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This talk reports on the joint work arXiv:0904.3278 with
J. Šilhan (Masaryk University, Brno and ECC, currently MPI
Bonn).

I will first discuss in some detail the problem of finding
quantizations which are natural with respect to certain
geometric structures. Here quantization is viewed as a purely
mathematical problem, although of course the are relations to
the concept used in physics.

Then I will discuss a purely algebraic interpretation of a
special case of the problem.

In the last part of the talk, I will describe the setting of
AHS–structures and outline our results.
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Recall that the concept of a differential operator and the order of
such an operator makes sense for operators between sections of
vector bundles over a smooth manifold. Most easily, this can be
done by using local coordinates.

More conceptually, one may use jet bundles. Given a vector bundle
E → M over a smooth manifold, an integer k and a point x ∈ M,
one says that two sections s1 and s2 of E have the same k–jet in x
if and only if s1(x) = s2(x) and their representations in local
coordinates have the same partial derivatives up to order k . This
defines an equivalence relation whose equivalence classes are called
k–jets at x , and one shows

There is a vector bundle JkE → M, whose fiber over x consists of
all k–jets of smooth sections of E at x .
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principal symbol

For a section s ∈ Γ(E ) one denotes its k–jet at x by jks(x). Then
one obtains a tautological operator jk : Γ(E )→ Γ(JkE ). This
leads to a coordinate free definition of differential operators.
Namely, D : Γ(E )→ Γ(F ) is a differential operator of order at
most k if and only if there is a vector bundle map D̃ : JkE → F
such that D(s)(x) = D̃(jks(x)) for all s and x .

There is an obvious projection π : JkE → Jk−1E , and it can be
shown that the kernel of π can be naturally identified with
SkT ∗M ⊗ E . Defining kth order symbol of D to be the restriction
of D̃ to this kernel, one obtains:

For a differential operator D : Γ(E )→ Γ(F ) of order ≤ k , there is
a well defined (kth order) principal symbol
σ(D) = σk(D) : T ∗M ⊗ E → F , which vanishes if and only if D is
of order ≤ k − 1.
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quantizations

From the mathematical point of view, a quantization is simply a
right inverse to the principal symbol mapping:

Definition

Let M, E , and F be as before and fix an order k. Then a
quantization for kth order symbols from E to F is a rule assigning
to each smooth bundle map τ : SkT ∗M ⊗ E → F a differential
operator Aτ : Γ(E )→ Γ(F ) of order ≤ k such that σk(Aτ ) = τ .

Observe that given such quantizations for all k ≤ N, we can
actually identify the space of differential operators Γ(E )→ Γ(F ) of
order ≤ N with the direct sum of the spaces of bundle maps
SkT ∗M ⊗ E → F for k = 0, . . . ,N.

Andreas Čap Natural quantizations



Natural Quantizations
Algebraic formulations

AHS–structures and results

quantizations

From the mathematical point of view, a quantization is simply a
right inverse to the principal symbol mapping:

Definition

Let M, E , and F be as before and fix an order k. Then a
quantization for kth order symbols from E to F is a rule assigning
to each smooth bundle map τ : SkT ∗M ⊗ E → F a differential
operator Aτ : Γ(E )→ Γ(F ) of order ≤ k such that σk(Aτ ) = τ .

Observe that given such quantizations for all k ≤ N, we can
actually identify the space of differential operators Γ(E )→ Γ(F ) of
order ≤ N with the direct sum of the spaces of bundle maps
SkT ∗M ⊗ E → F for k = 0, . . . ,N.
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An example

In general, there is no canonical way to construct a quantization,
unless one chooses some additional structures. The most important
possibility is to choose linear connections on E and the tangent
bundle TM. (We will denote these and all induced connections by
∇.) In particular, if M = Rn then E is trivial, and we can just use
the ordinary iterated derivatives of Rm–valued functions on Rn.

Suppose we have chosen connections ∇ on TM and E . Given a
section s ∈ Γ(E ), one can look at the symmetrized k–fold
covariant derivative ∇(k)s ∈ Γ(SkT ∗M ⊗ E ). Given a symbol
τ : SkT ∗M ⊗ E → F , we can thus define
Aτ (s) := τ(∇(k)s) ∈ Γ(F ), and for any choice of ∇, τ 7→ Aτ
defines a quantization.
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the relation to geometry

The last example leads to geometry. Suppose that we choose a
Riemann metric g on M. Then there is the concept of natural
vector bundles (basically tensor and spinor bundles in this case).
On any such bundle there is a canonical linear connection, the
Levi-Civita connection, and we conclude

Observation

For a Riemannian manifold (M, g) there is a natural quantization
for symbols of any order acting between natural bundles.

Now the basic question that we will ask is given some geometric
structure and some class of natural bundles, is there a quantization
map for symbols acting between these bundles which is natural,
i.e. intrinsic to the given geometric structure.
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Guided by the two basic examples mentioned before, two cases
have been studied particularly often:

As we have seen above, choosing a linear connection on TM,
one obtains quantizations on all tensor bundles. Now instead
of a single linear connection on TM take a projective
equivalence class of such connections (i.e. all connections
having the same geodesics up to parametrization) and look for
quantizations depending naturally on this class.

In the same spirit, replace a single Riemannian metric by a
conformal equivalence class of such metrics (i.e. allow
rescalings by positive smooth functions). Then look for
quantizations on natural bundles which only depend on this
class and not on individual representatives.
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Both projective structures and conformal structures admit a
homogeneous model. In the first case, this is RPn as a
homogeneous space of PGL(n + 1,R). The corresponding
connections are those whose unparametrized geodesics are the
projective lines.

The homogeneous model for conformal Riemannian structures is
the sphere Sn viewed as the projectivized light cone in Rn+1,1 and
hence as a homogeneous space of SO(n + 1, 1).
In both cases, the homogeneous model has the form G/P, where
G is semisimple and P ⊂ G is a parabolic subgroup. Any natural
bundle E is a homogeneous vector bundle over G/P, i.e. the G
action on G/P naturally lifts to an action on E . Such bundles are
in bijective correspondence with representations of P. This gives
rise to a natural representation of G on the space Γ(E ), defined by
(g · s)(x) := g · (s(g−1 · x)). If E is irreducible, these are principal
series representations of G .
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Representation theory formulation

The representations of G on Γ(E ) and Γ(F ) give rise to a
representation on the space of linear operators Γ(E )→ Γ(F ),
defined by (g · D)(s) = g · (D(g−1 · s)). By construction, the
subspace Diffk(E ,F ) of differential operators of order ≤ k is
invariant, so this naturally carries a representation of G .

Naturality of the principal symbol map implies that it defines a
G–equivariant map σ : Diffk(E ,F )→ Γ(SkT (G/P)⊗ E ∗ ⊗ F ),
with kernel Diffk−1(E ,F ). It is easy to see that σ descends to an
isomorphism on Diffk(E ,F )/Diffk−1(E ,F ) and one concludes

Finding a natural quantization for the canonical structure on G/P
is equivalent to finding a G–equivariant splitting of the quotient
projection Diffk(E ,F )→ Diffk(E ,F )/Diffk−1(E ,F ) of
G–representations.
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Lie algebra formulation

There is a further reduction of the problem as follows. The
generalized flag manifold G/P contains an open dense subset (the
big Schubert cell) which is naturally diffeomorphic to Rn. This
gives rise to the canonical projective structure (given by the
straight lines) respectively to the flat conformal class on Rn.

The action of G on G/P infinitesimally gives rise to a realization
of its Lie algebra g as a subalgebra of the Lie algebra of polynomial
vector fields on Rn, and these (finite dimensional) Lie subalgebras
turn out to be maximal subalgebras.
The Lie algebra of polynomial vector fields then naturally acts on
sections of natural bundles and on the spaces of differential
operators. Similarly as before, finding natural quantizations for the
canonical structure on Rn becomes equivalent to finding maps
which are equivariant for the action of the subalgebra g.
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earlier results

There is quite a lot of work in the literature on quantizations for
symbols acting between natural line bundles, which are projectively
or conformally natural. Most of the earlier work was done in the
Lie algebraic setting described before.

After some work on projectively natural quantizations for symbols
acting on more general bundles, S. Hansoul has proved a result on
projectively natural quantizations for arbitrary tensor bundles (Adv.
Math. 2007).
In November 2008, a preprint with a construction of a conformally
natural quantization for symbols between arbitrary bundles
appeared.
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AHS–structures

Both projective an conformal structures are special cases of so
called AHS–structures. The latter are characterized by the
existence of a canonical Cartan connection with homogeneous
model a Hermitian symmetric space G/P, so G is a simple Lie
group and P ⊂ G a maximal parabolic subgroup.

The theory of these structures and more generally of parabolic
geometries has been developed a lot during the last years. In
particular, an efficient invariant differential calculus for such
structures has been found.

Our approach to the quantisation problem is to imitate the
construction of a quantization from a linear connection, but using
these invariant differential operators.
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A central ingredient in our approach is the adjoint tractor bundle
AM, a natural vector bundle for any AHS–structure, which is
constructed from the Cartan bundle and connection. This contains
the cotangent bundle T ∗M as a natural subbundle and has the
tangent bundle TM as a natural quotient. Using this, the first bit
is easy:

For any natural bundle V , there is a simple invariant operator
D : Γ(V )→ Γ(A∗M ⊗ V ) called the fundamental derivative. Like
a covariant derivative, this can be iterated and then the result can
be symmetrized in the A∗M–entries. For a section s ∈ Γ(E ) we
can thus form D(k)s ∈ Γ(SkA∗M ⊗ E ). It is rather easy to show
that the principal part of D(k) is a symmetrized k–fold covariant
derivative.
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The second part is much more subtle. The symbols are sections of
SKTM ⊗ E ∗ ⊗ F and this bundle is naturally a quotient of
SKAM ⊗ E ∗ ⊗ F . A section of the latter bundle can be naturally
paired with D(k)s for s ∈ Γ(E ) to produce a section of F . To
construct a natural quantization, we thus want to construct a
natural differential operator splitting this quotient projection.

It follows from existing results that this will not always be possible.
One common feature of AHS–structures is that they always admit
a family {E [w ] : w ∈ R} of natural line bundles (“density
bundles”, “bundles of conformal weights”). The problem is then
formulated for symbols mapping E to F [w ] := F ⊗ E [w ], and all
available results have to exclude certain values for w (“critical
weights” or “resonant weights”).
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The main result

To construct a splitting operator as described above, we use that
machinery of curved Casimir operators. Using these operators one
constructs an invariant differential operator

L : Γ(SkTM ⊗ E ∗ ⊗ F [w ])→ Γ(SkAM ⊗ E ∗ ⊗ F [w ]),

which has the property that projecting back L(τ) to
SkTM ⊗ E ∗ ⊗ F [w ] one obtains p(w)τ for some polynomial p
depending only on k , E , and F (and not on M or its geometric
structure). Then one shows

Theorem

Suppose that w has the property that p(w) 6= 0. Then mapping a
symbol τ to the operator Aτ (f ) := 1

p(w)L(τ)(D(k)f ) defines a
natural quantization.
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Results on critical weights

Natural bundles for AHS–structures correspond to representations
of the parabolic subgroup P. Irreducible representations of P come
from the reductive Levi–factor G0 ⊂ P (which is GL(n,R) in the
projective case and CO(n) in the conformal case). General
representations of P have composition series with completely
reducible subquotients.

To determine the operators L and hence the corresponding
polynomial p and the critical weights (for which p(w) = 0), one
has to understand the composition series of Skg⊗ V , where V is
the representations inducing E . This is a problem of finite
dimensional representation theory (which quickly becomes
complicated with growing k).
One can apply finite dimensional representation theory methods to
get structural information on the set of critical weights and
determine this set completely in simple cases.
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