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Introduction

The classical Korn inequality is an important tool in applied maths
(elasticity theory). For appropriate domains U ⊂ Rn it states that
for f ∈ H1(U,Rn) one has ‖f ‖2

H1 ≤ C (‖f ‖2
L2 + ‖Sym(Df )‖2

L2).

Here Sym(Df ) is the symmetrized derivative, which is the Killing
operator for the flat metric in Rn. There is a conformal analog for
tfp(Sym(Df )) and both cases have been generalized to
Riemannian manifolds.

In both cases one deals with a first BGG operator (in a Sobolev
setting), and on Rn the BGG machinery extends to this setting. I
will start by discussing an extension of this to Riemannian
manifolds. There is a classical proof of the inequality, where the
main step is proving a regularity statement, namely that for f ∈ L2

with Sym(Df ) ∈ L2 one has f ∈ H1. Via the BGG machinery, this
leads to a vast generalization of the inequality.
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Distributional sections of vector bundles

Let (M, g) be a compact Riemannian manifold. Recall that
(regardless of orientation), there is a volume density on M and
hence there is a well defined integral

∫
M f for f ∈ C∞(M,R).

For a vector bundle E → M we get the dual bundle E ∗ → M and
for sections σ ∈ Γ(E ), λ ∈ Γ(E ∗) we have the dual pairing
〈σ, λ〉 ∈ C∞(M,R). Defining D′(M,E ) as the topological dual of
Γ(E ∗), Γ(E ) injects into D′(M,E ) via σ 7→ (λ 7→

∫
M〈σ, λ〉).

Via this inclusion, one extends operations to distributional sections.
For example, for f ∈ C∞(M,R) and α ∈ D′(M,E ), one defines
f α(λ) := α(f λ). Similarly, for a vector bundle homomorphism
Φ : E → F , one gets Φ∗ : F ∗ → E ∗ and extends the operator on
sections to Φ : D′(M,E )→ D′(M,F ) via Φ(α)(λ) := α(Φ∗(λ)) for
α ∈ D′(M,E ) and λ ∈ Γ(F ∗).
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covariant (exterior) derivative

For a linear connection on E , we obtain the dual connection on E ∗

and we denote these and the Levi-Civita connection by ∇. For
ψ ∈ Γ(TM ⊗ E ∗) we define div(ψ) = C(∇ψ), where C contracts
the first two indices. Using partial integration, one proves that
∇α(ψ) := −α(div(ψ)) extends the covariant derivative to an
operator D′(M,E )→ D′(M,T ∗M ⊗ E ).

This similarly works for the covariant exterior derivative
d∇ : Ωk(M,E )→ Ωk+1(M,E ). Given ψ ∈ Γ(Λk+1TM ⊗ E ∗) we
again define div(ψ) as the contraction of ∇ψ over the first two
indices. Then we define (d∇α)(ψ) := −α(div(ψ)) and using partial
integration shows that this extends the definition on smooth forms.

One could now go ahead to define Sobolev norms and then
Sobolev spaces as completions of C∞(M,R) with respect to these
norms. We prefer to initially take an alternative route via charts.



Sobolev sections of vector bundles A simplified BGG machinery Generalizations of the Korn inequality

Sobolev sections

Let (U, u) be a chart for M, f ∈ C∞(M,R) a function with
supp(f ) ⊂ U and {λi} be a smooth local frame for E ∗ defined on
U. For h ∈ C∞c (Rn,R), f (h ◦ u)λi extends by zero to a smooth
section of E ∗. Given α ∈ D′(M,E ), we can thus define
(f α)i ∈ D′(Rn) by (f α)i (h) := α(f (h ◦ u)λi ).

Definition

For s ∈ R we say that α lies in Hs(M,E ) ⊂ D′(M,E ) if and only if
for any (U, u) and f and one (or equivalently any) local frame {λi}
as above, each of the distributions (f α)i lies in Hs(Rn) ⊂ D ′(Rn).

If E carries a bundle metric, then for s = k ∈ N, there is a
(pre-Hilbert) Hk -norm ‖ ‖Hk on Γ(E ) induced by the natural
L2-norms of σ ∈ Γ(E ) and its symmetrized iterated covariant
derivatives of order up to k. One then proves that for k ∈ N,
Hk(M,E ) can be identified with the completion of
(C∞(M,R), ‖ ‖Hk ), and hence carries a natural norm.
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The Lions lemma for the covariant derivative

For k ∈ N it is more or less by definition true that if for an
Hk -funktion f on Rn also the partial derivatives ∂i f lie in Hk , then
f lies in Hk+1. This extends to arbitrary Sobolev indices (and
suffiently nice domains in Rn) and this extension is known as the
Lions lemma. Via the chart interpretation, this generalizes further:

Proposition (Lions lemma for ∇)

Let (M, g) be a compact Riemannian manifold and E → M a
vector bundle and take α ∈ D′(M,E ). Suppose that for some
s ∈ R we have α ∈ Hs(M,E ) and ∇α ∈ Hs(M,T ∗M ⊗ E ). Then
α ∈ Hs+1(M,E ).

In what follows, this will be mainly needed in the case that s is a
negative integer.
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Input from representation theory

We need a representation V = ⊕N
i=0Vi of O(n) for some N ∈ N

which is endowed with an O(n)-equivariant action of the Abelian
Lie algebra Rn written as (X , v) 7→ X • v such that Rn •Vi ⊂ Vi−1.

This induces an O(n)-equivariant Lie algebra cohomology
differential ∂ : ΛkRn∗ ⊗ V→ Λk+1Rn∗ ⊗ V which sends Vi -valued
maps to Vi−1-valued ones. Explicitly,
∂ϕ(X0, . . . ,Xk) :=

∑
i (−1)iXi • ϕ(X0, . . . , X̂i , . . . ,Xk).

Examples come from representations V of Lie groups G with
|1|-graded Lie algebra g = g−1 ⊕ g0 ⊕ g1 such that o(n) ⊂ g0. The
two main examples are G = SL(n + 1,R) with G0 = GL(n,R) and
G = O(n + 1, 1) with G0 = CO(n). For these examples, there is
Kostant’s algebraic Hodge theory, which leads to additional
structure and to an algorithm to compute the cohomology of ∂.
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If one requires only O(n) equivariancy, this can be formulated as
existence of a differential ∂# : Λk+1Rn∗ ⊗ V→ ΛkRn∗ ⊗ V such
that ∂#∂∂# = ∂# and ∂∂#∂ = ∂. In addition, for each k there is
an O(n)-invariant decomposition
ΛkRn∗ ⊗ V = Im(∂)⊕ (ker(∂) ∩ ker(∂#))⊕ Im(∂#).
Here the first two summands add up to ker(∂), so the middle
summand is isomorphic to the cohomology (of both ∂ and ∂#).

The O(n)-representations induce natural vector bundles
VM = ⊕iViM on n-dimensional Riemannian manifolds and the
O(n)-equivariant maps give rise to natural bundle maps. The
corresponding operators on sections are denoted by
S : Ωk(M,VM)→ Ωk+1(M,VM) and T in the opposite direction.

By construction, we get S2 = 0 and T 2 = 0. Moreover, for
ϕ ∈ Ωk(M,VM) we get ϕ = STϕ+ (ϕ− STϕ− TSϕ) + TSϕ.
Here the middle summand lies in ker(S)∩ ker(T ) and hence occurs
only in places where cohomology is present.
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The twisted de Rham sequence

Now one defines the twisted covariant exterior derivative
dV : Ωk(M,VM)→ Ωk+1(M,VM) as dV := d∇ − S . Observe
that d∇ preserves the subspaces Ω∗(M,ViM) while S maps
Ωk(M,ViM)→ Ωk+1(M,Vi−1M). Recall that bundle maps
induced by O(n)-equivariant maps are automatically parallel for the
Levi-Civita connection. Using this, one proves the following result.

Proposition

In any degree, we get dV ◦ dV = d∇ ◦ d∇, so this is given by the
tensorial action of the Riemann curvature R of ∇. In particular, for
ϕ ∈ Ωk(M,ViM), we get dV dVϕ ∈ Ωk+2(M,ViM).

The operator dV extends without problems to distributional forms
and by constructions it maps Hs -Sobolev forms to Hs−1-Sobolev
forms. Also the description of the curvature extends, in particular
this shows that for α ∈ Hs(M,ΛkT ∗M ⊗ ViM) we get
dV (dVα) ∈ Hs(M,Λk+2T ∗M ⊗ ViM).
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The simplified BGG sequence

To define the BGG splitting operator L : Γ(V0M)→ Γ(VM), take
σ ∈ Γ(V0) and define the components si ∈ Γ(ViM) of L(σ)
recursively by s0 = σ and si = T (∇si−1) for i > 1. Then the
components bi of dV (L(σ)) are given by bi = ∇si − ST (∇si ), and
hence T (dV (L(σ))) = 0. Recursively, one immediately concludes

Proposition

The properties that L(σ)0 = σ and that T (dV (L(σ))) = 0 uniquely
determine the operator L.

Next, one defines the first BGG operator D for σ ∈ Γ(V0M) as
D(σ) := dV (L(σ))− TS(dV L(σ)), so this lies in ker(T ) ∩ ker(S).
Similarly, splitting operators and BGG operators can be defined in
higher degrees, but we’ll continue the analysis in a different
direction.
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Kostant’s theorem implies that in our setting and for irreducible V,
H1 := ker(∂) ∩ ker(∂#) ⊂ Rn∗ ⊗ V is always irreducible as a
representation of G0. Moreover, if W is any irreducible
representation of G0, there is a unique representation V of G such
that V0 = W und such that H1 = Rn∗ }W ⊂ Rn∗ ⊗V0, the (G0–)
Cartan product.

In the SL-case, W = SkRn∗ leads to H1 = Sk+1Rn∗, but V is the
irreducible component of highest weight in Sk(Λ2R(n+1)∗).
Similarly, for W = ΛkRn∗, H1 is the kernel of the complete
alternation. For the O-case, W = Sk

0 Rn similarly leads to
H1 = Sk+1

0 Rn with V the irreducible component of highest weight
in Sk

0 (Λ2Rn+1,1).

In either case, the is a unique projection π : Rn∗ ⊗W→ Rn∗ }W
and correspondingly we get a bundle map
π : T ∗M ⊗WM → T ∗M }WM. The resulting first BGG operator
is D(σ) = π(∇σ) and can be viewed as giving the “main
component” of ∇σ.
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The generalized Lions lemma

The BGG operator D extends to Hs sections without problems,
and using this, we formulate:

Theorem

Let WM be the natural bundle induced by a G0-irreducible
representation W and let D : Γ(WM)→ Γ(T ∗M }WM) the
corresponding first BGG operator. Then for any s ∈ R if
α ∈ Hs(M,WM) has the property that
D(α) ∈ Hs(M,T ∗M }WM), then α ∈ Hs+1(M,WM).

Sketch of proof: The recursive definition of L(α) applies to
distributional forms, including the characterization. So the
components si of L(α) are given by s0 = α and si = T (∇si−1).
For α ∈ Hs , this inductively implies that si ∈ Hs−i for each
i = 1, . . . ,N. Also for the components bi of dV (L(α)), we see that
bi = ∇si − S(si+1) ∈ Hs−i−1 for each i = 0, . . . ,N.
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proof (continued)

Now by definition b0 = ∇α− ST (∇α) = ∇α− ST (s1). The first
expression shows that b0 = D(α) so by assumption b0 ∈ Hs . The
second expression then shows that it suffices to prove that s1 ∈ Hs ,
because then ∇α ∈ Hs and the Lions lemma for the covariant
derivative applies.

For i > 0, we know that T (bi ) = 0 and hence bi = TS(bi ) and
S(bi ) = d∇bi−1 − (dV dV L(α))i−1. But since si−1 lies in Hs−i+1,
so does the second summand. Hence if bi−1 lies in Hs−i+1, then
bi ∈ Hs−i , so by induction, this holds for all i .

For the last component, we have bN = ∇sN . Knowing that this
lies in Hs−N (and that sN ∈ Hs−N), we conclude that
sN ∈ Hs−N+1. But then for i < N, we get bi = ∇si − S(si+1) and
this lies in Hs−i . If we know that si+1 also lies in Hs−i then we
conclude that si lies in Hs−i+1. Hence by backwards induction this
holds for all i , so s1 ∈ Hs and this completes the proof.
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The generalized Korn inequality

Theorem

Let WM be the natural bundle induced by a G0-irreducible
representation W and let D : Γ(WM)→ Γ(T ∗M }WM) the
corresponding first BGG operator. Then there is a constant C such
that for any α ∈ H1(M,WM) we get

‖α‖2
H1 ≤ C (‖α‖2

L2 + ‖D(α)‖2
L2).

Proof: This is rather simple functional analysis. Consider the
subspace E := {α : D(α) ∈ L2(M,TM }WM)} ⊂ L2(M,WM).
The generalized Lions lemma applied to s = 0 shows that this is
contained in H1(M,WM) and hence equals H1(M,WM).Now
‖α‖2 := ‖α‖2

L2 + ‖D(α)‖2
L2 defines a (pre-Hilbert) norm on E and

it is easy to see that E is complete for this norm. By the closed
graph theorem, the identity from H1 to E is a bounded operator,
which implies the result.
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