The convenient setting for Denjoy-Carleman ultradifferentiable functions and its applications in infinite dimensional differential geometry

Peter Michor

Abstract. Based on:

Andreas Kriegl, Peter W. Michor, Armin Rainer: The convenient setting for non-quasianalytic Denjoy–Carleman differentiable mappings. arXiv:0804.2995

Let $M = (M_k)_{k \in \mathbb{N}}$ be an increasing sequence $(M_{k+1} \ge M_k)$ of positive real numbers with $M_0 = 1$. Let $U \subseteq \mathbb{R}^n$ be open. We denote by $C^M(U)$ the set of all $f \in C^{\infty}(U)$ such that, for all compact $K \subseteq U$, there exist positive constants C and ρ such that

$ \partial^{\alpha} f(x) $	< C
$\overline{\rho^{ \alpha }} \alpha ! M_{ \alpha }$	≤ 0

for all $\alpha \in \mathbb{N}^n$ and $x \in K$. The set $C^M(U)$ is the *Denjoy-Carleman* class of functions on U. If $M_k = 1$, for all k, then $C^M(U)$ coincides with the ring $C^{\omega}(U)$ of real analytic functions on U. In general, $C^{\omega}(U) \subseteq C^M(U) \subseteq C^{\infty}(U)$. Recently we succeeded to establish convenient calculus for some of these function classes. There are many immediate applications in infinite differential geometry, and I will present two of them.