BGG sequences and generalizations of the Korn inequality

Andreas Čap ${ }^{1}$
(joint work in progress with $\mathrm{K} . \mathrm{Hu}$ (Oxford))
University of Vienna
Faculty of Mathematics

Srni, January 2023
universität
wien

Der Wissenschaftsfonds.
${ }^{1}$ supported by the Austrian Science Fund (FWF)

Introduction

The classical Korn inequality is an important tool in applied maths (elasticity theory). For appropriate domains $U \subset \mathbb{R}^{n}$ it states that for $f \in H^{1}\left(U, \mathbb{R}^{n}\right)$ one has $\|f\|_{H^{1}}^{2} \leq C\left(\|f\|_{L^{2}}^{2}+\|\operatorname{Sym}(D f)\|_{L^{2}}^{2}\right)$.

Here $\operatorname{Sym}(D f)$ is the symmetrized derivative, which is the Killing operator for the flat metric in \mathbb{R}^{n}. There is a conformal analog for $\operatorname{tfp}(\operatorname{Sym}(D f))$ and both cases have been generalized to Riemannian manifolds.

In both cases one deals with a first BGG operator (in a Sobolev setting), and on \mathbb{R}^{n} the BGG machinery extends to this setting. I will start by discussing an extension of this to Riemannian manifolds. There is a classical proof of the inequality, where the main step is proving a regularity statement, namely that for $f \in L^{2}$ with $\operatorname{Sym}(D f) \in L^{2}$ one has $f \in H^{1}$. Via the BGG machinery, this leads to a vast generalization of the inequality.

Distributional sections of vector bundles

Let (M, g) be a compact Riemannian manifold. Recall that (regardless of orientation), there is a volume density on M and hence there is a well defined integral $\int_{M} f$ for $f \in C^{\infty}(M, \mathbb{R})$.

For a vector bundle $E \rightarrow M$ we get the dual bundle $E^{*} \rightarrow M$ and for sections $\sigma \in \Gamma(E), \lambda \in \Gamma\left(E^{*}\right)$ we have the dual pairing $\langle\sigma, \lambda\rangle \in C^{\infty}(M, \mathbb{R})$. Defining $\mathcal{D}^{\prime}(M, E)$ as the topological dual of $\Gamma\left(E^{*}\right), \Gamma(E)$ injects into $\mathcal{D}^{\prime}(M, E)$ via $\sigma \mapsto\left(\lambda \mapsto \int_{M}\langle\sigma, \lambda\rangle\right)$.

Via this inclusion, one extends operations to distributional sections. For example, for $f \in C^{\infty}(M, \mathbb{R})$ and $\alpha \in \mathcal{D}^{\prime}(M, E)$, one defines $f \alpha(\lambda):=\alpha(f \lambda)$. Similarly, for a vector bundle homomorphism $\Phi: E \rightarrow F$, one gets $\Phi^{*}: F^{*} \rightarrow E^{*}$ and extends the operator on sections to $\Phi: \mathcal{D}^{\prime}(M, E) \rightarrow \mathcal{D}^{\prime}(M, F)$ via $\Phi(\alpha)(\lambda):=\alpha\left(\Phi^{*}(\lambda)\right)$ for $\alpha \in \mathcal{D}^{\prime}(M, E)$ and $\lambda \in \Gamma\left(F^{*}\right)$.

covariant (exterior) derivative

For a linear connection on E, we obtain the dual connection on E^{*} and we denote these and the Levi-Civita connection by ∇. For $\psi \in \Gamma\left(T M \otimes E^{*}\right)$ we define $\operatorname{div}(\psi)=\mathcal{C}(\nabla \psi)$, where \mathcal{C} contracts the first two indices. Using partial integration, one proves that $\nabla \alpha(\psi):=-\alpha(\operatorname{div}(\psi))$ extends the covariant derivative to an operator $\mathcal{D}^{\prime}(M, E) \rightarrow \mathcal{D}^{\prime}\left(M, T^{*} M \otimes E\right)$.

This similarly works for the covariant exterior derivative $d^{\nabla}: \Omega^{k}(M, E) \rightarrow \Omega^{k+1}(M, E)$. Given $\psi \in \Gamma\left(\Lambda^{k+1} T M \otimes E^{*}\right)$ we again define $\operatorname{div}(\psi)$ as the contraction of $\nabla \psi$ over the first two indices. Then we define $\left(d^{\nabla} \alpha\right)(\psi):=-\alpha(\operatorname{div}(\psi))$ and using partial integration shows that this extends the definition on smooth forms.

One could now go ahead to define Sobolev norms and then Sobolev spaces as completions of $C^{\infty}(M, \mathbb{R})$ with respect to these norms. We prefer to initially take an alternative route via charts.

Sobolev sections

Let (U, u) be a chart for $M, f \in C^{\infty}(M, \mathbb{R})$ a function with $\operatorname{supp}(f) \subset U$ and $\left\{\lambda_{i}\right\}$ be a smooth local frame for E^{*} defined on U. For $h \in C_{c}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}\right), f(h \circ u) \lambda_{i}$ extends by zero to a smooth section of E^{*}. Given $\alpha \in \mathcal{D}^{\prime}(M, E)$, we can thus define $(f \alpha)^{i} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ by $(f \alpha)^{i}(h):=\alpha\left(f(h \circ u) \lambda_{i}\right)$.

Definition

For $s \in \mathbb{R}$ we say that α lies in $H^{s}(M, E) \subset \mathcal{D}^{\prime}(M, E)$ if and only if for any (U, u) and f and one (or equivalently any) local frame $\left\{\lambda_{i}\right\}$ as above, each of the distributions $(f \alpha)^{i}$ lies in $H^{s}\left(\mathbb{R}^{n}\right) \subset D^{\prime}\left(\mathbb{R}^{n}\right)$.

If E carries a bundle metric, then for $s=k \in \mathbb{N}$, there is a (pre-Hilbert) H^{k}-norm $\left\|\|_{H^{k}}\right.$ on $\Gamma(E)$ induced by the natural L^{2}-norms of $\sigma \in \Gamma(E)$ and its symmetrized iterated covariant derivatives of order up to k. One then proves that for $k \in \mathbb{N}$, $H^{k}(M, E)$ can be identified with the completion of $\left(C^{\infty}(M, \mathbb{R}),\| \|_{H^{k}}\right)$, and hence carries a natural norm.

The Lions lemma for the covariant derivative

For $k \in \mathbb{N}$ it is more or less by definition true that if for an H^{k}-funktion f on \mathbb{R}^{n} also the partial derivatives $\partial_{i} f$ lie in H^{k}, then f lies in H^{k+1}. This extends to arbitrary Sobolev indices (and suffiently nice domains in \mathbb{R}^{n}) and this extension is known as the Lions lemma. Via the chart interpretation, this generalizes further:

Proposition (Lions lemma for ∇)

Let (M, g) be a compact Riemannian manifold and $E \rightarrow M$ a vector bundle and take $\alpha \in \mathcal{D}^{\prime}(M, E)$. Suppose that for some $s \in \mathbb{R}$ we have $\alpha \in H^{s}(M, E)$ and $\nabla \alpha \in H^{s}\left(M, T^{*} M \otimes E\right)$. Then $\alpha \in H^{s+1}(M, E)$.

In what follows, this will be mainly needed in the case that s is a negative integer.

Input from representation theory

We need a representation $\mathbb{V}=\oplus_{i=0}^{N} \mathbb{V}_{i}$ of $O(n)$ for some $N \in \mathbb{N}$ which is endowed with an $O(n)$-equivariant action of the Abelian Lie algebra \mathbb{R}^{n} written as $(X, v) \mapsto X \bullet v$ such that $\mathbb{R}^{n} \bullet \mathbb{V}_{i} \subset \mathbb{V}_{i-1}$.

This induces an $O(n)$-equivariant Lie algebra cohomology differential $\partial: \Lambda^{k} \mathbb{R}^{n *} \otimes \mathbb{V} \rightarrow \Lambda^{k+1} \mathbb{R}^{n *} \otimes \mathbb{V}$ which sends \mathbb{V}_{i}-valued maps to \mathbb{V}_{i-1}-valued ones. Explicitly,
$\partial \varphi\left(X_{0}, \ldots, X_{k}\right):=\sum_{i}(-1)^{i} X_{i} \bullet \varphi\left(X_{0}, \ldots, \widehat{X}_{i}, \ldots, X_{k}\right)$.
Examples come from representations \mathbb{V} of Lie groups G with $|1|$-graded Lie algebra $\mathfrak{g}=\mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ such that $\mathfrak{o}(n) \subset \mathfrak{g}_{0}$. The two main examples are $G=S L(n+1, \mathbb{R})$ with $G_{0}=G L(n, \mathbb{R})$ and $G=O(n+1,1)$ with $G_{0}=C O(n)$. For these examples, there is Kostant's algebraic Hodge theory, which leads to additional structure and to an algorithm to compute the cohomology of ∂.

If one requires only $O(n)$ equivariancy, this can be formulated as existence of a differential $\partial^{\#}: \Lambda^{k+1} \mathbb{R}^{n *} \otimes \mathbb{V} \rightarrow \Lambda^{k} \mathbb{R}^{n *} \otimes \mathbb{V}$ such that $\partial^{\#} \partial \partial^{\#}=\partial^{\#}$ and $\partial \partial^{\#} \partial=\partial$. In addition, for each k there is an $O(n)$-invariant decomposition
$\Lambda^{k} \mathbb{R}^{n *} \otimes \mathbb{V}=\operatorname{Im}(\partial) \oplus\left(\operatorname{ker}(\partial) \cap \operatorname{ker}\left(\partial^{\#}\right)\right) \oplus \operatorname{Im}\left(\partial^{\#}\right)$.
Here the first two summands add up to $\operatorname{ker}(\partial)$, so the middle summand is isomorphic to the cohomology (of both ∂ and $\partial^{\#}$).

The $O(n)$-representations induce natural vector bundles $\mathcal{V} M=\oplus_{i} \mathcal{V}_{i} M$ on n-dimensional Riemannian manifolds and the $O(n)$-equivariant maps give rise to natural bundle maps. The corresponding operators on sections are denoted by $S: \Omega^{k}(M, \mathcal{V} M) \rightarrow \Omega^{k+1}(M, \mathcal{V} M)$ and T in the opposite direction.

By construction, we get $S^{2}=0$ and $T^{2}=0$. Moreover, for $\varphi \in \Omega^{k}(M, \mathcal{V} M)$ we get $\varphi=S T \varphi+(\varphi-S T \varphi-T S \varphi)+T S \varphi$. Here the middle summand lies in $\operatorname{ker}(S) \cap \operatorname{ker}(T)$ and hence occurs only in places where cohomology is present.

The twisted de Rham sequence

Now one defines the twisted covariant exterior derivative $d_{V}: \Omega^{k}(M, \mathcal{V} M) \rightarrow \Omega^{k+1}(M, \mathcal{V} M)$ as $d_{V}:=d^{\nabla}-S$. Observe that d^{∇} preserves the subspaces $\Omega^{*}\left(M, \mathcal{V}_{i} M\right)$ while S maps $\Omega^{k}\left(M, \mathcal{V}_{i} M\right) \rightarrow \Omega^{k+1}\left(M, \mathcal{V}_{i-1} M\right)$. Recall that bundle maps induced by $O(n)$-equivariant maps are automatically parallel for the Levi-Civita connection. Using this, one proves the following result.

Proposition

In any degree, we get $d_{V} \circ d_{V}=d^{\nabla} \circ d^{\nabla}$, so this is given by the tensorial action of the Riemann curvature R of ∇. In particular, for $\varphi \in \Omega^{k}\left(M, \mathcal{V}_{i} M\right)$, we get $d_{V} d_{V \varphi} \in \Omega^{k+2}\left(M, \mathcal{V}_{i} M\right)$.

The operator d_{V} extends without problems to distributional forms and by constructions it maps H^{s}-Sobolev forms to H^{s-1}-Sobolev forms. Also the description of the curvature extends, in particular this shows that for $\alpha \in H^{s}\left(M, \Lambda^{k} T^{*} M \otimes \mathcal{V}_{i} M\right)$ we get $d_{V}\left(d_{V} \alpha\right) \in H^{s}\left(M, \Lambda^{k+2} T^{*} M \otimes \mathcal{V}_{i} M\right)$.

The simplified BGG sequence

To define the BGG splitting operator $L: \Gamma\left(\mathcal{V}_{0} M\right) \rightarrow \Gamma(\mathcal{V} M)$, take $\sigma \in \Gamma\left(\mathcal{V}_{0}\right)$ and define the components $s_{i} \in \Gamma\left(\mathcal{V}_{i} M\right)$ of $L(\sigma)$ recursively by $s_{0}=\sigma$ and $s_{i}=T\left(\nabla s_{i-1}\right)$ for $i>1$. Then the components b_{i} of $d_{V}(L(\sigma))$ are given by $b_{i}=\nabla s_{i}-S T\left(\nabla s_{i}\right)$, and hence $T\left(d_{V}(L(\sigma))\right)=0$. Recursively, one immediately concludes

Proposition

The properties that $L(\sigma)_{0}=\sigma$ and that $T\left(d_{V}(L(\sigma))\right)=0$ uniquely determine the operator L.

Next, one defines the first BGG operator D for $\sigma \in \Gamma\left(\mathcal{V}_{0} M\right)$ as $D(\sigma):=d_{V}(L(\sigma))-T S\left(d_{V} L(\sigma)\right)$, so this lies in $\operatorname{ker}(T) \cap \operatorname{ker}(S)$. Similarly, splitting operators and BGG operators can be defined in higher degrees, but we'll continue the analysis in a different direction.

Kostant's theorem implies that in our setting and for irreducible \mathbb{V}, $\mathbb{H}_{1}:=\operatorname{ker}(\partial) \cap \operatorname{ker}\left(\partial^{\#}\right) \subset \mathbb{R}^{n *} \otimes \mathbb{V}$ is always irreducible as a representation of G_{0}. Moreover, if \mathbb{W} is any irreducible representation of G_{0}, there is a unique representation \mathbb{V} of G such that $\mathbb{V}_{0}=\mathbb{W}$ und such that $\mathbb{H}_{1}=\mathbb{R}^{n *} \odot \mathbb{W} \subset \mathbb{R}^{n *} \otimes \mathbb{V}_{0}$, the $\left(G_{0}-\right)$ Cartan product.

In the $S L$-case, $\mathbb{W}=S^{k} \mathbb{R}^{n *}$ leads to $\mathbb{H}_{1}=S^{k+1} \mathbb{R}^{n *}$, but \mathbb{V} is the irreducible component of highest weight in $S^{k}\left(\Lambda^{2} \mathbb{R}^{(n+1) *}\right)$. Similarly, for $\mathbb{W}=\Lambda^{k} \mathbb{R}^{n *}, \mathbb{H}_{1}$ is the kernel of the complete alternation. For the O-case, $\mathbb{W}=S_{0}^{k} \mathbb{R}^{n}$ similarly leads to $\mathbb{H}_{1}=S_{0}^{k+1} \mathbb{R}^{n}$ with \mathbb{V} the irreducible component of highest weight in $S_{0}^{k}\left(\Lambda^{2} \mathbb{R}^{n+1,1}\right)$.

In either case, the is a unique projection $\pi: \mathbb{R}^{n *} \otimes \mathbb{W} \rightarrow \mathbb{R}^{n *} \odot \mathbb{W}$ and correspondingly we get a bundle map $\pi: T^{*} M \otimes \mathcal{W} M \rightarrow T^{*} M \odot \mathcal{W} M$. The resulting first BGG operator is $D(\sigma)=\pi(\nabla \sigma)$ and can be viewed as giving the "main component" of $\nabla \sigma$.

The generalized Lions lemma

The BGG operator D extends to H^{s} sections without problems, and using this, we formulate:

Theorem

Let $\mathcal{W M}$ be the natural bundle induced by a G_{0}-irreducible representation \mathbb{W} and let $D: \Gamma(\mathcal{W} M) \rightarrow \Gamma\left(T^{*} M \odot \mathcal{W} M\right)$ the corresponding first BGG operator. Then for any $s \in \mathbb{R}$ if $\alpha \in H^{s}(M, \mathcal{W} M)$ has the property that $D(\alpha) \in H^{s}\left(M, T^{*} M \odot \mathcal{W} M\right)$, then $\alpha \in H^{s+1}(M, \mathcal{W} M)$.

Sketch of proof: The recursive definition of $L(\alpha)$ applies to distributional forms, including the characterization. So the components s_{i} of $L(\alpha)$ are given by $s_{0}=\alpha$ and $s_{i}=T\left(\nabla s_{i-1}\right)$. For $\alpha \in H^{s}$, this inductively implies that $s_{i} \in H^{s-i}$ for each $i=1, \ldots, N$. Also for the components b_{i} of $d_{V}(L(\alpha))$, we see that $b_{i}=\nabla s_{i}-S\left(s_{i+1}\right) \in H^{s-i-1}$ for each $i=0, \ldots, N$.

proof (continued)

Now by definition $b_{0}=\nabla \alpha-S T(\nabla \alpha)=\nabla \alpha-S T\left(s_{1}\right)$. The first expression shows that $b_{0}=D(\alpha)$ so by assumption $b_{0} \in H^{s}$. The second expression then shows that it suffices to prove that $s_{1} \in H^{s}$, because then $\nabla \alpha \in H^{s}$ and the Lions lemma for the covariant derivative applies.

For $i>0$, we know that $T\left(b_{i}\right)=0$ and hence $b_{i}=T S\left(b_{i}\right)$ and $S\left(b_{i}\right)=d^{\nabla} b_{i-1}-\left(d_{V} d_{V} L(\alpha)\right)_{i-1}$. But since s_{i-1} lies in H^{s-i+1}, so does the second summand. Hence if b_{i-1} lies in H^{s-i+1}, then $b_{i} \in H^{s-i}$, so by induction, this holds for all i.

For the last component, we have $b_{N}=\nabla s_{N}$. Knowing that this lies in H^{s-N} (and that $s_{N} \in H^{s-N}$), we conclude that $s_{N} \in H^{s-N+1}$. But then for $i<N$, we get $b_{i}=\nabla s_{i}-S\left(s_{i+1}\right)$ and this lies in H^{s-i}. If we know that s_{i+1} also lies in H^{s-i} then we conclude that s_{i} lies in H^{s-i+1}. Hence by backwards induction this holds for all i, so $s_{1} \in H^{s}$ and this completes the proof.

The generalized Korn inequality

Theorem

Let $\mathcal{W M}$ be the natural bundle induced by a G_{0}-irreducible representation \mathbb{W} and let $D: \Gamma(\mathcal{W} M) \rightarrow \Gamma\left(T^{*} M \odot \mathcal{W} M\right)$ the corresponding first BGG operator. Then there is a constant C such that for any $\alpha \in H^{1}(M, \mathcal{W} M)$ we get

$$
\|\alpha\|_{H^{1}}^{2} \leq C\left(\|\alpha\|_{L^{2}}^{2}+\|D(\alpha)\|_{L^{2}}^{2}\right) .
$$

Proof: This is rather simple functional analysis. Consider the subspace $E:=\left\{\alpha: D(\alpha) \in L^{2}(M, T M \odot \mathcal{W} M)\right\} \subset L^{2}(M, \mathcal{W} M)$. The generalized Lions lemma applied to $s=0$ shows that this is contained in $H^{1}(M, \mathcal{W} M)$ and hence equals $H^{1}(M, \mathcal{W} M)$. Now $\|\alpha\|^{2}:=\|\alpha\|_{L^{2}}^{2}+\|D(\alpha)\|_{L^{2}}^{2}$ defines a (pre-Hilbert) norm on E and it is easy to see that E is complete for this norm. By the closed graph theorem, the identity from H^{1} to E is a bounded operator, which implies the result.

