Line Patterns in Free Groups

Christopher H. Cashen

University of Utah

January 6, 2011

includes joint work with Nataša Macura Trinity University

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Basic Terminology

Two sets A and B in a metric space (X, d_X) are *coarsely* equivalent if there is an $\epsilon \ge 0$ so that every point of A is within ϵ of a point of B, and vice versa.

A map $\phi: (X, d_X) \to (Y, d_Y)$ is a *quasi-isometry* if there exist $\lambda \ge 1$ and $\epsilon \ge 0$ such that for all x, x' in X

$$\frac{1}{\lambda}d_X(x,x') - \epsilon \le d_Y(\phi(x),\phi(x')) \le \lambda d_X(x,x') + \epsilon$$

and $\phi(X)$ is coarsely equivalent to Y.

Pseudo-definition

Pick finitely many closed curves in a surface with boundary.

$$\pi_1(\Sigma) = F_2 = \langle a, b \rangle \qquad \underline{w} = \{ \underline{a}, b, ab\bar{a}\bar{b} \}$$

Pseudo-definition

The line pattern is the collection of all lifts of the closed curves to the universal cover.

Line Patterns

Let $F = F_n$ be a free group of rank $n \ge 2$.

Definition

The line pattern \mathcal{L} generated by a word $w \in F$ is the collection of distinct coarse equivalence classes of sets of the form $\{gw^m \mid m \in \mathbb{Z}\}$ for some $g \in F$.

Similarly, if \underline{w} is a multiword, the line pattern \mathcal{L} generated by \underline{w} is the line pattern generated by all of the $w \in \underline{w}$.

Line Patterns

If we choose a free generating set for F and look at the tree that is the corresponding Cayley graph, the set $\{gw^m \mid g \in F, m \in \mathbb{Z}\}$ looks coarsely like a geodesic in the tree.

Up to coarse equivalence, we might as well assume w is cyclically reduced and not a proper power of any other word. If w_1 and w_2 are words in \underline{w} we may assume that w_1 and w_2 are not conjugates or inverses.

Given \mathcal{L} a line pattern in F, and \mathcal{L}' a line pattern in F', is there a quasi-isometry $\psi \colon F \to F'$ that takes each line of \mathcal{L} within uniformly bounded distance of a line of \mathcal{L}' , and vice versa?

Related question: What is the group $\mathcal{QI}(F, \mathcal{L})$ of quasi-isometries of F that preserve \mathcal{L} ?

Consider a group of the form

$$F *_{\mathbb{Z}} G = \left\langle F, G \mid w = w' \right\rangle$$

where $w \in F$ and $w' \in G$ are nontrivial, infinite order words.

If you can show that this splitting is invariant under quasi-isometries then the quasi-isometric equivalence class of the line pattern in F generated by w is a quasi-isometry invariant for the group.

A multiword \underline{w} in F is geometric if it can be realized by an embedded multicurve on the boundary of a 3-dimensional handlebody H with $\pi_1(H) = F$.

A multiword \underline{w} in F is geometric if it can be realized by an embedded multicurve on the boundary of a 3-dimensional handlebody H with $\pi_1(H) = F$.

There is an algorithm (Zieschang, 1965) to determine if a multiword is geometric.

A multiword \underline{w} in F is geometric if it can be realized by an embedded multicurve on the boundary of a 3-dimensional handlebody H with $\pi_1(H) = F$.

There is an algorithm (Zieschang, 1965) to determine if a multiword is geometric.

There are some multiwords that are virtually geometric but not geometric: they can be made geometric only after lifting to a finite index subgroup of F.

Line pattern techniques determine whether or not a multiword is virtually geometric.

(ロ)、(型)、(E)、(E)、 E) の(の)

Line Patterns and a Theorem of R. Schwartz

Let $\underline{w} = \{w_1, \ldots, w_k\}$ be a collection of words in $\pi_1 M$, where M is a compact hyperbolic orbifold of dimension $n \ge 3$. Get a line pattern \mathcal{L} in the universal cover \mathbb{H}^n by lifting w.

Line Patterns and a Theorem of R. Schwartz

Theorem (R. Schwartz)

 $\mathcal{QI}(\mathbb{H}^n, \mathcal{L}) \subset \operatorname{Isom}(\mathbb{H}^n)/\sim$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Rigid!

Schwartz's Theorem from a Different Point of View

Choose a quasi-isometry $\phi: \pi_1 M \to \mathbb{H}^n$. Then we have:

$$\begin{array}{cccc} \pi_1 M, \mathcal{L} & \stackrel{\psi}{\longrightarrow} & \pi_1 M, \, \psi(\mathcal{L}) = \mathcal{L} \\ \phi & & \phi \\ & & \phi \\ \mathbb{H}^n, \, \phi(\mathcal{L}) & \stackrel{\phi \psi \phi^{-1}}{\longrightarrow} & \mathbb{H}^n, \, \phi(\mathcal{L}) \end{array}$$

So

 $\phi \mathcal{QI}(\pi_1 M, \mathcal{L})\phi^{-1} = \operatorname{Isom}(\mathbb{H}^n, \phi(\mathcal{L}))/\sim$

Rigid Line Pattern

Definition

A line pattern \mathcal{L} in F is *rigid* if there is some space X and a quasi-isometry $\phi: F \to X$, such that for all $\psi \in \mathcal{QI}(F, \mathcal{L})$ we have:

$$\phi\psi\phi^{-1} \in \operatorname{Isom}(X, \,\phi(\mathcal{L}))/\sim$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(Note that the space X may depend on \mathcal{L} .)

Rigid Line Pattern

Definition

A line pattern \mathcal{L} in F is *rigid* if there is some space X and a quasi-isometry $\phi: F \to X$, such that for all $\psi \in \mathcal{QI}(F, \mathcal{L})$ we have:

$$\phi\psi\phi^{-1} \in \operatorname{Isom}(X, \,\phi(\mathcal{L}))/\sim$$

(Note that the space X may depend on \mathcal{L} .)

Theorem (C.-Macura)

There is a topological space \mathcal{D} associated to a line pattern \mathcal{L} such that \mathcal{L} is rigid if and only if \mathcal{D} is connected without cut points or cut pairs.

Pick some free generating set for F. The Cayley graph is a tree T. ∂T is a Cantor set. Quasi-isometries of T (equiv. of F) extend to homeomorphisms of ∂T .

In addition, if $\psi \in \mathcal{QI}(F, \mathcal{L})$ then ψ extends to a homeomorphism $\partial \psi$ of ∂T such that $\forall l \in \mathcal{L} \exists l' \in \mathcal{L}$ such that $\partial \psi$ takes the endpoints of l to the endpoints of l'.

The Decomposition Space

Definition

The *decomposition space* associated to a line pattern \mathcal{L} in F is the topological space obtained by identifying the two endpoints of each line l in the line pattern.

$$\mathcal{D} = \partial T / \{ l^+ \sim l^- \mid l \in \mathcal{L} \}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For $\psi \in QI(F, \mathcal{L})$, $\partial \psi$ descends to a homeomorphism of the decomposition space.

F splits relative to \mathcal{L} if there is a free splitting F = F' * F'' such each generator of \mathcal{L} is conjugate into F' or F''.

F splits relative to \mathcal{L} if there is a free splitting F = F' * F'' such each generator of \mathcal{L} is conjugate into F' or F''.

F splits over \mathbb{Z} relative to \mathcal{L} if there is a splitting $F = F' *_{\mathbb{Z}} F''$ such each generator of \mathcal{L} is conjugate into F' or F''.

The Decomposition Space Controls Relative Splittings

Fact: F splits relative to \mathcal{L} if and only if \mathcal{D} is disconnected.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Decomposition Space Controls Relative Splittings

Fact: F splits relative to \mathcal{L} if and only if \mathcal{D} is disconnected.

Theorem (C.)

When D is connected, F splits over \mathbb{Z} relative to \mathcal{L} if and only if D has cut points or cut pairs.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Relative JSJ Decomposition

Theorem (C.)

Let \mathcal{L} be a line pattern in F such that \mathcal{D} is connected. There is a canonical graph of groups decomposition of F relative to \mathcal{L} satisfying:

- 1. Vertex groups alternate between \mathbb{Z} and non-cyclic free groups.
- 2. Edge groups are cyclic.
- 3. For every non-cyclic vertex group G, the induced line pattern in G gives decomposition space either a circle or connected with no cut points and no cut pairs.

If F splits over $\langle g \rangle$ relative to \mathcal{L} then either g is contained in a cyclic vertex group or a non-cyclic vertex group with circle decomposition space.

Virtually geometric multiwords are made up of geometric pieces: Theorem (C.)

A multiword \underline{w} in F consisting of distinct indivisible words is virtually geometric if and only if the induced multiword in each non-cyclic vertex group of the relative JSJ decomposition is geometric.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Rigidity

Rigidity fails if \mathcal{D} is disconnected or a circle or if the relative JSJ decomposition is non-trivial. In these cases there is a "Dehn twist" quasi-isometry.

Theorem (C.-Macura)

If \mathcal{L} is a line pattern in F such that \mathcal{D} is connected with no cut points and no cut pairs then \mathcal{L} is rigid. There exists a finite dimensional, locally finite cube complex X and a quasi-isometry $\phi: F \to X$ such that for any $\psi \in \mathcal{QI}(F, \mathcal{L})$ we have $\phi \psi \phi^{-1} \in \text{Isom}(X, \phi(\mathcal{L})).$

Consider the pattern generated by $ab\bar{a}\bar{b}$ in F_2 (blue curves only). The decomposition space is a circle, same as $\partial \mathbb{H}^2$.

(日)

In fact, this is the only way to get a circle:

Theorem (Otal, C.-Macura)

The decomposition space of a line pattern generated by \underline{w} is a circle if and only if the words of \underline{w} are the boundary curves of a surface with fundamental group F.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Figure: Line Pattern

Figure: Decomposition Space

э

Figure: Line Pattern

Figure: Line Pattern

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

rJSJ Decomposition

The JSJ Decomposition for $F = \langle a, b \rangle$ relative to $\{ab\bar{a}b, a\}$ is

where $c = b\bar{a}\bar{b}$.

The induced line pattern in $\langle a, c \rangle$ is generated by $\{a, c, ac\}$ and gives a circle for the decomposition space.

The obvious circles in the figure are the decomposition spaces of conjugates of the vertex group $\langle a, c \rangle$.

The point where two circles meet is a cut point corresponding to a conjugate of $\langle a \rangle$.

The tree-of-circles structure mirrors the Bass-Serre tree of the rJSJ.

・ロット 全部 マート・ キャー

The pattern generated by $\{ab\bar{a}\bar{b}, a, b\}$ is rigid, and the cube complex X is just the Cayley graph of F_2 with respect to the free generating set $\{a, b\}$.

Key Observation:

Edges of the tree are in one to one correspondence with 3-point cut sets of the decomposition space.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Tree vs. Cut Sets in Decomp. Space

Figure: Line Pattern

Constructing a Cube Complex

When the decomposition space is connected with no cut points and no cut pairs, small cut sets are well behaved.

Use Sageev construction to build a cube complex encoding the chosen collection of cut sets.

Pattern preserving quasi-isometries induce homeomorphisms of the decomposition space, which preserve the collection of small cut sets. This gives an automorphism of the cube complex.

Whitehead Graph

Figure: Whitehead graph from line pattern

・ロト ・ 日 ト ・ モ ト ・ モ ト

æ

Whitehead Graph

The main tool for understanding the topology of the decomposition space is a generalization of the Whitehead graph.

Whitehead used this graph to decide if there is an automorphism of the free group that takes one given multiword to another. (Whitehead's Algorithm, 1936)

A quasi-isometry matching line patterns is a geometric version of an automorphism matching multiwords.