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This talk reports on joint work with Boris Doubrov (Minsk)
and Dennis The (Tromsø) which is available as
arXiv:1709.01130, based on a general construction of Cartan
connections from arXiv:1707.05627.

Equations of C–class is a concept of É. Cartan aiming at
finding classes of equations in which generic members can be
solved without integration. Technically, we will study the
question whether a Cartan geometry associated to a system of
equations descends to the space of solutions.

For low orders, one deals with parabolic geometries and the
question of descending is answered by general results on
correspondence spaces and twistor spaces.

For higher orders, the geometries are not parabolic. Still, the
techniques used to characterize descending are inspired by
recent versions of the machinery of BGG sequences.
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Consider the space J`m := J`(R,Rm) of `–jets of curves in Rm.
This carries a natural EDS which is, in usual jet coordinates (t, uji )
with i = 0, . . . , `, j = 1, . . . ,m, spanned by the forms
duji − uji+1dt. The joint kernel of these forms is the contact

subbundle T−1J`m ⊂ TJ`m of rank m + 1.

The weak derived flag of this subbundle grows by m dimensions in
each step and has the form

T−1J`m ⊂ T−2J`m ⊂ · · · ⊂ T−`J`m ⊂ T−`−1J`m = TJ`m.

It is also well known that smooth curves in J`m which are tangent
to T−1J`m in each point are exactly the `–jet prolongations of
smooth curves in Rm. Moreover, diffeomorphisms of J`m preserving
T−1J`m are exactly the prolongations of contactomorphisms on J1

1

if m = 1 and of diffeomorphisms on J0
m if m > 1.
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Suppose now that we have given a system of m ODEs on a curve u
in Rm in the form u(n+1)(t) = f (t, u(t), u′(t), ..., u(n)(t)) for a
smooth function f . This defines a submanifold E ⊂ Jn+1

m such that
the natural projection πn+1

n : Jn+1
m → Jnm restricts to a local

diffeomorphism on E .

Using this diffeomorphism, we can carry over the natural filtration
of the tangent bundle TJnm to TE to get a filtration
T−1E ⊂ T−2E ⊂ · · · ⊂ T−n−1E = TE .
This makes E into a filtered manifold locally isomorphic to Jnm.

Since we have E ⊂ Jn+1
m , we can also restrict the “highest order”

contact forms dujn − ujn+1dt to TE . Their joint kernel is a line
subbundle E ⊂ T−1M which encodes the actual equation, and has
the property that T−1E = E ⊕ F−1, where F−1 comes from the
smallest vertical subbundle ker(Tπnn−1) ⊂ TJnm.
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The Lie bracket of vector fields induces a tensorial bracket on the
associated graded gr(TxE) = ⊕i (T

i
xE/T i+1

x E), thus making it into
a nilpotent graded Lie algebra. This turns out to be independent
of the point x and of the equation E . The information on the
equation is encoded into the direct sum decomposition of
T−1E = gr−1(TE) as E ⊕ F−1, which can be interpreted as a
reduction of the structure group of gr(TM).

Thus we associate to any ODE–system a filtered G0–structure with
structure group GL1 × GLm reflecting the direct sum
decomposition. It follows from the construction, that this structure
equivalently encodes the system up to contact transformations for
m = 1 and up to point transformations for m > 1.

Not all filtered geometric structures of this type come from
systems of ODEs. The involutive subbundles in TE obtained from
ker(Tπnk) ⊂ TJnm for k < n − 1 lead to better compatibility of the
Lie bracket with the filtration than required in general.
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By Doubrov–Komrakov–Morimoto, there are canonical Cartan
connections associated to the filtered G0–structures we consider.
We are working with a variant of their construction, which uses a
manifestly invariant normalization condition and allows stronger
uniqueness results. As usual, we start from a homogeneous model.

This model comes from the natural trivialization of Jn(O(n)m) of
jets of sections of O(n)m → RP1 via homogeneous polynomials.
Put Q = SL2 × GLm, P ⊂ Q the product of the Borel subgroup of
SL2 with GLm, Vm

n := SnR2 � Rm and G := Q n Vm
n (semi–direct

product). Then Jn(O(n)m) ∼= G/P encodes the trivial system

u
(n+1)
i = 0.

The Lie algebra g of G carries a natural grading of the form
g−n−1 ⊕ · · · ⊕ g1, which comes from the |1|–grading of sl2 and the
weight decomposition of SnR2 (with the highest and lowest weight
spaces having degrees −1 and −n − 1, respectively).
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To apply the general construction of canonical Cartan connections
from arXiv:1707.05627, one first has to verify that, for the given
grading, g is the full Tanaka prolongation of its non–positive part.
This can be done by verifying that H1(g−, g) is concentrated in
non–positive homogeneities.

This is the case if either n ≥ 3 or m, n ≥ 2. For n = 1, the full
prolongation is slm+2, while for for m = 1 and n = 2 it is sp4. This
leads to the description of 2nd order systems via path geometries
and of 3rd order ODEs as parabolic geometries.

The second ingredient needed to apply the general theory is an
appropriate choice of normalization condition. In the most general
form, such a condition is a linear subspace N ⊂ L(Λ2(g/p), g).
This space is naturally a P–module and one requires N to be
P–invariant to ensure that normality has a geometric meaning.
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To express the second main requirement on N , we observe that
L(Λ2(g/p), g) carries a P–invariant filtration (coming from
homogeneity of maps) and that the associated graded space is
isomorphic to L(Λ2g−, gr(g)). Here the grading is by homogeneity
and in our case gr(g) ∼= g. A Lie algebra cohomology differential
∂g− acts on that space and we require:

Mapping the the intersection of N with any positive filtration
component of L(Λ2(g/p), g) to the associated graded, one has to
obtain a linear complement to ker(∂g−) in the given homogeneity.

One way to construct normalization conditions is via P–equivariant
codifferentials ∂∗, which map Ak := L(Λk(g/p), g) to Ak−1 for
k = 2, 3. Under appropriate assumptions, one shows that
N = ker(∂∗) is a normalization condition and projecting to
ker(∂∗)/ im(∂∗) leads to an analog of harmonic curvature.
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For our choice of (g,P), we construct a codifferential as follows.
We view each Ak as a P–submodule of C k := L(Λkg, g), on which
there is a g–equivariant Lie algebra cohomology differential ∂g. On
q and its representation Vm

n there are inner products with a nice
compatibility to the q–action in terms of a Cartan–involution.
These can then be used to define an inner product on each of the
spaces C k .

Proposition

The adjoints of the maps ∂g with respect to that inner product
restrict to P–homomorphisms ∂∗ : Ak → Ak−1, which for k = 2, 3
have all necessary properties for a codifferential to give rise to a
normalization condition.

One also proves that the representation of P on ker(∂∗)/ im(∂∗) is
completely reducible, which implies that the analog harmonic
curvature is a simple geometric object.
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By general results, the principal bundle describing the filtered
G0–structure on an equation E can be extended to a principal
P–bundle p : G → E . There is a regular Cartan connection
ω ∈ Ω1(G, g), which is normal in the sense that its curvature
function κ has values in ker(∂∗) ⊂ A2. The pair (G, ω) is uniquely
determined up to isomorphism by the latter property.

Solutions of the system are the integral submanifolds of the line
subbundle E ⊂ T−1E , which corresponds to q/p ⊂ g/p. On the
homogeneous model, the space of solutions is G/Q. So we may ask
in general whether the Cartan geometry (p : G → E , ω) descends
to local leaf–spaces of the foliation determined by E ⊂ TE .

If this is the case, then local invariants descend and hence are
constant along each solution. In sufficiently generic situations, this
allows solving the system without integration. This idea is closely
related to E. Cartan’s concept of a “C–class of equations”.
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Descending the geometry amounts to extending the P–action on G
to an action of Q and verifying that ω is Q–equivariant. There is a
general theorem stating that this is equivalent to that fact that all
values of κ vanish upon insertion of one element of q/p ⊂ g/p.
The latter condition defines a P–submodule E ⊂ L(Λ2(g/p), g).

If the geometry does descend, then the tangent bundle to local leaf
spaces is the associated bundle corresponding to the representation
g/q ∼= SnR2 � Rm of Q. Thus any local leaf space inherits a
corresponding first–order Q–structure, which is called a
Segré–structure or, for m = 1, a GL2–structure.

This relates to results of B. Doubrov on (generalized) Wilczynski
invariants. These are invariants obtained via the linearization of
the system around a solution. They can be interpreted as
obstructions to descending of the filtered G0–structure on E to a
Segré structure on local spaces of solutions.
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The latter description can be connected to the canonical Cartan
geometry, and one proves:

The Wilczynski invariants of E can be recovered from the
projection of the curvature function κ to ker(∂∗)/ im(∂∗).

Vanishing of all Wilczynski invariants is equivalent to κ having
values in the P–submodule E + im(∂∗)1 (where the
superscript indicates filtration-homogeneity).

Our main result is that the latter condition is equivalent to κ
having values in E thus proving

Theorem

The canonical Cartan geometry (p : G → E , ω) descends to local
spaces of solutions iff all Wilczynski invariants of E vanish.

One crucial ingredient for the proof is the by P–equivariancy, ∂∗

induces a tensorial operator on horizontal, equivariant g–valued
forms on G.
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The second crucial ingredient is the covariant exterior derivative
dω on Ω∗(G, g) obtained by defining dωϕ(ξ0, . . . , ξk) as

dϕ(ξ0, . . . , ξk) +
∑k

i=0(−1)i [ω(ξi ), ϕ(ξ0, . . . , ξ̂i , . . . , ξk)].

This has the following properties:

It preserves the subspaces of horizontal, equivariant forms and
is compatible with the natural filtration on these spaces.

The resulting operator on the associated graded is tensorial
and induced by ∂g− .

Bianchi–identity: The curvature K of ω satisfies dωK = 0.

One then has to verify directly, that if a horizontal, equivariant
form ϕ ∈ Ω2(G, g) corresponds to an E–valued function, then the
same holds for ∂∗dωϕ. Using this, the theorem can be proved by
the following inductive procedure.
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Assume that we can write K = K1 + K2 such that κ1 is E–valued
and κ2 has values in im(∂∗) and is homogeneous of degree ≥ ` for
some ` ≥ 1. (For ` = 1, this follows from Wilczynski–flatness.)

By the Bianchi–identity, we get ∂∗dωK2 = −∂∗dωK1, so this
corresponds to a an E–valued function.

Studying the action of ∂∗dω on the associated graded, one finds
that there is a universal polynomial p such that
p(∂∗dω)(∂∗dωK2) ≡ K2 modulo elements of homogeneity ≥ `+ 1,
and again the left hand side is E–valued.
Adding this to K1 and subtracting it from K2 we get a new
decomposition of the same type, for which the second component
is homogeneous of degree `+ 1. Iterating this, we see that κ is
E–valued, which implies descending of the geometry.
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