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This is a survey talk based on joint work with A. Rod Gover
(Auckland).

Attaching a boundary at infinity to complete (pseudo–)
Riemannian manifolds plays an important role in several parts
of mathematics and mathematical physics, for example in
scattering theory, general relativity and AdS/CFT.

Guided by two classes of examples coming from reductions of
projective holonomy, we develop an analog of conformal
compactness in the setting of projective differential geometry.
This concept is formulated for torsion free affine connections
and depends on a parameter, called the order of projective
compactness, that is related to volume growth.

Via Levi–Civita connections, the concept is automatically
defined for pseudo–Riemannian metrics. In this case, scalar
curvature plays a crucial role. This is based on a new
interpretation of scalar curvature in projective terms.
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Let M be a smooth manifold with boundary ∂M and interior M.
Then a conformally compact metric g0 on M together with its
conformal infinity (the induced conformal class on ∂M) can be
equivalently described by

A conformal structure on M, which contains g0.

A section I of the conformal standard tractor bundle, which
projects onto a defining 1–density σ for ∂M that is parallel for
∇g0 over M.

If g0 is Einstein, then I is parallel for the normal tractor connection
and one obtains a reduction conformal holonomy.
Together with the tractor–D operator, I defines a degenerate
Laplacian. This can be used to develop many elements of
boundary calculus, holographic descriptions of GJMS–operators
and Q–curvature and so on (Gover–Waldron).
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The initial setup for conformal compactness thus is a metric on M,
whose conformal class smoothly extends to M, while the metric
itself does not extend (for example, because it is complete).
Apart from the conformal structure defined by a metric, also the
projective structure defined by its Levi–Civita connection is a
highly interesting weakening.

This approach automatically emphasizes the role of geodesics.

Several fundamental operators of Riemannian geometry, for
example the Riemannian deformation sequence, admit a
projectively invariant formulation.

In that sense many results described here belong to the emerging
field of metric projective geometry.
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Projective differential geometry

Let N be a smooth manifold. Projective equivalence of two
torsion–free linear connections ∇ and ∇̂ on TN can be
equivalently defined as

same geodesics up to parametrization

existence of Υ ∈ Ω1(N) such that for all ξ, η ∈ X(N) one has
∇̂ξη = ∇ξη + Υ(ξ)η + Υ(η)ξ.

We will formally write the second condition as ∇̂ = ∇+ Υ.

Proposition

In the situation of M = M ∪ ∂M and of ∇ on TM, there is a
projective modification of ∇ which admits a smooth extension to
the boundary if and only if the tracefree parts of the Christoffel
symbols in local charts admit smooth extensions to the boundary.
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Model examples

Viewed as the space of rays in Rn+2, the sphere Sn+1 carries a
projective structure preserved by the action of SL(n + 2,R).

1 Choosing a hyperplane Rn+1 ⊂ Rn+2 and identifying it with
an open hemisphere via central projection is a projective
diffeomorphism. Hence the projective class of the resulting
flat connection on the hemisphere smoothly extends to the
closed hemisphere. The boundary sphere is totally geodesic
and thus inherits its standard projective structure.

2 Putting a Lorentzian metric on Rn+2, one may identify Hn+1

with future pointing negative rays, thus obtaining a projective
embedding Hn+1 ↪→ Sn+1. The boundary sphere Sn inherits
its standard conformal structure from the ambient projective
structure (“projective second fundamental form”).
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Both these examples generalize to holonomy reductions of curved
projective structures. The concept of projective compactness is
obtained from these examples by analyzing which projective
modifications extend.

Definition

Consider M = M ∪ ∂M and α ∈ R>0.
A torsion free linear connection∇ on TM is called projectively
compact of order α if for each x ∈ ∂M there is a local defining
function ρ for ∂M defined on an open neighborhood U of x in M
such that the linear connection ∇̂ := ∇+ dρ

αρ on U ∩M admits a
smooth extension to all of U.

This turns out to be independent of the defining function ρ, but
changing α corresponds to replacing ρ by some power of ρ, so α
cannot be eliminated. Via the Levi–Civita connection the concept
is automatically defined for metrics.
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Suppose that ∇ is a special affine connection on M (i.e. one that
preserves a volume density). Then each of the projective density
bundles E(w) for w ∈ R admits non–vanishing sections over M
which are parallel for ∇. In this situation, projective compactness
of ∇ order α is equivalent to extendability of the projective
structure plus a specific rate of volume growth as follows:

Proposition

Given a projective structure on M which, over M, contains a
connection ∇ as above, the following are equivalent

1 ∇ is projectively compact of order α

2 In terms of a local defining function ρ for ∂M, the parallel
volume density ν for ∇ has the form ρ−(n+2)/αν̂ for a
nowhere–vanishing ν̂ on M.

3 Any non–vanishing section σ of E(α), which is parallel for ∇
over M, extends by zero to a smooth defining density for ∂M.
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One can directly prove existence of many local examples of
projectively compact metrics: Suppose that 0 < α ≤ 2 (which
ensures that ∂M is “at infinity”) and that 2/α ∈ Z.

Theorem

Suppose that g is a pseudo–Riemannian metric on M such that
there are local defining functions ρ for ∂M such that g admits an

asymptotic form g = C
dρ2

ρ4/α
+

h

ρ2/α
, where h is smooth up to

the boundary and non–degenerate on T∂M, and C is a smooth
function asymptotic to a non–zero constant on ∂M.
Then g is projectively compact of order α.

For α = 2, this form is available (with the same C and conformally
related h) for any defining function. For other values of α, it
singles out specific defining functions.
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The metricity equation

In general, a projective class does not contain any Levi–Civita
connections. Existence of such a connection can be equivalently
characterized as follows:

Existence of a non–degenerate solution of the metricity
equation tfp(∇iσ

jk) = 0, a projectively invariant linear system
of PDEs on E ij(−2).

Existence of a smooth section of the tractor bundle S2T ,
which is parallel for a natural connection on that bundle and
satisfies a non–degeneracy condition.

Given g = gij , the solution is τ−1g ij , where

τ = vol
−2/(n+2)
g ∈ Γ(E(2)) and g ij is the inverse metric. The tensor

bundle E(ij)(−2) is the irreducible quotient of S2T , and the BGG
splitting operator provides the second equivalence.
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The role of scalar curvature

Suppose that g is a metric on M, such that the projective
structure determined by ∇g extends to M. Then the tractor
bundle S2T and the canonical connection on it are defined on all
of M and g determines a parallel section over M. This can be
smoothly extended to all of M by parallel transport.
Moreover, a section of S2T is a bundle metric on T ∗, so it has a
well defined determinant. For the case of the metricity solution,
one easily sees that this is given by the scalar curvature of g , and
one obtains:

Theorem

In this situation, the metricity solution τ−1g ij , the corresponding
section of S2T , and the scalar curvature S of g all admit smooth
extensions to all of M.
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The case of non–zero boundary values for S turns out to be
surprisingly rigid:

Theorem

Let g be a metric on M whose projective structure smoothly
extends to M, and let S : M → R be the extended scalar
curvature. Then for x ∈ ∂M, the following are equivalent

1 S(x) 6= 0

2 g is projectively compact of order α = 2 around x .

3 The boundary value of S is a non–zero constant locally

around x , and g admits an asymptotic form g = C dρ2

ρ2 + h
ρ

with a constant C (related to S).

Idea of proof: If S(x) 6= 0, the tractor metric determined by τ−1g ij

is non–degenerate around x . Its point–wise inverse is a bundle
metric on T . This satisfies a differential equation, showing that τ
is a defining density, and projective compactness follows.

Andreas Čap Projective compactifications



Projective extension and projective compactness
Projectively compact metrics and asymptotic forms

Boundary geometry and curvature asymptotics

More on the proof:

Assuming projective compactness, volume asymptotics implies
that the boundary value of S must be non–zero on a dense
open subset in ∂M.

Knowing explicit connections which extend to the boundary,
one can refine the analysis of the inverse tractor metric on

that subset to obtain an asymptotic form g = −n(n+1)
4S

dρ2

ρ2 + h
ρ .

Using geodesics of such a connection to trivialize a
neighborhood of the boundary, one verifies directly that the
boundary value of S is constant, thus completing the proof.
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The basic quantity induced on the boundary is the projective
second fundamental form II p. This is just the restriction to T∂M
of ∇̂dρ, where ρ is a local defining function and ∇̂ is a connection
in the projective class which is smooth up to the boundary. It is a
symmetric bilinear form defined up to scale.

Let ∇ be projectively compact of order α ∈ (0, 2] on M and
P = Pij is (projective) Schouten tensor. Then ρP + α−1

α2ρ
dρ2 admits

a smooth extension to the boundary with boundary value
representing II p.

This can also be used to described the asymptotic behavior of the
curvature R of ∇:

For α = 1, ρR admits an extension to the boundary, with
boundary value the curvature tensor determined by II p.

For α 6= 1, ρ2R admits an extension, with boundary value the
curvature tensor determined by dρ2.
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One can also study the boundary geometry directly for the case of
metrics having an asymptotic form as discussed before (as
sufficient for projective compactness). For α 6= 2, the boundary is
totally geodesic for such metrics.
For α = 2, the bilinear form h showing up in the asymptotic form
turns out to represent II p, which leads to the following asymptotic
version of the Einstein property:

Theorem

If g is projectively compact of order α = 2 on M, then the
trace–free part of the Ricci–tensor admits a smooth extension to
the boundary. This leads to a complete description of R up to
terms which extend smoothly to the boundary.

Andreas Čap Projective compactifications



Projective extension and projective compactness
Projectively compact metrics and asymptotic forms

Boundary geometry and curvature asymptotics

Boundary tractors

Assume that ∇ is projectively compact of order α = 2, preserves a
volume density, and has II p non–degenerate. Then ∂M inherits a
pseudo–Riemannian conformal structure, which can be fully
described by the conformal standard tractor bundle and connection.

Theorem

The natural defining density τ ∈ Γ(E(2)) determines
L(τ) ∈ Γ(S2T ∗). The bundle T with the metric L(τ) restricts
on ∂M to a conformal standard tractor bundle.

If ∇S2T ∗
L(τ) (tractor connection) vanishes on ∂M, then ∇T

restricts to the conformal tractor connection. (For a metric,
vanishing of Ric0 along ∂M is sufficient.)

In general, one can describe the conformal tractor connection
explicitly in terms of projective data.
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Thank you

and

Happy birthday, Robin
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