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Parabolic geometries are a large class of differential geometric
structures, which can be described by Cartan connections.

The machinery of BGG sequences provides a systematic
construction of invariant differential operators for these
geometries.

The first operators in each BGG sequence define an
overdetermined system, and the construction provides a
partial prolongation of this system.

This can be extended to a full prolongation for the BGG
operators and often also for semi–linear systems with the
same principal symbol.
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parabolic subalgebras

Parabolic subgroups form a special class of subgroups in
semi–simple Lie groups. In the complex case, P ⊂ G is parabolic if
and only if G/P is compact. These subgroups can be completely
classified in terms of structure theory. A simple description valid
over R and C is via |k|–gradings.

Let g be a semisimple Lie algebra. A subalgebra p ⊂ g is called
parabolic iff there is a grading g = g−k ⊕ · · · ⊕ gk of g such that

no simple ideal of g is contained in g0

g− := g−k ⊕ · · · ⊕ g−1 is generated by g−1

p = g0 ⊕ · · · ⊕ gk

Andreas Čap BGG sequences and overdetermined systems



Parabolic geometries
BGG sequences

Prolongation procedures

parabolic subalgebras

Parabolic subgroups form a special class of subgroups in
semi–simple Lie groups. In the complex case, P ⊂ G is parabolic if
and only if G/P is compact. These subgroups can be completely
classified in terms of structure theory. A simple description valid
over R and C is via |k|–gradings.

Let g be a semisimple Lie algebra. A subalgebra p ⊂ g is called
parabolic iff there is a grading g = g−k ⊕ · · · ⊕ gk of g such that

no simple ideal of g is contained in g0

g− := g−k ⊕ · · · ⊕ g−1 is generated by g−1

p = g0 ⊕ · · · ⊕ gk
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parabolic subgroups; generalized flag varieties

A subgroup P in a semisimple Lie group G is called parabolic iff its
Lie algebra p is parabolic in g. Then G/P is compact, and there
are natural subgroups G0,P+ ⊂ P such that

G0 has Lie algebra g0 and is reductive

P+ has Lie algebra p+ := g1 ⊕ · · · ⊕ gk , it is nilpotent and
normal in P, and exp : p+ → P+ is a diffeomorphism

P is the semidirect product of G0 and P+

Homogeneous spaces of the form G/P are called generalized flag
varieties. A crucial example to keep in mind is G = SO(n + 1, 1),
P ⊂ G is the stabilizer of an isotropic line, G/P ∼= Sn and G is the
group of conformal isometries of Sn. Here k = 1, P+

∼= Rn is
Abelian and G0

∼= CO(n).
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parabolic geometries

Parabolic geometries are characterized by the fact that they admit
a canonical Cartan connection of type (G ,P) for some semisimple
G and parabolic P ⊂ G . There is a uniform description of these
structures that we will not go into.

Examples

For k = 1, one simply obtains first order structures with
structure group G0.

Among these there are conformal, projective, almost
Grassmannian and almost quaternionic structures.

More general examples include hypersurface–type CR
structures, path geometries, quaternionic contact structures,
and several types of generic distributions in low dimensions.
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A parabolic geometry on M gives rise to a principal bundle P → M
with structure group P and a Cartan connection ω ∈ Ω1(G, g).
Hence

Representations of P give rise to natural vector bundles.

P–equivariant maps between P–representations give rise to
natural bundle maps.

The structure of P and hence its representation theory are
complicated. Since G0

∼= P/P+, any representation of G0 gives rise
to a representation of P. These are exactly the completely
reducible representations, and they correspond to the “usual”
geometric objects.
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Invariant operators

The case of conformal structures already shows that constructing
differential operators which are intrinsic to a parabolic geometry is
a very difficult problem.

On G/P, one may apply representation theory methods.

This leads to strong restrictions on possible operators as well
as to existence proofs, but no explicit descriptions.

Then there is the question of “curved analogs” i.e. how to
pass from G/P to general geometries.

In the discussion of invariant operators, there is a fundamental
distinction into regular and singular infinitesimal character,
referring to weights in the interior or in the boundary of a Weyl
chamber.
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BGG sequences

In regular infinitesimal character, BGG sequences provide a
construction of all standard invariant operators on G/P as well as
distinguished curved analogs of these operators. The method was
introduced by A.C., J. Slovák, V. Souček (Ann. of Math., 2001)
and improved by D. Calderbank and T. Diemer (Crelle, 2001).

Let V be a representation of G . Restricting to P, this gives rise to
a natural bundle (“tractor bundle”) VM on any manifold M
endowed with a parabolic geometry (p : P → M, ω) of type
(G ,P). The Cartan connection ω induces a linear connection ∇ on
VM, so one has the twisted de–Rham sequence (Ω∗(M,VM), d∇).
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The bundles ΛjT ∗M ⊗ VM in the twisted de–Rham sequence
correspond to the P–representations Λjp+ ⊗ V. There are
P–equivariant linear maps

∂∗ : Λjp+ ⊗ V → Λj−1p+ ⊗ V

(“Kostant codifferential”) such that

∂∗ ◦ ∂∗ = 0 and the P–representations
Hj(p+,V) = ker(∂∗)/ im(∂∗) are induced by representations of G0,
which are algorithmically computable by Kostant’s version of the
Bott–Borel–Weil theorem.

All these constructions have geometric counterparts:
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Andreas Čap BGG sequences and overdetermined systems



Parabolic geometries
BGG sequences

Prolongation procedures

The bundles ΛjT ∗M ⊗ VM in the twisted de–Rham sequence
correspond to the P–representations Λjp+ ⊗ V. There are
P–equivariant linear maps

∂∗ : Λjp+ ⊗ V → Λj−1p+ ⊗ V

(“Kostant codifferential”) such that

∂∗ ◦ ∂∗ = 0 and the P–representations
Hj(p+,V) = ker(∂∗)/ im(∂∗) are induced by representations of G0,
which are algorithmically computable by Kostant’s version of the
Bott–Borel–Weil theorem.

All these constructions have geometric counterparts:
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natural bundle maps ∂∗ : ΛjT ∗M ⊗ VM → Λj−1T ∗M ⊗ VM

natural subbundles im(∂∗) ⊂ ker(∂∗) ⊂ ΛjT ∗M

such that the quotients

Hj = ker(∂∗)/ im(∂∗) ∼= P ×P Hj(p+,V)

are algorithmically computable

The core of the method is the construction of invariant differential
operators L : Γ(Hj) → Ωj(M,VM) which split the canonical
projection πH : ker(∂∗) → Hj . While these operators are
complicated, they are characterized by this fact and by
∂∗ ◦ d∇ ◦ L = 0. Then the BGG operator DV : Γ(Hj) → Γ(Hj+1)
is defined by DV := πH ◦ d∇ ◦ L.
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The first operators in a BGG sequence

H0 always corresponds to the P–irreducible quotient of V. The
first BGG operator DV : Γ(H0) → Γ(H1) splits according to the
decomposition of H1(p+,V) into irreducible components. The
construction directly implies that πH and L induce inverse
bijections Γ(H0) ⊃ ker(DV ) ∼= {s ∈ Γ(VM) : ∇s ∈ Γ(im(∂∗))}

In the case k = 1:

H1 is an irreducible and ∼= S rT ∗M }H0, the highest weight
component in S rT ∗M ⊗H0.

The principal symbol of DV is induced by the projection to
the highest weight subspace.

For any irreducible bundle E → M and any r > 0, there is a
unique irreducible V such that H0

∼= E and
H1

∼= S rT ∗M } E .
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Examples of first BGG operators for conformal structures
(G = SO(n + 1, 1), G0 = CO(n)):

For E = E [1] (densities) and k = 2, we obtain V = Rn+1,1,
H1 = S2

0T ∗M[1] (weighted tracefree symmetric two–tensors),
and DV f = (∇(a∇b)0 + P(ab)0)f . ker(DV ) is in bijective
correspondence with Einstein metrics in the conformal class.

For E = TM and k = 1, one gets V = g ∼= Λ2Rn+1,1,
H1 = S2

0T ∗M[2] and the conformal Killing equation.
Solutions are conformal Killing fields, i.e. infinitesimal
automorphisms of the conformal structure.

Similarly, putting E = ΛjT ∗M[w ] for appropriate w , one gets
V = Λj+1Rn+1,1 and the conformal Killing equation on forms,
while for E = S r

0TM[w ] with appropriate w , one gets
V = }rg and the conformal Killing equation on tracefree
symmetric r–tensors.
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As we have seen, the construction of the first BGG operator(s) DV

corresponding to V implies that there is a bijection

Γ(H0) ⊃ ker(DV ) ∼= {s ∈ Γ(VM) : ∇s ∈ Γ(im(∂∗))}.

To extend this to a full prolongation of DV , one first observes that
if ∇s = ∂∗ψ for some ψ ∈ Ω2(M,VM), then ∂∗ψ can be computed
(invariantly) via iterated cross–differentiation. This leads to an
equivalent equation ∇s + B(s) = 0 for a higher order operator B.

As g, also V is naturally graded V = V0 ⊕ · · · ⊕ VN in such a way
that gi · Vj ⊂ Vi+j . This gives a notion of homogeneity for
VM–valued forms, which plays a crucial role in all constructions. It
turns out that the higher order parts of B also raise homogeneity.
Looking at ∇s + B(s) = 0 homogeneity by homogeneity and
inserting lower homogeneities into higher ones, one can
equivalently rewrite it (non–invariantly) as ∇s + C (s) = 0 for a
bundle map C : H0 → H1.

Andreas Čap BGG sequences and overdetermined systems
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if ∇s = ∂∗ψ for some ψ ∈ Ω2(M,VM), then ∂∗ψ can be computed
(invariantly) via iterated cross–differentiation. This leads to an
equivalent equation ∇s + B(s) = 0 for a higher order operator B.

As g, also V is naturally graded V = V0 ⊕ · · · ⊕ VN in such a way
that gi · Vj ⊂ Vi+j . This gives a notion of homogeneity for
VM–valued forms, which plays a crucial role in all constructions. It
turns out that the higher order parts of B also raise homogeneity.
Looking at ∇s + B(s) = 0 homogeneity by homogeneity and
inserting lower homogeneities into higher ones, one can
equivalently rewrite it (non–invariantly) as ∇s + C (s) = 0 for a
bundle map C : H0 → H1.

Andreas Čap BGG sequences and overdetermined systems



Parabolic geometries
BGG sequences

Prolongation procedures

As we have seen, the construction of the first BGG operator(s) DV

corresponding to V implies that there is a bijection

Γ(H0) ⊃ ker(DV ) ∼= {s ∈ Γ(VM) : ∇s ∈ Γ(im(∂∗))}.

To extend this to a full prolongation of DV , one first observes that
if ∇s = ∂∗ψ for some ψ ∈ Ω2(M,VM), then ∂∗ψ can be computed
(invariantly) via iterated cross–differentiation. This leads to an
equivalent equation ∇s + B(s) = 0 for a higher order operator B.

As g, also V is naturally graded V = V0 ⊕ · · · ⊕ VN in such a way
that gi · Vj ⊂ Vi+j . This gives a notion of homogeneity for
VM–valued forms, which plays a crucial role in all constructions. It
turns out that the higher order parts of B also raise homogeneity.
Looking at ∇s + B(s) = 0 homogeneity by homogeneity and
inserting lower homogeneities into higher ones, one can
equivalently rewrite it (non–invariantly) as ∇s + C (s) = 0 for a
bundle map C : H0 → H1.
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Ignoring the issues of invariance, a simpler version of the BGG
procedure for k = 1 was developed in joint work with T. Branson,
M. Eastwood, and R. Gover (Int. J. Math., 2006). We start with a
reduction of structure group to the semisimple part G ′

0 of G0,
e.g. a Riemannian metric, and a fixed connection ∇ on the
corresponding principal bundle, e.g. the Levi Civita connection.

Given a bundle E → M corresponding to an irreducible
representation of G ′

0 and r ≥ 1, let V = V0 ⊕ · · · ⊕ VN be the
corresponding representation of G . Restricting this to G ′

0, one
obtains a bundle V → M with a natural projection π : V → E .
Now one constructs

A linear connection ∇̃ on V

A linear differential operator L : Γ(E ) → Γ(V ) of order N

such that
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Theorem

For any semi–linear differential operator
D : Γ(E ) → Γ(S rT ∗M } E ) of order r with principal symbol
S rT ∗M ⊗ E → S rT ∗M } E induced by the highest weigh
projection, there is a smooth map C : E → S rT ∗M } E such that
π : V → E and L : Γ(E ) → Γ(V ) induce inverse bijections

{σ ∈ Γ(E ) : D(σ) = 0} ∼= {s ∈ Γ(V ) : ∇s + C (s) = 0}.

If D is linear, then C can be chosen to be a bundle map.

While there is an explicit procedure how to compute C , it is crucial
that V and L are universal. In particular, for any D with the right
principal symbol, if D(σ) = 0, then σ is uniquely determined the
value of L(σ) and hence its N–jet in a single point. Likewise, if D
is linear, then dim(ker(D)) ≤ dim(V). Both N and dim(V) can be
easily computed from E and r using representation theory.
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Further work in progress

Results towards characterization of linear operators with
principal symbol of the given type with kernel of the maximal
possible dimension dim(V).

Prolongation procedure for BGG operators which does not
break invariance. This leads to natural connections on tractor
bundles (different from the canonical tractor connections)
whose parallel sections correspond to solutions of the first
BGG operator. (M. Hammerl, J. Šilhan, V. Souček,
P. Somberg)

Extension of the simpler non–invariant prolongation method
to cases with k > 1 (K. Neusser). For example, this leads to
prolongation procedures for certain overdetermined systems on
contact manifolds.
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