# Smooth multiparameter perturbation of polynomials and operators 

Armin Rainer<br>(Universität Wien)


#### Abstract

Let $P(x)(z)=z^{n}+\sum_{j=1}^{n}(-1)^{j} a_{j}(x) z^{n-j}$ be a family of polynomials whose coefficients $a_{j}$ are smooth complex valued functions defined near $0 \in \mathbb{R}^{q}$. For generic $P$ we construct a finite collection $\mathcal{T}$ of transformations $\Psi: \mathbb{R}, 0 \rightarrow \mathbb{R}, 0$, such that $$
\bigcup\{\operatorname{im}(\Psi): \Psi \in \mathcal{T}\}
$$ is a neighborhood of 0 , which desingularizes the roots of $P$, i.e., for each $\Psi \in \mathcal{T}$, the roots of $P \circ \Psi$ allow smooth parameterizations near 0 . As a consequence we prove that generic $P$ locally admit roots with first partial derivatives in $L^{1}$. Moreover, we deduce a simple proof of Bronshtein's theorem (under slightly stronger conditions): For hyperbolic (not necessarily generic) $P$ with $C^{n(n+1) / 2}$ coefficients any continuous arrangement of its roots is locally Lipschitz. There are applications to the perturbation theory of linear operators.


