactifications. Starting from the example of
hyperbolic space, I will introduce the concept of conformally
compact metrics and of Poincaré-Einstein metrics, which are
of interest in a broad variety of slightly different settings.

We then show an efficient description of such metrics via the
standard tractor bundle associated to the conformal Cartan
geometry. This relates Poincaré-Einstein metrics to parallel
tractors and hence to reductions of conformal holonomy.

I’ll briefly outline work of R. Gover and A. Waldron on a
resulting boundary calculus and generalizations of the
Willmore energy.
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The model example for a geometric compactification is adding the
sphere Sn as a boundary at infinity to hyperbolic space Hn+1. Let
M ⊂ Rn+1 be the closed unit ball, Hn+1 its interior endowed with
the hyperbolic metric g := 4

(1−r2)2 gEuc and Sn its boundary.

The function ρ := 1− r2 is an example of a defining function for
the boundary Sn ⊂ M. This means that ρ : M → R is smooth with
zero set Sn and dρ|Sn is nowhere vanishing. Any other defining
function is of the form f ρ, where f : M → R is smooth and
nowhere vanishing (locally around Sn).

Turning things around, g has the property that ρ2g admits a
smooth extension to all of M with the boundary values defining a
Riemannian metric on Sn (the round one). This then holds for any
defining function, but one obtains a metric on Sn conformal to the
round one. Then Isom(Hn+1) ∼= Conf (Sn). Observe that ραg
does not extend for α < 2, while for α > 2 it extends, but the
boundary values are zero.
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There is a general concept of local defining functions (and sections
of line bundles) for arbitrary hypersurfaces Σ ⊂ M. In particular,
this applies to the boundary in any manifold with boundary. The
crucial feature of those is that any smooth function f such that
f |Σ = 0 can be written as ρh for a smooth function h. This leads
to a notion of order of vanishing on Σ and of growth towards Σ.

Definition

Let M be a smooth manifold with boundary ∂M and interior M. A
Riemannian metric g on M is called conformally compact if for any
local defining function ρ for ∂M, the metric ρ2g admits a smooth
extension to all of M, whose restrict to T∂M is non-degenerate. If
g in addition is Einstein with negative scalar curvature, then it is
called a Poincaré-Einstein metric (PE metric).

This leads to a well defined conformal structure [ρ2g |T∂M ] on ∂M,
the conformal infinity of g . One is led to a variety of interesting
problems in different settings:
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Description via tractors

Starting from (M, g), one studies asymptotic aspects of
Riemannian geometry, in particular in the PE case.

Looking for asymptotic invariants of metrics that are
asymptotic to the hyperbolic metric leads to a hyperbolic
version of mass. (Here the PE case is trivial.)

Given a conformal structure on ∂M, one can try to “fill in” a
PE metric on M. This is interesting both on a formal level
(Fefferman-Graham) and on an analytical level.

The picture is the setup for the AdS/CFT correspondence and
various versions of holography in physics.

This is the model for compactifications of symmetric spaces.
In general, the boundary structure is much more involved and
it is difficult to endow boundary components with reasonable
geometric structures.

We will next describe the setup from the point of view of
conformal geometry.
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densities

A metric g on N defines a volume density volg =
√

det(gij).

Forming powers and duals of the resulting line bundle, one
obtains a family E [w ]→ N of line bundles for w ∈ R. The
standard convention is that volg ∈ Γ(E [−n]).

E [w ] is associated to G0 via a representation of Z (CO(n)).

For a choice of metric g , (volg )−w/n is a nowhere vanishing section
of E [w ], thus identifying Γ(E [w ]) with C∞(N,R). Changing from
g to ĝ = f 2g , this identification changes as σ̂ = f −wσ, which
explains the convention.

Conversely, for w 6= 0, any nowhere vanishing σ ∈ Γ(E [w ])
determines a unique metric g in the class such that σ is parallel for
the connection induced by the Levi-Civita connection ∇g .
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We will use abstract indices, so Ea = TN, Ea = T ∗N and so on.
Adding [w ] indicates a tensor product with E [w ].

The conformal class spans a line subbundle of E(ab) isomorphic to
E [−2]. This defines a tautological section gab ∈ Γ(E(ab)[2])

(“conformal metric”). This has an inverse gab ∈ Γ(E(ab)[−2]).
Hence we may raise and lower indices at the expense of a weight.

We next describe the standard tractor bundle EA which is an
equivalent encoding of the Cartan geometry associated to a
conformal structure. Recall that this has type (G ,P), where
G = SO0(n + 1, 1). Restricting the standard representation gives a
representation of P on V := Rn+2 and EA = G ×P V and we get:

A Lorentzian bundle metric hAB with inverse hAB .

A line subbundle ∼= E [−1] (isotropic for h) whose inclusion
defines XA ∈ Γ(EA[1]).

A surjection EA → E [1] given by XA = hABX
B .
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The natural line subbundle in EA is isotropic, thus contained in its
orthocomplement and defining a filtration. We write this as a
composition series EA = E [1] +

�� Ea[1] +
�� E [−1]. Choosing a metric

in the conformal class defines a splitting of the filtration, thus
identifying EA with a direct sum, which we denote by vectors.

Changing from g to ĝ = f 2g , we put Υa = f −1df and the

splitting changes as

(
σ̂
µ̂a
ρ̂

)
=

(
σ

µa+Υaσ

ρ−gab(Υaµb+ 1
2

ΥaΥbσ)

)
. EA carries

the canonical tractor connection. In the splitting for g this is given
in terms of ∇ = ∇g and the Schouten tensor Pab of g as

∇a

( σ
µb
ρ

)
=

( ∇aσ−µa
∇aµb+gabρ+Pabσ

∇aρ−gijPaiµj

)
. Next, DAτ :=

(
w(n+2w−2)τ
(n+2w−2)∇aτ

−gij (∇i∇j+Pij )τ

)
defines a natural operator DA : Γ(E [w ])→ Γ(EA[w − 1]).

We will mainly use this on E [1] and put IA := 1
nD

Aσ, which has σ
as its top component (“BGG splitting operator”). Of course, we
can then form |I |2 := hAB I

AIB , which is a smooth function.
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Conformal compactness and Poincaré-Einstein metrics
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To interpret |I |2, we first look at U := {x : σ(x) 6= 0}. The metric
gab := (1/σ2)gab on U satisfies ∇aσ = 0, and in this scale, it is
evident that |I |2 is a negative multiple of Scal(g). For x /∈ U,
∇aσ(x) is independent of the choice of metric and outside of U,
we get |I |2 = gij(∇iσ)(∇jσ).

Parallel sections of EA are closely related to Einstein metrics in the
conformal class:

Any parallel section is of the form IA as above. (Determined
by the top component.)

For U and g as above, ∇aI
A|U = 0 is equivalent to the

Schouten tensor Pab of g being proportional to gab and hence
to g being Einstein.

If IA is parallel, then |I |2 is constant and on U is a negative
multiple of the Einstein constant of g .
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Description via tractors

Consider a conformal manifold M = M ∪ ∂M with boundary, let g
be a metric in the class on M and take σ := (volg )−1/n ∈ Γ(E [1]).

Then g is conformally compact iff σ extends by zero to a defining
density for ∂M.

Proof: For a local defining function ρ for ∂M put ĝ := ρ2g . If g is
conformally compact, ĝ is a metric in our class defined on all of
M. Thus σ̂ is nowhere vanishing. But volĝ = ρn volg and hence
σ = ρσ̂ on M, which shows that σ extends as required. Conversely,
if σ extends to a defining density, then ρ−1σ smoothly extends to
M and the metric it determines coincides with ρ2g on M.
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Theorem

For M = M ∪ ∂M let g be a negative Einstein metric on M such
that the conformal class [g ] smoothly extends to M, but g itself
does not admit a smooth extension to any neighborhood of a
boundary point (e.g. because g is complete).
Then g is conformally compact and hence Poincaré-Einstein.

EA and the tractor connection are defined on M.

The tractor IA determined by g is parallel over M hence can
be smoothly extended to a parallel tractor on M.

Projecting IA to Γ(E [1]) provides a (unique) smooth extension
of σ to all of M.

If σ(x) 6= 0 for some x ∈ ∂M, one obtains a smooth extension
of g to a neighborhood of x , so all boundary values are zero.

Since |I |2 is constant on M and nonzero on M, σ is a defining
density.
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Conformal compactness and Poincaré-Einstein metrics
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The setup described here is the starting point for a detailed
analysis in several articles of R. Gover and A. Waldron: Given
M = M ∪ ∂M and a conformally compact metric g on M, take the
corresponding conformal structure on M, the defining density
σ ∈ Γ(E [1]) for ∂M selected by g and put IA := 1

nD
Aσ. We

assume that |I |2 is nowhere vanishing.

Consider I · D : Γ(E [w ])→ Γ(E [w − 1]), τ 7→ hAB I
ADBτ . This

naturally extends to sections of weighted tractor bundles.

On M, this is a Yamabe type operator associated to g .

If |I |2 ≡ 1 close to ∂M, then it restricts to the conformally
invariant Robin operator on a neighborhood of ∂M.

Together with multiplication by σ and a weight operator, I ·D
forms an sl2-triple. This allows for very efficient computations
(analysis of eigenfunctions, problems of harmonic extension,
operators acting tangentially, etc.)
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There are very interesting applications to the study of (oriented)
hypersurfaces Σ in a conformal manifold (N, [g ]). The natural
question here is whether one can find a defining density
σ ∈ Γ(E [1]) for Σ ⊂ N such that the corresponding tractor
IA = 1

nD
Aσ satisfies |I |2 ≡ 1 (singular Yamabe problem).

Starting from any defining density σ0 for Σ the problem can be
studied formally along Σ:

If n = dim(N), there exists σ (unique up to O(σn+1)) such
that |I |2 = 1 +O(σn).

For this σ, σ−n(|I |2 − 1) is a smooth section of E [−n] defined
locally around Σ, whose restriction to Σ is an invariant of
(N, [g ],Σ).

for n = 3, this produces the Willmore energy, so one obtains a
natural family of higher order Willmore energies and
invariants.
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