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Structure of the lecture:

1. Projective contact geometry

2. Projective contact manifolds

3. Solution to the equivalence problem

4. Strongly invariant operators

5. Higher symplectic spinor modules

6. Classification results



Homogeneous model

Definition: (Klein’s) homogeneous model of projective contact
geometry = RP

2n−1 seen as G/P where G = Sp(2n, R) and P is
the isotropy subgroup of the action of Sp(2n, R) on the projective
space RP

2n−1 given by prescription (g , [v ]) 7→ [gv ], g ∈ Sp(2n, R),
0 6= v ∈ R

2n.

Facts:

1. The action (g , [v ]) 7→ [gv ] above is transitive.

2. P is a parabolic subgroup of G , i.e., GC/PC is projective
variety.

3. One can check p ≃ (sp(2n − 2, R) ⊕ R) ⊕ R
2n−2 ⊕ R.

Terminology - first summand =: g0, second summand
=: g1 ≃ R

2n−2 and third summand =: g2. Here,
g = sp(2m, R).



Homogeneous model

Definition: Projective contact geometry = Cartan geometry
(G, ω) of type G/P where G and P are groups from the definition
of the homogeneous model above.

To solve the equivalence problem, one should find some induced
tangential structures or some partial affine connections.

Difficult because the structures should be ”encoding” and
”decoding” at once and also somehow independent on each other.

Appropriate structures induced on the manifold RP
2n−1 from

G/P

1. A contact subbundle of TRP
2n−1

2. A class of projectively equivalent partial connections



Homogeneous model

Contact subbundle

(R2n, ω) symplectic vector space considered as a symplectic
manifold (using the canonical parallelism), C := R

2n \ {0},
p : C → RP

2n−1 is a principal R
×-bundle (p realizes the classical

equivalence classes definition of the projective space),
σ : TRP

2n−1 → TC a bundle morphism such that σ ◦ p∗ = IdTC ,
qσ : TRP

2n−1 → R, qσ(ξ) := ω(σ(ξ), E ), E :=
∑2n

i=1 x i ∂
∂x i Euler

vector field,
H := Ker(qσ) independent of σ.

Statement: H is a contact subbundle of TM.



Homogeneous model

Projective class of connections

Take the Levi-Civita ∇ for the flat metric of R
2n or C. Push it

forward via a section σ of the bundle p : C → RP
2n−1 and than by

the map tangent map of p to get a connection ∇σ. Set
N = {hσ ◦ ∇σ,∇σabove}. Here hσ : TRP

2n−1 → H is the
projection constructed with help of the Euler vector field and the
section σ.

Statement: If γ is up to a parametrization a geodesics of a
connection from N, it is a geodesic up to a parametrization for any
of them.
Remark: The geodesics are supposed to go in the H-directions only.

Aim: Formulate the above statements independently from the
model (sections, projections, Euler vector field etc.).



Projective contact manifolds

Definition: A manifold M is called contact, if it permits a contact
subbundle H =def corank one subbundle of TM for which the
Lewy form L : H × H → TM/H defined by

L(X , Y ) := [X , Y ] mod H is nondegenerate.

Because for Q = TM/H, rank(Q) = 1, the term ’nondegenerate’
makes sense.

Alternative definition: H is maximal nonintegrable subbundle of
TM in the Frobenius sense.

⇒ M is of odd dimension.



Projective contact manifolds

Examples: Contact manifolds are arenas of time-dependent
Hamiltonian mechanics. Recall from physics, the nonholonomic
differential 1-form dH = dt −

∑2n
i=1 pidqi in time-dependent

Hamiltonian mechanics. Ker(dH) is a contact subbundle for the
manifold R

2n+1[t, q1, . . . , qn, p1, . . . , pn].

Darboux type theorem holds (Moser, Weinstein).

Definition: The nondegeneracy of L implies for each
Υ ∈ Γ(M, H∗) the existence of Υ♯ ∈ Γ(M, Hom(Q, H)) given by
the formula

L(Υ♯(X ), Y ) = Υ(Y )(X ),

where X ∈ Γ(M, Q), Y ∈ Γ(M, H).



Projective contact manifolds

∇ contact connection =def

1. Partial affine connection ∇ : Γ(H) × Γ(H) → Γ(H)

2. ∇ξ(
∧2

0 H) ⊆
∧2

0 H for each ξ ∈ Γ(H), where
∧2

0 H := Ker(L)

Projective class of connections:
∇′ and ∇ are called projectively equivalent

∇′ ≃ ∇ iff ∇′
XY −∇XY = Υ(X )Y + Υ(Y )X + Υ♯(L(X , Y ))

for all X , Y ∈ Γ(M, H) and an Υ ∈ Γ(M, H∗).



Solution to the equivalence problem

Definition: The triple (M, H, [∇]) is called projective contact
manifold. They are object in the category of projective contact
manifolds. Morphisms in this category are defined to be local
diffeomorphisms preserving the contact bundle and the projective
class of contact connections.

Theorem: There is a bijective correspondence between the
category of projective contact manifolds and the category of
regular normal projective contact geometries.

Remark: Proof based on prolongation procedure (K. Yamaguchi;
A. Čap, G. Schmalz).

Regularity = ± torsion-freeness; normality = ∂∗κ = 0, where κ is
the curvature of (G, ω) and ∂∗ = Killings adjoint of the
Kostant/Chevalley-Eilenberg differential.



Strongly invariant operators

Let (G → M, ω) be a Cartan geometry of type (G , P)
For P-modules E , F , set E := G ×P E , F := G ×P F

J1E inherits a canonical P-module structure (Slovák, Souček [1])
from E

(∇ωs)(X )(u) = L
ω−1

u (X )s, s ∈ C∞(G, E )P = Γ(M, E ), u ∈ G,

X ∈ Γ(M, TM) - so called absolute covariant derivative

Definition: For each P-module homomorphism Φ : J1E → F ,
(D(G,ω)s)(u) = Φ(s(u),∇ωs(u)), is called first order strongly
invariant operator.



Strongly invariant operators

Statement: {First order strongly invariant operators} ↔
{P-homomorphisms Φ : J1E → F}

Denote the C-vector space of first order strongly invariant
operators for (G, ω), E and F by Diff1

(G,ω)(E ,F).

Examples:

1. Dirac operator

2. Rarita-Schwinger operator

3. twistor operator



Strongly invariant operators

Problem: Classify all P-modules homomorphisms Φ : J1E → F

for suitable P-modules E and F .

Method: Schur lemma + explicit formula for the P-module
structure of J1E + Casimir operators.

Suitable = Levi part G0 of P acts in a reductive (e.g. irreducible)
way and the unipotent part P+ of P acts by identity.

Setting of the next theorem:

Let G be a complex simple Lie group and P a parabolic subgroup
of G , G0 the Levi part of P and G ss

0 its semisimple part. Suppose
G0 is connected and the subalgebra g0 has an one dimensional
center CGr . (The last condition is settled only for convenience.)



Strongly invariant operators

Theorem (Slovák, Souček [1]): Let (G, ω) be a parabolic
geometry of type G/P with G and P specified above. Let E be a
finite dimensional irreducible P-module with the highest weight λ
when considered as a gss

0 -module. Let the grading element Gr acts
by the complex number w . Further, let g1 be an irreducible
gss
0 -module with the highest weight α. Assume that the tensor

product g1 ⊗ E is multiplicity free as gss
0 -module. Then there exists

a nonzero strongly invariant operator D : Γ(M, E) → Γ(M,F) iff

1. F = G ×P F and F is an gss
0 -irreducible summand in g1 ⊗ E

2. w = c
µ
λα := 1

2 [(λ, λ + 2δ) + (α, α + 2δ) − (µ, µ + 2δ)], where
µ is the highest weight of F and (, ) is the Killing form of gss

0 .



Strongly invariant operators

Belehrung: ”For each parabolic geometry and fixed irreducible
P-modules, there is at most one strongly invariant operator.”

Comments on the theorem:

1. The condition for g1 to be an irreducible gss
0 -module is settled

for convenience only. Actually, g1 is always a direct sum of
irreducible gss

0 -modules. For this more general situation, see
Slovák, Souček [1].

2. Also, one can consider real Lie algebras (and their
representations on complex vector spaces).



Strongly invariant operators

Context of strongly invariant operators: See Čap, Slovák,
Souček [2].

1. There are natural operators

2. There are invariant operators (BGG theory, regular/singular,
standard/nonstandard)

3. There are strongly invariant operators (first order strongly
invariant operators = first order invariant operators in the
broader sense above; not true in general - some invariant
operators are not generated by the absolute covariant
derivative)

M. Eastwood, J. Rice (Comm. Math. Phys., 1987), H. D. Fegan
(Q. J. Math., 1976) - both conformal case.
Motivation: Try to find a invariant conformal field theory;
particularly popular in the ’60 and ’70.



Strongly invariant operators

Summary and receipt:

1. Decompose the tensor product g1 ⊗ E into irreducible
gss
0 -submodules explicitly.

2. Compute the Killing products of appropriate weights.

3. You get the ”generalized conformal weight” w . This
conformal weight fixes the action of the center of g0. The
operator exists according to the theorem of Slovák and
Souček.

4. Integrate the Lie algebra information above to get a Lie group
situation. (Topology, e.g., connectedness and simple
connectedness of G0, may be important here.) How to do it in
a specific case, see e.g. Krýsl [6].



Higher symplectic spinor modules

We focus to modules from a specific class of infinite dimensional
sp(2m, C)-modules and specific Cartan geometry. Namely, higher
symplectic spinor modules and contact projective geometry.

Definition: A weighted sp(2m, C)-module L is called higher
symplectic spinor module, if it is a module with bounded
multiplicities, i.e., there is a k ∈ N0 such that for each ν ∈ h∗,
dimCLν ≤ k .

Here h Cartan subalgebra of sp(2m, C) and Lν is the weight space
of L of weight ν ∈ h∗.

If one can choose k = 1 in the previous definition and L is moreover
supposed to be irreducible then L is either the defining module or
the ”odd” or the ”even” part of the Fock module (see below).



Higher symplectic spinor modules

Examples:

1. Each finite dimensional sp(2m, C)-module

2. Fock module = Harish-Chandra underlying module of the
Segal-Shale-Weil representation (sometimes called oscillatory,
metaplectic or, in Russian and Physics literature, Berezin
representation)

3. Tensor products of the Fock-module representation and finite
dimensional modules

Actually, the third class is exhausting all the higher symplectic
spinor modules (Britten, Hooper, Lemire, Canad. Journ. Phys.)
Fock module is the ’precise symplectic analogue’ of the spinor
modules for orthogonal or spin groups.



Higher symplectic spinor modules

Theorem: (Parametrization of higher symplectic spinor modules)
L(µ) is an irreducible symplectic spinor module iff its highest
weight µ ∈ A :=

{

m
∑

i=1

λi̟i |λi ∈ N0, i = 0, . . . ,m−1; λm ∈ Z+
1

2
; λm−1+2λm+3 > 0}.

Proof. Britten, Hooper, Lemire, Canad. Journ. Phys. �

Remark: Here {̟i}
m

i=1 are the so called fundamental weights of
sp(2m, C) (for a choice of h and a set of positive roots).



Higher symplectic spinor modules

Theorem: (Decomposition result) For µ ∈ A, we have

g1 ⊗ L(µ) = R
2n−2 ⊗ L(µ) =

⊕

µ′∈Aµ

L(µ′),

where Aµ := {µ + ν|ν ∈ Π(̟1)} ∩ A.
Proof. Krýsl [6]. �

Here Π(̟1) the set of all weight of the defining representation
L(̟1). It consists of 2m = 2n − 2 elements, ±ǫi where
ǫi := ̟i − ̟i−1, i = 1, . . . ,m = n − 1 with convention ̟0 := 0.

Remark: Method - certain character formula (due to C. Jantzen).



Classification result

Theorem: Let (G, ω) be a contact projective geometry and
(λ, c , γ), (µ, d , γ′) ∈ A × C × Z2. Let E , F be an admissible
irreducible P-modules with highest weights λ, µ respectively and
let Gr acts by c on E and by d on F . Suppose −1 ∈ Z(G0) ≃ R

×

acts by γ on E and by γ′ on F .
Then the vector space of first order differential operators

dim Diff1
(G,ω)(E ,F) =

{

1 if c = c
µ
λ̟1

= d − 1, γ = γ′ and µ ∈ Aλ,

0 if otherwise.

Proof. Krýsl [5]. �

Remark: Similar methods to that of in Slovák, Souček [1], similar
result, techniques a bit more difficult because of the infinite
dimension of the modules in question.



Classification result

Examples:

1. Contact projective Dirac: λ = −1
2ωm, µ = ̟m−1 −

3
2̟m,

c = 1+2m

2 .

2. Contact projective twistor: λ = −1
2ωm, µ = ̟1 −

3
2̟m−1,

c = 1
2 .

3. Contact projective Rarita-Schwinger: λ = ̟1 −
1
2̟m,

µ = ̟1 + ̟m−1 −
3
2̟m, c = 1+2m

2
Reference: Dissertation thesis of L. Kadlčáková, Praha, 2002
and Krýsl [5].
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