Courses in the area "Geometry and Topology"
of the master program

Lecture courses from core modules

 WS 24/25SoSe 25WS 25/26SoSe 26WS 26/27SoSe 27WS 27/28SoSe 28WS 28/29SoSe 29
Analysis 3 (Bachelor) M. Eichmair D. Semola M. Eichmair    
Geometrie & Topologie (Bachelor)  B. Szendroi, V. Vertesi   M. Eichmair   
Analysis on manifolds/Differential Geometry B. Lamel M. Eichmair D. Semola M. Eichmair  
Riemannian geometryM. Kunzinger R. Steinbauer M. Eichmair   M. Eichmair 
Algebraic topology  A. Mellit V. Vertesi     
Lie groupsA. Cap M. Kunzinger A. Cap     

Seminars and topics courses

Remark: Topics courses on algebraic geometry and geometric group theory can be used for the area "Geometry and Topology". However, these courses are coordinated in the area "Arithmetics, algebra, and discrete mathematics", so future courses in these directions are only partially listed here.
WS 23/24:R. Steinbauer: VO Metric Geometry, 4 WSt., 6 ECTS
V. Vertesi: VO Differential topology
A. Cap: Spinors and Dirac Operators
SoSe 24:M. Kunzinger: VO Principal Fiber Bundles, 4 WSt., 6 ECTS
A. Cap, R. Donninger: SE Black holes, 2 WSt. 4 ECTS
WS 24/25:M. Kunzinger, G. Hörmann: VO Gauge Theory, Lagrangians, and Symmetry, 4 WSt. 6 ECTS
V. Vertesi: VO Algebraic topology 2
D. Burde: VO Lie Algebras and Representation Theory, 4 WSt., 6 ECTS
SoSe 25:V. Vertesi: Low dimensional topology, 4 WSt., 6 ECTS
R. Steinbauer: VO Metric geometry, 4 WSt., 6 ECTS
B. Lamel: VO Geometric Analysis of first order partial differential equations
WS 25/26:V. Vertesi: Differential topology, 4 WSt., 6 ECTS
D. Semola: VO Optimal Transport, 4 WSt., 6 ECTS
C. Sämann: VO Lorentzian Geometry, 4 WSt., 6 ECTS
M. Kunzinger, R. Steinbauer: SE Synthetic Geometry 2 WSt., 4 ECTS
SoSe 26: