Notes on Coxeter groups

Christopher H. Cashen

VERSION: OCTOBER 31, 2023

FacurLTy OF MATHEMATICS

UNIVERSITY OF VIENNA

1090 VIENNA, AUSTRIA

Email address: christopher.cashen@univie.ac.at

URL: http://www.mat.univie.ac.at/~cashen


mailto:christopher.cashen@univie.ac.at
http://www.mat.univie.ac.at/~cashen




Contents

Preface

Introduction

Chapter 1. Groups from presentations

1.
2.
3.
4.
4.1.
4.2.

Free groups and free products

Group presentations

Group actions and representations

Definitions and first examples of Coxeter groups
Coxeter presentations
Coxeter graphs

Chapter 2. Geometric reflection groups

1.

2.

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
3.

3.1.
3.2.
4.

4.1.
4.2.
4.3.

1-dimensional geometric reflection groups
2—-dimensional geometric reflection groups
Geometric reflection groups on the Euclidean plane
Geometric reflection groups on the 2—sphere
Prelude to the hyperbolic case: The Poincaré Disc model of H?
Geometric reflection groups on the hyperbolic plane
Mirror Structures
Summary: the 2-dimensional geometric reflection groups
Higher dimensional geometric reflection groups
Higher dimensional hyperbolic space
Coxeter polytopes
The classification of simplicial geometric reflection groups
Spherical simplices
Hyperbolic simplices
Euclidean simplices

Chapter 3. Linear representations

ANl e

Consequences of linearity

The canonical representation

Finiteness criterion

The geometric representation

Examples of canonical vs geometric representations

3

13
13
15
20
22
22
23

27
27
29
31
32

45
47
o1
52
53
62
71
72
74
76

81
82
82
84
87
91



4

CONTENTS

Chapter 4. Abstract reflection groups

1.

1.1.
1.2.
1.3.
1.4.

2.
3.
4.

Three definitions of abstract reflection group
Algebraic ARGs
Geometric ARGs
Combinatorial ARGs
Equivalence of the three definitions
Special subgroups and convexity
Longest elements

How special cosets fit together

Chapter 5. The Davis complex

1.

1.1.
1.2.
1.3.
1.4.
1.5.

2.

2.1.
2.2.
2.3.
2.4.

3.
4.

4.1.
4.2.

5.

5.1.
9.2.
5.3.

CAT(k) spaces
Model spaces
Comparison geometry
Some consequences of the CAT (k) property
Isometries of CAT(0) spaces
M —polyhedral complexes
Construction of the Davis complex
The formal construction
Recellulation and metrization
Examples of Davis complexes
The Davis complex is CAT(0)
Classification of virtually solvable subgroups
When is the Davis complex CAT(-1)?
Gromov hyperbolicity
Moussong’s Theorem
Free and surface subgroups
Free subgroups
Splittings
Surface subgroups

Chapter 6. Right-angled Coxeter groups

1.

1.1.
1.2
1.3.
1.4.
1.5.

2.
3.

Combinatorics of cube complexes
Hyperplanes in cube complexes
Pocsets
Median graphs and median algebras
Cubing a non-cubical complex
Helly, Ramsey, and Dilworth

More robust versions of convexity

Morse, stable, and eccentric subspaces of RACGs

97
97
97
98
108
112
113
114
117

123
123
123
124
125
129
132
133
134
136
138
143
153
156
156
158
160
160
161
165

169
170
172
174
179
196
197
200
203



CONTENTS 5

Bibliography 209






Preface

These are notes on Coxeter groups from the viewpoint of Geometric

Group Theory, used as the basis for a 1-semester “Topics in Algebra” class

for early graduate students. We assume multivariable Calculus, Linear Al-

gebra, and the basics of Group Theory and Topology. We do not assume

familiarity with Differential Topology, Riemannian Geometry, or any prior

experience with Geometric or Combinatorial Group Theory. We also do

not assume much Algebraic Topology: the basics of covering spaces, the

fundamental group, and the topology of cell complexes will suffice.

The plan is:

One

Chapter 1: Basics of group presentations and how to recognize
certain types of groups from their presentations. First examples of
Coxeter groups.

Chapter 2: Survey of geometric reflection groups.

Chapter 3: Coxeter groups are linear, with some strong conse-
quences. However, linearity does not give a nice geometric action
when the group was not already a geometric reflection group.
Chapter 4: Abstract group properties generalizing properties of
geometric reflection groups. See what we can do with those in
terms of Combinatorial Group Theory.

Not being completely satisfied with the combinatorial approach,
construct a nice geometric space, the “Davis complex” for abstract
reflection groups to act on in Chapter 5. Profit; Get answers to
questions such as: What are the solvable subgroups?, When is the
group hyperbolic? When is it virtually free? When does it split?
When does it contain free subgroups? Surface subgroups?
Chapter 6: Specialize to right-angled Coxeter groups, focusing on
how the interplay between geometry and combinatorics in CAT(0)
cube complexes gives us stronger results in that case. Applications
to the Quasiisometry Problem for right-angled Coxeter groups.

might ask, “Why not use Davis’s book [11]?” I did. You should.

Chapter 6 focuses on things outside the scope of Davis’s book and some

more recent developments. Everything else represents a path that I picked

7



8 PREFACE

through Davis’s book that would cover the geometric reflection groups and
the construction of the Davis complex and still leave time in the semester
for Chapter 6. This is only a fraction of what is in [11]. The topics are
presented in a different order than in Davis, and aimed at a less advanced
audience. Some of the material has been chewed up and regurgitated in a
slightly different form. I added examples and exercises. So [11] is an implicit
citation for everything before Chapter 6. This will be made explicit for some
notable results or those whose proofs we wish to skip. See [11] for original

citations.



Introduction

These notes are about Coxeter groups from the point of view of Geo-
metric Group Theory.

What are Coxeter groups? There is a nice class of groups called ‘geo-
metric reflection groups’ that we will survey in Chapter 2. These groups
are naturally defined in terms of a concrete geometric action, but one could
also write down an abstract presentation describing such a group. (Group
presentations are reviewed in Chapter 1.) One could then deduce rules that
such a presentation should obey, and consider the class of ‘abstract reflec-
tion groups’ defined by a presentation satisfying those rules. It turns out
that that is the class of Coxeter groups, which we will see in Chapter 4. So
Coxeter groups are groups defined by a certain kind of group presentation,
generalizing the geometric reflection groups.

What kind of questions would we like to answer about groups?

(1) Isomorphism Problem: Given two finite presentations, do they de-
fine isomorphic groups?

(a) Triviality Problem: Does a given finite presentation define the
trivial group?

(b) Commensurability Problem: Do two given finite presentations
define groups with a common finite index subgroup?

(2) Word Problem: Given a finite presentation and a word in the gen-
erators, does the word represent the trivial element of the group?

(3) Conjugacy Problem: Given a finite presentation and two words in
the generators, do they represent conjugate elements of the group?

(4) Membership Problem: Given a finite presentation, a word w in the
generators, and a finite set {v1,...,v,} of words in the generators,
does the group element represented by w belong to the subgroup
generated by the elements represented by the words v;?

(5) Subgroup Classification: Given a finite presentation, what kind of
subgroups does the group have? What subgroups does it have that
are free/Abelian/nilpotent/solvable? What kinds of finite index
subgroups does it have?
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One, minor, issue is that all of these problems are unsolvable: there is no
algorithm that can answer them for arbitrary finite presentations. The first
demonstration of the issue were constructions of Novikov and Boone in the
1950’s showing that there exists a finitely presented group such that there
is no algorithm that can decide, for arbitrary input word in the generators,
whether or not the word represents the trivial element in the group. So
there are finitely presented groups with unsolvable Word Problem. Not long
after, Adian and Rabin showed how to use the Novikov-Boone result to
prove unsolvability of the Triviality Problem.

The ‘geometric’ in Geometric Group Theory means that we will try to
use some kind of geometry of the group to answer questions like the above,
rather than working directly from a presentation. It turns out that all groups
have some geometry to them. A first attempt to demonstrate this for finitely

generated groups is the Cayley graph:

DEFINITION 0.0.1. The Cayley graph Cay(G,S) of the group G gen-
erated by a finite set S is the geometric realization of a directed labelled
graph with one vertex for each element of G, and an edge g — h for s € S
if h = gs.

By convention, if s € S has order 2 then we leave the s—edges undirected.

Two different Cayley graphs for Z are shown in Figure 1.

This means we abstractly take a collection of vertices, add some edges
connecting them, and declare those edges to have length equal to 1. The
distance between two points is defined to be the length of the shortest path
connecting them, regardless of the orientation of edges. The orientation is
only used to keep track of labels, with ‘going the wrong way’ across an edge
corresponding to the inverse label. That is, following an edge ¢ — h in the
forward direction says that gs = h. Following it in the backward direction
says hs~! = g. The fact that the graph is connected is a consequence of S
being a generating set for the group.

The group G acts on Cay(G,S) by left multiplication: if g — h is an
edge, so gs = h, then for any f € G we have fhs = fg, so fg — fh is
also an edge. Thus the action is by graph isomorphisms, hence isometries.
Notice furthermore that no nontrivial group element fixes a vertex.

We would like to define ‘the geometry of G’ as the geometry of such a
Cayley graph, but the graph depends on the choice of generating set, not
just the group. To make the geometry depend only the group, we introduce

an equivalence relation:

DEFINITION 0.0.2. A map ¢: X — Y between metric spaces is a quasi-
isometry if there are constants L and A such that:
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—2 -1 0 1 2

(A) Cay(Z,{1}) -4 2 0 2 4
(B) Cay(Z,{2,3})

FiGure 1. Two different Cayley graphs for Z.

o 1dx(z,2')—A < dy(d(z), (') < Ldx(z,2')+A, for all 7,2’ € X,
and
o for all y € Y there exists x € X such that dy (y, ¢(z)) < A.

EXERCISE 0.0.3. Show the existence of a quasiisometry is an equivalence
relation.

EXERCISE 0.0.4. Any two Cayley graphs of a fixed group are quasi-
isometric to one another. In fact, if you restrict to vertices the additive
constant A can be taken to be 0.

It turns out that the equivalence relation of quasiisometry captures more
than just different choices of generating set. Here are two key examples:

e The inclusion map of a finite index subgroup into a finitely gener-
ated group is a quasiisometry.
e The fundamental group of a closed Riemannian manifold is quasi-

isometric to its universal cover.

More generally:

THEOREM 0.0.5 (Fundamental Theorem of Geometric Group Theory).
If G is a finitely generated group acting properly discontinuously and cocom-
pactly by isometries on a proper geodesic metric space X then G and X are
quasiisometric.

Let’s quickly unpack the terms:

e X is proper means closed balls are compact.
e X is geodesic means between any two points there exists a path

whose length is equal to the distance between the points.

G —~ X by isometries means the action is defined by a homomor-

phism from G into the isometry group of X.

o G —~ X is cocompact means the quotient of X by the G action is
compact.

e G —~ X is properly discontinuous means for every compact set

K c X theset {ge G| gK n K # (J} is finite.

The combination of hypotheses has a name:
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DEFINITION 0.0.6. G —~ X is geometric if the action is properly discon-

tinuous, cocompact, and by isometries.

The space X on which G acts geometrically is called a geometric model
for G. The theorem says all geometric models for G are quasiisometric to
one another.

In practice, not all geometric models of a group are equally good for all
purposes, and the theorem tells us we are free to use whichever one is most
convenient. For instance, in the Riemannian manifold example it is often
much better to work with the universal cover of the manifold then to work
with a Cayley graph of the fundamental group, because the manifold has
more structure, and there are a lot of tools available.

The geometric reflection groups are defined in terms of their (well under-
stood!) geometric models. When we pass to the abstract reflection groups
we lose those natural models. The goal of Chapter 5 is to build, in a system-
atic way, a nice geometric model space, the Davis complex, for an abstract

Coxeter group.

The introduction of the equivalence relation of quasiisometry also adds
a new question to our list:
(6) Quasiisometry Problem: Given two finite presentations, do they
define quasiisometric groups?
In Chapter 6 we will talk about a special class of Coxeter group with par-
ticularly nice geometric models, and look at the beginnings of an approach

to the Quasiisometry Problem within this class.



CHAPTER 1

Groups from presentations

A group is the collection of symmetries of some object. What this means
depends on context: if the object is just a set then symmetries could just
be permutations, but if it is a topological space then we might ask for
homeomorphisms, or if it is a metric space we might ask for isometries.

All symmetry groups obey certain rules, and we can define groups as
algebraic structures that follow these rules. Thus, a group is a set of el-
ements with an associative binary operation (product) such that there is
an identity element and such that every element has an inverse. Defining
groups in this way as abstract algebraic objects has some benefits: we can
give concise descriptions of abstract groups in terms of group presentations,
we can define and study families of groups with common properties, and we
can focus on algebraic features of the groups, distinct from the complica-
tions of understanding the structure of a given object on which the group is
acting by symmetries.

There is a serious drawback to a purely abstract understanding of groups:
it is really hard. For most reasonable properties P the problem of taking as
input a finite group presentation and returning an answer to whether or not
the group defined by the presentation has property P is not algorithmically
solvable. Even the property of being a nontrivial group is not algorithmically
decidable.

In this section we review the basics of group presentations and actions.
We find a few types of representations from which we can recognize the group
on sight. Then we give definitions and first examples of Coxeter groups.

1. Free groups and free products

If S is a subset of a group G, let S~ := {s7! | s € S} be the set of
inverses of elements of S, and let S* := S U S~!. The subset S is called a
generating set if every element of the group can be obtained as a product of

finitely many elements of S*.

DEFINITION 1.0.1. Let S be a finite set. The free group on S is the
group F'(S) satisfying the following universal property: There is an inclusion

t: S — F(S) and for any group G and any map ¢: S — G there exists a

13



14 1. GROUPS FROM PRESENTATIONS

unique homomorphism : F(S) — G such that ¢ = 1) o¢.

We should think of this as saying that the free group F'(S) is the simplest
possible group containing the elements of S as distinct elements.

We can make an explicit construction. Let S = {s1,...,s,} be a set
of n symbols. Formally define n new symbols S~! := {s;!,... s, 1}. Call
elements of S* letters, and call a finite list of letters a word. We also allow
the empty word consisting of no letters.

A word is called reduced if it does not contain a pair of adjacent letters
of the form sis;1 or si_lsi. A word can be made into a reduced word by
successively deleting pairs of consecutive inverse letters until no such pairs

remain.

THEOREM 1.0.2. Let S = {s1,...,8n}. The set of reduced words with
letters St forms a group with operation="‘concatenate and reduce’, and this

group is F(S).

PRrROOF. Observe that the reduced word obtained from an arbitrary word
by successively deleting consecutive inverse letters does not depend on the
choice of order in which the next pair to delete is chosen. This makes
‘concatenate and reduce’ a well-defined associative operation on the set of
reduced words, with the empty word as identity element. The inverse to
a word is obtained by reversing the order of the letters and then replacing
each by its inverse.

To verify the universal property let us use quotation marks around
words, so that s; € S is an element of S and ‘s;’ is the corresponding word
of length 1. Words of length 1 are reduced, since a word with only one letter
does not contain any consecutive pair of inverse letters, and the only words
of length 1 are the ~images of ST. Every word is a concatenation of its
letters, so the length 1 words form a generating set.

Suppose ¢: S — G is a map from S into a group G. Define ¢ by
s; — ‘s;’. We know how to define ¢ on the set of length 1 words: if we hope
to have ¢ = 1 o1 then the only choice is to send ‘s;’ to ¢(s;). But once ) is
defined on a generating set there is a unique way to complete it to a group

homomorphism:

Y('sytesy) = WH(‘S/)“) = Hﬁ’(‘si’)ei = Héf)(si)ei

S
Il
—_
<.
Il
—
~
|
—
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Finally, observe that there is, up to isomorphism, only one free group on
a given set of generators, because if ¢: S — F(S) and /': S — F'(S) both
satisfy the universal property, then there are unique maps ¢: F(S) — F'(S)
and ¢': F'(S) — F(S) such that '/ = ¢ o¢ and ¢ = ¢’ o//. But then for
every s € S we have ¢’ 01po1(s) = 0i/(s) = 1(s), so 1/ 0 1) is the identity
map on F(S). By the same argument 1) o’ is the identity on F’(S). Thus,
¢ and ¢/ are inverse isomorphisms between F(S) and F'(S). O

DEFINITION 1.0.3. The free product Gy * Go of groups G and Gs is
the group satisfying the following universal property: There are injections
t;: Gi — G1%G9 whose images generate G1#Go and for any homomorphisms
¢;: G; — @ there exists a unique homomorphism ©: G1 * Go — @ such
that ¢; = ¢ oy;.

Gp 2 Gy # Gy +2— Gy

k g"%

LEMMA 1.0.4. The free product of free groups is a free group: F(S; u
SQ) = F(Sl) * F(SQ)

ProoF. Consider the following commutative diagram:

S — S1u S +—— 5

[ [ [

F(Sl>—>F51USQ (—FSQ)

T T

F(S1) = F(S2)

In the diagram, the two upper squares are the universal property for F'(S7)
and F'(S2), and the lower story is the universal property for F(S7) % F(S2).
Now observe that there is a map from S; U S into F'(Sy) * F'(S2) by going
around the outside of the diagram, to the left for elements of S; and to
the right for elements of S3. The universal property for F(S; U S3) gives
' F(S1 U Ss) = F(S1) = F(S2). But all of involved maps are the identity

on S1 and Ss, so 1 and v’ are inverse isomorphisms. O

2. Group presentations

If S is a finite set and R is a set of elements of F(S), then a group
presentation (S | R) describes a group G = F(S)/{R), that is, the group
that is the quotient of F'(S) by the normal subgroup { R) of F'(S) generated
by the elements of R. We say that G is generated by S and has relators R.
Usually the notation will not distinguish between an element of F'(S) and
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the element of G that it represents, but in this section we make the difference
explicit with square brackets, so if w € F(S) then [w] is the element of G
corresponding to the coset w{R) of F(S)/{R). We add a subscript if
necessary to define the scope of the normal closure or equivalence relation,
ie {R)p(s) is the smallest normal subgroup of F'(S) containing R < F(S),
and [w]g is the element of G corresponding to w{R)) p(s)in F(S)/CR) p(s)-

We make the following conventions on presentations. A word raised to
an infinite power is to be ignored. This allows us some flexibility to use
common notation when some parameter may be infinite. For example, we
use Cp, := (x| ™) to denote the cyclic group of order m. This covers both
finite cyclic groups and the integers Co, = (x |) = (x| z%).

In general it is hard to determine anything about a group from a finite
presentation. One thing that we can do well from a presentation is construct
homomorphisms: Let P := (S | R), let G be a group, and let ¢: S — G be

any map. Consider the diagram:

1 (R — F(S) —*» P —— 1

The lower-left triangle is the universal property for F(S). The map 1’
making the upper-right triangle commute exists if and only if ker ¢ < ker ¢,
in which case ¢/(x) := (¢! (x)). But kerq = {R), and ¢(]—[le sit) =
Hle P(s;)e = 1_[?:1 &(s;)¥. What this means is:

Having chosen, via ¢, images in G for each of the generators of P,
there exists a homomorphism P — G extending ¢ if and only if we
can take each relator r € R, evaluate its image letter-by-letter in G
using ¢, and see that it has trivial image.

We give two lemmas and an exercise using this construction. The goal
in all three is similar: we start with two groups presentations. We combine
the resulting groups to make a new group by taking a direct product, free
product, or semi-direct product. We would like to give a presentation for
the resulting product in terms of the presentations we started with. In all
three cases we start with a presentation whose generating set is the union of
the generating sets of the two factors, so there is an obvious choice for the
map ¢. We take as relators the union of the two given sets of relators, plus
some more. We verify that ¢ has trivial image on each of the new relators,
so it extends to a surjective homomorphism from the group P defined by the
presentation to the product group we are interested in. To show injectivity
of this map the basic trick is the same in all three cases: we know a normal

form for elements of the product. We show that the new relators added to
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define P are precisely the ones necessary to derive a similar normal form for
elements in P. Then injectivity follows easily.

The utility of these results is in the converse direction: given a group
presentation of one of the three forms described below, we can immediately
conclude that the group it defines splits as an appropriate combination of
groups defined by subpresentations. If those subpresentations are simple
enough that we can recognize the groups they define, then we can claim to
understand the original group.

LEMMA 2.0.1. Forie {1,2}, let G; := {(S; | Ri). Define:
Ry = {sts" 't for all s€ Sy, t € So}
Then {(S1, 52 | R1, Ra, R3) is a presentation of G1 x Ga.

PROOF. Let P := (51,52 | R1, Ra2, R3).

For s; € S1 and t; € Sy, define ¢([s;]p) := ([sila,, 1la,) € G1 x G2 and
o([tjlp) := (1, [tjlg,). We check that the relations of P are all satisfied:
If r € Ry then r = Hle sit for s1 € Sy, so:

k

([sila1, 1) = ([H Sgi]le la,) = ([rles Les)

i=1 i=1

::]w

k
o(r) = [ [ olsi)" =
i=1

But r € Ry means [r]g, = 1lg,, so ¢(r) = (1g,,1a,) = 1g,xG,- A similar
argument works for Rs.

—14-1

For sts € R3 we have:

([S]Gl’ 1G2)(1G17 [t]Gz)([S]a‘}v 1G2)(1G17 [t]al)
= ([88_1]G1’ [tt_l]Gz)

(1, 1a,) = laxas

p(sts™ 1)

Since all the relations of P are satisfied, ¢ is a homomorphism, and it is
surjective since its image contains generating sets of both factors of G x G.

Suppose x € ker ¢. The relations of R3 imply that every element of P can
be represented by a word in F(S7,S2) such that any letters from Sli come
first, and any letters from Si follow, so there are w € F(S;) and v € F(S2)

such that z = [wv]p. But z € ker ¢ means:
(10171G2) =lg,xG, = P([wo]p) = ([w]Gl’ [U]Gz)

This shows w € {R1)p(s,) and v € {R2) p(s,), 50 wv € LR1, Ra, R3)p(s,,5,)5
and z = [wv]p = 1p. Thus, ¢ is injective. O

EXAMPLE 2.0.2. {a,b|aba b1y = {a|) x (b |) = Cyp x Cop.

EXERCISE 2.0.3. For i € {1,2}, let G; := {S; | R;). Prove (51,5 |
R1, Ry) is a presentation of G = Gs.
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EXAMPLE 2.0.4. {(s,t|s%,t>) = (s | 2« (t | t?) = Co % Co

A semi-direct product N x (Q is a split extension of a group ) by a group
N, that is, it fits into a split short exact sequence 1 — N — N x Q) 4, Q—1
that splits, in the sense that there is a homomorphism o: @ — N x Q with
goo = Idg. Since N is a normal subgroup of N x @, 0(Q) acts on it by
conjugation, so there is a homomorphism p: @@ — Aut(/N). This can be
reflected explicitly in the notation as N x, Q.

The easiest example of a semi-direct product is the case that p is the
trivial map, which results in a direct product: N x; Q =~ N x Q.

When Q = C,, = (z | 2™) is cyclic it is usual to replace p with the
p—image of a generator, so for o € Aut(N) of order dividing m, there is a
semi-direct product N x4 Cy, for which the map p: C,, — Aut(NV) is z — a.

LEMMA 2.0.5. Let G = (S | R), Cp, = {t | t"), and let o € Aut(G) be
of order dividing m (or of arbitrary order if m = o). Let &: S — F(S) be
any map satisfying [a(s)]a = a([s]a) for all s€ S. Then

(S,t| R, t™, a(s)ts 't~ for se S)

s a presentation for G X Cp,.

PROOF. Let R’ := {R, t™, a(s)ts 't~ ! for s € S}, and let P := (S, |
R').
Elements of G x,Cy, can be written as pairs ([w]q, [t%]c,,) for w € F(S5),

with group operation:

([wle, [t"e,) - (W [ten) = ([wlaa®([vla), [t e,

Define ¢: S U {t} — G x4 Cp, by &(s) := ([s]a, lem) for s € S and ¢(t) :=
(1g, [tle,.). To see that this extends to a homomorphism we check that the
relations are satisfied. For w € F(S) we have ¢(w) = ([w]a, l¢,,), which im-
mediately shows that the relators of R are satisfied, and similarly the relator
t™ is satisfied, so it only remains to show that 1gw_c,, = ¢(a(s)ts~1t~1) for
all se S.

p(a(s)ts 1)

([a(s)]as le,) - (e [tle,) - (s e L) - (Las [t e,n)
([a(s)]es 1e,) - (([s]e) s [Hen) - (Las [t e,)
([a(s)]e - allsle) ™ [Hew - [t en)

= (a([sle) - a([sle) " [t Me,) = (16, 1e,) = Lanacn

Thus, ¢: P — G %, Cy, is a homomorphism. It is surjective, since the

generators of each factor are in the image. It remains to show ¢ has trivial

kernel. To do this we put the elements of P into a normal form.
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We claim that every element of P can be written as the equivalence class
of a word in F(S,t) with all letters of ST coming first, followed by a power
of t. Assuming this, it is easy to verify injectivity of ¢: Suppose 1gx,c,, =
o([wt]p) = ([w]g, [t*]c,,) for some w € F(S). Then both coordinates are
trivial, so w € {R)p(g) and t* € (™). But then wt® € LR )p(gy), and
[wt®]p = 1p.

Let us prove the claim. The first step is to extend & to all of F(S) in
a way that remains compatible with «. By the universal property for free

groups, there is a unique extension of &, and we have commutative diagram:

F(S)
q \E .
L,k

The lower-right square commutes by construction. The square that is the
outer boundary of the diagram commutes because ¢ o & and « o g agree on
the generating set S of F'(S). Thus, for all w € F(S) we have [a(w)]g =
a([w))e.

Next, we claim that the relation a(s) = tst~! in P extends to S~!, hence
to all of F(9), as follows: a(s !)tst™! = ts~ 1t~ 1(a(s)ts ) "Hst™! e
(R »p(sy, s0 1p = [a(s™')tst™!]p. Then for e € +1 and s € S we have:

[ts]p = [a(s)ts™t 7 ]p - [ts]p = [G(s)t]p

So we can move positive powers of ¢ to the right letter-by-letter past
any word in F(S). If m < oo we are done; if m = oo then we also need to
account for negative powers of ¢ on the left.

Given s¢ € ST, there exists v € F(S) such that a([v]g) = [5]g, since o
is an automorphism. Equivalently, s € a&(v){R)ps). But a(v){R)ps) <
&R Y p(s1), 50 [5]p = [6(v)]p. Finally:

[tsTp = [t7']p - [a(o)to™ 715 - [a(v)]p = [0t ']p O

DEFINITION 2.0.6. For m € {1,..., 00}, the dihedral group of order 2m is
the semi-direct product of the form D,,, := C,, X Ca, where the automorphism

of Cp, is inversion. By Lemma 2.0.5, D,,, = {r,s | 7™, 5%, r~Lsr=ts71).

When m = 1,2, inversion on Cy, agrees with identity, so D1 = C; x Cy =
Cy and Dy =~ Cy x Co are Abelian.

DEFINITION 2.0.7. A Tietze transform is one of the following four oper-
ations on a group presentation (S | R) that results in an isomorphic group:



20 1. GROUPS FROM PRESENTATIONS

e Add a redundant relator: {S | R) becomes (S | R U {r}) where r is
an element of {R))p(s).

e Remove a redundant relator: (S | R u {r}) becomes (S | R) where
r is an element of (R)p(s)-

e Add aredundant generator: (S | R) becomes (Su{s} | Ru{sw™1}),
where w € F(S).

e Remove a redundant generator: (S U {s} | R U {sw™!}), where
R U {w} c F(S), becomes (S | R).

EXAMPLE 2.0.8. Consider (s | s2,s*). The relator s* is redundant,
since it can be written as a product of other relators, s* = s? - s2. Thus,
(s s%,5%) = (s ] s?). The relator s? is not in {s*), so it is not a redundant
relator, and Cy = (s | s2,5%) # (s | s*) = (.

EXERCISE 2.0.9. Given a presentation (S | R) with r € R, there is a

sequence of Tietze transformations that replaces r with any conjugate of r

1

or of r~1. If R contains words wv™' and zvy then there is a sequence of

Tietze transformations that replaces zvy by zwy.

EXAMPLE 2.0.10. Consider (s, t | s2, t2, (st)3).
(1) Add aredundant generator r = st to get (s, t,7 | s2, t2, (st)3,r(st)~1).
(2) By Exercise 2.0.9 we can replace (st)3 by r3.
(3) Add a relator r—tsr~1s7! which is redundant, since:

r et =t e s T st 172 s (et s ) s

This gives: (s,t,r | 8%, t2, r3,r(st) 1, r~ler—ls71).
(4) The previous step makes 2 redundant, so remove it.

(5) By Exercise 2.0.9 we can replace 7t~ 1s~! by tr~1s; to get:
{rys,t | 82,3, rtsrls™ tr7ls)

(6) Finally, we can remove the redundant generator ¢, since we have one

relator t(s~!r)~! and ¢ appears in no other relators. This leaves:
(rys | 2,3, r ter sl
By Lemma 2.0.5, we recognize this as a presentation of D3 = C3 x Cs.

ExXAMPLE 2.0.11. An argument similar to the previous example gives
Dy = (r,s | s%,r7tsr7ls7™1) = (s,t | s%,#?). By Exercise 2.0.3, this is a
presentation of Co * Co, S0 Dy = Co * Co.

3. Group actions and representations

A representation of a group is simply a homomorphism into some (hope-
fully!) better understood group. For instance, if G = (S | R) and we want
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to know whether the element of G represented by the word w € F'(S) is non-
trivial, it suffices to find a representation p: G — H to some other group
H such that p(w) # 1.

Even better would be to find an injective representation. Such a repre-
sentation is called faithful.

An action of a group G on a structure X is a representation of G into
the group of symmetries of X, where ‘group of symmetries’ has to be inter-
preted to preserve the structure of X. For example, if X is just a set then
its symmetries are permutations, but if is a group its symmetries are auto-
morphisms, if it is a topological space its symmetries are homeomorphism,
if it is a metric space its symmetries are isometries, etc.

If G acts by homeomorphisms on a topological space X we will take a
fundamental domain for the action to mean a closed set D such that every
G-orbit meets D and every G—orbit meets the interior of D at most once.! A
fundamental domain D is a strict fundamental domain is every orbit meets
D exactly once.

If D is a fundamental domain for G —~ X then the translates of D by
the G—action cover X, and distinct translates of D have disjoint interiors.
In the case that X is a surface such a covering is often called a tessellation

or a tiling.

ExaMPLE 3.0.1. Z acts on R by isometries by integer translations. The
interval [0, 1] is a fundamental domain, but not a strict fundamental domain,

since 0 and 1 are in the same Z—orbit.

lsp=1s~1) admits a faithful isometric

EXAMPLE 3.0.2. Do, = (7, s | 82,7~
action on R with a strict fundamental domain by defining p(r) := 2 +— z +2
and p(s) ==z +— —z + 1.

First check that this definition extends to a homomorphism of Dy, by

checking that the relations are satisfied:

p(s®) = pls)op(s) x> —(—x+ 1) +1=u
p(r~tsr™ts™h) = p(r)"top(s)op(r) Ttop(s) Tt x> (—((—x+1)=2)+1) -2 =
So p takes each of the relators to the identity map on R.
To see that the map is faithful, use the description of elements of D,

from Lemma 2.0.5: since s has order 2, every element can be written either

r® or r%s for some a € Z. But p(r*)(x) = x + 2a, which is nontrivial if and

1Some authors take ‘fundamental domain’ to mean what we are calling a strict funda-
mental domain, and call what we are calling a fundamental domain a ‘weak fundamental
domain’.
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only if a # 0, and p(r®s)(x) = —z + 1 + 2a fixes only the point x = a + 1/2,
so it is always nontrivial.

Finally, [—1/2,1/2] is a strict fundamental domain. Powers of r bring
every element of R into the interval [—1/2, 3/2], and then s exchanges the two
sides of that interval, fixing its midpoint. Furthermore, if |z| < 1/2 then a
quick computation shows that |p(r%)(x)| > 1/2 when a # 0 and |p(r®s)(x)| =
1/2, with equality only in the cases p(s)(1/2) = 1/2 and p(r~'a)(—1/2) =
~1/2.

4. Definitions and first examples of Coxeter groups

4.1. Coxeter presentations.

DEFINITION 4.1.1. A Coxeter matriz M = (ms) on a finite set S is an
|S| x |S| symmetric matrix with entries in N := {1,2,...} u {0} such that
mss = 1 for all s € S and mg = 2 if s # t.

DEFINITION 4.1.2. A Cozxeter presentation is a presentation of the form:
(S| (st)™t for all s,te S)

where (mg) is a Coxeter matrix on S.

Recall the convention that a word raised to an infinite power in a pre-

sentation is to be ignored, so (st)® signifies no relation between s and ¢.

DEFINITION 4.1.3. A Cozxeter group is a group that admits a Coxeter

presentation.

DEFINITION 4.1.4. A Cozxeter system (W, S) is a Coxeter group W such
that there is a Coxeter matrix M on S defining a Coxeter presentation of
W. The set S is called a fundamental generating set of W.

A priori we could have a Coxeter system (W, S) such that for some
s,t € S the corresponding relator is (st)™", but st has order m in W. In
this case, we could perform a pair of Tietze transformations and replace
the relator (st)™" by (st)™ and get a new Coxeter presentation for W with
the same generating set. It will turn out, see Chapter 3 Proposition 2.0.3,
that this does not actually happen: when a Coxeter presentation has relation
(st)™ the order of st in W is actually m, so choice of fundamental generating

set determines the Coxeter presentation.

ExAMPLE 4.1.5. There is only one possible Coxeter matrix on a singleton
S = {s}; it is M = (1), and the corresponding Coxeter presentation is

(5| s%) = Cy, the cyclic group of order 2.
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EXAMPLE 4.1.6. Every Coxeter matrix on S = {s,¢} has the form M =

(1 ") for some m = 2.
m
In the case that m = 2 the corresponding Coxeter presentation is: (s, |
52, 12, (st)2) —=> (s,t | 8%, 12, sts~'t~1) = Cy x Cy, by Lemma 2.0.1.
In the case that m = oo the corresponding Coxeter presentation is:
(s,t| 8% 12) = (s | 8%« (t | t2) = Cy = Cq, by Exercise 2.0.3.

For m > 2 the argument of Example 2.0.10 generalizes to give:
(s,t|s%, 12, (st)™) =g (rys| 8% rm rlsrlsTy = Dy,

By Lemma 2.0.5 this is a presentation of the dihedral group D,,.
The same transformation in the case m = oo gives:

(s,t] 8%, 82 "= (r,s | 8%, (s1)%)

1

—{r,s|s% s rs =7

4.2. Coxeter graphs. Notice that a Coxeter matrix is redundant; the
|S|(]S| — 1)-many entries above the diagonal already determine the matrix.
There are two different conventions for representing this same information

in terms of labelled graphs.

DEFINITION 4.2.1. Let M be a Coxeter matrix on S. Define the Cozxeter
graph I' corresponding to M to be the graph with vertex set S and an edge
labelled by mg between s and t if mg > 2. For brevity, labels with value 3

are usually omitted.

DEFINITION 4.2.2. Let M be a Coxeter matrix on S. Define the presen-
tation graph Y corresponding to M to be the graph with vertex set S and
an edge between s and t if mg < 00, with the edge labelled by mg when
Mgt > 3.

Table 1.1 shows the graphs for the groups of Example 4.1.6.
We will most often use the Coxeter graph, but the presentation graph is
more commonly used in the case of right-angled Coxeter groups:

DEFINITION 4.2.3. A right-angled Cozeter group (RACG) is a Coxeter
group defined by a Coxeter matrix in which all off-diagonal entries are either

2 or oo.

One reason that the graph definition is useful is that it makes it easy to

describe a certain class of well-behaved subgroups:

DEFINITION 4.2.4. Let (W, S) be a Coxeter system. The subgroup of W
generated by T' c S is called a special subgroup, and denoted Wr.
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M T T w
(1) . . Co
1 2
<2 1> . e | — CQXCQIDQ
1 3 3
3 1 I I D3
(1 Y for 3 <m < o0 |y | D,,
m 1
1 o
<OO 1> .L. o . COONCQZDOOZCQ*CQ

TABLE 1.1. Coxeter and presentation graphs for 1 and 2—
generator Coxeter systems

In the literature, special subgroups are sometimes called standard sub-
groups or standard parabolic subgroups. Their conjugates are called parabolic
subgroups.

A full subgraph of a (labelled) graph is a subgraph that contains an
(labelled) edge between two vertices if and only if the original graph does.
If (W, S) is a Coxeter system corresponding to Coxeter graph I', then 7' = S
corresponds to a subset of the vertices of I'. This uniquely determines a full
subgraph 't with vertex set T'.

PROPOSITION 4.2.5. Let I' be the Cozxeter graph of a Coxeter system
(W,S). Let T = S. Let I'p be the full subgraph of T' spanned by T, and let
(Wr,.,T) be the Coxeter system with Cozeter graph I'r. The natural map
Wr, — Wr defined by extending the identity map on T is a surjection.

ProoF. The identity map on T hits all the generators of Wr, so we
just need to check that the relations of Wt are satisfied in Wp. For every
t e T we have t> = 1 in W and in Wy, If t # ¢ € T and there is an
edge labelled myy in IV then there is also an edge labelled myy in T', so the
relation (t¢')"#' = 1 holds in both Wy and in Wyp. If t # ¢’ € T and there
is no edge between ¢ and ¢’ in I"” then, since I is a full subgraph, there is
no edge between t and ¢’ in T, so the relation (¢#)? = 1 holds in both Wp
and in Wrp. O

It will turn out that the map of Proposition 4.2.5 is actually an iso-
morphism, so the special subgroups are themselves Coxeter groups. At the

moment we can prove this only for a single vertex:

PROPOSITION 4.2.6. If (W, S) is a Coxeter system, every element of S
has order 2 in W.

PROOF. For each s € S, the Coxeter presentation has a relation s? = 1,

so the order of s is at most 2; we only have to show that s # 1. Define
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p: W — Cy by sending each generator to the nontrivial element of Co. This
extends to a homomorphism of W because all of the defining relations have
even length. Since s € S has nontrivial image in Co, it was nontrivial in

w. (]

PROPOSITION 4.2.7. Let (W, S) be a Coxeter system and let T and Y be
its Coxeter and presentation graphs, respectively. Then the decomposition
of I' and Y into connected components determine splittings of W as a direct
and free product, respectively:

W = 1_[ Wi

con. comp. I''cI'

W = * W

con. comp. Y'cYT

PROOF. Since our groups are finitely generated it suffices to consider
the case of two connected components and then induct.

Suppose that I' = T'y b I'g, with T'; connected. For i € {1,2}, let S; be
the vertices of I';, and let R; be the set of relations (st)™st for s,t € S;. For
s € 51 and t € Ss there is no edge between s and t in I', so mg = 2. Let R3
be the set of relations (st)? for s € S; and t € Sy. The Coxeter presentation
for (W, S) is (S1, S2 | R1, Ra, R3) and the Coxeter presentation for Wr, is
(Si | Ri). Apply Lemma 2.0.1.

In the presentation graph case the argument is similar, but no edge
between s € S and t € Ss means no relation between s and t, ie mg = 0.
Apply Exercise 2.0.3. U

DEFINITION 4.2.8. A Coxeter system (W, S) is irreducible if its Coxeter
graph is connected.

Conversely, a Coxeter system is reducible if its Coxeter graph is not
connected, and Proposition 4.2.7 implies that reducibility implies that W
splits as a direct product. Unfortunately, the converse is not true!

EXAMPLE 4.2.9. Assume m > 3 is odd. Ds,, is the Coxeter group

2m

. The graph is connected, so defines an irreducible Coxeter system.

The dihedral presentation is (r,s | r?™, % srs™! = r=1). The subgroup

{r) has exactly one non-trivial element, 7™, that is fixed by the conjugation
s—action, so the center of Doy, is Z(Day,) = {r'"™) = Ca. But Doy /Z(Dam) =
(rys | r?m 82 srs™t =7l ™y = (p s | ™, 82, srsT! = 71 = D,,. This

gives a short exact sequence:
1 — Z(Dap,) — Doy, — Dy — 1

This sequence splits, as follows. Define o(s) := s and o(r) := »™*!. Since

m is odd, m(m + 1) is a multiple of 2m, so (o(r))™ = ™™+ = 1p,  and
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0: Dy — Day, is @ homomorphism such that q o ¢ is the identity on D,,.
Thus, Doy, is a semi-direct product Ca x D,,, but Aut(Ca) is trivial, so this is
actually a direct product: Ds,, =~ Cy X D,,,. That is a Coxeter group defined

m

by the Coxeter graph .

This example also shows that if (W, .S) and (W', S”) are Coxeter systems
with Coxeter graphs I' and I, respectively, then W =~ W' does not imply
that I" and I are isomorphic as labelled graphs.

EXERCISE 4.2.10. Match the Coxeter group with the Platonic solid for
which it is the symmetry group:

e

Octahedron

7

{
&

Dodecahedron

L
=

Tetrahedron

L
H

Cube

&

Icosahedron
EXERCISE 4.2.11. Symmetric groups are Coxeter groups. Find a Cox-
eter presentation for the symmetric group on the set of n things. Remark:
Guessing a Coxeter presentation and an identification of the generators with
permutations such that all of the relators of the presentation are satisfied is
the easy part. You also have to show this map is injective. These are finite

groups, so you can do this by counting.



CHAPTER 2

Geometric reflection groups

Roughly, a geometric reflection group is going to mean a group generated
by reflections in the sides of a convex polytope in n—dimensional spherical,
Fuclidean, or hyperbolic space, such that the original polytope is a strict
fundamental domain for the action. We will make these terms precise, but

the situation is simpler in dimensions 1 and 2, so we explore those first.

1. 1-dimensional geometric reflection groups

Hyperbolic and Euclidean space coincide in dimension 1, so there are
only two spaces to consider, the unit circle S! and the real line R'. In
both cases a ‘convex polytope’ is just a closed interval, so the 1-dimensional
geometric reflection groups are those that can be generated by reflections in
the endpoints of a closed interval in either S! or R!, such that the original
closed interval is a strict fundamental domain for the resulting group action.
Notice furthermore that S! and R! can be oriented, and reflection reverses
orientation, so the images of the fundamental domain come in two flavors:
those whose induced orientations match the ambient one, and those that do
not.

First consider R'. All non-singleton compact intervals are equivalent un-
der affine transformation, so all reflection groups defined on R! are conjugate
in the 1-dimensional affine group; that is, up to isomorphism there is only
one reflection group on R!. We can define the interval to be I = [~1/2,1/2],
and the generating reflections to be x — —x — 1 and  — —z + 1.

We claim the group generated by these two maps is Dy,. Define a map
p from Dy = (r,s | s%, srs = r~1) =~ {(s,t | 52, t2) to this reflection group
by p(s) := z — —x + 1 and p(t) := ¢ — —x — 1. This is the faithful
representation considered in Example 3.0.2.

Now consider S'. A reflection group action covers S' by an even number
of copies of a non-singleton closed interval I, alternating between those for
which the induced orientation under the group action matches the ambient
orientation, and those for which the opposite is true. Thus, the length of
I must be w/m for some m € N. The case m = 1 is degenerate, since then
the reflections through the two endpoints of the interval coincide, and the

reflection group is Co, which is better illustrated as the reflection group of

27
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SY, so we will assume m > 2. All closed intervals of the same length are
equivalent under the isometry group of the circle, so the reflection group is
determined by the choice of m.

Recall that the isometry group of the circle is the orthogonal group O(2),
which we can realize as a matrix subgroup of Isom(E?) by fixing a basepoint
and Cartesian coordinates, and thinking of S as the unit circle.

The orthogonal group splits as a semi-direct product of the rotations by

the order two group generated by a reflection. In matrix form:

§ —sinf
(clockwise) rotation by angle 6 = C?S S
sinf cosf

1 0
reflection through the r—axis = <0 1)

Reflection through the line through the origin with angle 6 can then be
expressed as a conjugate: rotate the line by —f# to move it to the z—axis,
reflect through the z—axis, and then rotate by 6 to get back to the original
line:

(1)

cos —sinf 1 0 cos—0 —sin—6 B cos20  sin260
sinf cos@ 0 -1 sin—0 cos—0 | \sin20 —cos20

Consider the Coxeter presentation (s, t | s2, t2, (st)™) = D,, for 2 <

cosm/m  sinmw/m
/ / , which is reflection through

cosm/m  —sin 7r/m>
)

m < o. Define p(s) := <

sinm/m —cosm/m

the line through the origin at angle 5. Define p(t) := ]
—sinm/m —cosmw/m

which is reflection through the line through the origin at angle —5-.

Both p(s) and p(t) have order 2, since they are reflections. The product

2T 2w ) P ¢ T 2T i 2T
o(s)p(t) — cos .mﬂ sin ﬂm 22517rn - C.OSQW; _ c?s 2mﬂ 51n2;n i
2sin = cos = cos® = —gin® - sin 28 cos <&
m m m m m m

rotation through angle 27 /m, which has order m. This shows that p: (s, ¢ |
52, 2, (st)™) — O(2) is a homomorphism, so we have defined an action of
D, on S'.

LEMMA 1.0.1. The action D,, —~ S' described above is faithful.

PROOF. D,, has order 2m, so it is enough to demonstrate a point in S
whose orbit under the action contains 2m distinct points. This is easier in
complex coordinates. Translated to 1 complex coordinate, we have p(s) =

—im/m

z e/ . Zand p(t) =z — e - z. Extending inductively:
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The orbit of 1 contains the 2m many 2m~—th roots of 1. Figure 1a shows the
case m = 3. (]

p(sts)(1) = pltst)(1)

(B) D3 as an S! reflection
group

(A) D3 acting on S* < E?

FIGURE 1. Dj as a reflection group.

‘We have shown:

THEOREM 1.0.2. One-dimensional geometric reflection groups are in bi-

jection with rank 2 Coxeter systems, which are exactly the dihedral groups.

2. 2—dimensional geometric reflection groups

In two dimensions we define a geometric reflection group to be a group
acting on either the 2—sphere, the Euclidean plane, or the hyperbolic plane,
S?, E2, or H?, generated by reflections in the sides of a convex polygon, such
that the polygon is a strict fundamental domain for the action.

We will describe these 2-dimensional geometric reflection groups, and
show that for each such group there is a Coxeter group that naturally surjects
onto it, Theorem 2.6.1. The surjection is actually an isomorphism, but the
proof of injectivity uses tools that will be developed in greater generality for

higher dimensional cases in the following sections.
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Many of these 2-dimensional geometric reflection groups are rank 3
Coxeter groups, but the analogue of Theorem 1.0.2 is not true: some 2—
dimensional geometric reflection groups are Coxeter groups of rank greater
than 3, and there are rank 3 Coxeter groups that are not geometric reflection

groups, 2—dimensional or otherwise.

DEFINITION 2.0.1. A Cozeter polygon is a convex polygon in S?, E2, or
H? that is the fundamental domain of a geometric reflection group.

We will always assume we have described a polygon with the minimal
possible number of vertices, so all dihedral angles are strictly less than .
Reflections in adjacent sides of a polygon fix the common vertex, so if the
polygon is a fundamental domain for the action, the composition of adja-
cent reflections must tile out a neighborhood of a vertex with an integral
number of copies of the corresponding corner of the polygon. Furthermore,
reflections reverse the orientation of the polygon, so there actually have to
be evenly many copies of the polygon incident to each vertex. This implies
that the dihedral angle at each vertex of a Coxeter polygon must be an even
integral fraction of 27; in other words, a proper integral submultiple of .

The curvature s of the three model geometric spaces is:

+1 ifX2=§2
KX =< 0 ifX2=E?2
—1 if X2 =H2

The Gauss-Bonnet theorem connects the curvature of a compact surface
to its topology. If P is a polygon with area A(P), dihedral angles 0; = w/m;,
and Euler characteristic x(P) = 1, then:

n

(2) Z m—7/m;) =2nx(P) = 2w

If P is a triangle then (2) implies Zi:l 0; = m + A(P)x(X?), so the sum of
the dihedral angles of a geodesic triangle is strictly greater than 7 in S?,

equal to 7 in E2, and strictly less than 7 in H?Z.

DEFINITION 2.0.2. A triangle group is a Coxeter group A(p, q,r) defined

by Coxeter matrix:

,
M = q
1

I < T
S ]

‘Triangle group’ is just another name for a rank 3 Coxeter system. We
will see, in direct connection with (2), that triangle groups behave differently
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according to whether S = % + % + % is less than 1, equal to 1, or greater
than 1.

2.1. Geometric reflection groups on the Euclidean plane. In
the case of E? (2) gives (n — 2)m = Y.l ®/m;. Since m; > 2, (n/2)7 >
Sy m/mi = (n—2)m, son < 4. Thus, the only possible Euclidean Coxeter
polygons are that cases that P is a 4-gon with all dihedral angles 7/2, ie,
P is a rectangle, or P is a triangle and the sum of the dihedral angles is .
There are only three combinations of three dihedral angles that are integer
submultiples of 7 and sum to 7; they are (7/3,7/3,7/3), (7/6,7/3,7/2),
and (7/4,7/4,7/2).

All rectangles, and all triangles with three given angles, are equivalent in
the affine group of IE?, so up to isomorphism there are only four E? reflection

groups. They are shown in Figure 2.

(A) Dihedral angles (3, %,%,7%). (B) Dihedral angles (3, %, %)

ol

(c) Dihedral angles (5, %, 5)- (D) Dihedral angles (§, 5, 5)-
FIGURE 2. E? reflection groups
We claim that these are all Coxeter groups. The first is Dy, X Doy, and the

others are the irreducible triangle groups A(p, ¢, 7) such that 1% + é + % = 1.
It is easy to verify that the obvious map from the Coxeter group to the E?
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reflection group is a surjection. The fact that it is an injection will follow

later from the general theory.

2.2. Geometric reflection groups on the 2—sphere. In the case of
S? (2) gives:

(n/2)w = > 7/mi = A(P) + (n - 2)7 > (n— 2)7
=1

The only solution is n = 3 with >°_ 7/m; = A(P) + 7 > =, so the only
possible spherical Coxeter polygons are triangles. Ignoring for a moment
the area term, there are only a few possibilities to satisfy Z?:l T/m; >
with integers m; > 2. There is an infinite family of solutions (7, 5, ) for
m > 2, plus three more: (3,%,7%), (3,5,7), and (5,5, £). There are, in
fact, spherical triangles with these triples of dihedral angles. For the infinite
family, consider a globe with the equator marked out, and m—many evenly
spaced great circles through the poles. Figure 3 shows the cases m = 2,3,7
of the infinite family as well as the three exceptional examples.

Recall from Exercise 4.2.10 that the three exceptional cases are also
the symmetry groups of the Platonic solids. Can you see the relationship

between the Platonic solid and the corresponding sphere in Figure 37

(c) A(2,2,7)

(D) A(2,3,3) (E) A(2,3,4)

FIGURE 3. S? reflection groups.

Again, we claim that all of these spherical reflection groups are Coxeter
groups: they are precisely the triangle groups A(p, ¢, ) with % + % + % > 1.
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As in the Euclidean case, it is trivial to check that there is a surjection
from the triangle group to the corresponding spherical reflection group, and

injectivity will follow later.

2.3. Prelude to the hyperbolic case: The Poincaré Disc model
of H2. We are going to describe a way of metrizing a submanifold M of R™.
We will not give a formal definition of submanifold, as we will only encounter

two simple cases:

(1) M is an open subset of R".
(2) M = f~1(r) is the level-r set (or a connected component of a level

set) of a smooth function f: R™ — R at a regular value r.

At every point x € R" there is an R™ worth of directions that can be the
initial velocity vector of a curve starting at x. The space of such directions
is called the tangent space at x, and is denoted TxR"™. We can naturally
think of this space as having coordinates inherited from those of R™. If M
is some submanifold of R™ and x € M then we can restrict to curves in
M, and the space of initial velocity vectors to such curves forms a subspace
TxM < TxR™. When M is an open subset of R", Ty M = TyR"™, and when
M is a level set Tx M is a subspace of dimension n — 1.

The goal now is to metrize (a connected component of) M as a length
space. This should mean that the distance between x,y € M is the infinum
of lengths of paths in M from x to y. The usual way of defining the length
of a path v: I — M in Calculus is the formula:

o= | i

This implicitly assumes that we measure the length |7/(¢)| of the tangent
vector 7/ (t) € Ty M to v at time ¢ using the standard Euclidean metric.

ExaMPLE 2.3.1. Euclidean space E™ is M = R"™, which is an open subset
of R™, where the tangent space at each point is endowed with the standard

Euclidean inner product.

EXAMPLE 2.3.2. The n-sphere S” is the level-1 set in R**! of the func-
tion v — |v|, where the tangent space at each point is endowed with the
restriction of the standard Euclidean inner product. That is, S™ is the unit
sphere in R"*! where the distance between two points is the length of the

shortest path between them that remains in the sphere.

Taking the standard metric on every tangent space is not the
only possible choice.

By varying the choice of inner product on tangent spaces to points of
M we vary the way that lengths of, and angles between, tangent vectors are
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defined, resulting in different geometric structures that all have the same
underlying topological manifold M.

DEFINITION 2.3.3. The Poincaré Disc model of the hyperbolic plane
takes H? to be the open unit disk in R? where the inner product on the

tangent plane Ty H? at a point x is defined by':

Ay, W)R2
A

This says that the usual Euclidean inner product on TxH? is rescaled by
a factor that depends on x. Scaling the inner product does not change the
angles between tangent vectors, but it changes their lengths:

A, V)R Alvig, 2|v|g2
B)  Vlnm2 = AV, V) m2 = I—x22 \Va-x2? 1-x?

Observe:

e In a small enough neighborhood of any point, the metric is very
close to being a rescaled version of the Euclidean metric.

e Near the origin the metric is very close to being the Euclidean
metric.

e As we move towards the boundary of the ball in R?, tangent vectors
get scaled by arbitrarily large factors.

EXAMPLE 2.3.4. Let for a < 1, let v: [0,a] — H? : ¢ — (¢,0). We have
v'(t) = (1,0) for all ¢. In Euclidean terms + has constant unit speed.

e = | Ol e

07

21" (1) lg>
= ————=dt
J[o,a] 1—[y(t))

[0,(1] ]. _t

_10 1+t‘a
% o

=1
Ogl—a

Notice as a gets close to 1, this curve becomes arbitrarily long.

1One might wonder why the factor of 4 is there. It is a normalization factor. Any positive
number in that spot would yield a negatively curved plane, but there is a definition of
‘curvature’ for which the 4 gives this plane curvature equal to —1. This is analogous to
the fact that any sphere gives a positively curved 2—-dimensional space, but it is the unit
sphere that gives a space of curvature equal to +1. Another explanation is that there are
other natural models of hyperbolic space, and 4 is the correct factor to make this model
equivalent to the others. See Theorem 3.1.7.



2. 2-DIMENSIONAL GEOMETRIC REFLECTION GROUPS 35

We cannot determine the distance from 0 to (a,0) from this example
alone. We have only computed the length of one curve. Potentially there
could be some shorter curve with the same endpoints. It turns out that that
is not the case.

PROPOSITION 2.3.5. Projection to any line through O in H? is length

non-increasing.

PRrROOF. Let m be orthogonal projection to a line L. Choose a unit vector
in the direction of L and extend it to an orthonormal basis of R?. Let v
be any curve. The tangent vector to m o~ at t in the new coordinates is
the same as +/(t), but with the second coordinate set to 0, so its Euclidean
length does not increase. Furthermore, 7o ~(t) is no farther from the origin

than ~(¢), so |7 o v|me < |v|m2. O

EXAMPLE 2.3.6. We have seen a curve vy from 0 to (a,0) of hyperbolic

1+a
l—a

first coordinate axis includes all the points of ([0, a]), so [0|g2 = |70 d|g2 =
|7|gz. Thus, di2(0, (a,0)) = infs 6|2 = log 112

a—1

In particular, dg=(0, (a,0)) — o0.

length log . For any curve ¢ from 0 to (a,0), the projection 7 of § to the

DEFINITION 2.3.7. A geodesic is a path whose length realizes the distance
between its endpoints. A space if a geodesic metric space if every pair of
points can be connected by a geodesic. A subspace is convez if every geodesic

with endpoints in the subspace remains in the subspace.

LEMMA 2.3.8. Up to reparameterization, the path t — (t,0) is the unique
geodesic from O to (t,0) in H2.

PROOF. Suppose v is a rectifiable path from 0 to (¢,0). If v contains
any points off the first coordinate axis then projection shortens ~y, so v is
not a geodesic. If v contains points on the first coordinate axis that are not
between 0 and (¢,0) then v has backtracking, so it is not a geodesic. O

2.3.1. The group of isometries of H?. Next, we describe the group of
isometries of H?, denoted Isom(H?). The structure we have defined, a space
together with a vector space of tangent vectors at each point, and an inner
product on each tangent space, is an example of a Riemannian manifold.
The Myers—Steenrod theorem says that an isometry between connected Rie-
mannian manifolds is continuously differentiable (in fact, smooth). Thus, if
¢ is an isometry of M then at each point x € M there is linear bijection
Tx¢p: TxM — Ty M that is the derivative of ¢ at x. Furthermore, the
determinant of the derivative of ¢ is either positive at every point of M or

negative at every point of M. The isometries whose derivatives have positive
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determinant at every point are called orientation preserving, and they form
a subgroup Isom™ (M) of index 2 in Isom(M).

LEMMA 2.3.9. The stabilizer Stabigomm2)(0) of 0 in Isom(H?) is O(2),

the 2-dimensional orthogonal group.

PrROOF. O(2) fixes the origin, preserves the Euclidean inner product,
and preserves distance from the origin, so it preserves the hyperbolic dis-
tance. Thus, O(2) < Stabygmm2)(0), and we need to show the opposite
inclusion.

Since O(2) acts by isometries fixing 0 and we know one radial geodesic,
every radial line starting at 0 is geodesic. Suppose that ¢ is a hyperbolic

isometry fixing 0. Let x # 0 be an arbitrary point of H?, and define:
Vit [0, dg2(0,%)] — H? : t > (1 — )0 + tx

This is the unique Euclidean-unit-speed radial hyperbolic geodesic from 0
to x. ¢(x) = Y¢(x) is therefore the Euclidean-unit-speed radial hyperbolic
geodesic from 0 to ¢(x), and To¢p: ToH? — ToH? takes the initial velocity
vector of yx to the initial velocity vector of v, (x), that is:

(To$) (75(0)) = V() (0)

Conversely, given a unit length initial velocity vector v € ToH? and a
distance 0 < D < 1 there is a unique Euclidean-unit-speed radial path
[0, D] — H? : t > tv with initial velocity v and Euclidean length D, so it is
Ypv. Thus, ¢(x) = dg2(0,%) - (To®)(7%(0)). In other words, ¢ is determined
by its derivative at O.

Now, the inner product on ToH? is the standard Euclidean inner product,
so the group of linear maps preserving this inner product is O(2). Thus, if
¢ € Stabrgm2)(0), then To¢ ToH? — ToH? is orthogonal. But if we just
take ¢ := Top € O(2) as a map of R?, then it preserves the open unit ball
and, since it is linear, Tp1) = 1. Since isometries stabilizing 0 are determined
by their derivative at 0, we have Top = ¢ = Totp = ¢ = 1) € O(2). O

COROLLARY 2.3.10. Ewery line through 0 in H? is geodesic.

PRrROOF. Isometries preserve geodesics. Our example shows that the first
coordinate axis is geodesic. We can move this to any line through the
origin with an appropriate element of O(2), and this is an isometry, by
Lemma 2.3.9. U

It is convenient now to change notation and consider the plane as the
complex numbers C, with the hyperbolic plane consisting of the open unit
disc.
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ProproSITION 2.3.11. Consider:

PSU(1,1) := { [(g 2)] | (g Z) € Mays(C), aa — bb = 1}

(1) PSU(1,1) acts on H2.

(2) PSU(1,1) contains SO(2) < Isom™ (H?).

(3) PSU(1,1) contains a I1-parameter family that acts by hyperbolic
translation on the real azis.

(4) PSU(1,1) acts transitively on the set of unit tangent vectors to H2.

(5) Isom™ (H?) acts simply transitively on the set of unit tangent vectors
to H2.

Consequently, Isom™ (H?) =~ PSU(1,1).

PRrROOF. Let SU(1,1) := { (Z b) € May2(C) | aa — bb = 1} act on
a

C u {00} by Mébius transformations, so that:

a b - az+b
b al bz +a

Composition of Moébius transforms is compatible with matrix multipli-

cation, so such a map is a bijection of C U {oo}. Observe that the center of
SU(1,1) consists of plus and minus the identity matrix, and this is also the
kernel of the action. PSU(1,1) := SU(1,1)/ £ Id.

Take H? to be the open unit disc in C. First we check that the action
of SU(1,1) preserves the open unit disc. Compute:

22+ (|22 + 1) + @bz + abz
1+ b[2(|2]2 + 1) + @bz + abz

az+b
l_)z+(_1

az+b

Thus, [2| <1 — |Z52

< 1. This proves Item (1).

b -

Observe that for CBL " | eSU(1,1) we have 1 = aa—bb = |a|>—|b]*> =
a

la]> = 1+ [b|> > |b]> = 0, so |a] > |b| and a # 0. The point 0 is fixed if

and only if b = 0, and in this case |a| = 1, so a = €% for some 6 € [0, 27),

i20

and the Mobius transform is z — €'“?z, which is rotation about the origin

by angle 26. This gives a bijection from the subgroup of PSU(1,1) whose
representatives have b = 0 and the group of rotations SO(2). Rotations are
hyperbolic isometries, by Lemma 2.3.9, so this proves Item (2).

Next, consider the case that a,b € R. Then a computation shows %ﬂl’ €
R <= z € R, so these maps preserve (—1,1). Furthermore, they act simply
transitively on (—1,1), since for r € (—1,1) we can check that 0 — r if and

only if a = iﬁ and b = ar. Thus, for every r € (—1, 1) there is a unique
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element of PSU(1,1) represented by a real matrix and taking 0 to r. Let
us check that an element of SU(1,1) with real entries acts by a hyperbolic
isometry. Let a, b € R with a®> — b?> = 1, and let ¢ be the corresponding
Mobius transform. For any z € C with |z| < 1 and any vectors v, w € T,H?

we compute:

A(Tz9)(v), (T:0) (W) )

(T0)(V), (T0)(W))r, 2 =

(1= 1[o(2)*)?
_ 4|Tz¢|2<V7W>IE2
(1—|o(2)?)?

_ ‘Tz¢‘2(1 - ’Z’2>2 . 4<V7W>E2
1 —le(2)[?)? (1 —][z?)?

T.00 — |2
RO

21\ 2
This shows that ¢ is an isometry if and only if (%) = 1. When a
and b are real with a? — b? = 1 this is a simple computation to verify.
We have already shown that the interval (—1,1) € R < C is a hyper-
INVI=72 rfVI=12
rNI=12 1VI=12

this geodesic and its orientation. Any such isometry acts on the geodesic

bolic geodesic. The hyperbolic isometry ( preserves

by translation. Since the point 0 moves to the point r at hyperbolic dis-

147
1—r

translated by distance 7. This proves Item (3).

tance 7 := log from 0, we conclude that every point on the geodesic is

Combining these two types of isometries, rotations and translations, gets
us a group of isometries that act transitively on the set of all unit tangent
vectors to points in H2. First, to see that the group acts transitively on
H?, consider a point z = r¢? € C with r € [0,1). Then rotation about 0
by angle —@ is a hyperbolic isometry taking this point to r, and there is a
unique, up to projectivization, element of SU(1,1) with real entries taking
r to 0. Let ¢ be the composition of these two maps. Now let v € T,H? be
a unit vector. The derivative T,¢ of ¢ at z is a linear map T,H? — ToH?
that preserves the inner product, so it takes v to some unit vector in TyH?.
Linear maps are their own derivatives, so postcompose ¢ by a rotation that
takes (T,¢)(v) to 1 € TogH?. This proves Item (4).

Finally, we claim that Isom™ (H?) acts simply transitively on unit vec-
tors. From the previous item, we already know that it acts transitively, so
it is enough to show that if an element of Isom™ (H?) fixes any unit tangent
vector then it is the identity. Suppose ¢ € Isom™ (H?) such that ¢(0) = 0
and (Tpg)(1) = 1 € ToH?. By Lemma 2.3.9, ¢ € SO(2), but then ¢ = Tyo
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is a rotation, and a nontrivial rotations have no fixed points on the unit
circle. (]

COROLLARY 2.3.12. Isom(H?) =~ PSU(1,1) x Cs

PROOF. Isom(H?) = Isom™ (H?) x C2, where the Cy factor is generated
by a reflection. We take this reflection to be z — z. Conjugating a Mobius
transformation by complex conjugation yields the Mobius transformation in

which all entries have been replaced by their conjugate. O

EXERCISE 2.3.13. Show that Isom(H?) preserves the collection of Eu-
clidean circles and straight lines through the origin (which should be thought
of as circles through o).

EXERCISE 2.3.14. Show that Isom™ (H?) acts transitively on the set of
distinct pairs of points in 0H? := S! < C.

EXERCISE 2.3.15. Show that the stabilizer of the (ordered) pair (—1,1)
in Isom™ (H?) is the 1-parameter family described in Proposition 2.3.11 (3).

In the proof of Proposition 2.3.11 there were two one-real-parameter

subgroups of isometries that played a distinguished role:

€i9/2 0
rotations about 0: 0 0

translations along R: <

VI =72 7/v/1—1r2
r/V1—1r2 1/3/1—1r2
We should mention one more family:
) . 1+  —ur
parabolics fixing 1: < ) ) )
i 1 —ar

These parabolic transformations fix the point 1 on the unit sphere, and fix no
point in H? when r # 0. Figures 4 and 5 illustrate the action of translations
and parabolics.

Here are some properties of these subgroups of isometries:

element fixed points trace of representative
nontrivial rotation about 0 only 0 in (—2,2)
nontrivial translation along R —1land 1 in (—00,—2) U (2,00)
nontrivial parabolic fixing 1 only 1 +2

TABLE 2.1. Properties of some isometries of H?

We can also put the translations into a more convenient form:
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FIGURE 4. Images of the imaginary axis under some powers
of the translation (le? \/% le? \/%>

FIGURE 5. Images of the real axis under some powers of

. . 1+4/2 —i/2 .
the parabolic transformation ( i/2 1 /2> Orbits of

points lie on circles tangent to the fixed point 1 in 0H?.

EXERCISE 2.3.16. Show that hyperbolic translation along the real axis
cosh(t/2) sinh(t/2)>

by hyperbolic distance t is given b
y hyperbolic distance ¢ is given by (sjnh(t/Z) cosh(t/2)

2.3.2. Hyperbolic geodesics and polygons.

PROPOSITION 2.3.17. There is a unique unit speed geodesic between any
two points of H2.

PROOF. Let z and 2’ be distinct points of H?. As in the proof of Propo-
sition 2.3.11, there is an isometry ¢ taking z to 0. By Corollary 2.3.10, the
radial line v from 0 to ¢(2’) is the unique geodesic between these points, up

to reparameterization. Thus, ¢~1(7) is the unique geodesic from z to z/. O

Thus far we have talked about finite geodesics, or geodesic segments,
but there are also geodesic rays and bi-infinite geodesics. The prototypical
bi-infinite geodesic is the interval (—1,1) c R < C.

LEMMA 2.3.18. (All the uniqueness statements are up to reparameteri-

zation.)
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(1) A point and a unit tangent vector at that point determine a unique
bi-infinite geodesic.

(2) Every nontrivial geodesic segment in H? is contained in a unique
bi-infinite geodesic.

(3) A bi-infinite geodesic is uniquely determined by a pair of distinct
points on the unit circle 0H? := S' < C.

(4) Ewvery bi-infinite geodesic in H? is an arc of a Euclidean circle or-

thogonal to the unit circle.

PROOF. Let z € H? and v a unit tangent vector at z. By Proposi-
tion 2.3.11 (5) there is a unique ¢ € Isom™ (H?) taking z to 0 and v to 1. By
Lemma 2.3.8, v: ¢t — t is the unique bi-infinite geodesic through 0 with ini-
tial velocity vector 1, so $~1(v) is the unique bi-infinite unit speed geodesic
through z with initial velocity vector v.

For Item (2), let §: [0,L] — H? be a geodesic segment, parameterized
to have unit speed. Up to isometry, we may assume §(0) = 0 and §(L) is on
the positive real line. By Lemma 2.3.8, this implies every point of § is on
the real line, so d is a subsegment of v from above.

For Item 3, let § be a bi-infinite geodesic. Consider a compact subseg-
ment. Up to ¢ € Isom™ (H?, we may assume that the compact subsegment
begins at 0 and ends on the positive real axis, so ¢ o § = v has endpoints
(—1,1) on 0H2. But ¢ € PSU(1, 1) is well-defined homeomorphism of C, not
just of the open unit ball, so $~1(—1) and ¢~1(1) are the topological limits
of 4. So every bi-infinite geodesic has an associated pair of boundary points.
To complete the proof of Item 3, we need to see that the boundary points
determine the bi-infinite geodesic. This follows from Exercises 2.3.14 and
2.3.15.

Item 4 follows from Item 3, Exercise 2.3.13, and the fact that Mdbius
transformations are conformal, that is, they preserve angles. O

PROPOSITION 2.3.19. FEvery hyperbolic geodesic triangle has angle sum
strictly less than w. Conversely, given any angles 61, 62, 63 € (0,7) such
that 61 + 02 + 03 < w, there exists a hyperbolic geodesic triangle, unique up
to hyperbolic isometry, with angles 01, 02, and 3.

PRrOOF. The first part follows from the Gauss-Bonnet Theorem, recall
(2). We prove the second part. Assume, by renumbering, if necessary, that
01 < m/2.

Let ¢y be the point of intersection between the tangent line to the unit
circle at €% and the tangent to the unit circle at 1. Let t — ¢ := ¢ +
te~Z=%) be a parameterization of the tangent line to the unit circle at
eiel, and for t > 0 define R; := d]Ez(eigl,ct). Then the Euclidean circle S; of
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radius R; centered at ¢; is orthogonal to the unit circle and passes through
¢'1. The parameterization of ¢; was chosen so that S; crosses the real line
in the interval (0,1] when ¢ > 0. Let s; be the point of intersection. The

angle at which S; crosses R at s; is ¢; = arccos(jméft)), which increases

continuously from 0 for ¢ > 0. As t — o0, S; limits to the line through 0
and €1, so ¢t — ™ — 01 > 0. Thus, there exists ¢ > 0 such that ¢; = 0s.
See Figure 6.

\

F1GURE 6. Construction of a geodesic with angle 2 and end-
point at e,

S1

Sa

Let rg be s; for t such that ¢, = 02. For t € [0,r(), define ry := ry—t. Let
~¢ be the hyperbolic geodesic ray starting at r; with initial velocity vector
e/™=%2) 5o that 7; is a geodesic ray that meets R at r, with angle 6. The
geodesics R, [0,¢1], and ; form a hyperbolic geodesic triangle (ideal at
t = 0) A; whose angles are 61, 65, and ;. See Figure 7.

0?01

~

FIGURE 7. A sequence of geodesics forming hyperbolic ge-
odesic triangles with base angles 6; and 63, and peak angle
varying between 0 and @ — 61 — 6.

—i0g

At t = 0 we have by construction that 1y = 0. Since r» — 0 as t — ry,
the triangle A; gets arbitrarily small, which means it gets closer and closer
to being a Euclidean triangle. In particular ¢y — © — 61 — 03 as t — ry.

Thus, as t varies between 0 and 7o the hyperbolic geodesic triangle A; has
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angle v strictly increasing from 0 to m — 61 — 62 > 63. Thus, there is a
unique t as which A; is a hyperbolic geodesic triangle with angles 61, 05,
and 03. O

EXERCISE 2.3.20. The hyperbolic law of cosines says that a hyperbolic
triangle with angles «, 8 and ~ has side opposite « of length a, where:

cOS v — COS 3 cosy

cosha = - -
sin [ sin 7y

Choose angles 01, 05, and 03 such that 61 + 02 + 63 < w. Use the hyperbolic
law of cosines to find r and s such that the hyperbolic triangle with vertices
at the points 0, 7, and se’®’, as in Figure 7, has angle 6; at 0, angle 6;
at 7, and angle 6y at se’t. The vertices of the triangle can be plotted,
since we know from Example 2.3.4 how hyperbolic and Euclidean distances
are related along radial segments. T'wo sides of the triangle are such radial
segments. The third side is an arc of a Euclidean circle orthogonal to the
unit circle, passing through r and se*. Find the center and radius of this

circle.

n— 2

PROPOSITION 2.3.21. For every n = 3 and every 0 < 6 < =21 there

s a unique, up to hyperbolic isometry, reqular geodesic n—gon wzth all of its
angles equal to 6.

In particular, for all n = 5 there is a right-angled regular geodesic n—gon.

Tk

PROOF. For r € (0,1) and 0 < k < n connect the points re’ ok and

27 (k1)

re'n by a hyperbolic geodesic. This makes a regular hyperbolic ge-

odesic n—gon P, whose angles decrease continuously with 7, from the cor-

”27Tasr—>0t00asr—>1 See Figure 8.

O

responding Euclidean value

(a) Hyperbolic geodesic squares. (B) Hyperbolic geodesic pentagons.

FIGURE 8. Some regular hyperbolic geodesic polygons.
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COROLLARY 2.3.22. For everyn = 3 and every m > 2n/(n — 2) there is
a tiling of the hyperbolic plane by regular n—gons, with m many incident to

each vertex.

PROOF. Choose a regular hyperbolic n—gon with angle § = 27/m, which
is possible by Proposition 2.3.21. O

Figure 9 shows some regular tilings of H2. Not all of these correspond
to reflection groups: reflection groups should have an even number of faces

at each vertex.

R R

>

%5‘

S AR,

K

o8

FIGURE 9. Some regular tilings of H2. Only the even valence
ones correspond to geometric reflection groups.

PROPOSITION 2.3.23. Let n = 3 and 2m > 2n/(n — 2). The Cozeter
group with presentation graph an n—cycle and all edges labelled m acts on
H? as a geometric reflection group with strict fundamental domain a reqular

hyperbolic n—gon with dihedral angles w/m.

PRrROOF. By Corollary 2.3.22 there is a tiling of H? by regular hyperbolic
n—gons with 2m faces incident to each vertex. Thus, the dihedral angles are
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27 /2m. Define a map from generators of the Coxeter group to generators of
the reflection group by sending consecutive vertices to reflections in consec-
utive faces of a fixed n—gon. The relators are satisfied by this map, so we get

a surjection from the Coxeter group to the geometric reflection group. O

EXERCISE 2.3.24. Show that the Coxeter group whose Coxeter graph is

an unlabelled pentagon acts on H? as a geometric reflection group.

EXERCISE 2.3.25. Given angles 0 < 61, 62, 63, 64 < m such that )}, 6; <
27, show that for all sufficiently large » < 1 there exists a unique hyperbolic
geodesic quadrilateral with one vertex at 0 with dihedral angle 61, one vertex
at r with dihedral angle 65, and the other two dihedral angles 63 and 6.
Conclude there is a 1-parameter space of hyperbolic quadrilaterals with

given dihedral angles.

EXERCISE 2.3.26. Show that foranyn >3 and 0 < 6§; <wmforl <i<n
such that Y | 6; < (n — 2)7 there exists a hyperbolic geodesic n—gon with
dihedral angles 6;.

2.4. Geometric reflection groups on the hyperbolic plane.

PropoSITION 2.4.1. For alln =2 3 and 2 < m; € N for 1 < i < n
such that >, m% <n—2, there is an H? reflection group with fundamental
domain a hyperbolic geodesic n—gon with dihedral angles 0; = 7/m,;.

Every H? reflection group is of this form.

The Cozeter graph with presentation graph an n—cycle with edges labelled

by the m; surjects onto the geometric reflection group.

Note that the condition . , % < n — 2 is vacuous for n > 4, and for

n = 4 excludes only the case that all dihedral angles are /2.

PrROOF. The existence of the geodesic n—gon with given dihedral angles
is Exercise 2.3.26.

If P is the fundamental domain of an H? reflection group then the di-
hedral angles of P are integral submultiples of m, and Gauss-Bonnet (2),
implies Y ; m% <n —2, so every H? reflection group is of this form.

Finally, the usual check shows that sending generators of the Coxeter
system to the corresponding reflection in faces of the fundamental domain

satisfies all of the Coxeter relators, so we get the desired surjection. O

As in the Euclidean and spherical cases, the surjection in this homomor-
phism is actually an isomorphism.

A special case of Proposition 2.4.1 is the case n = 3, in which case the
Coxeter groups are the triangle groups A(p, q,r) with % + é + % < 1 and
D, q,r < 0.
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If we drop the condition that p,q,r < oo then A(p,q,r) does still act
on H? with fundamental domain a ‘triangle’, with each generator acting as
reflection in one of the sides. The difference is that some of the vertices
of the triangle are on the unit circle, and the adjacent edges are therefore
infinite geodesics, not geodesic segments. Such an object is called an ideal
triangle, and the vertices on the unit circle are called ideal vertices. An
ideal triangle is not a compact set, so the group action in this case is not
cocompact. There is, however, a way to extend the notion of n—dimensional
volume to Riemannian manifolds of dimension n, ‘area’ when n = 2. It
turns out that ideal hyperbolic triangles have finite area, so although the
action is not cocompact is it ‘finite co-volume’.

In fact, a similar thing works for the Euclidean triangle group A(2,2, o0) =~
Dy % Co: This has an action on E? where the Dy, factor acts with its usual
geometric action on the z—axis, and the Cy factor reflects through the z—axis.
A fundamental domain is the region {(z,y) | —=1/2 < z < 1/2, y = 0}, which
can be thought of as an ideal Euclidean triangle. However, the Euclidean
area of this region is infinite, so this action is neither cocompact nor of finite
co-volume.

Figure 10 shows both actual and ideal triangular tilings of H? for various
triangle groups. The hyperbolic triangle groups with no infinite entries give
us the hyperbolic reflection action pictured. For the ones with at least one
infinite entry, the pictures only tell us that this particular action of the
triangle group is not a geometric reflection action. It turns out that these
groups are not geometric reflection groups at all. Consider the example
A(00,00,00) = {s1, 82,83 | 53,53,53. The tiling pictured in Figure 100 has
dual graph a tree (a graph with no loops). In fact, it is a bushy tree,
in the sense that it is infinite and has branching at all its vertices, so it
is not just a line. Correspondingly, A(c0,00,00) has an index 2 subgroup
H := (s189,s183) that acts on the tree freely and cocompactly without
inverting edges. It is a fact that such a group is free. In this specific example
it is also easy to verify by the Reidemeister-Schreier Algorithm that H has
presentation (s12,s183), so it is Fy. Non-cyclic free groups have a Cayley
graph that is a bushy tree. Theorem 0.0.5 implies that a geometric reflection
group is quasiisometric to either S™, E", or H", but it can be shown that
none of these are quasiisometric to a bushy tree; for example there is a
quasiisometry invariant called the ‘number of ends’ of a space, which is 0,
1, or 2 for S”, E", and H", but is infinite for a bushy tree. So it is not
the case that A(oo, 00, 00) might secretly be a geometric reflection group in
some undiscovered way; there are Coxeter groups that just are not geometric

reflection groups.
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FIGURE 10. Some tilings of H? for triangle groups.

2.5. Mirror Structures. Let (W,S) be a Coxeter system and let X
be a space. A mirror structure on X over S is a choice of closed subspace
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X5 of X for each s € S. The sets X are the mirrors. For x € X, let
S(x):={seS|ze X}

DEFINITION 2.5.1. Given a mirror structure on X over S, define
UW, X) i= (W x X)/ ~
where gz ~ hy if z =y and h~ g e Ws(z)-

This definition means that ¢ (W, X) has a copy of X for each element of
W, but some of the copies are glued together along mirrors. For instance,
if se S and Xg # ¢ then X, < X is identified with s X, < sX.

EXAMPLE 2.5.2. If all of the mirrors are the empty set then U(W, X) is

a disjoint union of copies of X, one for each element of W.

ExXAMPLE 2.5.3. All of the pictures of tilings preserved by a geometric
reflection group in the previous section are examples of U(W, X), where X
is an interval or polygon and the mirrors are the faces.

Subsets (g, X) of U(W, X)) are called chambers, and (1, X) is called the

fundamental chamber.

LEMMA 2.5.4. Left multiplication of W on itself extends to an action of
W onU(W, X) with strict fundamental domain X. If X # UsesXs then the
action is faithful.

PROOF. The action of W on U(W, X) is given by w(gx) = (wg)z. To
see this is well defined, suppose hy ~ gx. This is true when y = x and
h~'g € Ws(y). Consider w(hy) = (wh)y. Since y = z and (wh)™'(wg) =
h=lg € Wy, we have w(hy) = (wh)y ~ (wg)z = w(gz), so the action is
well defined.

Consider a point gz € U(W, X). Its W orbit contains z € X. Now
suppose wz = y € X for some w € W—{1}. Then there are wy = w, ..., w, =
1and zg = z,...,x, = y such that w;x; ~ w;s12;41 for all i. But then
x; = x;41 for all 7, so x = y. Thus, X is a strict fundamental domain.
Notice also that w = 1—[?:—01 w;rllwi is a product of elements of Wg(,), so
w e WS(I’)

Suppose there exists zg € X — UgegXs. We have gzg ~ xg if and only if
9 € Ws(z) = Wz = {1}. O

EXERCISE 2.5.5. Show that if X is path connected and all of the mirrors
are nonempty then U(W, X) is path connected.

EXAMPLE 2.5.6. Let S = {sq,.. .,s|5|}, and let X be a graph consisting
of vertices v, ..., v|g with an edge from vy to v; for all 1 < i < [S]. Let
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X, := v;. Then U(W, X) is a bipartite graph, where one part, the orbit of
v, consists of valence |S| vertices in bijection with W, and the other part,
the orbits of the other v;, consists of valence 2 vertices.

Now consider the Cayley graph Cay(W,S) of W with respect to S, which
is the graph with a vertex for each element of W, and an edge labelled s € S
between g and h when gs = h. The graph U(W, X) is W—equivariantly
isomorphic to the barycentric subdivision of Cay(W, S).

EXERCISE 2.5.7. Edge paths in Cay(W, S) correspond to words in F'(S)
by reading labels. That is, if ej, ea,...,e, is an edge path in Cay(W, S) from
g to h, with e; labelled s;; € S, then f := s, ---s;, is a word in F'(S) such
that gf = h. Conversely, given a word f = H?zl si;, then starting from any

n

vertex g there is a unique edge path labelled f, and it leads from g to gf.
Show that f € F(S) is trivial in W if and only if f labels a loop in
Cay(W, 5).
Construct Cay(W, S) for the Coxeter presentations of Dy, D3, Dy, and
Sym, (recall Exercise 4.2.11).

At this point U(W, X) is an abstract thing that we can define without
understanding. Implicit in the construction is that we know how to distin-
guish elements of W, so we know when two copies of X are distinct. This
is something that we do not know how to do yet. However, U(W, X) will
still be useful to us. The first reason is that it satisfies a universal property,
explained in Lemma 2.5.8. The second reason is that we can understand
UW, X) locally. Points x of U(W,X) that are not in any mirror have
a neighborhood that is isometric to a neighborhood of the corresponding
point in X. If we choose the mirrored space carefully we can also under-
stand neighborhoods of points in the mirrors. In fact, in very special cases,
see Theorem 2.5.9, we can choose the mirrored space geometrically in such
a way that geometric local-to-global results tell us exactly what U(W, X) is.

LEMMA 2.5.8. Let Y be a space on which W acts. Suppose ¢p: X — Y is
a continuous map such that for each s € S, ¢(Xs) is fized by s. Then there

18 a unique continuous W —equivariant map (B: UW,X) > Y extending ¢.

PROOF. For all ¥ € X, T € Nyeg(z)Xs, s0 ¢(x) is fixed by Wg(y).
Define qE: [Tpew X — Y by taking the copy of X corresponding to
w e W to wé(X). This map is continuous, since ¢ is. If h=lg € Ws(z), 80
that hx = gz in U(W, X), then h=1go(z) = ¢(x), so:
$(hx) = hé(x) = gé(z) = d(gw)
Therefore, ¢ factors through UW,X) as é o q, where g¢: [Hpew X —
U(W, X) is the quotient map. O
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For the following theorem we will need the fact that if (W, S) is a Coxeter
system then for all s,t¢ € S, then the subgroup of W that they generate is
isomorphic to Dy,,,. This will be proven in Proposition 2.0.3.

THEOREM 2.5.9. Let P be a convex polygon in X2, where X2 is one of
S?, E2, or H2. Suppose the dihedral angles of P are integer submultiples
of m. For faces F; and F; of P, if F; n F; # & then let m;; be such
that the dihedral angle between F; and Fj is w/mg;. If Fy n Fj = & let
mi; = 0. Let W be the Coxeter group defined by Coxeter matriz (m;;).
Let W be the group generated by reflections in the faces of P. Then the
map ¢: U(W, P) — X2 given by Lemma 2.5.8 is a homeomorphism, and the

natural surjection W — W is an isomorphism.

PROOF SKETCH. Let P be a convex polygon in X? with faces Fj, and let
(W, S) be a Coxeter system with Coxeter matrix (m;;) and S = {s;}, where
F; is the mirror for s;.

The first step is to show that U (W, P) is locally isometric to X2. U (W, P)
is made by gluing together copies of P. A small ball about an interior point
in P is isometric to a small ball about a point in X2. Every edge of a copy of
P inU(W, P) is glued to an edge of another copy of P. A point in the interior
of such an edge has a small ball about it in (W, P) that is isometric to two
half balls about a point in X2, glued together along a geodesic boundary.
This is isometric to a small ball about a point in X2. This leaves the vertices
of U(W, P) to be checked.

Consider a vertex v of U (W, P) that corresponds to the intersection of
faces F; and Fj in the copies of P containing it. The dihedral angle of v in P
is 0 < m/m;; < /2, and by Proposition 2.0.3 the subgroup of W generated
by s; and s; is Dy, ;, so there are 2m;; copies of P incident to v in U(W, P).
Furthermore, they are glued together cyclically as in Figure la, making a
total angle of 27, as in Figure la. So a small ball about v in U(W, P) looks
like 2m;; sectors of angle 7/m;; in X2, glued together to make a full ball in
X2. Thus, U(W, P) is locally isometric to X2.

The second step is to argue that the first step, that fact that U(W, P) is
connected by Exercise 2.5.5, and compactness of P imply that the universal
cover of U(W, P) is metrically complete, so isometric to X2.

The third step is to argue that the continuous map QB provided by
Lemma 2.5.8 is actually a covering map, but since X? is simply connected,
there are no nontrivial connected covers, so gz~5 is a trivial covering, that is, a

homeomorphism.
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It follows that W — W is injective because if not there are distinct
copies of P in U(W, P) that map to the same place in X2, contradicitng the
fact that the map ¢ is a homeomorphism.

In this 2-dimensional case, we can replace the third step by a direct
argument that U(W, P) is simply connected, as follows: Pick a point xg
in the interior of P, a point z; in the interior of face F; for each i, and
connect each x; to x¢ by a path in P. Call this space X, and consider it as
a mirror structure, with the points x; for ¢ > 0 being the mirrors. We saw
in Example 2.5.6 that U (W, X)) is the baryentric subdivision of the Cayley
graph Cay(W, S), and by construction we have U (W, X) sitting in U (W, P)
as a dual graph to the 1-skeleton. Each vertex of U(W, P) corresponds to
a coset of Wi, 53, where v = F; n Fj is a vertex of P. By hypothesis,
Wisi ;1 = Dum,j, and a coset of this subgroup is a loop in Cay(W,S) of
length 2m;; with edge labels alternating between s; and s;, so it is a copy
of one of the defining relators (s;s;)"7. The corresponding loop in U(W, P)
is filled by a disc, composed of 2m;; copies of the corner of P at F; n Fj.
The dual 2—complex to U(W, P) is isomorphic to the 2-complex obtained
from U(W, X) ~ Cay(W,S) by adding a 2—cell for each distinct loop that
is a translate of one of the defining relators of the form (s;s;)™. This
object is called the Cayley complex of the presentation (the given Coxeter

presentation of W), and it is simply connected [11, Proposition 2.2.3]. O

2.6. Summary: the 2—dimensional geometric reflection groups.
We considered the three possible 2-dimensional spaces of constant curvature,
S?, E2, and H?. A 2-dimensional geometric reflection group is a group that
acts on one of these spaces by reflections in the sides of a convex polygon,

such that the polygon is a strict fundamental domain for the action.

THEOREM 2.6.1. The 2-dimensional geometric reflection groups are:

e spherical
— spherical triangle groups
o Fuclidean
— FBuclidean triangle groups with finite entries
— Dy X Doy — The product of two 1-dimensional Euclidean re-
flection groups.
e hyperbolic
— hyperbolic triangle groups with finite entries
— Cozeter groups with presentation graph a square and at least
one labelled edge
— any Cozxeter group whose presentation graph is a cycle of length
at least 5
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In particular, the 2—-dimensional geometric reflection groups whose funda-
mental domain is a triangle are exactly the triangle groups with finite en-

tries.

PRroOOF. Using the Gauss-Bonnet Theorem, we showed that in the spher-
ical case the polygon must be a triangle and in the Euclidean case the poly-
gon can be a triangle or a rectangle. In the hyperbolic case Gauss-Bonnet
does not restrict the number of sides, and we constructed examples to show
that any number of sides is possible.

We have also shown, for each possibility, a Coxeter group W with a
natural surjection onto the corresponding reflection group. To show in-
jectivity of this map, we apply Theorem 2.5.9. The homeomorphism ¢~) of
Theorem 2.5.9 conjugates the action of W on U (W, P) to the action of the
geometric reflection group on X2, so the geometric reflection group is iso-
morphic to the image of W in Isom (U (W, P)). The action of W on U (W, P)
is faithful by Lemma 2.5.4, which means that W is isomorphic to its image
in Isom(U(W, P)). O

3. Higher dimensional geometric reflection groups

To make sense of higher dimensional geometric reflection groups, we need
to define the higher dimensional analogues of convex polygons. In R™ with
the Euclidean metric, any hyperplane, that is, any affine (n—1)—dimensional
subspace, is a codimension 1 geodesic subspace that is isometric to E*1.

Call the closure of a complementary component of a hyperplane a halfspace.

DEFINITION 3.0.1. A FEuclidean conver polytope is the compact intersec-

tion of finitely many halfspaces in E™.

We can make a similar definition for spheres.

FAcT 3.0.2. Our model for the n—sphere S™ as the unit sphere in R™"*!
has the property that the intersection of S™ with a linear subspace of R"+1
of dimension m + 1 is a geodesic subspace that is isometric to S™, and

every such subspace arises in this way as the intersection of S™ with a linear
subspace of R"*1.

DEFINITION 3.0.3. A spherical hyperplane is the intersection of S" <
R"™*! with a linear hyperplane of R"*!. A spherical halfspace is the closure
of a complementary component of a spherical hyperplane. A spherical convex
polytope is the compact intersection of finitely many spherical halfspaces.

In Section 3.1 we will introduce the hyperboloid model of hyperbolic
space, which has H” < R™*! in such a way that the analogue of Fact 3.0.2
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is true, see Proposition 3.1.19. This allows the following definition of hyper-

bolic polytopes:

DEFINITION 3.0.4. A hyperbolic hyperplane is the intersection of the hy-
perboloid model of H” c R**! with a linear hyperplane of R**. A hyper-
bolic halfspace is the closure of a complementary component of a spherical
hyperplane. A hyperbolic convex polytope is the compact intersection of

finitely many spherical halfspaces.

3.1. Higher dimensional hyperbolic space. The Poincaré Disc model
of H? was introduced in Section 2.3. The definition generalizes to all dimen-
sions: The Poincaré Ball model of H" is defined by taking H™ to be the
open unit ball in R™ and taking the inner product on each tangent space to
be: « N

V, WHEn
S =

Much of the theory from the Poincaré disc has direct analogues in higher

dimensions. For example, the next theorem follows from the same proof

strategy as in the H? case:

THEOREM 3.1.1. The Poincaré ball model of H" is conformal, in the
sense that angles measured with respect to the given inner product agree with

angles measured with respect to the Fuclidean inner product. Furthermore:

o The stabilizer of 0 in IsomH" contains (in fact, is equal to) O(n).

e Projection to a linear subspace is hyperbolic length nonincreasing,
so linear subspaces of dimension m are convex, isometrically em-
bedded copies of H'™ in H".

e Fvery geodesic through O is contained in the intersection of the ball

with a 1-dimensional linear subspace.

However, in the Poincaré ball model we do not get the analogue of
Fact 3.0.2, so do not get as convenient a characterization of hyperplanes.
For this we introduce the hyperboloid model.

3.1.1. The hyperboloid model of hyperbolic space. For n = 1 let C' be an
(n+ 1) x (n + 1) diagonal matrix whose diagonal entries Aj,...,\,+1 are
nonzero. Let Bg be the symmetric bilinear form on R"™*! defined by C;
that is, Bo(v,w) := v Cw = 2?211 \iviw;. The function f: R — R :
v — Be(v,v) is smooth, with a single critical point at 0. For r # 0, the
level set f~!(r) is an n—dimensional submanifold of R"*!. For r < 0 this
submanifold has two components, while for » > 0 and n > 1 it is connected.

See Figure 11.
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FiGURE 11. Parts of the 1, 0, and —1 level sets of the func-
tion f for n =1, 2.

EXERCISE 3.1.2. For 7 # 0 and v € f~!(r), the tangent space to f~!(r)
at v is Ty (f~1(r)) = {w e R*"*! | vI'Cw = 0}. Hint: Compute the direc-

tional derivative to f at v in the direction w.

LEMMA 3.1.3. Suppose that v > 0 and Apr1 < 0 and \; > 0 for 1 <
i <n. ForallveH := f~Y(—r), the restriction of B to TyH is positive
definite.

PROOF. Let v = (v1,...,vp41) € H and w = (wy,...,wny1) € TvH.

Since —r = vICv = 31" | \v? + A\pp102,, we have:

S AvE+r

# 0
|)‘n+1|

Un+1 = *

By Exercise 3.1.2, vI'Cw = 0, so:
iz Niviwi

Wn+1 = =+
n A\ ) p )\ivf-i-r
n+ [An1]
Thus: . )
2 (img Aqviw;)
_>‘n+1wn+1 =

S v+
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Now compute:

n n 2
T _ 2 (img Aviw;)
DS wiOw = Q= S T

=1
— 0< i Z i v +7) Z i vaZ
=1 i=1

i=1 i=1

n
= T(Z /\111}12) + 2 )\i/\j ('inj — iji)Q
i=1 1<i<j<n
Both sums have nonnegative terms, so 0 < w! Cw, with equality only if all
of the terms are 0, which happens only if all of the w; are 0. O

DEFINITION 3.1.4. When B¢ is a positive definite form, let |w|c =
Be(w,w).

DEFINITION 3.1.5. Let J be the (n+1) x (n+1) diagonal matrix with 1’s
on the diagonal, except for the last entry, which is —1. The corresponding
symmetric bilinear form Bj; on R"*! is called the Minkowski form. Let
f: R — R : v+ Bj(v,v), as above. Then —1 is a regular value of
f, so f7'(—1) is an n-dimensional submanifold of R"*!. It is not hard
to see that f~!(—1) has two connected components, distinguished by the
sign of the last coordinate. Let H be the component of f~!(—1) consisting
of vectors with positive last coordinate. Consider the Riemannian manifold
obtained from H by defining the inner product on Ty, H, for each v € H, to be
the restriction of By to Ty, H. This Riemannian manifold is the hyperboloid
model of H™.

Throughout this section, let vy := (0,...,0,1) € H. Observe that the
restriction of the Minkowski form to Ty,H agrees with the standard Eu-
clidean inner product. However, v is the only point of H for which this is
true, even up to rescaling. At every other point there exist tangent vectors
whose Fuclidean and Minkowski angles differ; for n > 1, the hyperboloid
model of H” is not conformal.

EXERCISE 3.1.6. For, say, n = 2, compute an explicit example of a vector

v € H and tangent vectors wi,wy € T, H such that the Minkowski angle
By(wi,w2)

cos™1(
[wils-waly

) between w; and wo is different than the Euclidean angle.

THEOREM 3.1.7. Define ¢ to be the projection map {(x1,...,Tp+1) €
R | 2,01 > 0} — {(z1,...,2041) € R*™ | 2,01 = 0} that takes x to

the point on the line between x and (0,...,0,—1) with last coordinate equal



56 2. GEOMETRIC REFLECTION GROUPS

to 0. The restriction of ¢ to the hyperboloid H is an isometry between the
hyperboloid model of H" and the Poincaré ball model of H™.

We will prove the theorem in the case n = 2.

PROOF. Let x = (21,22, x3). We have ¢(x) = (2, 72-,0), so:

14+x3? 1+x3?
1 0 ) T
143 (1+z3)2
_ 1 T2
Txo 0 1+z3 (1+x3)2
0 0 0

It is easy to see that ¢ is a continuous map that gives a bijection from
H to P:={(y1,42,0) | /47 + 93 < 1}. We must show additionally that the
derivative of ¢ at each point of x € H preserves the hyperbolic inner product
on Ty H. That is, the derivative at each point must take the inner product
coming from the restriction of By to TxH to the inner product defined on
Ty(x) P for the Poincaré disc.

Assume that x € H, so that x3 = \/m The vectors v :=

I3 Tl P r1IT2 2 Tox3 . .
(\/1+I§707 \/ng) and w : (m,m, \/@) satisfy:

BJ(Vav) BJ(V¢W) BJ(V7X) 10 0
Bj(w,v) Bj(w,w) Bj(w,x)|=[0 1 0
BJ(X7V) BJ(XaW) BJ(XaX) 00 -1

This means that given x € H, the pair (v,w) is an Bj—orthonormal basis
for Tx H. Because Tx¢ is linear, it is enough to check that it sends (v, w) to
an orthonormal basis of Tg ) P.

Compute, using the fact that ajg =1+ 22 + 3

1+a2+a3 T2
1 (1+13)\/l+x§ (1+13)2\/l+x§
() (v w) = R A
1+ x3 (14x3)y/1+a3  (1+as)s/1+a3
0 0

Let v/ and w’ be the column vectors of the matrix on the right-hand side.
They are Fuclidean orthogonal unit vectors. Recall that the Poincaré ball
metric was defined by rescaling the Euclidean inner product, so (Tx¢)(v)
and (Tx¢)(w) are orthogonal, and it remains only to show that they are

hyperbolic unit vectors. The scaling factor for the inner product on 7y P is
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4 .
Ty and:

A-loP) L, et a
2 2 (1 + 1‘3)2 (1 + $3)2
B 1+ 223+ 23 — 22 — 23
2(1 + 333)2
14+ 2z3+1 1
B 2(1+£C3)2 B 1+ x3
L oTe(v)| 20V -
Thus |[Tx¢ (V)| p = T—TomoF = oo = b and similarly for w.

O

3.1.2. The isometry group of H™. A nice feature of the hyperboloid
model is that isometries are restrictions of linear maps. A consequence
of this fact will be a convenient description of hyperbolic polytopes in Sec-
tion 3.2.

DEFINITION 3.1.8. The Lorentz group O(n, 1) is the group of linear maps
of R"*! that preserve B;. The orthochronous Lorentz group O*(n, 1) is the
index 2 subgroup of O(n, 1) that preserves H.

We show in Lemma 3.1.9 that O*(n, 1) is a subgroup of Isom H", and in
Theorem 3.1.16 that it is all of Isom H".

LEMMA 3.1.9. Of(n,1) < Isom H"

PRrROOF. Let x and y be points of H. For any € > 0 there exists a path
v < H from x to y of length less than dgn (x,y)+e€. If ¢ € OT(n, 1) then gpo~y
is a path in H from ¢(x) to ¢(y). Since ¢ is linear it is its own derivative,
so (po)'(t) = #(7/(t)), but since ¢ preserves By, this means [(¢p o) (t)] =
|7/ (t)] for all t. Thus, dgn(p(x),d(y)) < [¢povy| = || < dun(x,y) + €.
Since this is true for all € > 0, dpn(¢(x), ¢(y)) < dun(x,y). Conversely,
¢! € Of(n, 1), so the same argument gives:

dsgn (x,y) = dme (¢~ (6(x)), 6~ (D)) < din (6(x), 9(y))

We have shown that there is a map O*(n,1) — IsomH" obtained by
restricting an element of O%(n,1) to H. We must also say that this map is
injective. This follows because H spans R"*!. For example, the following
set is a basis for R"*! contained in H:

{(1,0,...,0,v/2),(0,1,0,...,0,4/2),...,(0,...,0,1,4/2),(0,...,0,1)}

Thus, any linear map that fixes H pointwise is the identity. O
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LEMMA 3.1.10. The stabilizer Stabg+(,, 1)(vVo) of vo in OF(n,1) is:

(& 1) 1arec)

PROOF. Suppose M € Stabg+(,1)(vo). Since Mvg = v is the last
column of M, M has the following form, where M’ is an n x n matrix and

M 0
wl 1
u/
For u = , we have:
Un+1

W' —u?,; = By(u,u) = By(Mu, Mu) = |M'0'|? — (W' + upy1)?

w is an n—dimensional vector:

Thus:
MW )? — 0/ = wha (whd + 2u,,4)

If w # 0 then for any choice of u’ not orthogonal to w there is a unique
solution for 1,41 in terms of w and u’ that makes the equation true. This
would be a contradiction, since the equation should be true for every choice
of u’ and u,1, so we must have w = 0.

When w = 0 the above equation reduces to |M'u/| = |u’| for all o/,
which is the condition that M’ € O(n). O

COROLLARY 3.1.11. For every ¢ € Stabysommn (Vo) there exists a choice
of 1 € Stabo+(y,.1) (Vo) with Tyy¢ = Ty,1).

PrOOF. The tangent space Ty,,H" to H at vq is the first n—coordinate

subspace of R™*!, and the restriction of B to this subspace is the stan-
T, 0

dard Euclidean inner product, so Ty,¢ € O(n), and for ¢ := ( ‘8¢ 1) €

Stabg+(n,1) (Vo) we have Ty = |n, mn = Ty, ¢. O

I,_ 0
LEMMA 3.1.12. For every h =1, OT(n, 1) contains My, := ( nO ! M’) ,
h

h h?2—1
where M 1= (m L )

PROOF. It is a simple computation to check that these matrices preserve
Bj. They also take vg to a vector with last coordinate h > 1, so they do
not exchange the two sheets of f~1(—1). O

cosha sinh a)

REMARK. Note that M} can be rewritten as Mj := |
sinha cosha

for a = cosh™ h, and M/M = M"

aipe In fact, it will turn out that M
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is a translation along a geodesic by hyperbolic distance «. See Proposi-
tion 3.1.17.

LEMMA 3.1.13. O*(n, 1) acts transitively on H™.

Proor. We will show that an arbitrary point in H can be sent to vg.
Let w = (w’,h) € H. There is a unique point in H with last coordinate 1,
so if h = 1 then w/ = 0 and there is nothing to show.

If h > 1 then consider the affine hyperplane A with last coordinate
equal to h. The intersection of A with H is an n—sphere of radius vh2 — 1:
{(wi,...,wp,h) | Yy w? = h? — 1}. By Lemma 3.1.10, Stabg(,1)(vo)
preserves this n—sphere and acts transitively on it, so there exists N €
Stabo+(n,1)(vo) such that Nw = (0,...,0,+/h% —1,h). Now for Mj, as in
Lemma 3.1.12, Mh_lNW = vy. U

THEOREM 3.1.14. The intersection of H with a plane through the origin
is a geodesic in the hyperboloid model of H™. Furthermore, every geodesic is

a segment of such an intersection.

PrOOF. Let F' be a plane through 0 that intersects H. Let w € H n
F. By Lemma 3.1.13, there exists Ny € O*(n,1) taking w to vo. By
Lemma 3.1.10, there exists Ny € Stabg+(,,,1)(vo) that takes N1 F to the plane
F; spanned by vy and v; := (1,0,...,0). The intersection H n NoN1 F' can
be parameterized as y(t) := (sinh t)vy + (cosht)vy = (sinht,0,...,0,cosht).
Let ¢: H — P be the projection map of Theorem 3.1.7, so that ¢ oy(t) =
(Simhi_ g 0). By Theorem 3.1.1, that is a hyperbolic geodesic in the

1+4cosht’
Poincaré ball, because it is the intersection of P with a line through the

origin. Since Theorem 3.1.7 says ¢ is an isometry, v is a geodesic in the
hyperboloid model. But NoNj € IsomH", so H n F = Nl_lNz_lfy is also a
geodesic in the hyperboloid model.

Now we want to say that every geodesic has this form. Let v be a
geodesic of the hyperboloid model. Let F be the plane in R**! spanned by
v(0) and +'(0). By the previous argument, H n F' is a hyperbolic geodesic
that goes through v(0) and can be parameterized to have constant speed
with velocity +/(0) at v(0), so it shares a position and velocity vector with ~.
Uniqueness of geodesics in the Poincaré model pulls back to the hyperboloid

model, so 7 is a subsegment of the geodesic H n F'. U

COROLLARY 3.1.15. For every v € H there is a bijection exp,: TvH —
H, called the exponential map at v, defined by sending w € Ty H to the
endpoint of the unique constant speed geodesic [0,1] — H with initial point

v and nitial velocity w € Ty H.
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PROOF. Define exp, (0) = v. If w € T, H — {0} then v and w span a
plane F in R"*! containing v, and F n H is a geodesic. There is a unique
constant speed parameterization of F' n H for which v is the initial position
and w is the initial velocity, and exp, (w) is the point on this geodesic at
t = |w|;. Surjectivity of this map is the existence of geodesics from v to

any point in H, and injectivity is uniqueness of that geodesic. ([
THEOREM 3.1.16. Isom H" = O7(n, 1)

PRrROOF. By Lemma 3.1.9, Of(n, 1) < Isom H", so we need to show the

opposite. Suppose ¢ € Isom H". Exponential maps satisfy:

(4) ¢ 0 expy, o(Tvy®) ™" = exPy(yy)

By Lemma 3.1.13 and Corollary 3.1.11, by composing with an element of
O™(n,1), we may assume ¢ fixes v and that Ty,¢ is the identity map on
Ty H. But then (4) says ¢ o exp,, = expy,, so ¢ is the identity map on H.
Thus, ¢ agrees with the restriction to H of an element of O*(n, 1), namely,
the identity. O

We now justify the remark following Lemma 3.1.12:

I,—1 0 0
ProrosITION 3.1.17. For o > 0 the matrix M,, := 0 cosha sinha

0 sinha cosha
is hyperbolic translation by distance « in the hyperboloid model of H™.

PRrOOF. Consider the curve y(t) = (0, ...,0,sinh ¢, cosht), which is con-
tained in the intersection of H and the plane F' spanned by u = (0,...,0,1,0)
and v = (0,...,0,1), so it is a geodesic, by Theorem 3.1.14. Furthermore,
Y'(t) = (0,...,0,cosht,sinht) and |v'(t)|7,, m» = cosh?t —sinh?t = 1, so v
has constant unit speed. Now observe that M,v(t) = v(t + «). O

A consequence is a simple distance formula in the hyperboloid model:
PROPOSITION 3.1.18. For anyx,y € H, dgn(x,y) = cosh ™' (=B (x,y)).

PROOF. Let M € O%(n,1) be such that Mx = vy and My = w :=
(0,...,0,sinh¢,cosht) for some ¢t. Then Bj(vg,w) = —cosht, and, by
Proposition 3.1.17, ¢ = dgn(vo,w). By definition of O*(n,1), Bs(x,y) =
By(Mx,My) = Bj(vp,w). Since Ot(n, 1) = IsomH", dyn (vo, w) = dgn (X,y).
Thus:

dpn (x,y) = cosh™' (—(—cosht)) = cosh™(—=B(vg, w)) = cosh™}(=Bj(x,y))
(]
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We now come to the hyperbolic analogue of the fact Fact 3.0.2 that
(m+1)-dimensional linear subspaces of R"™! intersected with S" correspond
to isometrically embedded copies of S”. This is what we will use to define
hyperbolic polytopes.

PROPOSITION 3.1.19. A nonempty intersection of H < R with a
linear subspace of dimension m+1 is an isometrically embedded copy of H'™
in H"™. Furthermore, every isometrically embedded copy of H™ in H" arises

i this way.

PROOF. Let F' be a linear subspace of dimension m + 1 that intersects
H. Any distinct x,y € F n H span a plane in R"*! that intersects H, and
by Theorem 3.1.14, the hyperbolic geodesic between x and y is contained
in that plane, so contained in F' n H. Thus, F' n H is convex.

Arguing as in Theorem 3.1.14, we may assume, up to changing F' by an
element of O(n, 1), that vo € F. Since F is (m + 1)-dimensional containing
v, and Ty, H is the J-orthogonal complement of vg, the intersection of F'
with Ty, H is m—dimensional. Since the stabilizer of v is the full orthogonal
group on Ty, H, we may further assume that this m-dimensional subspace
consists of the final m coordinates, so that F is the linear subspace of R?*!
consisting of the last m + 1 coordinates. Let K = F' n H. Consider the
inclusion ¢ of R™t! into R*™@R™+! = R**1 a5 the final m+ 1 coordinates.
This carries the hyperboloid in R™*! bijectively to K, and the push-forward
of the Minkowski form from R™*! is the restriction of the Minkowski form
of R"*1 50 paths in H™ < R™*! have the same hyperbolic lengths as their
images in H™. Thus, ¢ does not increase distances. Conceivably there could
be shortcuts in H" between points of K, but we have already shown that K
is convex, so that does not happen. This shows that K is an isometrically
embedded copy of H™ in H".

Conversely, suppose that K < H is the image of an isometric embedding
of H™ into H". Let v € K. The exponential map in H takes the subspace
T, K of T, H bijectively to K, but the bi-infinite geodesic starting at v with
initial velocity w is the intersection of H with the plane spanned by v and
w, so K is the intersection of H with the subspace of R**! spanned by v
and Ty K, which has dimension m + 1, since 7y, K has dimension m and is
J—-orthogonal to v. O

Recall that a hyperbolic hyperplane is defined to be the intersection of
the hyperboloid H < R"*! with a linear hyperplane of R**! a hyperbolic
halfspace is the closure of a complementary component of a hyperplane, and
a hyperbolic convex polytope is the compact intersection of finitely many
halfspaces.
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EXERCISE 3.1.20. For v € R — 0, show the hyperplane v, the Eu-
clidean orthogonal complement of v, intersects H if and only if B;(v,v) > 0.

EXERCISE 3.1.21. Suppose that v and w are vectors in R"*! such that
their Euclidean orthogonal complements v and w' are hyperplanes in-
tersecting H and each other. Show the hyperbolic dihedral angle between
H ~ vt and H n wt supplements the Minkowski angle between v and w.

3.2. Coxeter polytopes.

DEFINITION 3.2.1. A geometric reflection group is a group generated by
reflections in the faces of a convex polytope P in X", for X" one of S", E",
or H", such that P is a strict fundamental domain for the action.

DEFINITION 3.2.2. A Cozeter polytope is a convex polytope that is the
fundamental domain for the action of a geometric reflection group.

We will describe in this section restrictions on the shapes of Coxeter
polytopes. In the spherical and Euclidean cases these are strong enough that
Coxeter was able to give complete enumerations of them. The hyperbolic
case is more mysterious.

To motivate the results, recall that in dimension 2 there are the following
possibilities:

e A spherical Coxeter 2—polytope is a triangle whose dihedral angle
sum is greater than .

e A Euclidean Coxeter 2—polytope is either a triangle whose dihedral
angle sum is 7, or a rectangle.

e A hyperbolic Coxeter 2—polytope has no restriction on its combi-
natorial type, but if it is a triangle its dihedral angle sum is strictly
less than 7, and if it is a quadrilateral then its dihedral angle sum
is strictly less than 2.

If P is a convex polytope, a supporting hyperplane H is a hyperplane
that intersects P, such that P is contained in one of the halfspaces of H.
The intersection of P and a supporting hyperplane is a face of P. Each face
is again a convex polytope, in some lower dimension. Faces of dimension 0
are called vertices.

The faces of a convex polytope form a finite poset with respect to inclu-
sion. Two convex polytopes have the same combinatorial type if they have
isomorphic face posets.

A convex polytope is an n—simplex if it has the combinatorial type of
a simplex in R"*!; that is, of a convex polytope in R**! defined by n + 1

hyperplanes whose normal vectors are linearly independent.
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LEMMA 3.2.3. A Cozeter polytope P has dihedral angles that are proper
integral submultiples of m.

Proor. Consider the tangent space to a point x in the relative interior
of the intersection of distinct two codimension 1 faces F; and Fj of P. Let
6;; be the dihedral angle between F; and Fj. For k € {3, j}, let o} be the
reflection in Fj. These two reflections fix x, so the subgroup they generate
tiles out a neighborhood of x with copies of P. Consider the tangent space
T,X" of . There is a hyperplane Hy in T,X" corresponding to F}, with
T,or acting on T,X" as a reflection though Hj. Consider the plane V in
T, X" orthogonal to H;nH;. Then Hy,nV is a line, T, 0y, is reflection through
that line, and the angle between T;0; and T,0; is 0;;. The other copies of P
from (o;,0;)P contribute sectors of angle 0;; in T,,X", filling out the entire
27 worth of angle around 0. Furthermore, there are an even number 2m;; of
these sectors, because adjacent sectors have alternating orientations. Also,
m;; = 2, since if there were two sectors of angle 7 that would mean that F;

and Fj coincide. Thus, 21 = 2mb;;, or 6;; = w/m;;, for m;; = 2. O

A convex polytope is non-obtuse if its dihedral angles are at most 7/2,
so Lemma 3.2.3 implies? that a Coxeter polytope is non-obtuse. It turns
out that there are strong restrictions on the possible shapes of non-obtuse
convex polytopes, particularly in the spherical and Euclidean cases.

DEFINITION 3.2.4. The link of a vertex v of a convex polytope P in X"
is a convex polytope in S*~! obtained by taking all unit vectors u in 7, X"
such that u is inward pointing; that is, the geodesic in X" with initial point

v and initial velocity u has a nontrivial initial segment contained in P.

DEFINITION 3.2.5. A convex polytope is simple if the link of every vertex
is a spherical simplex.

The Platonic solids of Exercise 4.2.10 are convex polytopes in E3. The
link of a vertex of each of them is illustrated in Figure 12. The tetrahedron,

FIGURE 12. Links of vertices in the Platonic solids

cube, and dodecahedron are simple: their vertices all have links that are

2This isn’t quite true, because we have only considered codimension 1 faces that intersect
in a codimension 2 face. That turns out to be sufficient. See [11, Proposition 6.3.2].
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2-simplices. The octahedron and icosahedron are not simple, since their

vertices have links that are (filled) squares and pentagons, respectively.
Recall that in Section 2.2 we showed that a 2-dimensional spherical non-

obtuse convex polytope must be a triangle. A similar result is true in higher

dimensions:

LEMMA 3.2.6 ([11, Lemma 6.3.3]). If P is a non-obtuse convex polytope

in S™ then P is a simplex.

COROLLARY 3.2.7 ([11, Proposition 6.3.9]). If P is a non-obtuse convex
polytope in S™, K", or H" then P is simple.

ProOOF. The link L of a vertex in P is a convex spherical polytope of one
lower dimension, whose dihedral angles are a subset of the dihedral angles
of P, so it is also non-obtuse. By Lemma 3.2.6, L is a spherical simplex. [

A similar result to Lemma 3.2.6 was true in E2, except that there was an
additional possibility that the polytope was a product of lower dimensional
Euclidean polytopes. This result also holds in higher dimensions:

PRrROPOSITION 3.2.8 ([11, Corollary 6.3.11]). If P is a non-obtuse convex
polytope in E™ then P is a product of simplices.

Look back at the simple Platonic solids from Figure 12 in light of Propo-
sition 3.2.8: the tetrahedron is a Euclidean 3—simplex, the cube is a prod-
uct of three 1-simplices, and the dodecahedron happens to be simple even
though it is not non-obtuse. Another way to make a non-obtuse convex
Euclidean polytope in dimension three would be to take a triangular prism,

the product of a 1-simplex and a non-obtuse 2—simplex.

So far, a Coxeter polytope is a simple convex polytope whose dihedral
angles are nontrivial integral submultiples of m. The next result says that
these conditions are sufficient for the polytope P to be a Coxeter polytope;
that is, there really is a geometric reflection group on X" generated by
reflections through the faces of P such that P is a strict fundamental domain
for the action.

THEOREM 3.2.9 ([11, Theorem 6.4.3]). Let P be a simple convex polytope
in X", where X" is one of S™, E", or H" for n = 2. Suppose the dihedral
angles of P are integer submultiples of m. For codimension 1 faces F; and
Fj of P, if F; nF; # (& then let my;; be such that the dihedral angle between
F; and Fj is w/m;. If F;n Fj = & let myj = o0. Let W be the Coxeter group
defined by Cozeter matriz (m;;). Let W be the group generated by reflections
in the codimension 1 faces of P. Then the natural map U(W, P) — X" is a

homeomorphism and the natural surjection W — W is an isomorphism.
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The idea of the proof is, like in Theorem 2.5.9, to argue that U(W, P)
is locally isometric to X", and then conclude that the natural map is a
trivial covering. The locally isometric property is proved by induction on
dimension. To get the idea, consider dimension 3. From the consideration
of dihedral angles, every point of U (W, P) has a neighborhood isometric to
the neighborhood of a point in X3 except possibly the vertices. Look at the
neighborhood a vertex v. Since P is simple, every copy of P at v has link
at v a spherical simplex. We would like to know that neighborhoods of v in
the copies of P glue up to form a neighborhood of v that is isometric to the
neighborhood of a point in X3. The first claim is that this is true if all of the
links glue together to make a 2—sphere. The second claim is that if we apply
Theorem 2.5.9 to the group generated by reflection through faces containing
v, then that gives an S? reflection group whose fundamental domain is the
link of v in P, so the links do glue up to form a 2—sphere.

From Theorem 3.2.9, the same argument as in the 2-dimensional case

gives:
COROLLARY 3.2.10. Fvery geometric reflection group is a Coxeter group.
There is a partial converse to this result called Lannér’s Theorem.

DEFINITION 3.2.11. A simplicial Coxeter group W is one that acts prop-
erly on U(W, A™), where A™ is an n-simplex.

THEOREM 3.2.12 (Lannér’s Theorem [11, Theorem 6.9.1]). If W is a
simplicial Coxeter group then it is a geometric reflection group with funda-
mental domain a simplex in either S™, E", or H™.

Lannér’s Theorem is a geometrization theorem; it says that a topological
hypothesis, properness of the W action on U (W, A™), is enough to guarantee
that it is possible to upgrade the topological simplex A™ to a geometric
simplex without breaking the group action or the combinatorics of U (W, A™).
Contrast with the examples of hyperbolic triangle groups with an infinite
entry, as seen in the last column and row of Figure 10. The combinatorics of
these figures are examples of a U(W, A?), but these complexes have infinite
valence vertices, the W action is not proper, and the group W is not a

geometric reflection group.

Recall that Theorem 1.0.2 says the 1-dimensional geometric reflection
groups are exactly the dihedral groups of even order.
Theorem 2.6.1 says the irreducible 2-dimensional geometric reflection

groups are either triangle groups with finite entries or they are hyperbolic
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with presentation graph a cycle. The triangle groups with finite entries are
precisely the 2—dimensional simplicial Coxeter groups.

In higher dimensions we have, from Theorem 3.2.12, that simplicial Cox-
eter groups are geometric, and, from Lemma 3.2.6, Proposition 3.2.8, and
Theorem 3.2.9, that irreducible spherical and Euclidean reflection groups
are simplicial Coxeter groups. The spherical ones will be classified in Ta-
ble 2.2 in Section 4.1. The Euclidean ones will be classified in Table 2.4 in
Section 4.3.

Hyperbolic reflection groups need not be simplicial. In fact, there do not
exist hyperbolic Coxeter simplices above dimension 4. Let us show that there
are hyperbolic Coxeter simplices in dimension 3. A 3-dimensional simplex
is combinatorially a tetrahedron. It has 4 faces, f; for 1 < ¢ < 4. For a
moment, let us forget the fact that that dihedral angles should be integral
submultiples of 7w and just consider non-obtuse dihedral angles, so for all
distinct ¢ and j, let 0 < 0j; = 6;; < m/2. There are some easy constraints
on the allowed angles. For distinct 4,7, k,/, let ¢;;; be the angle in f;
between the edges f; N f; and f; n fi. The face f; is a geodesic triangle in an
isometrically embedded copy of H?2, so Gijik + Pikie + i < m. Also, the
link of the vertex f; N fj N fi is a spherical simplex with angles 60;;, 0, and
O1; and side lengths ¢;; ik, ¢ijjk, and ¢ ;;. Since it is a spherical simplex,
0i; + 01 + 0r; > 7. It turns out that these are the only constraints:

THEOREM 3.2.13. For distinct 1,5,k € {1,2,3,4}, let 0 < 0j; = 0;; <
/2, and define g = cox-) (SO

The 0;; are the dihedral angles of a hyperbolic tetrahedron if and only if
for all distinct 1,7, k, £:

(1) Gij + Ojk + 0, >
(2) Pij,ik + Gikie + Pirij <
Furthermore, when the tetrahedron exists it is unique, up to hyperbolic isom-

etry.

PROOF. Suppose a compact hyperbolic tetrahedron with the given di-
hedral angles exists. A schematic is shown in Figure 13. The tetrahedron
with faces and dihedral angles in shown in Figure 13a. The link of the ver-
tex v = f1 N fo N f3 is a spherical simplex with dihedral angles 012, 613,
and 614. This shows the necessity of condition (1). The side lengths of a
spherical triangle can be computed in terms of the dihedral angles using the
Spherical Law of Cosines, which is the relationship defining the ¢;;;x. This
is depicted in Figure 13b. The ¢;; ;. are then the dihedral angles of the hy-
perbolic triangular faces of the tetrahedron, as shown in Figure 13c. Since

these are hyperbolic triangles, this shows the necessity of condition (2). We
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also remark that condition (1) implies that the ¢;; ;1 are all positive, since in
the case ¢;; ;1 = 0 for an ideal tetrahedron, the corresponding ideal vertex

link is a Euclidean triangle, not a spherical one.

012 012 b12,14
b f f2 S
1

v $12.13 $12,23

f 023

613 J3
013 023 $13,14 b12,13
034 $13,23

(¢) The hyperbolic trian-
(A) Tetrahedron with di-  (B) The link of vertex v.  gular face f;.
hedral angles. f4 is the
rear face.

F1GURE 13. Schematic of a hyperbolic tetrahedron.

Conversely, given 0’s and ¢’s as above, there exist hyperbolic geodesic
triangles f1, f2, f3, and fy such that the angles of f; are ¢k Dik i, Pie,ij
and spherical triangles with angles 6;;, 01, and 6;; and side lengths ¢;; ;,
®ij,jk, and @jk ;5. It remains to show that there actually exists a hyperbolic
tetrahedron with the given dihedral angles. Consider the following vectors
in R%:

0 sin 913 sin ¢12’13
0 — sin 013 cos ¢12,13
n; = ng =
1 —cos b3
0 0
—sin 914 sin (1)12714 cosh |f1 N f2| 0
—sin «914 COS ¢12,14 sin 912
ng = ny =
—cos 14 —cos 019
sin 014 sin (]512’14 sinh |f1 N f2| 0

We claim that the halfspaces corresponding to the n; side of nl-i intersect
to give a hyperbolic tetrahedron with the desired dihedral angles. To see
why this is so, and where the formulae for the n; came from, suppose that
such a tetrahedron exists. Up to isometry, we may assume the three corners
of fi, which are fi n fo n f3 and f1 n fo n fy and f1 N f3 n f4, are the
points vo = (0,0,0,1), vi = (sinht,0,0,cosht) for some ¢ > 0, and vy =
(p,q,0,4/1 4+ p? + ¢2) for some p and some g > 0, respectively. Finally, up
to isometry not moving the previous three points, we may assume that the
third coordinate of v3 := fo n f3 N fy is positive. We will show that these

choices uniquely determine the n;, up to scaling, which does not change the
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subspace nf To get n; " H # &, we have Bj(n;,n;) > 0, so we may rescale
and assume it is 1.

Note that s — (sinh s, 0,0, cosh s) is a geodesic, so t = |f; N fal is the
length of the edge fi m fo. This is determined, in terms of the angles of fi,
by the Hyperbolic Law of Cosines:

COS 13,14 + COS 12,13 COS P12,14
sin ¢12,13 sin ¢12,14

(5) cosht =

We could work out p and g as well, but we won’t need these, except to know
q > 0.
If n; = (a,b,c,d) then vo € nf = d = 0. Then it follows that
vi €nf = a =0 and then vo € nf = b = 0. Since v3 should be on
the positive side of nf, 0 < nj - vy, this is ¢ times the third coordinate of
v3, which was assumed positive, so ¢ > 0. Now [n;| =1 = c¢=1.
Suppose ny = (a, b, ¢,d). Since vo,v; € ny, d = 0 and asinht = 0 =
a = 0. To get the dihedral angle between f; and fy use Exercise 3.1.21:
O120 =7 — arccos(M
In1|s|n2ls

= arccos(—By(n,ny))
= arccos(—c)

= c= —cosfisy

Since no is supposed to be inward pointing, vo must be on the positive ng
side of nQL, so 0 < ng-vy = bg g b> 0. Since 1 = |n2|2 = b% + cos? 01
and b > 0, we take b := sin 015.
Suppose n3 = (a,b,c,d). vg € né, so d = 0. Arguments similar to ns
case show ¢ = — cos 13 and
cos fo3 + cos 015 cos 013

b= —sin013 ; ; = —sin013 COS (1512’13
S (912 S1814 913

Now using |n3| = 1 and the fact that vy is on the positive side of n3, so
that 0 < vi-n3 = asinht = a > 0, gives a = sin 013 sin ¢12 13.

Similar arguments give ng4. (]

EXERCISE 3.2.14. Derive the equations expressions for ng in the proof
of Theorem 3.2.13.

EXAMPLE 3.2.15. Consider points vg := (0,0,0, 1), vy := (sinh¢,0,0, cosh t),
vy := (0,sinht,0, cosht), and v3 := (0,0, sinh ¢, cosht) for 0 < ¢ < co. These
are the vertices of some hyperbolic tetrahedron.

Face f4 is contained in H n F for some linear subspace F' containing
vy, v, and v3. So ng4 = (a,b,c,d) such that By(ng,ng) = 1 and vy, vg,
and v are Euclidean-orthogonal to ny. If ngy = (a,b,c,d) then we find
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a=0b=c= —dcotht. We should also have d = vy - ngy > 0 so that ny4 is
inward pointing. Thus, By(n4,n4) = 1 implies:

cosht

A/ 1+2cosh?t

cosht

T ioeon2;
n, = 142 cosh” t

cosht

A/ 1+2cosh?t

sinh ¢
A/1+42 cosh? ¢

Similar considerations give:

0 0 1
0 1 0
n; = no = n: =
Tl 7P ol P o

0 0 0
Now we compute dihedral angles:

012 = 013 = o3 = /2

ht ht

0 := 614 = Oy = O34 = T—arccos(— cos ) = arccos( cos

2 2 )
A1+ 2cosh“t A/ 1+ 2cosh*t

We should expect that for ¢ close to 0 this tetrahedrahedron will be
close to being Euclidean, and, indeed, lim,_,q+ § = arccos(1/4/3), which is
the value of the non-right dihedral angles of the Euclidean tetrahedron with
vertices (0,0,0), (1,0,0), (0,1,0), and (0,0,1).

In the other direction, lim; ., § = arccos(1/4/2) = 7/4. There is an ideal
convex hyperbolic tetrahedron with dihedral angles 7/2, 7/2, 7/2, w/4, /4,
m/4, but there is not a compact one.

For any 6 such that 7/3 > arccos(1/+/3) > 6 > 7/4 there is a convex
hyperbolic tetrahedron with dihedral angles /2, /2, 7/2, 6, 0, 6.

EXERCISE 3.2.16. Check that for 7/3 > arccos(1/v/3) > 6 > 7/4, using
012 = 013 = O3 = 7/2 and 014 = 04 = 034 = 0 satisfies the requirements
of Theorem 3.2.13, and that these bounds are sharp, in the sense that as
6 approaches arccos(1/+/3) or /4 one of the hypotheses of Theorem 3.2.13
approaches failure.

Check that Theorem 3.2.13 gives the same four normal vectors defining

the faces as computed in Example 3.2.15.

EXERCISE 3.2.17. Show there is no hyperbolic tetrahedron such that

some face has all of its dihedral angles equal to 7/2.

EXERCISE 3.2.18. Consider a hyperbolic Coxeter tetrahedron. Show:

e At every vertex there is at least one edge with dihedral angle /2.



70 2. GEOMETRIC REFLECTION GROUPS

e There do not exist adjacent edges that both have dihedral angle
strictly less than /3.

e All dihedral angles are strictly greater than 7/6.

e Some dihedral angle is strictly less than 7/3.

EXERCISE 3.2.19. Translate the conditions of the previous two exercises
to given conditions on the Coxeter graph of a 3—dimensional hyperbolic sim-
plicial Coxeter group. (These conditions do not give a complete description
of the 3—-dimensional simplicial hyperbolic Coxeter groups. They leave 14
candidates. 5 more can be ruled out using Theorem 3.2.13, leaving the 9

examples shown in Table 2.3.)

Andreev’s Theorem says that the combinatorial type of any simple 3—
dimensional polytope with at least 5 faces is realizable as a hyperbolic poly-
tope with non-obtuse dihedral angles. Moreover, there are linear conditions
on non-obtuse dihedral angles, such that a polytope with these angles exists
if and only if the conditions are satisfied, and in this case the polytope is
unique up to isometry. See Davis [11, Theorem 6.10.2], and the surrounding
discussion that explains how Andreev’s conditions translate into hyperbolic
geometry. In relation to Theorem 3.2.13, Andreev’s conditions keep the first
condition, drop the condition on face angles, and add some other conditions
that are vacuous for the tetrahedron. The exclusion of the tetrahedron is
important, even though the existence conclusion is the same. The point is
that in the proof of Andreev’s theorem one shows that for a fixed combinato-
rial type of simple 3—dimensional polytope, the space of allowed non-obtuse
dihedral angles is itself a convex polytope whose sides are defined by the
(linear) Andreev conditions. This is not true for the tetrahedron; the sec-
ond condition of Theorem 3.2.13, when rewritten in terms of the dihedral
angles, is not linear, and the space of possible hyperbolic tetrahedra with
non-obtuse dihedral angles is not convex [20].

It turns out that there are also hyperbolic Coxeter simplices in dimension
4, but not in higher dimensions. The hyperbolic Coxeter simplices have
been classified, see Table 2.3. In higher dimensions there are infinitely many
isometry types of hyperbolic Coxeter polytopes up to dimension 6 [1]. In
dimensions 7 and 8 there are examples of hyperbolic Coxeter polytopes, but
it is not known if there are infinitely many isometry classes. In high enough

dimension, there are no hyperbolic Coxeter polytopes at all:

THEOREM 3.2.20 (Vinberg’s Theorem [11, Theorem 6.11.8]). If P is a
convex polytope in H™ with all dihedral angles proper integral submultiples
of m then n < 30. If all dihedral angles are 7/2 then n < 4.
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4. The classification of simplicial geometric reflection groups

We have seen, in Corollary 3.2.10, that every geometric reflection group
is a Coxeter group. By analyzing the shapes of possible Coxeter polytopes,
we have seen that every spherical reflection group is simplicial, Lemma 3.2.6,
and every irreducible Euclidean reflection group is simplicial, Proposition 3.2.8.
There are both simplicial and non-simplicial hyperbolic reflection groups,
and, as our lack of knowledge about their existence in dimensions between
8 and 29 suggests, the non-simplicial ones are mysterious.

In this section we will realize the benefit of choosing geometric model
spaces in which hyperplanes can be described by a single normal vector by
describing geometric simplices in linear algebraic terms. This will lead to a
classification of simplicial geometric reflection groups.

Recall that a convex polytope in E", S™, or H" is a simplex if it has
the combinatorial type of a simplex in R"*!. A codimension 1 face o; of a
polytope ¢ is contained in a hyperplane defined as the Euclidean-orthogonal

space to an inward pointing unit normal vector n;.

DEFINITION 4.0.1. The Gram matriz of a set of vectors {vy,..., vy} is
the matrix of their inner products ({(v;,v;)). (In the hyperbolic case, this is
the inner product with respect to the Minkowski form.) The Gram matrix
of a simplex o is defined to be the Gram matrix of its set of inward pointing

unit normal vectors.

DEFINITION 4.0.2. If M = (m;;) for 4, j € I is a Coxeter matrix, define
its cosine matriz to be C := (¢;;) with ¢;; := — cos miij, where ¢;; = —1 =

—cos 0 if m;; = o0.

If 0;; is the dihedral angle between codimension 1 faces of a simplex, then
the inner product of the corresponding inward pointing unit normals satisfies
(v, Vvj) = cosm—0;; = —cosb;;, so the product of reflections through those
faces has order mj; for 6;; = m/m;;. Thus, from what we have done so far,
(W, S) is a Coxeter system that acts as a geometric reflection group with
elements of S corresponding to reflections through the codimension 1 faces
of a simplex ¢ if and only if the cosine matrix of (W, S) is the Gram matrix
of 0. Our goal now is to identify properties of a matrix that would let us
conclude that it is the Gram matrix of some geometric simplex.

We need some linear algebra:

DEFINITION 4.0.3. An n x n real symmetric matrix M is positive semi-
definite if for all v e R?, vI Mv > 0. It is positive definite if it is positive
semi-definite and equality in the condition is only achieved for v = 0.
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THEOREM 4.0.4. If M is a positive semi-definite matrix then there exists
a unique positive semi-definite matriz S, called the square root of M, such
that S* = STS = M. If M is positive definite then so is its square root.

PrROOF SKETCH. Let E be a matrix whose columns are an orthonormal
basis consisting of eigenvectors v; of M, let A\; be the eigenvalue correspond-
ing to eigenvector v;, let A be the diagonal matrix with entries \;, and let
VA be the diagonal matrix with entries 1/A;. Define VM := EA/AE™Y. O

Here is what we will prove:

THEOREM 4.0.5. Let (W, S) be a Cozeter system with S = {s; | i € I}
and cosine matriz C. Then W acts as a simplicial reflection group on X,
with each s; acting by reflection across a codimension 1 face andn = |S|—1,

in precisely the following cases:

o X" =S8" and C is positive definite.
e X" = H" and C is of type (n,1) with every principal submatriz
postive defininte.

o X" =E" and C is positive semi-definite of corank 1.

The conditions on the cosine matrix are concrete (see Theorem 4.0.6),
and have been used to give a complete enumeration of the possible Cox-
eter groups that can achieve them, so we have explicit lists of all possible

simplicial geometric reflection groups.

THEOREM 4.0.6 (Sylvester’s criteria). An n x n matriz C' is positive
definite if and only if for all 1 < ¢ < n the upper-left i x © submatriz C; of

C has positive determinant.

The matrices C; in the theorem are called the principle submatrices, and

their determinants are called the principle minors.

EXERCISE 4.0.7. Show that the cosine matrix is positive definite for the

Coxeter presentation of the symmetric group. (Recall Exercise 4.2.11.)

EXERCISE 4.0.8. Show that the cosine matrix of A(p,q,r) is positive
definite if and only if % + % + % > 1.

4.1. Spherical simplices.

LEMMA 4.1.1. Let {uy,...,u,11} in R™ be a set of unit vectors. Let
1L

H; == {v |< v,u; >> 0} be the halfspace with bounding hyperplane u;
containing w;. Then o :=S" N ﬂ?jll H; is a spherical n—simplex if and only

if {uy, ..., u, 1} s a basis of R+,
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F1GURE 14. The codimension 1 faces and inward pointing
unit normals for a spherical simplex in S?.

PROOF. Suppose o is a spherical n—simplex. Then ?:11 H; is (n +
1)—dimensional simplicial cone, so {uy,...,u,41} is linearly independent,
hence a basis. Conversely, if {uj,...,u,41} is a basis then the matrix U
whose columns are the u; is an element of GL, ;1 R that takes the closed
positive orthant to a simplicial cone such that the {uy,...,u,4+1} are inward
pointing normals to the codimension 1 faces. The intersection of S™ with

this simplicial cone is a spherical n—simplex. O

LEMMA 4.1.2. A spherical simplex is determined up to isometry by its

Gram matriz, or, equivalently, by its dihedral angles.

PROOF. Suppose o and ¢’ are two spherical simplices so that the cor-
responding sets of inward pointing unit normals are {nj,...,n,;1} and
{n},...,n}, ;}, and so that the Gram matrices agree. Since each set of
inward pointing unit normals is a basis of R"*! there is a unique element
¢ € GL(R™"!) such that ¢(n;) = n! for all i. Since the Gram matrices agree,
for all 7, 7 we have:

(nj,n;) = (nj, 0% = (¢(n;), $(n;))

Thus, ¢ is a linear isometry of R*+1, O

PROPOSITION 4.1.3. Suppose 6;; = m and 0;; = 0;5 € (0,7) when i # j.
Let ¢;j :== —cosb;;, and let C' = (c¢;;). There exists a spherical simplex with

dihedral angles 0;; if and only if C is positive definite.

PRroOF. If o is a spherical simplex then the corresponding set of inward
pointing unit normals {ny,...,n, 1} is an basis for R"*! so there is M e
GL(R™*!) such that Me; = n;. Thus, (n;;n;) = nl/n; = e/ MT Me;,
which says that the Gram matrix C is equal to MTM. But w/ MT Mw =
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(Mw)TMw > 0 with equality if and only if Mw = 0, which, since M is
invertible, is true if and only if w = 0. Thus, C is positive definite.
Conversely, if C is a positive definite symmetric matrix then let n; be the
column vectors of v/C. Since C is positive definite, so is v/C, so the columns
are linearly independent. Set o = {v € S" | {v,n;) > 0 for all ¢}. O

PROPOSITION 4.1.4. If (W, S) is a Cozeter system with S = {s; | i € I}
the its cosine matriz C is positive definite if and only if there is a spherical
simpler 0 = S < R"™! for n+1 = |I| whose Gram matriz is C such that W
s isomorphic to the spherical simplicial reflection group with fundamental
domain o.

PRroor. If (W, S) is a spherical simplicial reflection group then its cosine
matrix is equal to the Gram matrix of the simplex, so is positive definite.

If C is positive definite then by Proposition 4.1.3 there is a spherical
simplex o whose Gram matrix is C. By Theorem 3.2.9, W is isomorphic to
the the spherical reflection group with fundamental domain o generated by
reflections in the codimension 1 faces. O

Coxeter gave a complete classification of irreducible spherical Coxeter
groups: there are four infinite families and six additional exceptional exam-

ples.

THEOREM 4.1.5 (Classification of irreducible spherical Coxeter groups
[10] [11, Table 6.1]). The irreducible spherical Cozeter groups are those
appearing in Table 2.2.

In Table 2.2, .__.....__.indicates a segment containing at least one vertex,
and n in the symbol indicates the number of vertices. So, D3 = A3 =~ Sym,,
and B2 = 12(4) = D4.

EXERCISE 4.1.6. Without appealing to Table 2.2, prove that if the Cox-
eter graph of a irreducible spherical reflection group has more than one edge

then it does not have an edge labelled m for any m > 5.

4.2. Hyperbolic simplices. The hyperbolic case is very similar to
the spherical case, so we will be brief. We use the hyperboloid model of
hyperbolic space, so, as in the spherical case, a simplex is determined by a
linearly independent collection of inward pointing unit normal vectors in the
enclosing real vector space. Not every set of linearly independent vectors will
do, as the orthogonal hyperplane needs to meet the hyperboloid. It turns
out that there is a nice characterization of the Gram matrix of a hyperbolic
simplex. The i—th principle submatriz of a square matrix C' is the matrix

obtained by deleting the i—th row and column.



4. THE CLASSIFICATION OF SIMPLICIAL GEOMETRIC REFLECTION GROUPS 75

Symbol Coxeter diagram

Er I

Fy I

m

TABLE 2.2. Irreducible spherical Coxeter groups

PROPOSITION 4.2.1. Let (W, S) be a Coxeter system with S = {s; | i € I}
such that no m;; = 0. Let C be its cosine matriz. The following are

equivalent:

e C is of type (|I| — 1,1) and every principal submatriz is positive
definite.

o W is a simplicial hyperbolic reflection group on HUII=! such that
each s; acts by reflection across a codimension 1 face of hyperbolic
simplex.

PROOF. The key fact is [11, Lemma 6.8.4], which says that the cosine
matrix of a collection of nonobtuse dihedral angles is the Gram matrix of
a hyperbolic simplex if and only if it is of type (n,1) and every principal
submatrix is positive definite. One direction of the proposition follows im-
mediately.
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Conversely, if C'is of type (|I|—1,1) with every principal submatrix pos-
itive definite, then there is a hyperbolic simplex o whose dihedral angles are
t;; with ¢;; = —cosf;;. By Theorem 3.2.9, W is isomorphic to the simpli-
cial hyperbolic reflection group generated by reflections in the codimension
1 faces of o. O

As in the spherical case, one can compute explicitly which combinations
of proper integral submultiples of m can occur as dihedral angles satisfying
the necessary conditions on C. These are shown in Table 2.3. As mentioned
previously, there are no hyperbolic Coxeter simplices above dimension 4, and
it is only in dimension 2 that there are infinitely many different isometry
types.

, th L1 1
n—29 Afor2<p,q,r<oovvlthp+q+r<1

P

n=4 5 5 4 5 5 5 / D

TABLE 2.3. Coxeter graphs of the hyperbolic simplicial Cox-
eter groups

4.3. Euclidean simplices. A Fuclidean n—simplex o is the convex hull
of n + 1 affinely independent points {vo,...,v,} in E". Let o; be the codi-
mension 1 face containing {vo, ..., v,}—{v;}, and let H; be the affine hyper-
plane containing o;. This is equivalent to our earlier definition of a Euclidean
n—simplex as a convex Euclidean polytope that has the combinatorial type
of a simplex.

Let n; be the inward pointing unit normal vector to H;.
LEMMA 4.3.1. The n; determine o up to homothety.

ProoF. Impose Cartesian coordinates with vg = 0 and the standard
inner product. Up to rescaling all of the v; by 1/d(Hy,0), we may assume
d(Hp,0) = 1. Then the simplex is ¢ = {v e R" | {(v,n;) > 0for 1 < i <
n and {(v,ng) > —1}, as in Figure 15.



4. THE CLASSIFICATION OF SIMPLICIAL GEOMETRIC REFLECTION GROUPS 77

FIGURE 15. Euclidean 2—simplex with its unit normal vec-
tors.

0

LEMMA 4.3.2. A set of unit vectors {ng,...,n,} spanning R™ is the set
of inward point unit normal vectors to a Fuclidean simplex if and only if

there exists a set of positive numbers {co, ..., cn} such that Y}, ¢;n; = 0.

PROOF. Suppose {ny,...,n,} is the set of normals to a simplex. By
translation, we may assume vy = 0. There are n + 1 vectors, so there is an
equation ), ¢;n; = 0 with all ¢; # 0. By multiplying by —1 if necessary,
assume ¢y > 0. Let D = d(Hy,0), so that (ng,v;) = —D for all i # 0. Then
forl<j<n:

(6) 0= <2 cn;, Vj> = Z ci<ni, Vj> = —Dcy + C]'<Ilj, Vj>

. — _Dco
So ¢; vy 0.

Conversely, suppose we have a set of unit vectors {ng,...,n,} span-
ning R™ and positive constants {co,...,c,} such that Y}, ¢;n; = 0. We may

assume ¢y = 1. Set vg = 0. Since the vectors span and ng is a linear
combinations of the others, {ny,...,n,} is linearly independent, so the hy-
perplanes H; := n,L»L cut out a simplicial cone. Let L; be the line containing
the extremal ray of this cone opposite to H;. Let v; € L; be the point such
that (v;,ng) = —1. Compute as in (6) that (n;,v;) = c% > 0 for all i > 0.

Thus, {vo,..., vy} are, as in Lemma 4.3.1, the vertices of the simplex:
{veR"|{(v,n;)=>0for 1 <i<nand{v,ng >—1} O

PROPOSITION 4.3.3. For 1 < i,j < n+1, let 0;;j = 0 € (0,7) when
1 # j, and 0;; = w. There is a Euclidean simpler o such that the dihedral
angle between ;1 and oj_1 is 05 if and only if the matriz C' = (— cos 6;;)
1s positive semi-definite of corank 1 and the nullspace is spanned by a vector

with positive coordinates.

PrROOF. We saw in Lemma 4.3.2 that the nullspace of C' is spanned by
a vector with positive coordinates.

Conversely, suppose C' is positive semi-definite of corank 1 and the
nullspace is spanned by a vector v with positive coordinates cg, ..., c,. Let
U be the square root of C'. Let n; be the columns of U, which are unit
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vectors since C' has 1’s on the diagonal. The vector v is killed by U, so
> ¢in; = 0. By Lemma 4.3.2, the n; are in the inward pointing unit nor-

mals to a Fuclidean simplex. O

PROPOSITION 4.3.4. Let (W,S) be an irreducible Cozeter system with
S = {s; | i € I} such that no m;; = 0. Let C be its cosine matriz. The

following are equivalent:

e (' is positive semi-definite with corank 1.
e W is a Euclidean simplicial reflection group on EHI=1 such that s;

acts by reflection across a codimension 1 face of Euclidean simplex.

Proor. If W is a Euclidean simplicial reflection group then C'is positive
semi-definite and corank 1 by Proposition 4.3.3.

Suppose C' is positive semi-definite with corank 1. Since C is a cosine
matrix of a Coxeter system, the off-diagonal entries are all negative. By
[11, Lemma 6.3.7], its nullspace is spanned by a vector with positive co-
ordinates, so we can apply Proposition 4.3.3 to get a Euclidean simplex o
whose dihedral angles are 6;; with ¢;; = —cosf;;. By Theorem 3.2.9, W
is isomorphic to the simplicial Euclidean reflection group with fundamental

domain o generated by reflections in the codimension 1 faces. O

As in the spherical case, Coxeter gave a complete enumeration of irre-
ducible Coxeter graphs that define Euclidean simplicial reflection groups.
It turns out that every such graph can be obtained from a Coxeter graph
defining an irreducible spherical Coxeter group by adding only one addi-

tional edge. Conversely:

EXERCISE 4.3.5. If ' is in Table 2.4 then removing any single edge from

I" results in either one or a disjoint union of two graphs from Table 2.2.

THEOREM 4.3.6 (Classification of irreducible Euclidean Coxeter groups
[10] [11, Table 6.1]). The irreducible Coxeter groups that are Euclidean sim-

plicial reflection groups are those appearing in Table 2.4.
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Symbol Coxeter diagram

o I
B I

g, ,
& ‘

TABLE 2.4. Irreducible Euclidean Coxeter groups






CHAPTER 3

Linear representations

Let H; and Hy be two lines through the origin in E? that differ by angle

m/m. Let e; be a unit normal to H; as in Figure 1.

FIGURE 1

Observe that the angle between e; and eg is m—m/m. We can rewrite the
plane as the 2—dimensional vector space spanned by e; and e,. To retain the
conditions that e; and ey are unit vectors with angle 7 — 7/m, we define an

s
1 cos .-

inner product {e;,e;) = ¢;; where C' = (¢;5) = . Notice

—cos & 1
this is the Gram matrix of a 1-dimensional spherical 771:eﬂection group, and
thus coincides with the cosine matrix of the Coxeter system. Now we will
try to go in the other direction: start with the cosine matrix and use it
to define a symmetric bilinear form on a vector space spanned by vectors
corresponding to the Coxeter generators. This gives a linear representation
of the Coxeter system. In the simple example above, the representation is
conjugate to representation from the realization as a geometric reflection
group, so we did not gain any new information. However, it turns out that
the new linear representation is faithful even in the non-geometric case, and

this has strong consequences.

81
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1. Consequences of linearity

A group is called linear if it admits a faithful representation into GL(V')
for some finite dimensional vector space V. Being a linear group implies

several strong properties:

THEOREM 1.0.1. Let G be a finitely generated linear group.

e (G has solvable word problem.

o (G is residually finite.

e GG has a finite index torsion-free subgroup.

e Fuvery infinite, finitely generated subgroup of G contains an infinite
order element.

e (G satisfies the Tits alternative: every finitely generated subgroup
of G either contains a rank 2 free subgroup or has a finite index

subgroup that is solvable.

We will show (Corollary 4.0.5) that finitely generated Coxeter groups

have all of these properties.

2. The canonical representation

Let (W,S), S = {s; | ¢ € I}, be a Coxeter system with Coxeter ma-
trix M = (m;;) and cosine matrix C' = (¢;; := —cosm/myj). Since M is
symmetric with 1’s on the diagonal and non-diagonal entries at least 2, C'
is symmetric with 1’s on the diagonal and non-diagonal entries in [—1,0].
Define a symmetric bilinear form Bc on the vector space R! spanned by
vectors e; for i € I by extending B¢ (e;, e;) := ¢;; bilinearly. For each i€ I,
define H; := {v | Bo(v,e;) = 0}, which we think of as the hyperplane that
is Bo—orthogonal to e;. Define a ‘reflection’ through this hyperplane by:

(7) pi(v) :=v —=2Bc(v, e)e;

We need to check that p(s;) := p; extends to a homomorphism p: W —
GL(R!). To do this, we should check that the defining relations of W are
satisfied in the image; that is, we need to check that for each i,j € I the

map p;p; has order (dividing) m;;.

EXERCISE 2.0.1. Verify the following properties of p;:

) pi is linear.
— v piv) = )
VVERI pi(v) =v
Bg is p;i-invariant, that is: Vv, w € RT, Bo(pi(v), pi(w)) = Bo(v, w)

(1

(2) H
(3)
(4)
(5)

p; preserves any vector subspace containing e;.
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Let P;; be the plane spanned by e; and e; for each i # j. The restriction
1 —cqj
of Bo to Py is ”). If m;; < oo then this is positive definite, so
B¢ restricts to an inner product on F;; with respect to which:
(1) e; and e; are unit vectors that differ by angle 7 — m/m;.
(2) H; n P;; is a line orthogonal to e;, so the angle between H; N P;;
and Hj M Pij is W/mij.

(3) pilp,; is reflection through H; n P;;.

This is exactly our model situation of reflections in a plane through lines the
differ by angle m/m;;. In this situation we know that generic points, that
is, points of P;;\(H; u Hj), have orbits of size m;; under the action by the
group generated by p;|p,; and pj|p,;. This shows that the order of p;p; is a
multiple of m;;, but to see it is really m;; we consider the rest of the space.

Consider ey, for k # 4, j. Since p; and p; act by adding multiples of e;
and e;, we have (p;p;)(e;) = e, + pj for some py € Pj;. Iterating, we see
for n = 0:

n—1

!
®) (pips)"(ex) = e+ 3, (ip)! (pr)
1=0

For dj equal to the size of the p;p; orbit of p, (8) says (pip;)% (ex) is ey
plus the sum of all of the vectors in the p;p;—orbit of p;. The sum of all the
vectors in a p;p; orbit is fixed by p;p;j, but p;p; is a rotation on P;;, so the
only fixed point is 0, so (p;p;)% (ey) = ex. Now, every point of P;; has orbit
of size dividing my;, so for all k& # i, j, (pip;)™ (ex) = ek, so the order of
pip; on R is mj.

Now suppose m;; = o0, so that the restriction of B¢ to FPj; is ) )
This matrix is only positive semi-definite, so the restriction of Bo to Fj; is
not an inner product, so our intuition of how ‘reflections’ behave may not
be accurate.

We have H; n Pij = Hj N Pij = R(ez + ej).

Since p; is linear and fixes H; pointwise, we compute:
pi(aei + bej) = pi(b(el + ej) + (a — b)el) = b(el + ej) — (a — b)el

If we think of e; and e; as the standard basis for R?, this says the map
pilp,; is that map that flips horizontally through the main diagonal. The

-1 2
matrix representation of p; in e;, e; coordinates is ( 0 1). A similar

1 0
computation for p; gives matrix (2 . Then the product p; o p; has
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3
matrix (2 ) . This is a shear matrix; it is conjugate via 7/4 rotation to

1
the basic shear matrix 0 1) In particular, points of H; n P;; = Hj n P;;

are fixed pointwise and points of P;;\(H; u H;) have infinite orbits, so p;p;
has infinite order.
We have verified that all of the relations of the Coxeter presentation of

(W, S) are satisfied in the image of p, so p is a homomorphism.

DEFINITION 2.0.2. The canonical representation (also known as the stan-
dard representation or Tits representation) of a Coxeter system (W, .S) with
S = {s; | i € I} is the homomorphism p: W — GL(R!) defined on the
generators of W by p(s;) := p;, where the p; are as defined in (7).

PROPOSITION 2.0.3. Let (W, S) be a Cozxeter system with S = {s; | i € I}
and Cozeter matric M = (my;). For alli and j the subgroup of W generated
by si and s; is isomorphic to the dihedral group Dy, ..

This improves Proposition 4.2.6 to rank 2 special subgroups. Recall that

we needed this fact in Theorem 2.5.9.

PRrROOF. For any i and j, let Dy, = (s,t | s*,¢* (st)™7). The map
defined by s — s; — p; and t — s; — p; is an isomorphism that factors
through the subgroup of W generated by s; and s;, so the surjection Dy, —

{si, 85y is an isomorphism. O

3. Finiteness criterion

We use some representation theory to derive a criterion for a Coxeter
group to be finite.

Consider a representation p: G — GL(V'), where V is a vector space. A
stable subspace is a vector subspace U < V such that p(g)(U) < U for every
g € G. There are always the stable subspaces V and 0; the representation
is called #rreducible if there are no others. It is semi-simple if V splits into
a direct sum V = @V, of stable subspaces such that the representation of
G obtained by restricting p(G) to V; is irreducible for each summand. For
finite dimensional V' an equivalent definition of semi-simple is that every

stable subspace of V' is a direct summand of V.

LEMMA 3.0.1. Any representation of a finite group G into a finite di-
mensional real vector space admits a G—invariant positive definite symmetric

bilinear form.
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PROOF. Average the standard inner product {-,-) over the G—action:

B(v,w) = ;| S o) (v), pla)(w))) 0

geG

COROLLARY 3.0.2. Any representation of a finite group G into a finite
dimensional real vector space V 1is semi-simple.

PRrOOF. Let B be the bilinear form of Lemma 3.0.1. Suppose U is a
stable subspace of V. Then the subspace of V' that is B—orthogonal to U is
also stable, so V =U&® Uls. O

ProPOSITION 3.0.3 ([11, Proposition 6.12.7]). Suppose (W, S) is an ir-
reducible Cozeter system and C' is its cosine matriz. Consider the canonical
representation p: W — GL(V), where V. = R!. Define the ‘kernel of Bc’
to be Vo :={veV |VweV, Bo(v,w) =0}. Then W acts trivially on Vp

and any stable subspace of V' is contained in Vj.

PRrROOF. If v € Vj then p;(v) = v —2B¢(v,e;)e; = v —0e; = v, so W
acts trivially on Vj.

Suppose that V' is a proper stable subspace. First suppose e; € V' for
some ¢ € I. Suppose m;; > 2, so i and j correspond to adjacent vertices
in the Coxeter graph for (W,S), and ¢;; = —cosw/m +ij # 0. Then
pj(e;) = e;—2Bc(e;,ej)e; = e;+2c;je;. So p; sends e; into the span(e;, e;)
but not into span(e;). Since e; is contained in the stable subspace V', we
must also have span(e;,e;) < V’. But since a similar argument applies
for any edge of the Coxeter graph, and the Coxeter graph is connected by
hypothesis, this means that if one e; is in V’ then they all are. But we
cannot have all of the e; contained in V', because that would mean that V'
is all of V, and it was assumed to be a proper subspace. Thus, V' contains
none of the e;.

Now, V = Re; ® H;, so suppose ae; + w € V' for w € H;. Since V' is
stable, p;(ae; + w) is also in V', as is:

ae; + w — pi(ae; + W) = ae; + w — (—ae; + W) = 2ae;
But since e; ¢ V', this means a = 0, so V' < H;. Since this is true for every
i, we have V' < (.., Hi = V. O
COROLLARY 3.0.4. Suppose (W, S) is an irreducible Cozeter system with

cosine matriz C.

(1) If Bc is nondegenerate then p is irreducible.
(2) If B¢ is degenerate then p is not semi-simple.
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PROOF. B¢ is degenerate when its kernel is nontrivial. Proposition 3.0.3
says any proper stable subspace is contained in the kernel, so when the kernel
is trivial then p is irreducible.

For the second item, suppose that B¢ has nontrivial kernel V. Suppose
V =Vo@®V’'. Then V' is a proper stable subspace that is not contained in
Vb, which contradicts Proposition 3.0.3. Thus, 1 is an stable subspace that

is not a summand, which cannot exist for a semi-simple representation. [

LEMMA 3.0.5 ([11, Lemma 6.12.2]). Let p: G — GL(V') be an irreducible
finite dimensional representation. If there is a g € G such that Id — p(g) has
1-dimensional image then any two nonzero G—invariant bilinear forms on

V' are proportional.

PROPOSITION 3.0.6. If (W, S) is a Coxeter system with cosine matriz C
and W is finite then C' is positive definite.

PROOF. For a reducible Coxeter system, if we order generators by com-
ponent then the cosine matrix splits diagonally as the cosine matrices of
the factors, so it is positive definite if and only if every factor has positive
definite cosine matrix. So we may pass to factors, and assume (W,5) is
irreducible.

Consider the canonical representation p: W — GL(V'). By Lemma 3.0.1
there exists a W-invariant positive definite symmetric bilinear form B’. By
Corollary 3.0.2, p is semi-simple, so by Corollary 3.0.4, B¢ is nondegenerate
and p is irreducible. For each i € I, Id — p(s;) = Id — p; has 1-dimensional
image Re;, so by Lemma 3.0.5, B¢ is proportional to B’. Since B’ is positive
definite, B¢ is either positive definite or negative definite. But B¢ is cer-
tainly not negative definite, because B¢ (e;, e;) = 1. Finally, B¢ is positive
definite if and only if C is. (]

We combine this result with our knowledge of geometric reflection groups

to get an “if and only if” criterion:

THEOREM 3.0.7 (Finiteness criterion). Let (W,S) be a Cozeter system
with S = {s; | i € I} and cosine matriz C. The following are equivalent:
(1) W is finite.
(2) C is positive definite.
(3) W is a spherical simplicial reflection group on SHI=Y such that s;

acts by reflection across a codimension 1 face of a spherical simplex.

PROOF. (1) = (2) is Proposition 3.0.6. (2) = (3) is Proposition 4.1.4.
Finally, the reflection group described in (3) is finite because it is a discrete
subgroup of Isom(S!/I=1) = O(|I| — 1), which is compact. O



4. THE GEOMETRIC REPRESENTATION 87

4. The geometric representation

It turns out that there is a different linear representation obtained by
dualizing the canonical one that is in some senses ‘better’. This is called the
‘geometric representation’, and in the case of geometric reflection groups it
is closely related to the representation as a subgroup of Isom X". It is also
easier to prove faithfulness of the geometric representation than to prove it
directly for the canonical representation, but we will not provide the details
of either proof.

The dual of a real vector space V is the vector space of real valued linear
functions on V. If {eq, ..., e,} is a basis for V then a basis for the dual V* is
{ef,..., e} where e} is the linear function that is determined by its values
on basis elements by:

e;(ej) = 0ij = : lfz_]
0 ife#y

A linear transformation ¢: V — V dualizes to a linear transformation
6*: V* o V¥ by ¢*(1)(v) = v(@(v)).

A representation p: W — GL(V') dualizes to a representation p*: W —
GL(V*) by p*(w)()(v) := v(p(w) ! (v)).

DEFINITION 4.0.1. The geometric representation p*: W — GL(V*) of
a Coxeter system (W, S) with S = {s; | 7 € I} is the dual to the canonical
representation p: W — GL(V).

Define p} := p*(s;). Since p; has order 2, we have :

9) pi(e})(ei) = €5 (py ' (ei) = e} (pr(es))

(10) = ej(e; — 2cirer) = 0ij — 20;Cik

(9) says the matrix expression for p} in terms of the basis {e}} is the
transpose of the matrix expression for p; in terms of the {e;} basis.
Define & € V* to be the linear function that is determined by its values

on basis elements by ;(e;) := ¢;;. Observe:

(e — 2ef(er)&k)(ei) = ef(e;) — 2ef (er)éx(e;)
= 5ij — 25jkcik

This is the same result as (10), so pj(e]

functions on V' that take the same value on every basis element, hence are

) and e} — 2ej(eg)¢y are linear

the same function. Since the e} form a basis for V*, extend linearly to get:

(11) pr(v) = v —2v(ex)Ex
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LEMMA 4.0.2. For allie I, pf fizes the i—th coordinate hyperplane and

exchanges the corresponding half-spaces.

PROOF. The i-th coordinate hyperplane is {};c; a;je} | a; = 0} = {v €
V* | v(e;) = 0}, and the positive and negative half-spaces are covectors v
that take positive and negative values on e;, respectively.

Using (11) and the fact that & is nontrivial, since, eg, &(e;) = 1, we
have v(e;) =0 < pf(v) =v —2v(e)& = v.

To see that half-spaces are exchanged, observe:
p; (v)(ei) = (v —2v(e)&)(ei) = v(ei) — 2v(ei) - 1 = —v(e) O

THEOREM 4.0.3 (Tits, see [11, Theorem D.1.1]). Let D := {>,._; a;e] |
a; 2 0,Viel} ={veV*|v(e;) =0, Yiel} be the closed positive orthant

in V*, and let D be its interior, defined by strict inequalities. Then:

p*(w)D A D # @ > w is trivial in W
COROLLARY 4.0.4. p* is faithful.
COROLLARY 4.0.5. p is faithful.

D is called the fundamental chamber, and the set (J, oy p* (w)D of W-—
translates of D is called the Tits cone. The theorem implies that the fun-
damental chamber is a fundamental domain for the action of W on the Tits

cone. Furthermore:
THEOREM 4.0.6 ([11, Theorem D.2.7]). The Tits cone is convex.
However, the Tits cone might not be all of V*.

COROLLARY 4.0.7 (Coxeter complex). There is a connected simplicial
complex of dimension |I| — 1 on which W acts, with fundamental domain a

single top dimenstonal simplex.

PROOF. Let the fundamental simplex be the standard |I| — 1 dimen-
sional simplex o := {} ,.;a;e] | >,c;a;i = 1}, which is contained in the
fundamental chamber and contains exactly one point for every ray through
0 contained in the fundamental chamber. Consider ¥ := (J, o 0" (w)o.
By Theorem 4.0.3, ¢ is a fundamental domain for the W-action on ¥, and
by Theorem 4.0.6, 3 is connected. By Lemma 2.5.8 there is a continuous
W—equivariant bijection U(W, o) — 2. O

Note that in general U(W,o) and ¥ are not homeomorphic and the
action of W on U(W, o) is not proper. See Example 5.0.4.
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PRrROPOSITION 4.0.8. When C' is invertible, p and p* are conjugate repre-
sentations into GL(R|I|). Furthermore, they are conjugate to a representa-
tion that preserves the signature of C. In particular, if C' is positive definite
then p and p* are conjugate to an orthogonal representation, and if C has
signature (|I| — 1,1) then p and p* are conjugate to a representation pre-

serving the Minkowski form on RUI

Proovr. If C is invertible then C': V' — V* : ¢; — &; is an isomorphism.
It conjugates p to p*, since for all 7 and j:

CpiC7Y (&) = Cpiley) = Clej — 2eijer) = & — 2eii6 ‘= ()

We proceed similarly to Theorem 4.0.4. Since C' is symmetric, there is
an orthonormal basis consisting of eigenvectors. Let E be a matrix whose
columns are such a set of eigenvectors, and let A be the corresponding diag-
onal matrix of eigenvalues. Let \/W be the diagonal matrix whose entries
are positive square roots of the absolute values of the entries of A.

If C' is invertible then none of the eigenvalues are 0, so \/W is invertible
and the signature matrix of C is the diagonal matrix J where the entries of A
are replaced by their sign. This setup gives us E~'CE = A = \/W J \/W .
Putting these together with piTCpi = (' gives:

EA/|AlJN/|AETY = C
= PiTCPz'
= p; Ev/|ALJV|AE™ p;

So:

EJE™Y = EvJJA| BT EA/JAlJNIA E7 i EA/JA] BT

— E\JA BT EN/ A BT ETETLEN/[A|E " i EA/JA] B

:(E\/WE_I,OZ-E |A|’1E—1>TEJE—1 <E\/WE_1piE |A\’1E—1)

Thus, p; := Er/[AJE~ p;E/JA]  E~! preserves EJE~L. If J = I then
EJE™' =1 =J and p; = v/Cp;»/C preserves I.

If J is the Minkowski signature then p; preserves the Minkowski form
conjugated by the orthogonal matrix F, so p; := \/WE_lpiE |A|71 pre-
serves the Minkowski form. O

When C' is not invertible the two representations p and p* are different.
We will see examples in the next subsection, but the Euclidean case deserves

special consideration.
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Recall from Proposition 4.0.8, that when C' is invertible we can think
of it as defining an isomorphism V' — V* conjugating p to p*. In the case
of a Euclidean reflection group, C' is not invertible, so the proof of Proposi-
tion 4.0.8 does not work: C' as a map V' — V* has a 1-dimensional kernel,
and maps V onto a codimension 1 linear subspace L spanned by the cov-
ectors &. Equation (11) shows that for all v € V* and all k, pj(v) — v is
contained in L. So p* preserves L, but even more, it preserves any affine
subspace v + L parallel to L. The benefit is that while p*(W) fixes a point
of L, the origin, if we instead choose v in the fundamental chamber D, then
Theorem 4.0.3 implies that p*(W) acts cocompactly by affine transforma-
tions on the |I| — 1 dimensional Euclidean space v + L, with fundamental

domain the simplex D n (v + L).

1 —1/2 —1/2

EXAMPLE 4.0.9. Consider A(3,3,3). Then C = [ —-1/2 1  —1/2
-1/2 -1/2 1
has nullspace spanned by v = (1,1,1). A choice of orthonormal eigen-
1/v/2  1/4/6 1/4/3
vector matrix is E = | —=1/4/2 1//6 1/4/3 |, with corresponding A =

0 —2/4/6 1/4/3
3/2 0 0
0 3/2 0| Wewould like to try the same thing as in Proposition 4.0.8,
0 0 O

32 0 0
but A is not invertible. Define ¥ := 0 3/2 0| and let p; :=
0 0 1

SE pfEX"L. For example:

-1 1 1 -10 0 —1/2  —/3/2 -3/2
pr=10 10| pi=[1 10| pm=[-v32 1/2 —3)2
0 01 1 01 0 0 1

Observe that p1 restricts to the plane z = 1 in R? to be an affine isometry:
it is orthogonal reflection through the line (z, —v/3(z + 1),1). Similarly, ps
and ps restricted to the affine plane z = 1 are affine reflections through lines
that differ from this by 7/3, so we see A(3,3,3) as a simplicial Euclidean
reflection group, not on all of R?, but on a 2-dimensional (affine) subspace.

This example is particularly nice because with v = (1,1,1), the fun-
damental simplex is contained in a single affine plane preserved by p* (W),
and C has repeated eigenvalues, so there is not even any relative distortion

between the non-zero eigenvectors. In this case we could have already seen
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W acting as a Euclidean reflection group just by looking at the Coxeter
complex, shown in Figure 2. Compare with Figure 2b.

FIGURE 2. Part of the Coxeter complex for A(3,3,3). (Fun-
damental simplex shaded.)

5. Examples of canonical vs geometric representations

ExXAMPLE 5.0.1 (Canonical vs geometric representation; spherical case).

Consider W = (s1,s2 | s2, 82, (s152)%) =~ D3. Its cosine matrix is C =

1 —1)2
~-1/2 1

In terms of the basis (e, ez2) of V = R? we have:

(-1 1 _10
Pl—o1 02—1_1

In terms of the basis (e}, e3) of V* we have:

-1 0 1 1
* *
p1 = ( 1 1) P2 (O _1>

Figures 3a and 3b show these two actions, which are conjugate via C.
In both cases we can choose a sector between two lines, H; and H> in the
canonical representation or the z and y axes in the geometric representation,
to be a fundamental domain for the action.

In the geometric representation, the Tits cone is all of R?, and we can
see the Coxeter complex sitting inside R? by taking translates of the fun-
damental simplex to get a hexagon. Since the canonical representation is
conjugate to the geometric representation, we also see the W-action on a
hexagon there.

Finally, as in Proposition 4.0.8 we consider the conjugate orthogonal
representation, obtained from:

1+v/3 1-4/3
VC = (12—\/\% 11%)
24/2 2¢/2
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By:

p1 = \ﬁcpnﬁcil

p2 = \ﬁcpmﬁcil
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From (1), recognize that p; is reflection through a line at angle %, and po
and these differ by §. Thus, p and

p* are conjugate to the standard action of D3 on the plane described at the

is reflection through a line at angle

beginning of Section 1.

(A) Canonical rep.

™

12>

P1
s
(1, 1) p—n (0, 1)
1,0) *
il SO
(7170) 1
(0, 1) (1,-1)
(B) Geometric rep.

FiGURE 3. Canonical and geometric representations of Djs.
Note that the maps p; and p] each fix a line and exchange
its sides, but are not orthogonal reflections.

EXAMPLE 5.0.2 (Canonical vs geometric representation; hyperbolic sim-

plex case). Consider the hyperbolic reflection group W := A(5,5,2). Its

1 1445
1
cosine matrix is C' = _HT\/E 1
1++/5
0 T4
-1
tion takes the generatorstop; = | 0
0
1 0 0
and p3 =10 1 0
0 L5 g

0

_ 1+
4

1
V5
2
1
0

1+

= o O

; the canonical representa-

1 0 0

_ | 1+v5 1+/5
» P2 i
0 0 1

, and the geometric representation takes the gen-

erators to the linear maps whose matrices are the transposes of those. A

part of the Coxeter complex is shown in Figure 4a.
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The matrix C has eigenvalues A\ = 1, Ao = 1+ 1;/55, and A3 = 1— 1;—\/‘%5

A matrix of corresponding unit eigenvectors is given by:

_ 1 1 1

V2 2 2

o _1 1
E = 0 NG
1 1 1

V2 2 2

The first two eigenvalues are positive, and the third is negative, so C' is of
type (2,1). As in Proposition 4.0.8, there is a conjugate representation pre-
serving the Minkowski form, where p; = <E |A|71)_1 piE |A|71. Fur-
ther, \/WE_lc’_l defines a map V* — R3 conjugating p* to p from W to
a group of maps preserving the Minkowski form. Restricting to the hyper-
boloid gives a representation of W as a group of isometries of the hyperbolic
plane generated by hyperbolic reflections through the three sides of a trian-
gle.

Figure 4 shows the Coxeter complex for this group in V*, and a con-
jugate representation into the Poincaré disc. Notice that combinatorially
the two complexes of Figure 4 are identical. The action on H? is by hy-
perbolic isometries, while the action on the Coxeter complex is only by

Bcisometries, not isometries of R? with the Euclidean metric.

)

SR

o VA e

X R
5
S . ) S
\\\\ VaVd N ‘
(B) A hyperbolic simplicial

tiling for A(5,5,2).

(A) Part of the Coxeter complex of A(5,5,2) in
V*, viewed from (1,1,1).

FIGURE 4. Two complexes for A(5,5,2).

EXAMPLE 5.0.3 (Canonical vs geometric representation; Euclidean case).

1 -1
Consider W = (s1, s2 | s%, s%} >~ Dy. Its cosine matrix is C = < L1 >
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In terms of the basis (e1,ez) of V = R? we have:

(-1 2 (1 0
P1—01 P2—2_1

For this representation we have H; = Hs = R(e; + e3), the main diag-
onal. This line is fixed by the action. This is bad news; it does not leave
a natural candidate for a fundamental domain for the action. The action
is shown in Figure 5a. In this figure we see that it is possible to choose a
sector to be a fundamental domain for the action on R? — Hy. (Such a sector
is relatively closed in R? — Hy.) Pairs of lines equidistant from the diagonal
are preserved by the action of Dy, such that s and ¢t exchange the pair and
st translates along both of them.

Compare this to the geometric representation in Figure 5b. In the pre-
vious cases we had an isomorphism C': V — V* but in this case C is not
invertible, it has 1-dimensional image, sending V' to the subspace R&; = R&y,
which is preserved by the p* action. But the action does not fix Ry, it re-
verses it, and does not exchange complementary halfspaces. The fundamen-
tal chamber is the first quadrant, and the Tits cone is {ae] + be; | b > —a},
so everything above and right of the fixed line R¢;. The translates of the
fundamental simplex {ae} + be5 | a + b = 1} form a line parallel to the
anti-diagonal on which Dy, acts. This is a copy of the Coxeter complex,
and the action restricted to this line is conjugate to the action of Dy on R
described in Section 1.

(A) Canonical (B) Geometric

FIGURE 5. Linear representations of Dy,.

Not all Coxeter group are geometric reflection groups. In the next ex-
ample we see that the copy of the Coxeter complex in V* can be distorted,
and some points have infinite stabilizers. These problems will motivate us
to construct a geometric complex with a more well behaved W-action in
Chapter 5.
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ExAMPLE 5.0.4 (Canonical vs geometric representation; a non-geometric
case). Consider (r,s,t | 72,52 12, (rt)?) = Dy * Cy = A(2, 00, 0).

-1 0 0 1 2 0 10 0
pi=1 210 ps=10 -1 0 pi=10 1 2
001 0 2 1 00 —1

The fundamental simplex is o := {ae} + be} + ce} | a + b+ ¢ = 1}. Figure 6

shows a portion of the Coxeter complex, viewed from along the diagonal.

M
\\M _—
———— ————

/7///7//‘\ \\§§\

7

FIGURE 6. Part of the Coxeter complex of Dy * Co; radius =
7 reflections of fundamental simplex (black).

Observe that p} and pi both fix the vector €5 and commute with each
other. For the W-action we have that Dy =~ Cy x Cy =~ (r,t) fixes a vertex
of the fundamental simplex, and this vertex has valence 4 in the Coxeter
complex.

The other two rank 2 special subgroups are {r, s) = Dy, = (s,t). Observe
that for their images, p} and p3 both fix the vector e}, and p3 and pj both
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fix the vector e]. These two vertices of the fundamental simplex have infinite
valence in the Coxeter complex.

Note that the topology of |, e p* (w)o induced from R? is not the same
as the topology of the corresponding simplicial complex near the infinite

valence vertices. We can see this explicitly. The matrices p}p5 and p3p} both

110 0 n?
have Jordan normal form J:= |0 1 1| Observe J" |1|=|1+2n |
0 01 2 2
0 —1/2 1/4 0 12 —1/4
Let Cia :== |0 1/2 0 Jand Cy := [0 —1/2 1/2 |, so that
1 0 0 1 0 0
p;‘p;‘ = SUJS;
Consider the sequence of points u, = (1 — ﬁ)e%‘ + #e%‘ , which are
—1/n
all on one edge of 0. Compute C12J”C’f21(#e’2k) = | 1/n+1/(2n?) | and
1
1/n
CorJ"Coy (5r2€5) = | —1/n+1/(2n?)
1

Conclude that pfp3(u,) and pjp3(uy,) are sequences of points in the
Coxeter complex, on distinct edges incident to ej, that in R3 limit to the
same point 2ej # ej. In the simplicial complex topology a sequence of
points on distinct edges incident to a common vertex v converges only if it
converges to v.

Recall that we saw a different picture for A(2,00,00) in Figure 10m.
Combinatorially, this is isomorphic to the complex in Figure 6 with the
infinite valence vertices removed (pushed out to infinity). This trades one
problem for another: the action of W on the Coxeter complex is
cocompact but not proper, it has vertices with infinite stabilizer;

the action on the hyperbolic plane is proper but not cocompact.



CHAPTER 4

Abstract reflection groups

1. Three definitions of abstract reflection group

In each of the next three subsections we will make a definition for a
group to be an “abstract reflection group”. It will turn out that all three
will be equivalent to the group being a Coxeter group. In each case we make
a first guess at a definition and then strengthen it.

This chapter is independent of Chapter 3. In particular, we will give an
independent proof of the fact that a special subgroup of a Coxeter group is
the Coxeter group defined by the corresponding subpresentation.

1.1. Algebraic ARGs. To start, the most basic property we could ask
for in an “abstract reflection group” is that it be generated by elements of

order 2.

DEFINITION 1.1.1. A preCozxeter system is a pair (W, S) where W is a
group generated by a set of involutions S.

DEFINITION 1.1.2. Given a preCoxeter system (W,S5), the associated
Cozeter system is (W, S) where S = {5 | s € S} is a formally defined set of
symbols and W is the Coxeter group generated by S with defining relations

(5t)™st where s,t € S and my; is the order of st in W.

By construction, the map § — s for s € S extends to a surjection W —
W, so every group generable by involutions is a quotient of some Coxeter

group.

DEFINITION 1.1.3 (Algebraic definition of ARG). Say that a group is
algebraically an abstract reflection group if it admits a choice generating set
of involutions such that the resulting surjection from the associated Coxeter

group is an isomorphism.

ProposITION 1.1.4. Every Coxeter group is an algebraic abstract reflec-

tion group.

PROOF. Recall, as in the remark following the definition of Coxeter sys-
tem, Chapter 1 Definition 4.1.4, that a Coxeter group has a Coxeter presen-

tation in which a relation (st)™ implies st has order m in the group. (In fact,

97
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by Chapter 3 Proposition 2.0.3, there is a unique Coxeter presentation for
the choice of fundamental generating set, but this fact is unnecessary here.)
For this Coxeter presentation, the Coxeter presentation of the associated
Coxeter system is identical, so the associated Coxeter group is isomorphic

to the one we started with. O

PROPOSITION 1.1.5. Let (W, S) be a preCoxeter system, and let s and t
be distinct elements of S such that st has order m in W. Then {s,ty = Dy,.

PROOF. The relations s2 = 1, t> = 1, and (st)™ = 1 are all satisfied in
W by hypothesis, so the dihedral group D,, surjects onto {s,t) < W. But
(s,ty cannot be a proper quotient of D,,, because no proper quotient of D,,

contains an element of order m that is a product of two order 2 elements. [

1.2. Geometric ARGs. In this section we try to be a little more geo-
metric about the definition of abstract reflection group, by considering the
geometry of a group action on a graph. In Section 1.2.1 we recall a construc-
tion of group actions on graphs. In Section 1.2.2 we add some geometric
constraints on the action.

1.2.1. Simple coset graphs.

DEFINITION 1.2.1. Given a group G, subgroup H < G, and set S < G
such that H 1 S generates G, define the simple coset graph S(G, H, S) to be
the graph whose vertices are cosets gH € G/H, with an edge between distinct
vertices g1 H and goH if g1 H and g2 H are adjacent in Cay(G, H 1 S), which
is true if and only if there exist hy,ho € H and s € S* with gihis = goho.

ExAMPLE 1.2.2. If H is trivial then S is a generating set and S(G, H, S)
is just the Cayley graph Cay(G, S).

ExaMpPLE 1.2.3. Figure 1 shows a Cayley graph and nontrivial coset
graph for Ds.

PROPOSITION 1.2.4. Let G be a group that acts on a connected simple
graph ), transitively on vertices. Let vy be a base vertex of 2, and let H be
the stabilizer of vo. Let S < G such that {svg | s € S} contains exactly one
point in each H—orbit of neighbors of vg. Then H 1S generates G and ) is
G —equivariantly isomorphic to S(G, H, S).

Proor. Transitivity of the action of G on vertices of {2 implies that
¢(gH) := gvg defines a G—equivariant bijection between vertices.
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tsH

(A) Cay(Ds,{s,t}) with cosets of (8) 5(Ds, H, {s1)

H = {t) = {1,t} circled.

FicURE 1. A Cayley graph and coset graph for Ds.

To see that ¢ preserves the existence of edges between a pair of vertices,

observe:
[g1H, g2H] is an edge of S(G, H, S)
«— Jhi,he e H, se S%, gih1 = gahas
<= up to exchanging subscripts, ds € .5, g2_1g1 € HsH
<~ ds€e s, g;lglvg € Hsvg
<~ [g5 " g1v0,v0] is an edge of Q

<= [g1v0, g2vo] is an edge of

Since both graphs are simple, this implies ¢ is an isomorphism.

Finally, for any g € G, since € is connected it is possible to choose an
edge path eq,...,e; starting at vp and ending at gvg. Label the vertices so
that e; = [v;—1,v;]. Since v; is adjacent to vy, there exist hy € H and s; € S
such that v; = hysjvg. Translate the path by (h1s1)~!. Now (hys1) tvg is
adjacent to (hlsl)_lvl = v, so there exist hg € H and sy € S such that
(h1s1)"'vg = hasavg, or, va = hys1hasavg. Continuing in this way, find that
guo = v = h181 - - hgsgvg. Thus, g € hysy -+ hgspH < (H 1 S). O

Now consider a Coxeter system (W, S), a subgroup H < W, and a set
S’ < S of representatives of nontrivial elements of H\S/H. Let us examine
the action of W on S(W, H, S").

LEMMA 1.2.5. For s € S’ the stabilizer of the edge [H,sH| is {(sy(H n
sHs™b).

PRrROOF. The pointwise stabilizer is H n sHs~ !, and this is a subgroup
of index at most 2 in the stabilizer. But s is an element of the stabilizer

that is not in the pointwise stabilizer. O
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COROLLARY 1.2.6. If HnsHs ' =1 for all s € S' then for R the set of
conjugates of elements of S', every edge of S(W, H, S") is flipped by a unique
element of R and every element of R flips some edge.

1.2.2. Prereflection and reflection systems.

DEFINITION 1.2.7. Let W be a group. A prereflection system (W, R, 2, vg)
for W consists of a subset R < W and an action W — ) on a connected

simple graph with base vertex vg, satisfying the following conditions:

(1) Every element of R is an involution.

(2) R is closed under conjugation.

(3) For every edge of €2 there is a unique element of R that “flips” it
— acts by preserving the edge and exchanging its endpoints — and
every element of R flips at least one edge of ().

(4) R generates W.

By Proposition 1.2.4, every graph with transitive group action is a simple
coset graph. Consider the following example and non-example of prereflec-
tion systems.

ExAMPLE 1.2.8. Figure 2 show two examples of dihedral groups D,, =
{(s,t | 5% 12, (st)™) acting on simple coset graphs. Figure 2a is a prereflection

system, but Figure 2b is not, because in that case R does not generate Dy.

stsH

D ’”‘S D B y S5 ),
(A) Dg —~ S(D37<t>v {S})7 (B) 4R = {(87?S§f> { })

R = {s,tst, ststs}

FIGURE 2. Two examples of D,, acting on one of its simple
coset graphs. The m = 3 case is a prereflection system,
but the m = 4 case is not, because in that case R does not
generate Dy.

EXERCISE 1.2.9. For 2 < m < o0, can you classify subgroups H of D,
for which D,,, ~ S(D,, H,S’) is a prereflection system?
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LEMMA 1.2.10. Let (W, R,Q,vg) be a prereflection system, and let S :=
{r € R | r flips an edge incident to vo}. For all k € N there is a bijec-
tion between edge paths of length k in Q starting from vy and tuples 5 =
(s1,...,5:) € Sk,

Moreover, the edge path corresponding to s ends at s1-- - spvg.

PROOF. Given § = (s1,...,s), define wy = 1 and w; = s1 - - - s; for each
1 < i < k. By definition, for each s € S there exists an edge incident to
vo that is flipped by s, so it has vertices vy and svg. Since {2 is simple, an
edge is determined by its vertices, so [vg, svp] is the unique edge incident to
vo flipped by s. For any w € W, there is a corresponding edge [wvg, wsvy]

flipped by wsw™!.

If we define elements r; := wi_lsiw;ll for 1 < i <k,
then r; flips the edge e; := [w;—1v9, w;vg]|. These edges fit together to make
an edge path from vy to wrvp.

Conversely, if eq,...,e; is an edge path starting at vg, then for each ¢
there is a unique r; € R that flips e;. Since the edge path starts at vy, we
can number the vertices so that e; = [v;_1,v;]. Define s; := r1, which is in
S since e is incident to vg. Then ey = [vg, s1v9]. Apply s1 to the last & —1
edges to get an edge path sjeq, ..., siep starting from syv; = vy whose
edges are (uniquely) flipped by sirasy, ..., $17kS1, respectively. Define
sg = s1ras1 € S flipping the first edge, so the first edge is [vg, savg] =
sies = [s1v1, s1v2]. This shows that es = [s1v0, s15209]. Now apply so to
the last k£ — 2 edges of the new path to get another path sosies,. .., s251€g
starting at sgsjve = vg. The edge sosies is flipped by s3 := sos1735150.
Continuing in this way, define § with s; := wi:llmwi_l € S and see that the
edge e; is [w;—1v0, w;vg], which is expected i—th edge from the first part of
the argument. O

DEFINITION 1.2.11. For 5 = (sq,...,s;) € S*, let w;(5) := s1---s; and
w(8) 1= wi(8).
COROLLARY 1.2.12. The subgroup of W generated by S acts transitively

on the vertices of €.

PRrROOF. 2 is connected, so for any vertex v there is an edge path starting
from vy that leads to v. Take § associated with this edge path. Then
v = w(8)vo. O

COROLLARY 1.2.13. S generates W, and R is the set of conjugates of
S.

PRrROOF. Let r € R. It flips some edge e = [v,v']. There is an element w
of {S) taking v to vy, so we is flipped by some s € S. Conversely, this means
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lsw e R. But there is a unique element of R

e = wlwe is flipped by w~
flipping e, so 7 = w™'sw. Not only does this express r as a conjugate of an
element of S, the conjugator was in (S), so R < {S). Since R generates W

by hypothesis, S generates W. (]

Recall that the word length |w|s of an element w € W with respect to
the generating set S is the minimal length of an expression of w as a product
of elements of S (In general we should say products of elements of S or their

inverses, but in this case elements of S are involutions.).

DEFINITION 1.2.14. Given a prereflection system as above, for each r € R

define the wall corresponding to r to be the set:
Q" := {midpoint of e | r flips e}

Let x and y be vertices of 2, and define the set of walls separating x and

y to be:
W(z,y) := {r € R| z and y are in different components of 2"}

Define the wall distance between x and y to be dy(x,y) := #W(z,y).

The graph distance, that is, the minimum length of an edge path between

two vertices, will be denoted dg.
LEMMA 1.2.15. For all w e W, dy (v, wvg) < do(ve, wrg) < |wl|s.

Proor. If a wall separates two vertices then every edge path between
them must cross the wall. By definition of a prereflection system, every edge
crosses a unique wall. Thus, dyy < dg.

By Lemma 1.2.10, a minimal expression of w € W in terms of the gen-
erating set S gives an edge path from vy to wuvg of the same length, so

dq (vy, wrg) < |wls. O

DEFINITION 1.2.16. A prereflection system (W, R,Q,vg) is a reflection
system if the following conditions, which will shown to be equivalent in

Lemma 1.2.23, are satisfied:

e Every wall has exactly two complementary components.
e For all we W, dyy(vo, wvg) = do(vg, wvg) = |wlg.

In this case, the closure of a complementary component of 2 — Q" is a

halfspace, and the component containing vg is the positive halfspace for r.

EXERCISE 1.2.17. Show that D,, —~ Cay(Dyn,, {s,t}) is a reflection sys-

tem. The case m = 3 is shown in Figure 3.

DEFINITION 1.2.18. A tuple 5 € S* is minimal if |w(3)|s = k.
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sts = tst

FIGURE 3. Cay(Ds, {s,t}) as a reflection system

DEFINITION 1.2.19. With notation as in Lemma 1.2.10, define ®: S* —
RF by 5 — (r1,...,71), so that r; = wi,lsiwi_}l is the unique element of R
that flips the i—th edge in the edge path corresponding to s.

LEMMA 1.2.20. If ®(5) = (r1,...,7,) then the sequence of walls crossed
by the edge path corresponding to § is Q™ ... Qk,

LEMMA 1.2.21. In a prereflection system, if an edge path starting at vg
crosses some wall more than once then the corresponding § is not minimal.
More specifically, let 5 = (s1,...,5;) € S* and ®(58) = (ry,...,7:), and
suppose for some i < j that r; = rj, and that j is the smallest index for
which this is true. Let §' := (s1,...,8,...,8;,...,5k) € SE=2 where §;
means ‘omit this entry’. Then the edge paths corresponding to § and 5 have

the same endpoints, and w(8) = w(s).

Proor. Let r := r; = rj. Let v be the edge path corresponding to 5,
and let 0 := ;41 +---+e;_1 be the subpath of y consisting of edges between
e; and ej. Minimality of j implies that 0 does not cross Q". Consider rd.
Whereas § starts from the terminal vertex of e; and ends at the initial vertex
of e;, since r flips both of these edges, 7d starts at the initial vertex of e;
and ends at the terminal vertex of e;. See Figure 4. Since ¢ and rJ have the
same length, the path v/ := e; + -+ + e;—1 + 1y + €j41 + - - - + €}, has the
same endpoints as -y, but is shorter by two edges.

Let wy := s1--- s, and let wj, be the product of the first ¢ elements of
§'. Let s; be the {-th element of 5.

To see that 7/ is the edge path corresponding to 5, we must show that
ry = w)_ysy(w)_,)~" flips the ¢~th edge of 7. This is clear for the first i — 1
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Vo

w(§)vg

FIGURE 4. The subpath between consecutive wall crossings
can be shortened.

entries, since 5§ and 5 agree on those entries, and v and ' share an initial
subpath of length i — 1. Moreover, wy = w; for £ < i.
If i < ¢ <j—1, then 5, = s¢1;.
To41 = 81 S¢Se+18¢- - 81
_ —1 —1 -1
= Wi—18iW; 1 Wi—18i41 " "~ 8S¢418¢ * W, Wi—18;W;_y

=TiS1 " 8i—18i+1 """ SeSe+18¢ "+ Si+18i—1 " 81714

TW)Set1 (wz)_lr

ruwpsy(we) T

rrYr
Now 7441 flips eg41, which is the (£ + 1 — i)-th edge in J, so its conjugate
rrep1r = 1y flips resyq, which is the (¢ + 1 — 7)-th edge of ¢’ = 4, so is the
{—th edge of ~'.

Now suppose £ = j — 1. Observe that wi,lsi(wi,l)_l =1 =71 =
wj_lsj(wj_l)’l, SO:

si = (wis1) " twjo1sj(wj1) Wiy = sisiv1 - Sj18j8j-1 - Siv1Si
Thus:
(12) 8i8i41 " 8j—15j = Siy1° " Sj—1
Since £ = j — 1, s) = S¢42, and:
Wy =51 8i-18iSi41 - Sj_18jSj41 - Se42

(12)
= 81" 8i—15iSi+1 """ 5j—155Sj+1 """ S¢+2

= Wy42
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This gives:
1

1

Toy2 = w£+13£+2(w€+1)_
! / —

= Wyp_1S¢+2(Wyp_1
1

= wy_ysp(wp_1)”

=

Since 749 flips the (£ + 2)-nd edge of 7, which is the /~th edge of v/, we are
done. (]

LEMMA 1.2.22. Let (W, R,Q,vq) be a prereflection system. For allr € R,
Q — QT has either 1 or 2 connected components and if there are 2 then they

are exchanged by the r—action.

PROOF. Since R consists of conjugates of S, every wall is a translate of
some €)° for s € S, so it suffices to prove the lemma for r = s € S.

For any vertex v € €2, choose a minimal length edge path from vg to v.
By Lemma 1.2.21, the edge path crosses the wall 2° at most once, since if
it crossed at least twice we could replace it by a shorter path with the same
endpoints.

If the path does not cross 2° then v and vg are in the same component
of 1 — QF.

Suppose the path crosses 2° once. Then it can be written v + e + ¢,
where v and § are edge paths that do not cross 2°, and e is an edge that
does. Let e = [x,y]. Consider the path [vg, svg] + sy + §. This is a path,
since sy begins at svg and ends at sx = y. See Figure 5. Its first edge

FIGURE 5. When a path crosses a wall once it can be re-
placed by a path with the same length and endpoints that
crosses the wall on its first step.

[vo, sug] crosses ©°. The segment § does not cross Q° by definition. The
segment s also does not cross §2°, because if it did then an edge crossing 2°

would be fixed by the s—action, so v also would have had an edge crossing
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Q5. Therefore, we can replace the path from vy to v by a path with the
same endpoints and the same length, such that the crossing of 2° occurs on
its first edge [vo, svg]. Thus, every vertex of 2 is in the same component of
Q — Q° with either vg or svy. These are not necessarily exclusive, but if vg
and svg are in different components of 2° then, since the s—action exchanges

vg and svg, it exchanges the two components. O

LEMMA 1.2.23. Let (W, R,,v0) be a prereflection system. The following
are equivalent:

e Fvery wall has exactly two complementary components.
o For allwe W, dy(vy, wvy) = dg(vo, wvg) = |wls.

PRrROOF. By Lemma 1.2.22, if some wall does not have two complemen-
tary components then it has only one. Since the action is transitive on
vertices, we may assume that wall is adjacent to vy, so that there is s € S
such that Q° has only one complementary component. There is an edge
path from vy to svy consisting of a single edge [vg, svg] that crosses only Q°,
so no other wall separates vg and svg. But 2° also does not separate vg and
svg, since it only has one complementary component, so no walls separate
vo and svg. Thus dyy(vg, svg) = 0 < 1 = dq(vg, svg) = |s|s.

Now suppose that every wall has two complementary components. Sup-
pose that s = (s1,...,sk) is minimal, so that |w(5)|s = k. Lemma 1.2.21
says the edge path for a minimal tuple crosses no wall more than once,
so the walls Q" for ®(5) = (r1,...,7,) are distinct. Since each of these
has two complementary components, the edge path crosses from the vy side
of Q" to the other side, and does not return. Thus, each wall Q" sepa-
rates vo from w(s)vg. This shows k < dyy(vg, w(S)vg), but we already knew
dw (v, w(8)vg) < da(vo, w(5)vg) < |w|s = k, so these are equalities. O

COROLLARY 1.2.24. If (W, R, vg) is a reflection system then § is min-
imal if and only if the corresponding edge path crosses no wall more than

once.

PrROOF. Lemma 1.2.21 says the edge path for a minimal tuple crosses
no wall more than once. Conversely, § has length k& and the edge path for s
crosses no wall more than once and each of them has two components then
k = dy(vo, w(5)vg), but, by Lemma 1.2.23, dyy(vo, w(5)vg) = |w(s)|s. O

COROLLARY 1.2.25. If (W, R,Q, vg) is a reflection system then halfspaces

are convex.

PRrOOF. Consider a wall 2" and one of its halfspaces H. A path between
two points of H crosses )" an even number of times, but a geodesic crosses
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at most once, so a geodesic between points of H crosses ()" zero times; that

is a geodesic between points of H stays in H. O

COROLLARY 1.2.26. If (W, R,Q,vg) is a reflection system then the action

of W on wvertices of §2 is free.

PROOF. Since the action on vertices is transitive, it suffices to show vg
has trivial stabilizer. Suppose w fixes vg. Then dgq(vo, wvy) = 0, but, by
Lemma 1.2.23, dq(vg, wvg) = |w|g, so |w|s = 0, which means w = 1. O

COROLLARY 1.2.27. If (W, R,Q,vg) is a reflection system then € is iso-
morphic to the Cayley graph Cay(W,S) of W with respect to S.

EXERCISE 1.2.28. Consider 2 < m < w0, S = {s,t}, W = D,, = (s,t |
52,12, (st)™). Show that (W, R, Cay(W, S),1) for R the set of conjugates of
S is a reflection system. Show that Cay(W, S) is a 2m—gon such that every

wall consists of midpoints of edges on opposite sides.

EXERCISE 1.2.29. Consider the Coxeter system (W, S) defined by Cox-
eter graph « : - . (Recall Figure 3d of Chapter 2.) Draw Cay(W, S),

and show that it is a reflection system. Show that there is a unique vertex

at maximal distance from 1.

DEFINITION 1.2.30 (Geometric definition of ARG). Say a group W is
geometrically an abstract reflection group if it admits a choice of generating
set of involutions S such that for R the set of all conjugates of generators,
(W, R,Cay(W, S),1) is a reflection system.

THEOREM 1.2.31. [Algebraic ARG = geometric ARG] If (W,S)
is a Coxeter system and R is the set of conjugates of elements of S then
(W, R,Cay(W,S),1) is a reflection system.

The idea of the proof is the following: If the Cayley graph is a reflection
system, then each wall defines a positive and negative halfspace. W acts on
the collection of halfspaces, which we can identify with Rx {+1}. This action
is a homomorphism from W into the permutation group of R x {+1}. In the
proof we will define such a homomorphism from scratch, and then conclude
that it must have arisen from an action on a collection of halfspaces.

PROOF. For s € S define ¢(s) on (r,e) € R x {£1} as follows:

(srs,e)ifr#s
¢(s)(r,€) = '
(srs,—e)ifr=s
This is an order 2 permutation of R x {+1}, which we reinterpret as follows:

The first coordinate is given by the conjugation action in W. The second
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coordinate multiplies the existing € by a power of —1, where the power is
the number of times the edge path corresponding to (s) crosses the wall Q.

Extend this to tuples by ¢(s1,...,sk) := ¢(sk)op(sg_1)o---0p(s1). We
will prove by induction that ¢(3) takes (r, €) the pair (w(3)~trw(s), (—1)Pe),
where p is the number of times the path corresponding to 5 crosses €.
We have already established the case 5| = 1, so let & = (s1,...,8k-1),
and assume the claim is true for ¢(3'), so that ¢(3) = ¢(sx) o #(5'). The

Lrw(s), as

first coordinate of @(si) o ¢(5')(r,€) is spw(3) " Lrw(s)s, = w(s)~
desired. For the second coordinate, the sign changes when applying ¢(sy) if
and only if s, is equal to the first coordinate of the output of ¢(5')(r, €), which

1

is w(8) ~1rw(3). So the sign changes if and only if 7 = w(5")s,w(5)~1. Now

observe that the edge path corresponding to 5 is the edge path corresponding

to 5 plus one additional edge that is flipped by w(5)spw(5") "t

So we
conclude the sign on the second coordinate changes when applying ¢(s) if
and only if the edge path corresponding to s crosses 2" on its last edge, so
has exactly one more 2" crossing than does its initial subpath corresponding
to §.

We can think of the map defined so far as a homomorphism from the
free product of |S| copies of Ca to permutations of R x {+1}. We want to
see that it factors through W, so we should check that the relations of W
are satisfied. Let s,t € S and suppose that st has order m < o0 in W, so
that (st)™ a relation in the Coxeter presentation. Let 5 be the alternating
tuple (s,t,...) of length 2m, and consider ¢(5)(r,€). The first coordinate
of the result is given by conjugation by w(s) = 1, so yields r. The second
coordinate is multiplied by —1 to the power the number of times the path
for § crosses 2". We must show this number is even. The element the flips
the i—th edge in this path is w; _1(5)s;w;_1(5)~!, so this number is certainly
0 if r ¢ {s,t). Suppose instead that r € {s,t). Since (s,t) = D,,, by
Exercise 1.2.28, the edge path corresponding to w(8) goes once around the
Cayley graph for D,,, crossing every wall twice.

It remains to show that every wall has two complementary components.
By Lemma 1.2.22 and using the group action, this is true unless there is
s € S such that 2° has only one complementary component. Suppose this is
so. Then there is some edge path from 1 to s that does not cross Q°. Let ¢
be the corresponding tuple, and let § = (s). Compute ¢(5)(s,1) = (s, —1) #
(s,1) = ¢(t)(s,1). This is a contradiction, because we have shown that ¢
factors though W, so since w(t) = w(8), ¢(t) and ¢(5) must agree on all
inputs. U

1.3. Combinatorial ARGs. In this section we consider a preCoxeter

system as a collection of words with combinatorial rewriting rules.
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DEFINITION 1.3.1. For a preCoxeter system (W, S), define the following

rewriting conditions for tuples in S*:

(D) The deletion condition: If § is not minimal then there are indices
1 <i<j<k=|5]such that for & = (s1,...,8;,...,8;,...,s) we
have w(3) = w(s).

(E) The exchange condition: If § = (s1,...,8k) is minimal and there
is an element sp € S such that (sg, $1,. .., Sk) is not minimal then
there is an index 1 <4 < k such that for § = (sg,s1,...,8,...,5k)
we have w(3) = w(3).

(F) The folding condition Let w e W, s,t € S such that |sw|s = |w|s+
1, lwt|s = |w|s + 1, and |swt|s < |w|g + 2. Then swt = w.

The first two conditions mirror the properties of prereflection systems of
Figure 4 in Lemma 1.2.21 and of Figure 5 in Lemma 1.2.22.

THEOREM 1.3.2 ([11, Theorem 3.2.16]). Conditions (D), (E), and (F)

are equivalent.
We will prove the equivalence of (D) and (E).

PROOF. Suppose condition (D) holds. Suppose 5 is minimal and there is
an element sg € S such that §” := (sg, s1,. .., S;) is not minimal. Apply (D)
to get indices 0 < ¢ < j < k whose entries can be deleted without changing
w(s"). Since § is minimal ¢ = 0, so w(5") = sgs1---sp = 5185 - .
Thus, sos1--- 8- sk = sow(5") = w(5), which establishes (E).

Suppose condition (E) holds and § is not minimal. Let §' be the shortest
nonminimal suffix of 5. Length 1 tuples are minimal, so |§'| > 1, so § =
(Siy--.,8k) for some i < k = 3] is nonminimal, but §’ := (s;41,...,5k) I8
minimal. Apply (E) to 3" and conclude there is an index i + 1 < j < k such

that w(5") = s;si41---8;-- - si. Conclude (D), since:
w(g) :31"'51‘7,0(5//) :Sl"‘3i3i3i+1"'§j"‘3k :31§z§j3k D

DEFINITION 1.3.3 (Combinatorial definition of ARG). Say that a group
W is combinatorially an abstract reflection group if it admits a choice of gen-
erating set of involutions S such that the preCoxeter system (W, S) satisfies

the equivalent conditions of Theorem 1.3.2.

DEFINITION 1.3.4. Let (W,S) be a preCoxeter system such that for
s,t € S the order of st is mg. An elementary M—operations on a tuple
5=51,...,5, € S* is one of the two operations:

(I) Delete a subword (s, s).

(IT) For s,t € S, replace an alternating subword (s,t,...) of length mg

by the alternating word (¢, s, ...) of length my.
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A tuple s is M —reduced if it cannot be shortened by a sequence of ele-

mentary M—operations.

Tuples that are related by a sequence of elementary M—operations define
the same element of W, since these two elementary operations correspond

to relations in the group. Tits showed the converse was true:

THEOREM 1.3.5 (Word Problem for combinatorial ARG’s). If (W, S) is

a preCoxeter system satisfying condition (E) then:

(1) A tuple 5 is minimal if and only if it is M —reduced.
(2) Two minimal tuples 5 and t represent the same element of W if
and only if they are related by a sequence of Type Il mowves.

PROOF. First prove Item (2). Suppose 5 = (s1,...,sx) and t = (t1,..., 1)
are two minimal expressions of the same element w of W. If kK = 1 then
w = s1 = t; and we are done: no moves are necessary. Proceed by induc-
tion on k, so suppose Item (2) is true for all tuples of length less than k.
First suppose that s; = ¢;. Then (so,...,sx) and (to,...,tx) are minimal
expressions of syw = t1w, so by the induction hypothesis, they differ by a
sequence of Type II moves. But then 5 and ¢ differ by the same sequence of
Type II moves, as desired.

Thus, we may suppose that s; # t1. Let m be the order of sit; in W.
The strategy is to show that s may be replaced by a tuple @ that begins with
an alternating word (si,t1,...) of length m. To this word we apply a Type
IT move swapping the length m prefix with the alternating word (¢, s1,...).
Call the result @'. Now, regardless of how we discovered @, the first case,
when the leading letters are the same, says there are sequence of Type II
moves changing 5 to @ and changing @’ to ¢, so § and ¢ differ by a sequence
of Type II moves.

We justify the strategy by producing u. Observe that |[tjw|s < |w]|g,
since w has a minimal expression staring with ¢;. Apply condition (E):
there exists ¢ such that s; = t; and we get a new expression for w by moving
that ¢ to the front, § = (t1,s1,...,8;,...,5k). Now we want to show that
this process can be repeated. Let a, be the alternating tuple (sq,¢1,...) of
length ¢ if ¢ is odd, or the alternating tuple (¢1,s1,...) of length ¢ if ¢ is
even. So 5 starts with @; and § starts with a@s. Suppose that we have built
a minimal tuple 5,_1 representing w that starts with aq—1. Let r € {s1,¢1}
be the element that is not the first letter of 5,_;. We have |rw|s < |w|s
because, whichever element r happens to be, we know a minimal tuple for
w that starts with 7, so condition (F) says there is an index i with entry r

whose term can be moved to the front without changing the element w. If
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t > g — 1 then we have succeeded in constructing a new representative 5, of
w that starts with a,.

We claim that ¢ must be greater than ¢ — 1 when ¢ < m. By Proposi-
tion 1.1.5, {(s1,t1) = Dy,. If i < ¢ < m. This would mean we have a relation
s1t1 -+ = t181... in D,,, where both sides have length 7. But D,, has no
such relations: the Cayley graph of D,, with respect to s; and t; is a circle
of length 2m, so there are no reduced relations of total length less than 2m.

We have shown that whenever ¢ < m we can find a minimal tuple 5,
representing w that starts with a,. This implies m < k is finite. If m is
odd then a,, begins and ends with s1, so take u := §,,. If m is even then
amy, begins with ¢; and ends with sq, so take @’ := 5, and let @ be the
tuple obtained from @' by a type II move exchanging a,, for the opposite
alternating word.

Now prove Item (1). A minimal tuple cannot be shortened without
changing the element w, so a minimal tuple is M-reduced. Conversely,
suppose § = (81, .., k) is M-reduced. If k = 1 then § is minimal, so assume
by induction that the claim is true for tuples shorter than k. The suffix
§ = (s2,...,sk) is shorter, and it certainly M-reduced, since any reductions
applied to a § could have been applied directly to 5. By induction, § is
minimal. Then we have w = s1--- 8, W' = s3---5s, and k — 1 = |u'|s.
If § is not minimal then |w'|s = k — 1 > |w|s = |s10'|g, so (E) implies §
can be replaced by another minimal tuple 5” that starts with s; and still
represents w’. By Item (2), 5 and 5" are related by a sequence of Type II
moves. Apply these moves to 5’ as a suffix of 5. This converts 5 to a tuple
representing the same element w € W, but the new tuple starts with (s1, s1),
so it can be reduced by a Type I move, contradicting the hypothesis that s
is M-reduced. U

EXERCISE 1.3.6. Suppose that the word bcababcabacacacbabac is trivial

in the group defined by Coxeter graph < 5 ™ ¢, What is n?

EXERCISE 1.3.7. Show that a Coxeter diagram containing a loop defines
an infinite Coxeter group.

EXERCISE 1.3.8. Show that the only nondegenerate squares in Cay(W, S)
are those that arise from commuting generators. In particular, if rsrt = 1
for r,s,t € S with r # s then s =t and m,; = 2.

EXERCISE 1.3.9. What is the order of the element abc in the group

defined by Coxeter graph & 2 s 7?
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EXERCISE 1.3.10. Show that the order of abcx is 6 in the group defined
.—Y‘
by Coxeter graph: @
DEFINITION 1.3.11. If (W, S) is a Coxeter system, let S = (s1,..., )

be any ordering of the fundamental generators. Their product s1--- s, is a

Cozeter element.

The two previous exercises are examples of Coxeter elements. It is im-

mediate from Theorem 1.3.5 that Coxeter elements are minimal.

THEOREM 1.3.12 (Speyer [24, Theorem 1]). If (W, S) is irreducible and

nonspherical then every nontrivial power of a Coxeter element is minimal.

1.4. Equivalence of the three definitions. We can finally show that

all the definitions of abstract reflection group are equivalent:

THEOREM 1.4.1. If (W, S) is a preCozeter system then the following are

equivalent:

o (W,S) is a Coxeter system, that is, W is an algebraic ARG.
o (W,S) is a reflection system, that is, W is a geometric ARG.
e (W,S) has condition (E), that is, W is a combinatorial ARG.

ProoOF. That a Coxeter system is a reflection system was Theorem 1.2.31.

Suppose (W, S) is a reflection system. Suppose § = (si,...,s) with
w = $1--- Sk is minimal and there is an s € S such that |sw|s < |w|s = k.
Then § = (s,81,...,5;) represents sw, but is nonminimal, since it has
length k& + 1 > k. Since (W, S) is a reflection system, minimality of a tuple
is equivalent to the condition that the associated edge path does not cross
any wall more than once. That means the edge path corresponding to s’
crosses some wall more than once, but the edge path corresponding to s does
not. The edge path corresponding to §' consists of the edge [1, s] crossing
QF, followed by the s—translate of the edge path corresponding to 5. The
latter part has no repeated wall crossings, so the repeated wall must be 2°.
Suppose the (i + 1)-st edge crosses Q2°. Then Lemma 1.2.21 says that w’
is represented by (8,81, ,8;,...8;). But then w = sw’ is represented by
(8,8,81,.-+,8iy...8k) = (8,81,...,8i,...5). This establishes condition (E).

Now suppose that (W, S) has condition (E), so that we have the solution
to the word problem in W from Theorem 1.3.5. Let ¢: W — W be the
canonical surjection defined by ¢(5) = s for each s € S. Note that (1, S) is a
Coxeter system, so by what we have already shown it is also a combinatorial
ARG. Moreover, (W, S) and (W,S) have the same Coxeter matrix M, so
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we have exactly the same M—operations on S* and S*. Suppose W € ker g,
and let 5 = (51,...,5;) be a minimal tuple for @. Assume w is nontrivial,
so k > 0. Since w € kerq, 5 = (s1,...,8) represents the trivial word in W,
so is not minimal, so it is not M-reduced. But a sequence of elementary
M —operations that reduces 5 also reduces w, contradicting the fact that §

is minimal. O

2. Special subgroups and convexity

Recall, from Definition 4.2.4, that if (W,S) is a Coxeter system and
T < S then the subgroup Wr generated by t € T is called a special subgroup.
If T is the Coxeter graph of (W, S) then the Coxeter group defined by the full
subgraph spanned by 7' surjects onto Wr. In Proposition 2.0.3 we proved
that when |T'| = 2 this map is an isomorphism. Then general case follows

from Corollary 4.0.5, but now we can give a different proof.

THEOREM 2.0.1. Let (W, S) be a Cozeter system, and let T < S. Then
(Wr,T) is a Coxeter system and the inclusion Cay(Wr,T) — Cay(W,S)

s an isometric embedding with convex image.

Proor. (Wyp,T) is a preCoxeter system. Let M7 be the Coxeter matrix.
Let Mg be the Coxeter matrix for (I, S). Notice that in the solution to the
Word Problem for combinatorial ARGs, the elementary Mp—operations are a
subset of the elementary Mg-operations. Consider the surjection (Wyz, T) —»
(Wr,T) from the associated Coxeter system. Take an element of the kernel.
This is a nontrivial tuple ¢ in T' that represents the trivial element in Wr,
hence in W. Theorem 1.3.5 gives a sequence of elementary Mg—operations
that reduces t to the empty tuple. But notice that the elementary Mg—
operations that can be applied to a tuple in T are only the elementary
Mp—operations, so t can be reduced to the empty word by a sequence of
elementary Mrp—operations. This shows that ¢ represents the trivial element
in WT, SO WT = WT.

For the geometric claim, suppose that ~ is a geodesic between two ele-
ments of Wr. Up to the group action, we may assume - is a geodesic from 1
to w € Wrp. Since w € Wr, there is an edge path ¢ from 1 to w that stays in
Wr. Let t € T* be the tuple associated to the edge path §, and let 5 € S* be
the tuple associated to the edge path +. Since 5 is minimal, ¢ can be trans-
formed to 5 by a sequence of elementary Mg—operations, but, as above, no
Mg—operation introduces new letters, so the set of letters appearing in § is

a subset of T', which means v was contained in Wy all along. O

PROPOSITION 2.0.2. Let (W, S) be a Cozeter system. A subset of Cay(W,S)

s convex if and only if it is an intersection of halfspaces.
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PROOF. Halfspaces are convex by Corollary 1.2.25, and intersections of
convex sets are convex, so intersections of halfspaces are convex.

Suppose U is a convex set. Suppose v ¢ U is vertex in the intersection
of halfspaces containing U. Let u € U be a closest point to v, and let a be a
geodesic from v to u. The first edge of a crosses some wall 2", which does
not separate v from U, so there is a point w € U on the same side of Q" as
.

Since u and w are on different sides of Q" a geodesic from u to w must
cross §2". By the exchange condition (F), we may assume it is the first edge,
so there is s € S conjugate to r such that the edge from u to us is the first
edge of a geodesic from u to w, and it is an edge of 2". By convexity of
U, us € U. However, this gives a contradiction to the choice of u as closest
to v, because now us is a point of U with W(u,v) = W(us,v) u {Q"}, so
d(v,us) = #W(v,us) < #FW(u,v) = d(u,v). O

DEFINITION 2.0.3. If Y < X, the convex hull of Y, H(Y'), is the smallest

convex subset of X containing Y.

By Proposition 2.0.2 the convex hull of Y < Cay(W, S) is the intersection
of halfspaces containing Y.

LEMMA 2.0.4. Let (W, S) be a Coxeter system. Let u,w € W. Then:
H{u,w}) = {veW |v is on some geodesic between u and w}

The o direction is clear, but in a general geodesic metric space the
right-hand side can fail to be convex. If @ and 8 are two different geodesics
between v and w, then they are contained in H({u,w}), but so are geodesics
between interior points of o and 3, which are not necessarily included in the
right-hand side.

PROOF. Suppose v € H({u,w}), which, by Proposition 2.0.2, is the inter-
section of halfspaces containing {u,w}. Then there are no walls separating
v from both u and w, which implies W(u,v) u W(v,w) = W(u,w). Thus,
d(u,v) + d(v,w) = #W(u,v) + #W(v,w) = #FW(u,w) = d(u,w), so the
concatenation of a geodesic from u to v with one from v to w is a geodesic

from u to w containing v. O

3. Longest elements

Let (W, S) be a Coxeter system, and let R be the conjugates of S, so
that (W, R, Cay(W, S),1) is a reflection system.

ExAMPLE 3.0.1. Consider Cay( « 1), shown in Figure 6. If

we imagine this as the surface of a polytope, the codimension 1 faces are
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cosets of the rank 2 special subgroups, which are (r,s) = {(s,ty =~ D3 or

{rit)y =

Cy x Co. The edges are cosets of the rank 1 special subgroups

(ry={(s) ={t) = Cs.

Call a coset of a special subgroup a ‘special coset’. The figure is organized

FIGURE 6

so that if the bottom vertex is the identity, then the height of each vertex

is the edge distance from that vertex to the identity. Notice several things:

There is a unique highest vertex.

There are no horizontal edges, every edge moves strictly higher or
lower.

Special cosets are convex.

Special cosets have a unique local maximum and a unique local
minimum.

Every path starting from 1 and moving up on each edge is a geo-
desic.

Geodesics from 1 to a vertex w are not in general unique, but the
ambiguity can be described as follows: The edges coming in to w
from below are the topmost edges of some special coset. Let v
be the lowest vertex of this coset. Then any geodesic from 1 to v

concatenated with a geodesic from v to w is a geodesic from 1 to v.

We will show in this section and the next that all of these are general phe-

nomena.

EXERCISE 3.0.2. Show that the walls of the reflection system consisting

of multiplication of the group of Figure 6 on itself can be described as follows:

if a wall intersects a special coset then it intersects it precisely in a pair of

opposite edges. For instance, most vertices do not have a unique minimal

labelling in terms of r,s,¢, but you can show that the wall " separates
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vertices that have some minimal labelling starting with r from vertices that
do not have any such minimal labelling.

Show that there are exactly 6 walls, and that all of them separate 1 from
the unique vertex farthest from 1.

LEMMA 3.0.3. For allwe W and r € R, |rw| # |w| # |wr|.

ProoF. If r € W(1,w), consider a shortest edge path from 1 to w. It
crosses €2 at some edge e, so that the path is a + e+ 5. Then a +rf3 is a
path from 1 to rw whose length is 1 shorter, so |rw| < |w| — 1.

If r ¢ W(1,w) then 1 and w are on one side of Q" and r and rw are on

the other. So 1 and rw are on different sides of 2. The previous case says

|lw| = |r-rw| < |rw| — 1, so |rw| = |w| + 1.
We have shown |rw| # |w|. Given r € R and w e W, let v’ := wrw™' €
R. Then wr = r'w, and by the previous argument |wr| = |r'w| # |w|. O

COROLLARY 3.0.4.
lw| > [rw| < reW(1,w)

COROLLARY 3.0.5. For an element A € W, the following are equivalent:
(1) Vo € W, |A] = fw] + [w Al
(2) Vre R, [rA| < |A]

PROOF. Item (1) says that every vertex w lies on some geodesic from 1
to A. By Corollary 3.0.4, the Item (2) says that every wall separates 1 from
A.

Suppose a wall 2" does not separate 1 and A. Then any path from 1 to
A that goes through vertex r must cross )" from the 1-side to the r—side
to get to 7, and then cross back to the 1-side to get to A. Geodesics cross
each wall at most once, so no geodesic from 1 to A goes through r.

Conversely, suppose there is an element w that does not lie on any
geodesic from 1 to A. Let a be a geodesic from 1 to w, and let 8 be a
geodesic from w to A. By hypothesis, the path o + 5 from 1 to A is not
a geodesic, so it crosses some wall (2" more than once. But a and § are
geodesic, so each crosses 2" at most once, so they each cross it exactly once,
and the path o + 3 starts and ends on the same side of Q". Thus, there is
a wall, Q", that does not separate 1 from A. O

PRrROPOSITION 3.0.6. An element A as in Corollary 3.0.5 exists if and
only if W is finite. It is the longest element of W.
When such a A ezists it has the following properties:
(1) A is unique.
(2) |Al = [R]
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(3) A is an involution.

(4) ASA = 8

ProOOF. Item (1) of Corollary 3.0.5 says A is strictly longer than every
other element of W, so if A exists W is finite and there is a unique A that
can have this property.

Conversely, if W is finite let A be an element of maximal length. By
Lemma 3.0.3, for all r € R, |A| # |rA|, so, since nothing is longer that A,
rA must be shorter, so r € W(1,A), by Corollary 3.0.4. Thus, A satisfies
Item (2) of Corollary 3.0.5, and since the graph distance is the same as the
wall distance, |A| = |R].

|A=1| = |Al, but A is the unique longest element, so A = A~

For s € S, |sA| < |A], so |sA] = |A]—1. Since w := sA lies on a geodesic
from 1 to A, we have |A| = |w| + [w™A|, so [w™A] = |A] — |w| = 1.
But w™' = A7ls7! = As since A and s are both involutions. Therefore,
|AsA| = 1, which means AsA € S. O

In fact, Item (2) of Corollary 3.0.5 can be relaxed to only checking S:

LEMMA 3.0.7 ([11, Lemma 4.6.2]). Suppose A € W has the property that
for all se€ S, |A] > |sA|. Then W is finite and A is the longest element.

COROLLARY 3.0.8. If A € W is a local mazimum for w — |w| then W

is finite and A is the longest element.

PROOF. The neighbors of w are wS. Suppose for all s € S that |A| >
|As|. By Lemma 3.0.3, these inequalities are strict, so |[A7!] = |A| >
|As| = |sA™L|. The previous result says W is finite and A~! is the longest
element, but Proposition 3.0.6 says the longest element is an involution, so
A=A O

4. How special cosets fit together

The following is a corollary to Tits’ solution to the word problem, The-
orem 1.3.5.

COROLLARY 4.0.1. Let (W, S) be a Coxeter system. For we W:
S(w) :={s € S| s appears in some minimal length expression of w}

Then for every minimal length expression § of w, the set of elements of S
that appear in s is S(w).

COROLLARY 4.0.2. For all T < S we have Wr = {we W | S(w) < T}.

The following corollary will be key in the next chapter.
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COROLLARY 4.0.3. Let (W,S) be a Coxeter system. For all T,T" < S
and w e W, Wr c wWey if and only if T < T' and w € Wrr.

PROOF. One direction is obvious. For the other, assume Wp < wWrr.
Since 1 € Wy c wWqr, w™ € Wy, so w € Wy and Wy < Wy, Now apply

the previous corollary. O

EXERCISE 4.0.4. Show that if I' is a Coxeter graph that is connected
with at least two edges, and some edge has label at least 6, then Wt is

infinite.

LEMMA 4.0.5 (Bridge Lemma). Let (W,S) be a Coxeter system and
A, B c S. Suppose wyg € W is of minimal length in WawoWpg. Then every
element z € WawoWpg can be written z = zwgy for some x € W4 and
y € Wg such that |z| = |z| + |wo| + |y|. In particular, for every w e W the
set WawWp has a unique element of minimal length.

PROOF. Suppose z = zwoy € WawoWp. Let a be a minimal tuple in A
representing x, let § be a minimal tuple in S representing wg, and let b be
a minimal tuple in B representing y.

Suppose @ + 5 + b is not minimal. By the deletion condition (D), there
are a pair of entries of @ + 5 + b that can be deleted without changing the
element of W represented by the tuple. But a, 5, and b were minimal, so
it is not the case that both deleted entries come from a single one of these.
Furthermore, if one of the deleted entries is in 5 and & is the resulting tuple
of length one less, then § represents a word w in W that is shorter than wy,
but still in W woWpg, which is a contradiction. Therefore, one deleted entry
comes from @ and one comes from b. Let @ and b’ be the tuples resulting
from deleting this pair of entries from @ and b. We have that a’ € A* and
b’ € B* such that z is represented by @’ + 5+ b'. If @’ 4 5 + b’ is not minimal
repeat the argument and shorten @ and o’ by one letter each. Continue in
this way until we arrive at @’ € A* and b” € B* such that z is represented
by a@” + 5+ 0" and @” + 5+ 0" is minimal. Let 2’ be the element of W4
represented by a”, and let i’ be the element of W represented by b”. We
have |z| = [@” + 5+ b"| = |a"| + |3] + V"] = |2'| + |wo| + |¥/|. a

In Cay(W,S), for all we W and s € S, w and ws are adjacent, so their
lengths differ by at most one. By Lemma 3.0.3, their lengths are not the

same, so we can partition S into two sets:
DEFINITION 4.0.6. For w e W define:
In(w):={se S| |ws| =|w| -1} ={se 5| |ws| < |w|}

Out(w) := {s € S| |ws| = |w|+ 1} = {s € 5| |ws| > |w|}
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In other words, if we call an edge of Cay(W, S) “incoming” if it the last
edge of a geodesic from 1 to w and “outgoing” if it the first edge after w of
a geodesic starting at 1, then every edge incident to w is either incoming or
outgoing, In(w) is the set of labels of the incoming edges, and Out(w) is the
set of labels of the outgoing edges.

LEMMA 4.0.7. For T < S and we Wr, In(w) c T.
Proor. This follows immediately from Corollary 4.0.1. U
LEMMA 4.0.8. For all w e W, the subgroup Wiy s finite.

PrOOF. By Lemma 4.0.5, for every w € W there exists a unique x of
minimal length in WgxwWiy, (., such that for all z € Wiy, 22| = [2] + |2].

1

Let y := 27w € Wiy(w), so [w| = |z + [y|. For all s € In(w), we have
= |

|lws| = |zys| = |z| + |ys|, but, by definition of In(w), |ws| w —1 =
|z + |yl = 1, so |ys| = |y| — 1.

This says that y satisfies Corollary 3.0.5, so y is the longest element
of Wiy(y). By Proposition 3.0.6, the existence of a longest element implies

Win(w) is finite. O
DEFINITION 4.0.9. For T < S, define W7 := {w e W | In(w) = T}.

LEMMA 4.0.10. If Wy is finite then its longest element Ar is in WT. If
W is infinite then WT = .

PROOF. If w € W then In(w) = T, so Wy = Wiy, is finite, by
Lemma 4.0.8. Conversely, if Wr is finite then there exists a longest element
Ar € Wp, by Proposition 3.0.6. Thus, for every t € T, |Ap| > |Apt| >
|Ar| — 1, so |Ar| = |Art| + |[t|. This means a geodesic from 1 to Arpt
concatenated with a single edge labelled ¢ is a geodesic from 1 to Ap, so
t € In(Ap). This shows T' < In(Ar). By Lemma 4.0.7, In(Ap) < T. O

LEMMA 4.0.11. Let Ar be the longest element of Wr, take s€ S—T, and
let T' :=T v {s}. ThenIn(sAr) e {T,T'}, and the following are equivalent:

In(sAp) =T’
e sAp = Aqs is the longest element of Wrr.

e 5 and At commute.

e s commutes with t for all t € T.

PrOOF. By Lemma 4.0.7, In(sAp) < T'. By Lemma 4.0.5, |sAp| =
|Ar| 4+ 1, since s is the shortest element of WgsWyr. By Lemma 4.0.10,
In(Ar) =T, so for every t € T there exists a geodesic a; from 1 to Ap in
Wr ending with ¢. Consider s + sa;. It is a path of length 1 + |ay| = |sA7|



120 4. ABSTRACT REFLECTION GROUPS

from 1 to sAr, so it is a geodesic from 1 to sAr ending with ¢. Thus,
T < In(sAr).

If In(sAr) = T’ then sAp € Wy is the longest element of Wy by
Corollary 3.0.8, since it is a local maximum for w — |w| in Wy, But
s ¢ In(Ar) = T implies s is an outgoing edge from Ar, so |Ars| = |Ap|+1.
So Ars € Wy has the same length at the longest element of Wy, so it is
the longest element, so Ars = sAr.

If s and A7 commute then, since s € In(Ars), we have s € In(sAr), so
In(sAp) =T".

If s commutes with all ¢ € T then it certainly commutes with Ap € Wr.

Now suppose that s commutes with A7 and consider ¢t € T'. Consider the
coset Ap Wi, 4. It is contained in Wrv, and Apv is the longest element, so for
all w e Wiy, |Apw| = |Ap/| — Jwl|. In particular, look at w = sts. For this
element |Agp/| — |w| = |[Apw| = |Arts| = |Ar|, since At € Wy is one step
closer to 1 from A and s ¢ In(Apt) € Wyp. But then |w| = |Ap/|—|Ap| = 1.
By Exercise 1.3.8 this is only possible when mg = 2. Since t € T was
arbitrary, s commutes with every element of 7. ([

COROLLARY 4.0.12 ([11, Lemma 4.7.5]). Let (W, S) be a Cozeter system
with Cozeter graph T'. If WT = {Ar} then T = I'r u s 1, so W =
WT X WS—T-

PROOF. Suppose s € S — T, and let T := T U {s}. Since sAp ¢ W1 =
{Ar}, by Lemma 4.0.11, In(sArp) = 77 and s commutes with every ¢t € T
Since this was true for every s € S — T, we have mg = 2 for all s € S =T
and t € T, so there are no edges between I'r and I'pr_g. U

DEFINITION 4.0.13. For (W, S) a Coxeter system and 7' < S define:
Ap = {we W | w is of minimal length in Wpw = WrwWy}

Br := {we W | w is of minimal length in wWy = WgzwWr}

LEMMA 4.0.14. Let (W, S) be a Coxeter system and T < S.

(1) Every w € W admits a unique factorization w = xy with y € Wrp
and x of minimal length in xWrp. For this factorization, |w| =
2] + Jyl.

(2) Every w € W admits a unique factorization w = xy with x € Wrp
and y of minimal length in Wry. For this factorization, |w| =

[ + [yl
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(3)
Br={weW |VteT, |wt| = |w|+ 1}
= {w € W | no minimal expression of w ends with t € T'}

={weW |In(w)cS-T}

(4)
Ap ={we W |Vte T, |tw| = |w| + 1}
= {w e W | no minimal expression of w begins with t € T'}

-1

Items (2) and (1) say W admits a sort of ‘orthogonal splitting’ as W =
WrAr, or as BpWrp. In particular the index of Wy in W is [W : Wrp] =
|Ar| = [Brl.

Item (3) says that for any w € W and T' < S, w has minimal length
in wWr if and only if it is shorter than every element of wT', which are
precisely the neighbors of w in wWr. So an element is the unique global
minimum of the function wWp — N : z — |z] if and only if it is a local

minimum.

Proor. We'll prove (2) and (4).

For (2), take y to be the unique minimal length element of WprwW g, and
take x = wy~' € Wp. If w = 2’y with 2’ € Wy is a different factorization
then ' = (2')"twy € Wry, so i does not have minimal length in Wry' =
Wry. Thus, the factorization is unique. The second claim follows from the
Bridge Lemma.

The ‘only if’ direction of (4) is clear, so assume |[tw| = |w| + 1 for all
teT. Let w = zy be the factorization given by part (2).

For any t € T, consider tw = txy € Wrpy. By part (2), it admits a unique
factorization tw = z'y, with the same y, since y is the unique minimal length
element of Wry.

(13)
&+ ly| = [tw] = Jw]+1 = |g]+ ]y +1 = [o| = 2] +1 =X |ta] = | +1

Since x € Wy, there exists a minimal ¢ € T* representing x. Suppose t
is nonempty, so it has a leading entry ¢; € 7. Then |tjz| = |z| — 1. Since
(13) is true for all ¢ € T, this is a contradiction, so t is empty and = = 1.
Thus, w = y is of minimal length in Wrw = Wry. U
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EXERCISE 4.0.15. For t € T, show:

Ay ={we W |w and 1 are on the same side of Q'}
Show AT = ﬂteT A{t}

DEFINITION 4.0.16. Let (W, S) be a Coxeter system, let S be the col-
lection of spherical subsets of S. The nerve L = L(W,S) of (W,S) is the
simplicial complex whose vertices are .S, and such that ¢J # T < S spans a

simplex op when T € S.

We mention here another result that says that when W is infinite then
Corollary 4.0.12 is the only way that special subgroups have finite index:

THEOREM 4.0.17 (Hosaka [17]). If (W, S) is a Cozeter system with Coz-
eter graph I' and W infinite then a special subgroup Wr has finite index in
W if and only if ' = I'r u Dg_p with S — T spherical.

The proof can be reduced to the case that (W,S) is irreducible and
S = {s} uT. Hosaka supposes that Aps n Wy is finite, and shows that
the nerve of Wy can be built inductively as joins of simplices based on
spheres of decreasing radius about s in I'. Joins of simplices are simplices,
so the nerve of Wr is simplex, which means that Wr is finite. This is a
contradiction, since if W is finite and [W : Wr] is finite then W7 is infinite.
Thus, Ars n Wr is infinite, which implies [W : Wr]| = |Ar| = o0.



CHAPTER 5

The Davis complex

The goal of this chapter is, given a Coxeter system (W, S), to construct
a geometric action W — 3, where 3 is a CAT(0) space. First we will define
CAT(0) spaces, and, more generally, CAT(k) spaces, and talk about why
we care about actions on such spaces. Then we will build the space ¥ for a

Coxeter group.

1. CAT(k) spaces

This section is a short introduction to CAT(k) spaces. See [6] for more.

1.1. Model spaces.

DEFINITION 1.1.1. For each k € R and n € N, let M} be the unique
complete, simply connected, n—dimensional Riemannian manifold of con-

stant sectional curvature equal to k.

The three key cases are already familiar: M", = H", My = E", and
M7 = S". In fact, for k # 0 the space M} can be obtained by rescaling
the metric on H" or S by a factor of 1/ \/m , according to whether k£ < 0
or k > 0, respectively. So M?" is the unit n-sphere, and for £ > 0 the
model space M} is just the sphere of radius 1/ \/m . Qualitatively, the most
important thing with whether k is negative, positive, or zero.

DEFINITION 1.1.2. Define Dy, to be infinite if k < 0, or Dy := n/Vk if
k > 0. This is the diameter of M.

ProprosITION 1.1.3. For all n and k, M} is a geodesic metric space,
and there is a unique geodesic between points at distance strictly less than

Dy from each other.

Note that the distance hypothesis is necessary: there are infinitely many
geodesics between antipodal points on a sphere.

EXERCISE 1.1.4. Show that in ./\/li, if z,y,z are distinct points with
d(z,y) = d(x,z) =1 < Di/2 and m is the midpoint of [y, z] then d(x, m) <
r. Conclude that balls in M2 of radius less than Dj/2 are convex.

123
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1.2. Comparison geometry. We will define a notion of curvature in
metric spaces by comparing a given metric space to the constant curvature

model spaces.

LEMMA 1.2.1. Let k € R. Suppose do,d1,do = 0 such that for all i,
indices mod 3, we have |d;+1—dit2| < d; < diy1+dira and do+di+da < 2Dy.
Then there exists a, unique, up to isometry, geodesic triangle in /\/l% with
side lengths dg, di, and da.

The first condition says that the three distances satisfy all permutations
of the triangle inequality. The second is vacuous if & < 0. For k > 0 it
implies d; < Dj. This is necessary for uniqueness, since ./\/li is only locally

uniquely geodesic.

DErFINITION 1.2.2. Let k € R, and let x, y, z be three points in a geodesic
metric space X such that d(x,y) + d(y,2) + d(z,2) < 2Dy. Then there
is a unique, up to isometry, geodesic triangle A(Z,y,2) in M% such that
dx(z,y) = dMi(a’:,gj), dx(y,z) = dMi(g’ z), and dx(z,z) = g (7, z). Call
such a triangle a comparison triangle for x,y, z.

For any geodesic triangle A(z,y, z) in X with vertices z,y, z, and any
point p € A(x,y, z), there is a unique comparison point p € A(Z,y, z) such
that the distance from p to the endpoints of its side of the triangle is the
same as for p; that is, if p is on a geodesic between x and y, define p to be
the unique point on [z, 7| satisfying dM%(ﬁ, z) = dx(p,x), or, equivalently,
drz (P, 9) = dx(py),

DEFINITION 1.2.3. A geodesic metric space X is CAT(k) if geodesic
triangles are no fatter than their comparison triangles in M% That is, for
every geodesic triangle A(z,y, z) in X of perimeter less than 2Dy, and every

pair of points p,q € A(z,y, z), we have dx(p,q) < dMi(lﬁa q).

‘CAT’ is an acronym for the names of three pioneers of the field: Car-
tan, Alexandrov, and Toponogov. One might also suggest a backronym:
Compare All Triangles.

The CAT(k) condition is an upper curvature bound.

LEMMA 1.2.4. If k < k' then M2 is CAT(K'), but M3, is not CAT(k).
In practice it is often convenient to have a locally verifiable condition.

DEFINITION 1.2.5. A space has curvature at most k, or is locally CAT(k ),
if every point has a CAT(k) neighborhood.

THEOREM 1.2.6. A complete geodesic metric space of curvature k is
CAT(k) if and only if it has no isometrically embedded loop of length less
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than 2Dy.. If k <0, the last condition is equivalent to the space being simply
connected.

ExXAMPLE 1.2.7. A flat torus is a space obtained from a rectangle in
[E? by identifying opposite sides and taking the resulting length metric. It
has curvature 0, since every point has a neighborhood isometric to a neigh-
borhood in E2, but it is not CAT(0), because it is not simply connected.
Indeed, take a loop parallel to one pair of sides and divide it into three equal
length pieces. This is a geodesic triangle in the torus, and it is convex in the
torus. The comparison triangle in E? is not convex: for points on different
sides the Euclidean geodesic cuts through the interior of the triangle, and is
shorter than the path that travels around the perimeter.

EXERCISE 1.2.8. Show that for all k, a tree X is CAT(k).

EXERCISE 1.2.9. Show that a graph with only finitely many different
edge lengths is CAT(1) if and only if it does not contain an isometrically
embedded cycle of length less than 2.

1.3. Some consequences of the CAT (k) property.

EXERCISE 1.3.1. Show that there is a unique geodesic between two points
at distance less than Dy in a CAT (k) space. In particular, CAT(0) spaces

are uniquely geodesic.

PROPOSITION 1.3.2. In a CAT(0) space X, local geodesics are geodesic.
That is, if v: R — X is a unit speed path such that there exists € > 0 such
that for all t € R the segment '7\(t_67t+6) s geodesic, then v is geodesic.

PROOF. Suppose 7 is not geodesic. Let:
d := inf{|t — s| | 7 is not geodesic on [s,t]} =€ >0

Then there are s < ¢ such that 36/2 >t — s > § such that v is not geodesic
n [s,t]. Let r := (t—s)/2. We have t —r < § and r —s < J, so ~y is geodesic
on [s,r] and on [r,t]. Consider the Euclidean comparison triangle for 7(s),

v(r), and (t). Its angle at v(r) is not 7, since
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But if its angle at () is less than 7 then for all sufficiently small positive

u we have:

2u > d([v(r),y(s)](w), [7(r); 7 (O] () = d([(r), v ()] (), [v(r), 7(H)](w))

This is a contradiction, since for u < €/2 we have that v is geodesic on
[r = u, 7 +u], so d([y(r), v(s)](w), [7(r), ()] (u)) = 2u. O

EXERCISE 1.3.3. A local isometry is a map ¢: X — Y such that for

every x € X there is an r; > 0 such that ¢ restricted to the ball of radius 7,
about x is an isometric embedding. If ¢: X — Y is a local isometry from a
geodesic metric space to a CAT(0) metric space, show that ¢ is an isometric

embedding.

PROPOSITION 1.3.4 (Convexity of the CAT(0) metric). Let o: [0,1] —
X and B: [0,1] — X be geodesics in a CAT(0) space, parameterized by
constant speed. Then for all t € [0, 1],

dx(a(t), B(t)) < (1 = t)dx (a(0), 5(0)) + tdx (a(1), 5(1))

PROOF. Let v: [0,1] — X be a unit speed parameterized geodesic from
B(0) to a(1). Consider triangles A(a(0), a(1),v(0)) and A(y(0),~v(1),5(1))

in X and their comparison triangles in M3. See Figure 1.

For all ¢ € [0, 1], we have:
dx (a(t), B(t)) < dx((t),7(t)) + dx (v(t), B(t)) triangle ineq.
< dpg (@), 7(1) + dpge ((1), B(2)) CAT(0) ineq.
= (1 = t)dpz((0),7(0)) + tdp2(v(1), 5(1)) similar Eucl. triangles
= (1 —1t)dx(a(0),7(0)) + tdx(v(1), (1)) def. comp. triangle
O
a(0) alt) (1) = 4(1) (0) a(t) a(1) = 4(1)
~(t)
B(0) = ~(0) B(1)
! o 8(0) =+(0) 5() 501

FIGURE 1. Convexity of the CAT(0) metric

PROPOSITION 1.3.5 (Projections). Let X be a CAT(0) space, and let

C c X be convex and complete.

o Vx € X there exists a unique point w(x) € C such that d(z,(x)) =
d(z,C) = inf o d(z,c).
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o If &’ € [z,7(x)], the unique geodesic between x and w(x), then
m(2') = n(x).
e For all x ¢ C, and ¢ € C with ¢ # ©(x), the Alexandrov angle of

[7(z),x] and [7(x),c] is at least 7/2, where the Alexandrov angle

is defined to be the limsup, y_,o of the Euclidean angle at m(x) of
the comparison triangle for w(x), [7(z),z](t), [7(x),c](t’).

o The map m: X — C is distance non-increasing.

PRrROOF. In this proof [a,b]: [0,1] — X denotes the unique constant
speed geodesic between a and b.

Given x € X, pick a sequence (¢,) < C such that d(z,¢,) — D :=
d(xz,C). For all e > 0 there exists N such that for alln > N, d(z,¢,) < D+e.
Assume that € << D, let N be the corresponding bound, and let m,n > N.
Since C' is convex, the geodesic [¢y,, ¢, ] is contained in C| so it does not enter
Bp(x). On the other hand, by convexity of the metric, [¢n, ¢n] © Bpye(z).
Now consider the comparison triangle in E? = M32. The side [¢p,cp] is
contained in the annulus Bp,.(Z) — Bp(Z). Now, a geodesic segment in
a Euclidean annulus of inner diameter D and outer diameter D + € has
length at most 2v/2De + €2 3% 0. Therefore (cn) is a Cauchy sequence, so
it converges to some point ¢ € C, since C' is complete. Set w(z) := ¢. By
construction d(z,m(x)) = D = d(z,C). Exercise 1.1.4 shows that m(z) is
unique, since if there were two points in C' at the same distance, then the
midpoint of the segment between them would be a point of C' strictly closer
to .

The second point follows since if 2’ € [z, w(x)] then:
d(z',C) <d(2',7(x)) = d(z,n(z)) — d(x,2") = d(z,C) — d(z,2") < d(2,C)

Thirdly, suppose x € X — C and 7w(z) # ¢ € C. Since C is convex,
[7(z),c] < C. Let t,t' € [0,1], and consider the comparison triangle for
[7(x),x](t), 7(z), [x(z),c]('). Its Euclidean angle at m(z) is at least /2,
because otherwise we would have, for all sufficiently small s, a violation of

the fact that m(x) is the closest point of C' to the point y := [7(z), z](s):

d(yv 77—(33)) = d(y¢ C)

< d(y, [ (2), c])

< d(y, [n(x), [n(x), c](t)])

< d(@, [ (2), [7(2), c]()])
<d(g,n(x)) if angle < 7/2
= d(y,m(z))
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Finally, take x,2’ € X. Consider ¢ € [0,1]. Let y := [r(z),z](¢t) and
z = [m(2’),2'](t). Consider the Euclidean quadrilateral @) obtained by
identifying the comparison triangle for m(x), 7(z'), y and the comparison

triangle for m(2’), z, and y along the side [g,7(2’)]. The angle of @ at

m(z) is at least 7/2. The angle of Q at m(z/) is the sum of the angles of
the comparison triangles. But the Alexandrov angle of [7(z’), 7(x)] and
[7(2"), 2] at w(2’) is bounded above by this same sum, and bounded below
by 7/2, so the angle of @ at w(2') is at least /2. Thus:

dx(n(z), 7(z')) = dge (7 (@), 7 (@) " % dga(5,2) = dx(y,2) O

THEOREM 1.3.6 (Flat strip theorem [6, Theorem I1.2.13]). Letv,~v': R —
X be geodesics in a CAT(0) space. Suppose that there exists D such that for
allt e R, d(~(t),7(t)) < D. Then there exists D' < D such that the convex
hull of v and ' in X is isometric to a strip R x [0, D'] in E2.

SKETCH. Assume v and «/ are parameterized by unit speed, and that
7' (0) € 51 (~(0)). Consider f: t — d(y(t),7(t)). This is a convex, periodic
function, so it is constant D’ < D.

For s < t € R, consider the quadrilateral @ with sides [y(s),v(t)] =
Vs (@), Y (O [V (), 7' (8)] = 25 - [V (8),7(s)]. Consider the Euclidean
quadrilateral ) obtained by identifying two comparison triangles obtained
from splitting @ across a diagonal. We claim that @ has right angles, and

the theorem follows. O

PROPOSITION 1.3.7. Let X be a complete CAT(k) space. SupposeY < X
such that:
ry :=inf{r |3z, Y < B,(z)} < Dy/2

Then there exists a unique ‘center’ cy such thatY < By, (cy).

PROOF. Let (z,,) € X and (r,) < R be sequences with Y < B, (x,) and
rn =" ry. Fix a basepoint o € E2. For € > 0, choose R <ry < R < Dy/2
such that a geodesic segment in Mi contained in annulus A with inner
radius R’ and outer radius R has length less than e. There exists N such
that for all n > N we have R < ry < r, < R. Pick n,n’ > N and let
m be the midpoint of a geodesic segment [z,,z,/]. For y € Y let A, be
a comparison triangle in Mz for y, zpx,y with § = o, and let m, be the
comparison point for m in A,.

Since balls of radius less than Dy/2 in M3 are convex, the geodesic
[, 2] is contained in Bg(0), and if both subsegments [z, m,| and [my, Z,/]
enter Bpi(0), then m, € Br/(0). It is not the case that all of the m, are
contained in Bg/(0), because this would imply dx(y,m) < R' for ally e Y,
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which contradicts R’ < ry. Thus, for some y € Y, at least one of the geo-
desic [z, my| and [my, Z,/] is contained in A, so has length less than e. But
then dx (zn,zy) < dMi(ffn,ﬂ_Cn') < 2¢e. This shows that (z,) is a Cauchy
sequence. Since X is complete, (x,) converges to some point ¢y, which then
satisfies the proposition.

Uniqueness of the center follows from Exercise 1.1.4. O

COROLLARY 1.3.8. If X is a complete CAT(0) space and G < Isom(X)
has a bounded orbit then G fizes a point.

Proor. If x € X such that Gz is bounded then Gz has a unique center
c. Since G fixes Gz, it fixes c. O

COROLLARY 1.3.9. If G acts geometrically on a complete CAT(0) space

then G has only finitely many conjugacy classes of finite subgroup.

PROOF. Since the action is cocompact, there is a compact set K that
is a fundamental domain for the action. By proper discontinuity, there are
only finitely many elements g € G such that gK n K # (. In particular,
the subset F' of GG consisting of elements that fix a point in K is finite. If
H is a finite subgroup of G then its orbits are finite, hence, bounded, so the
previous result says H fixes a point x. Since K is a fundamental domain,
there exists g € G such that gz € K, and gHg~! fixes gx. Thus, every finite
subgroup of G is conjugate into the finite set F'. O

1.4. Isometries of CAT(0) spaces.

DEFINITION 1.4.1. Let ¢ be an isometry of a CAT(0) space X.

o The displacement function of ¢ is dy: X — R:x — d(z, ¢px).

o The translation length of ¢ is |¢| = infrex dy(z).

e The minset of ¢ is the (possibly empty) set Min(¢) := {z € X |
dg(z) = |4.

e ¢ is hyperbolic if |¢| > 0 and is realized, that is, there exists z € X
such that d(z, ¢px) = |¢|.

e ¢ is elliptic if |¢| = 0 and is realized, so ¢ has a fixed point.

e ¢ is parabolic if |¢| is not realized.

e ¢ is semi-simple if |¢| is realized. A subgroup of Isom(X) is semi-

simple if all of its elements are semi-simple.
THEOREM 1.4.2. Let X be a CAT(0) space.
(1) ¢ € Isom(X) is hyperbolic if and only if ¢ has an ‘axis’, a geodesic
v: R — X along which ¢ acts by translation: YVt € R, ¢vy(t) =
Y(E+ 1))
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(2) If X is complete then ¢ is hyperbolic if and only if there exists n # 0
such that ¢" is hyperbolic.

(3) If ¢ is hyperbolic then all azes of ¢ are parallel and their union is
Min(¢).

(4) If ¢ is hyperbolic then Min(¢) is isometric to Y xR and ¢|niin(g): (y,1) —

(y,t +|9|), so {y} x R is an azxis of ¢ for allyeY.
(5) If ¢ € Isom(X) commutes with ¢ then it preserves Min(¢). If, in

addition, ¢ is hyperbolic, then i preserves the product structure of

Min(¢).

PRrROOF. Suppose ¢ acts by translation along a geodesic v by distance 7.
A geodesic is convex and complete, so by Proposition 1.3.5 the closest point
projection map 7., : X — 7y is distance non-increasing. Let x € X be a point
off v. Assume ~ is parameterized with unit speed and so that 7, (x) = v(0).
Then:

d(z, ¢(x)) = d(my(z), 7, (9(2))) = d(7(0), (74 (2))) = d(7(0),7(7)) = 7

Thus, ¢ achieves its translation length along ~.

Conversely, suppose that ¢ is hyperbolic, so |¢| > 0 and there ex-
ists © € Min(9). Since d((x), (6(x))) = d(z,6(x)) = [¢], Min(6) is ¢
invariant. By convexity of the metric, Min(¢) is convex. Therefore, Y :=
Unezl@™(z), 9" (2)] = Min(¢). By construction, Y is a concatenation of
geodesic segments. Let m be the midpoint of [z, ¢(z)]. Then ¢(m) is the
midpoint of [¢(x), $*(z)], and d(m, ¢(m)) = |¢|. But g| = d(m, d(m)) <
d(m, $(2)) +d(6(z), 6(m)) = |81/2] +161/2 = |61, 50 [m, ()] + [6(x), 3(m)]
is the geodesic from m to ¢(m). This shows that Y is locally geodesic, so,
by Proposition 1.3.2, it is a geodesic. This proves (1).

Suppose v and v are two different axes for ¢. Then f(t) := d(v(t),~'(¢))
is a convex periodic function, so it is constant. This proves (3).

Since Min(¢) is nonempty and convex, the induced length metric on
min(¢) makes it a CAT(0) space. Choose an axis v for ¢ in Min(¢), and
consider closest point projection 7y: Min(¢) — v. Let Y := 77,;1(7(0)). A
consequence of the Flat Strip Theorem is that Min(¢) is isometric to Y x R.
This proves (4).

Let ¢ and 9 be commuting isometries, and suppose x € Min(¢). Then
(@), ¥lx)) = d(6(@)), (@) = d(é(x),x) = 6], so & preserves
Min(¢).

Suppose ¢ is hyperbolic with axis v and ¥ commutes with ¢. Then ) (~)

is a geodesic in Min(¢), and ¢(¢(v(t))) = ¥(6(v(t)) = v(v(t + [¢])), so
¥ (7) is an axis for ¢. This proves (5).
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If ¢ is hyperbolic then by (1) it has an axis upon which it acts by
translation by |¢|. For any nonzero power, ¢" acts on the same axis by
translation by |n||¢|, so ¢™ is hyperbolic. Conversely, if ¢™ is hyperbolic
then Min(¢™) = Y x R. Since ¢ commutes with ¢", it preserves Min(¢")
and its product structure. Consider the restriction of ¢ to each of the factors.
On R, ¢ acts by nontrivial translation, since if it fixed R pointwise then so
would ¢™. Since ¢" acts trivially on Y, ¢|y has orbits of size at most n,
so, by Corollary 1.3.8, ¢ fixes a point y € Y. This means that ¢ acts by
translation on the geodesic {y} x R, so ¢ is hyperbolic. O

EXERCISE 1.4.3. Consider R™ with the Euclidean metric. Every isometry
is of the form f: v — Av + b where A is an orthogonal matrix and b € R".
Show that either f fixes a point in R™ or there is a line along which f acts
by nontrivial translation. Conclude that Isom(E") is semi-simple.

The following theorem shows that there is a link between algebra and ge-
ometry for groups acting on CAT(0) spaces: when the group has an Abelian
subgroup Z", there is a corresponding n—dimensional flat subspace.

THEOREM 1.4.4 (The flat torus theorem [6, Theorem I1.7.1]). Suppose
A = 7" acts properly by semi-simple isometries on a CAT(0) space. Then:
(1) Min(A) = naeaMin(«) is nonempty and splits as a product Y x E™.
(2) Every element o € A leaves Min(A) invariant and acts by the iden-
tity on Y and by translation on E™.
(3) Yy € Y the quotient of the n—flat {y} x E™ by the A—action is an
n-torus.
(4) For all elements B in the normalizer of A in Isom(X), B preserves
Min(A) and respects the product structure.
(5) If G is a subgroup of the normalizer of A in Isom(X) then G has
a finite index subgroup G’ that centralizes A. Moreover, if G is
finitely generated then G has a finite index subgroup that contains

A as a direct factor.

THEOREM 1.4.5 (Solvable subgroup theorem [6, Theorem II1.7.8]). If
G acts properly and cocompactly by isometries on a CAT(0), then every
virtually solvable subgroup of G is finitely generated and virtually Abelian.

DEFINITION 1.4.6. A finitely generated subgroup H of a finitely gen-
erated group G is said to be undistorted if the inclusion of H into G is a

quasiisometric embedding, with respect to any choice of finite generating
sets of H and G.

EXERCISE 1.4.7. Show that the subgroup H := {(a) of G := {(a,b |

b~lab = a?) is distorted (ie is not undistorted). Hint: it suffices to show
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that with respect to generating set S := {a,b} of G, the word length |a"|g

grows sublinearly in n. Show that in this example it groups like a logarithm.

More generally, the Baumslag-Solitar group BS(m,n) := {a,b | b=1a™b =
a™) is said to be unimodular when |m| = |n|, and {a) is distorted whenever
BS(m,n) is nonunimodular.

COROLLARY 1.4.8. If G acts geometrically on a CAT(0) space then solv-
able subgroups of G are undistorted.

PRrROOF. The Solvable Subgroup Theorem says a solvable subgroup H of

G is finitely generated and virtually Abelian, so it has a finite index subgroup
A =~ 7" for some n. If n = 0 then H is finite, hence undistorted. Otherwise,
the Flat Torus Theorem says H < G is conjugate by a quasiisometry to an
isometric embedding E" «— X, so H — G is a quasiisometric embedding.
O

COROLLARY 1.4.9. A group acting geometrically on a CAT(0) space con-

tains no subgroup isomorphic to a nonunimodular Baumslag-Solitar group.

1.5. Mj—polyhedral complexes. This section is concerned with the
question of when a space built from CAT (k) pieces is itself a CAT (k) space.

DEeFinITION 1.5.1. For k£ € R, an Mj—polyhedral complex is a space
X made from a disjoint union [ [,.; P; of convex polytopes P; € M}" by
identifying some polytopes isometrically along faces.

THEOREM 1.5.2. A connected M —polyhedral complex made from finitely

many isometry types of polytope is a complete geodesic metric space.

To see that some condition is necessary, take two vertices x and y and
connect them by an edge of length 1/n for each n € N. This is an My—
polyhedral complex. For all ¢ > 0 there is an edge between z and y of
length less than €, so d(z,y) = 0. So this polyhedral complex is not even a
metric space.

It is clear that a point in the interior of some polytope in an M;—
polyhedral complex has a CAT(k) neighborhood. It turns out that the only
potential problems come at the vertices.

DEFINITION 1.5.3. An M—polyhedral complex satisfies the link condi-
tion if the link of every vertex is a CAT(1) space.

THEOREM 1.5.4. A My —polyhedral complex with finitely many isometry
types of polytopes has curvature at most k if and only if it satisfies the link
condition.
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THEOREM 1.5.5. A M —polyhedral complex with finitely many isometry
types of polytopes and satisfying the link condition is CAT(k) if and only if
it does mot contain an isometrically embedded circle of length less than 2Dy,.
If k < 0 this is equivalent to the complex being simply connected.

ExaMPLE 1.5.6. Take three Euclidean squares, say of side length 1, and
glue them around a vertex v. The link of v is a triangle with edge lengths
/2, so it is a loop of length 37/2 < 2Dy = 27. This is a My—polyhedral
complex that does not satisfy the link condition. It does not have curvature
at most 0. Every point except v has a CAT(0) neighborhood, but v does
not.

If you do the same construction for 4 squares then the resulting space is
CAT(0), as the link of v in this case would be a circle of length 27. In fact,
this space is isometric to a Euclidean square of side length 2.

If you glue together more then 4 squares then the length of the link of v
is greater than 27, and this should be thought of as v having strict negative
curvature. However, every other point is only locally non-positively curved,
so the resulting space is CAT(0), but no better.

Suppose that X is a Mg—polyhedral complex with finitely many isometry
types of polytopes and no isometrically embedded loop of length less than
2Dy,. Then we can check whether X is CAT (k) by an induction on dimension,
as follows: Since there are finitely many isometry types of cells there is some
maximum dimension n of polytope that is used to build X. We know that
X is CAT(k) if and only if every vertex satisfies the link condition. The link
of every vertex is an Mj—polyhedral complex of dimension at most n — 1.
Furthermore, since there were only finitely many isometry types of polytopes
in X, there are only finitely many isometry types of polytopes used in the
links. Thus, X is CAT(k) if and only if the link of every vertex itself satisfies
the link condition and has no isometrically embedded loop of length less than
2Dq = 2m. If no link has a short loop, then X is CAT(k) if and only if the
link of every vertex of the link of every vertex of X is CAT(1). But the
dimension of the Mj—polyhedral complexes we are interested in drops at
each iteration, and Exercise 1.2.9 says that once the dimension reaches 1

the space is CAT(1) if and only if there are no short loops.

2. Construction of the Davis complex

The construction of the Davis complex X(W,S) of a Coxeter system
(W, S) proceeds in three steps: the first is a formal construction of a simpli-

cial complex, the second is a recellulation of the complex to have a coarser
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cell structure, the third is to metrize the recellulation. This will produce a
Mo—polyhedral complex. Then we need to check that the result is CAT(0).

2.1. The formal construction.

DEFINITION 2.1.1. A partially ordered set (poset) is a set X and a rela-

tion < satisfying the following conditions:

N

Ly<z = z=y
&y<z = <z

°
8 8 8
NN

e e 8

EXAMPLE 2.1.2. Let X be a set. The power set P(X) of all subsets of

X is partially ordered with respect to inclusion.

DEFINITION 2.1.3. An n-—chain in (X, <) is a totally ordered subset of
X of size n, that is, it is a collection of n distinct element x1,...,x, € X
such that z1 < 22 < --- < 2.

PROPOSITION 2.1.4. Given a partially ordered set (X, <), there is a sim-
plicial complex Y whose n—simplices are in bijection with (n + 1)—chains in
(X, <), and (X, <) is isomorphic to the poset of cells of Y ordered by inclu-

sion.

EXAMPLE 2.1.5. Let X be the nonempty subsets of {r,s,t}, partially
ordered by inclusion. The poset and corresponding simplicial complex are
shown in Figure 2. Notice that the simplicial complex is a barycentric
subdivision of a single simplex. The ‘recellulation’ step will be to forget

the subdivision.

{t}

{r,s, t}

{r, s} } l < {s,t}

{ry  {s} {t}

{r, t} {s, t}

{r} {r, s} {s}

FIGURE 2. Poset and simplicial complex

There will actually be three posets of interest for a Coxeter system
(W, S), all defined in terms of spherical subsets of the generators, and all

partially ordered by inclusion.
e §:={T'c S|T isspherical} = {T' < S | Wr is finite}
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o S.g:={T # J| T is spherical}
e WS := UT spherical W/WT

The corresponding simplicial complexes are, respectively:

e The chamber K = K(W,S).
e The nerve or link L = L(W,S).
e The Davis complex ¥ = (W, S).

The action of W on WS by left multiplication extends to a simplicial
action of W on 3.

LEMMA 2.1.6. Every simplex of 3 is a translate of a unique simplex of
K.

PROOF. A simplex in ¥ corresponds to a chain woWr, < -+ < w,Wr,
in WS, where w; € W and T; € §. By Corollary 4.0.3, this implies that
for i < j, T; < T; and w;le € Wr;. In particular, for ¢ = 0 and j > 0,
wo_le € Wr;, so w; € woWr;, which means w;Wr, = woWr,. Thus, the
chain woWr, < --- < w,Wr, is the same as woWg, < --- < woWr,,, which
is the wq translate of the chain Wrg, < --- < Wy, in S, which corresponds

to a simplex in K. O

COROLLARY 2.1.7. K is the fundamental domain for the action of W
on X.

EXERCISE 2.1.8. Show that U(W, K) is W—equivariantly homeomorphic
to 2.

EXAMPLE 2.1.9. Consider D3 = (s,t | 52,12, (st)3).

8 = {@7 {8}7 {t}v {S,t}}

Lo oW

{s, t}

{s} {t}
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StWQ sWy SWQ

stWy

stsWy = tstWyy

Y=

tsWy

tSWQ th I‘,Wg

Check in this example that s and ¢ act by reflections.

2.2. Recellulation and metrization. The definition of ¥ in the pre-
vious section has too many triangles. We simplify the construction as fol-
lows. Instead of taking a vertex for each spherical coset we take a cell, and
determine attaching maps by inclusion. Specifically, for T'e § and g € W
take a cell of dimension |T'| for gWp. The vertices are then in bijection
with cosets of W, that is, with elements of W. The 1-cells are of the form
gWs = {g, gs}, attached to vertices g and gs. Notice that the 1-skeleton is
exactly Cay(W, S). A 2—element spherical subset {s,t} generates a dihedral
group D,,,,. It’s Cayley graph with respect to {s,t} is a cycle of length
2mg;. To the copy of this cycle in Cay(W, S) we attach a 2-—cell for Wi,.
Distinct cosets of Wy correspond to distinct cycles in Cay(W, S), so we
attached one 2—cell to each distinct {s,t}—cycle in Cay(W,S). This makes
the 2—skeleton of 3 a copy of the Cayley 2—complex for the Coxeter presen-
tation of W. We continue inductively to construct ¥ by adding cells one
dimension at a time to the existing skeleton. To do this properly we add,
for each coset gWr for T spherical of size n, an n—ball. We must specify an

(n=1) " In this way we

attaching map from the boundary of the n—ball to X
build a complex ¥ for which the ¥ of the previous section is the barycentric
subdivision. We actually want a polyhedral complex, not just a topological
one, so we will specify a metric making the cell corresponding to gWr a
convex Kuclidean polytope, and so that the attaching maps are isometries
on faces.

Suppose T' < S is spherical with |T| = n. By Theorem 3.0.7 and The-
orem 4.0.3, Wr is conjugate (via the square root of its cosine matrix) into
O(n), and acts on R™ with fundamental domain a simplicial cone, with the
elements of T" acting as reflections in the codimension 1 faces. A point in the
interior of this fundamental domain is generic point. For any generic point
x, the convex hull of finite set Wr.x is a convex Euclidean polytope, and its
combinatorial type is independent of the choice of . Let us organize the
choice of x: let d € (0,00)” = (d; | t € T). Then there is a unique point in
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the interior of the fundamental simplicial cone that for all ¢t € T" is distance
d; from the codimension 1 face that is the fixed set of the reflection by t.
Let ¥7(d) be the convex Euclidean polytope obtained by taking the convex
hull of the W orbit of the this point. Call X7 (d) a Cozeter cell for T.

We want to glue Coxeter cells isometrically over shared faces to get a
polyhedral complex. We do this by choosing d uniformly: choose d € (0, c0)?,
and for spherical T' < S restrict the choice to T: dr := (d; | t € T), so that if
T and T" are spherical then the faces of Y7 (dr) and X7(dz) corresponding

to T n T’ are both isometric to X7/ (dra7).

PROPOSITION 2.2.1 ([11, Proposition 7.3.4]). For any Coxeter system
(W, S) and choice of d € (0,00)° the Davis complex ¥ = L(W, S) admits the

structure of a Fuclidean polyhedral complex such that:

o — [ts vertex set is in bijection with W.
— Its 1-skeleton isomorphic to Cay(W,S).
— Its 2—skeleton is isomorphic to the Cayley complex for the Cozx-
eter presentation of (W, S).
e Fach n—cell corresponds to a coset gWr where T is spherical of size
n, and the cell is a Cozeter cell Yr(dr).
e The link of every vertex is L(W,S).
o The poset of cells of ¥ is isomorphic to WS.

The choice of d will not matter in the proof that ¥ is CAT(0). We will
assume, unless specified otherwise, that we have chosen ds = 1/2 for all
s € S. The flexibility to make different choices will be used in Section 4 to
construct CAT(-1) metrics.

COROLLARY 2.2.2. ¥ is simply connected.

ProoF. The Cayley complex of a presentation is always simply con-
nected [11, Proposition 2.2.3]. The fundamental group of a cell complex
only depends on its 2—skeleton. ([

COROLLARY 2.2.3. X is a geodesic metric space on which W acts geo-

metrically.

PRrROOF. ¥ is connected My—polyhedral complex with finitely many isom-
etry types of cells, so it is a proper geodesic metric space. W\X =~ K is
compact. By construction, W — ¥ is combinatorial, and ¥ is locally finite
and finite dimensional, so W — 3 is properly discontinuous if and only if
the cell stabilizers are finite. By construction, cell stabilizers are conjugates

of spherical special subgroups, which are finite. O
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THEOREM 2.2.4. If (W, S) is a Coxeter system such that every proper

special subgroup is finite then W is a simplicial geometric reflection group.

Proor. If W is finite then it is a spherical reflection group. If not then
the nerve is the boundary of an |S| — 1 simplex. The fundamental chamber
K is a cone on the nerve, so it is an |S| — 1 simplex. K is a fundamental
domain for W —~ ¥, by Corollary 2.1.7. Thus, W is a simplicial Coxeter
group. (Recall Definition 3.2.11 and Exercise 2.1.8.) By Lannér’s Theorem,
Theorem 3.2.12, W is a geometric reflection group. O

2.3. Examples of Davis complexes.

ExAMPLE 2.3.1. We first revisit Example 2.1.9, for which W = D3 =

(s,t] 82,12, (st)®). Recall S = {@, {s}, {t}, {s,8}}, L= &0 0 and
{s.1}

{s} {t}
K = . Below we see ¥(1/2,1/2) and ¥(1/4,1) (not at the

%]
same scale). There are both valid choices of Coxeter cell for W, ;3. Since in

this case the entire group W is spherical, ¥ is just one closed 2—cell. Note,
in each case, the shaded copy of K: each vertex of the shaded region has
stabilizer W, where T is the corresponding vertex of K, so x corresponds to
& with stabilizer W = {1}, the origin corresponds to {s,t} with stabilizer
W{s,t} =W, etc.

stsx

tsx, tx

As seen in this first example, the Davis complex for a spherical Coxeter
groups is not so exciting on its own; it is simply a ball that we declare has
a metric that makes it a Euclidean polytope. What is interesting is that in
the non-spherical case the Davis complex is constructed using the spherical

subgroups as building blocks.
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EXAMPLE 2.3.2. W = Dy x Dy, defined by Coxeter graph I' = AO .

d

a b
The presentation graph is T = <> .

C

The spherical subsets are all those that contain at most one of a and b and
at most one of c and d. § = {F, {a}, {b}, {c}, {d}, {a, c}, {a,d}, {b, c}, {b,d}}.
Since the largest spherical subsets have size 2 the Davis complex will

be 2-dimensional, and the link will be 1-dimensional. Since T = L™, this

{d} {a,d} d {b,d}
{a,d} (b, d}
. {a) v} a % b
means ¥ = L. Thatis: L = and K =
{a, c} {b, c}

{e) {a,c) ¢ {b,c}
The four maximal spherical subsets give isometric Coxeter cells:

-p-dete Sbodesy

Yfae} =

The link tells us to put one of these squares at each vertex, with incident
edges of the same color identified, to make a link that is a circle consisting

of 4 arcs. We do this around every vertex to get a square tiling of E2.

I T T I
| | | |
PR E— I S T I
I I I I
I | | |
B [ I I I
| | | |
7 t t t
| | | |
RN (S [ N iy ) A Y
I I I I
| | I |
T i T 0
| I I |
————— I—-—f+—d=-—=-=—4+-—-—-=-+—-<--|d
I I I I
1 1 1 1
| | | |
| | | |
R e e
I I I I
1 | 4
| | | |
| | | |

The squares with colored boundaries are copies of one of the four Coxeter
2—cells. The dashed lines are walls across which an element of W acts by
reflection. The walls for the four generators are labelled. For instance, the
wall across which a reflects is transverse to a set of blue edges. The other

set of blue edges in the picture is transverse to a wall that is fixed by bab.
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This example is a Fuclidean reflection group. The dashed reflection
lines give the tessellation of E? by squares whose fundamental domain is the
shaded copy of K, with the generators acting by reflections in the sides of
K. Here we see that the Davis complex is dual to the Euclidean reflection

tessellation.

EXERCISE 2.3.3. Construct the Davis complexes for the three E? triangle

reflection groups, and compare to Figure 2 of Chapter 2.

ExXAMPLE 2.3.4. Consider the Coxeter system defined by Coxeter graph:

o
ka S

r =

Its presentation graph is: T =

All proper subsets of S are spherical: S = {J, {r}, {s}, {t}, {r, s}, {s, t},{r, t}}.
{t} {t}

o A@,t} {r, t} {s, t}
r} s}
YL =] = {rs) and K =
{r} {s}
{r, s}
The three maximal spherical subsets give Coxeter cells:
\ -\/‘ 5

~ :\’S/r r\‘/
NP ¥ ,\Sr \/\\//

\\\/
//P\
J

Sprep = NS Dy = S (R Yy = = 2y

S

To build the Davis complex ¥ we put one of each of these three pieces
around each vertex, with incident edges of the same color identified. This is
example is again a geometric reflection group, a hyperbolic triangle group,
so the Davis complex is dual to the tessellation of H? by triangles:
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Let us see a non-geometric example.

ExaMpPLE 2.3.5. Consider the Coxeter system defined by Coxeter graph:

=/\
T =
_\
T S
Its presentation graph is: T = 3
A subset of S is spherical if it does not contain both r and ¢t: § =

(D, {r}, s}, {8}, {r s, {s, 13}

{t} {t}

i (5,1} %] {s,t}
{r} {s}

T>LW=rL= 3  and K =
{r} {s}
{r, s}
The two maximal spherical subsets give Coxeter cells:
\&:—\\/Srr y i/\/i\/\x:'&s
Ysy = Vil ns B = o

In this example the link tells us that at each vertex there is one copy
Y5 and one copy of ¥4, and they are glued together across the face ¥y, (a
blue edge). Since Wy,.;y = D, the figure for K says the red-green geodesic
Yr1 is a boundary of X (because there is no 2-cell in K connecting {r}
and {t}). This example is a tree of hexagons, a piece of which is shown in
Figure 3. The blue edges are all interior edges, and the red and green edges

are boundary edges. Recall that this group does act on a tessellation of H?
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FIGURE 3. ¥ for A(3,3,00) is a tree of hexagons, with fun-
damental domain K shaded.

by ideal hyperbolic triangles, as seen in Figure 10 of Chapter 2, but this
action is not cocompact, since the fundamental domain is not compact.

Alternatively there is the Coxeter complex, for which the action is co-
compact but not proper. For this example it would amount to collapsing
the red and green edges, giving a tree of triangles with all edges blue and all
vertices infinite valence. We saw a similar example in Figure 6 of Chapter 3,
which was a tree of squares instead of a tree of triangles.

This example is therefore the first one in which we get some-
thing genuinely new from 3: we get a geometric action of W, where

we did not have one from either of the classical constructions.
Finally, let us a try an example of dimension > 2:

ExXAMPLE 2.3.6. Consider the Coxeter system defined by Coxeter graph:

r— rﬁs

q
t

3/\3
Its presentation graph is: T = @

q

A subset of S is spherical if it does not contain both ¢ and ¢. Both of
the triangles in YT are spherical subgroups, so the nerve L is T with the two

triangles filled by 2-simplices.
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The two maximal spherical subsets {q,r, s} and {r,s,t} give Coxeter
cells as in Figure 4. X, . o is a cube. Xy, 4 is known as the order 4
permutohedron. Its 1-skeleton is the Cayley graph of the symmetric group on
4 elements corresponding to the generating set consisting of transpositions
r = (12) (red), s = (34) (green), and t = (23) (blue).

(A) Z{q,r,s}

(B) E{1”,5,1‘,}

FIGURE 4. Coxeter cells for Example 2.3.6.

The nerve tells us to construct ¥ by gluing X, . o to Xy, 5 1y along the
face Xy, 5, that is, glue cubes to permutohedra along red-green squares.
The blue and violet edges are not glued to anything, they remain on the
boundary. We get that > is a fattened tree of valence 6, where the fat
vertices are permutohedra and the fat edges are cubes. Edge paths that
alternate blue-violet are geodesics on the surface of the fattened tree that

are translates of 3,y = R, since Wy, = Dq.

EXERCISE 2.3.7. The Coxeter group W of Example 2.3.6 acts geomet-
rically on a fattened tree 3. It follows from standard results in Geometric
Group Theory that W has a finite index free subgroup. Find one, and argue
that it is free using Theorem 1.3.5.

EXERCISE 2.3.8. By construction, a (conjugate of a) generator acts by
Euclidean reflection on each Coxeter cell that it preserves, so there is a
codimension 1 fixed subspace in that cell. Show that for each generator s
the union of such fixed subspaces is a ‘topological wall’ separating ¥ into
two complementary connected components. Show that the edges met by
this topological wall are the wall €25 of Section 1.2 of Chapter 2.

2.4. The Davis complex is CAT(0). In this section we will show
that the Davis complex is CAT(0). The main technical tool is the following:
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LEMMA 2.4.1 (Moussong’s Lemma). Suppose L is an M;i—polyhedral
complex with all edges of length at least w/2. Then L is CAT(1) if and only

if L is a metric flag complez.

This will require some work. ‘Metric flag’ means L is determined by its
1-skeleton, see Definition 2.4.3. The crux of the proof, depicted in Figure 5,
is that spherical simplices start to bulge once their edge lengths are longer
than /2, see Lemma 2.4.2, and this forces geodesics to follow the 1-skeleton.
But if edges have length at least 7/2 then a loop in the 1-skeleton of length
less than 27 must be a triangle, and the flag condition implies such a triangle

is filled by a simplex, so there are no short geodesic loops.

(A) (B)

FiGURE 5. The distance from a vertex of a simplex to the
opposite face is convex when the simplex is small, but concave
when the simplex is big. Points equidistant from the North
Pole are lines of latitude (blue), while sides of the simplex
are arcs of great circles.

LEMMA 2.4.2. Suppose a convex spherical simplex has vertices {vo, ..., v}
with 4;; = d(vi,vj) = 7/2 when i # j. Then the distance from vg to the

opposite face is realized by min;~q d(vg, v;).

ProOF. Consider a spherical 2-simplex with edges of length at least
7/2. Assume, renumbering if necessary, that d(vo,v1) < d(vp,v2). Up to
isometry we may assume vg = (0,0,1) € S? = R?, and that v; = (a,b, c) and
vy = (z,y,2) with z < ¢ < 0. The face opposite vy is the unique spherical

geodesic from vy to vg given by v: t M—iigz‘

w20 =2 5o ([ S

) > 7/2 +sin"*(|¢|) = d(vo,v1)

Furthermore, either ¢ = z = 0 and ~ runs along the equator, so that ~ is
equidistant from vg, or every point in the interior of + is strictly farther from

vo than v.
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Now proceed by induction. Let x be a point in the codimension 1 face

F(v1,...,v,) containing {vi,...,v,} that is not contained in the codimen-
sion 2 face F(x1,...,Tn—1) containing {vi,...,v,—1}. Let y be the first
point of F(x1,...,x,_1) on the spherical geodesic starting at v, and pass-

ing through z. By the induction hypothesis, d(vo,y) = ming<;<, d(vo, v;).
By the 2-dimensional case:

d(vg, x) = min{d(vo,y), d(vo,vyn)} = Omjg d(vg, v;) O
<Iisn

DEFINITION 2.4.3. A simplicial spherical complex L is a metric flag
complex if L is metrically determined by its 1—skeleton; that is, if some set
of edges of L can be the 1-skeleton of a spherical simplex, then there is a
spherical simplex of L whose 1-skeleton is that set of edges.

EXAMPLE 2.4.4. Suppose a = b = ¢ > 0 are three numbers that can
be the three side lengths of a triangle, that is, all permutations satisfy the
strict triangle inequality. We claim they are the three sides of a spherical
simplex if and only if a + b + ¢ < 27. So a triangle graph with edge lengths
a, b, ¢ is a metric flag complex if and only if a + b + ¢ > 27.

The claim relies on a different characterization of simplices, which we
will establish in Lemma 2.4.8: there exists a spherical 2—simplex with side

1 cosa cosb
lengths a, b, ¢ between 0 and 7 if and only if C* := | cosa 1  cosc | is

cosb cosc 1
positive definite.

We check positive definiteness via Sylvester’s Criterion by checking that
the principal minors are positive. The first two are easy. The third is the
determinant, which, after some manipulation, is equal to (cosa — cos(b +
¢))(cos(b — ¢) — cosa). We will show both factors are positive.

Consider the second factor. It is non-positive when cos(b — ¢) <
but b — ¢ and a are in [0, 7), so this is true if and only if b —c < a < b —¢,
which is a contradiction.

Consider the first factor. It is non-positive when cosa > cos(b + c¢),
which could be true for a = b+ c or for b+ ¢ = 2w —a. The first case implies
b+ c < a<b+c, and the second implies a + b + ¢ = 2m, both of which are

contradictions.

2.4.1. Polar duals. The edge length hypothesis in Moussong’s Lemma
turns out to be dual to the ‘non-obtuse’ hypothesis on dihedral angles from
Chapter 2.

LEMMA 2.4.5. Let U = {uj,ug,...} and V = {vyi,va,...} be finite sets
of unit vectors in R"*1. For u e U, consider the halfspace bounded by ut
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containing u. Let K be their intersection. Let K' be the intersection of
linear halfspaces containing V. Let o := K nS™ and o' := K' n S™.

Then o is a conver n—dimensional spherical polytope if and only if U
spans R and is contained in one complementary component of a linear
hyperplane. Similarly, o’ is a convex n—dimensional spherical polytope if and
only if V' spans R™! and is contained in one complementary component of
a linear hyperplane

A unit vector v is a vertex of o if and only if <u,v >=0 for allue U
and (U nv*) has dimension n.

A unit vector u is the inward pointing unit normal vector to a codimen-
sion 1 face of o' if and only if <u,v >=0 for all veV and (V nut) has

dimension n.

PROOF. K is a finite intersection of linear halfspaces, so it is a convex
cone. Thus, any two points in o can be joined by a geodesic in o, and this
geodesic is unique unless the two points are antipodes in S™.

o is convex in " <= ¢ does not contain antipodal points of S"
<= K does not contain a line

<= the span of U has positive codimension

The condition that U is contained in a component of a hyperplane is
equivalent to the existence of a unit vector w such that < w,u > is strictly
positive for all u e U. Since U is finite, this is equivalent to the existence of
€ > 0 such that < w,u >> ¢, which is equivalent to w being in the interior
of 0. So the condition is equivalent to ¢ having nonempty interior, thus,
being n—dimensional.

The proof that ¢’ is an convex n—dimensional spherical polytope is sim-
ilar, with the roles of the two properties exchanged: the existence of w € S”
such that < w,v >> € > 0 for all v € V implies that any convex combina-
tion of points of V is contained in the positive w halfspace, so o’ is convex,
and the spanning condition implies ¢’ is n—dimensional.

The condition < u,v >> 0 for all u € U is equivalent to v € . A
vector w is in (U n v1)t if and only if for all sufficiently small € > 0 and
all u € U we have both (v + ew,u) > 0 and (v —ew,u) > 0. Thus, v
spans an extremal ray of K, or, equivalently, is a vertex of ¢, if and only if
Yy = U nvHt

The condition < u,v >>= 0 for all v € V says the halfspace bounded by
ul containing u contains V. When (V' n u') is nontrivial, K’ n (V n u*)

is a face of K’ of dimension equal to the dimension of (V nu'). O
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DEFINITION 2.4.6. If P is a convex spherical polytope of dimension
n with inward pointing unit normals U = {uj,ug,...} and vertices V =
{v1,va,...}, its polar dual is the convex spherical polytope P* of dimension

n with inward pointing unit normals V and vertices U.

The previous lemma implies that P* is in fact a convex spherical poly-
tope of dimension n, and that P and P* are combinatorially dual. It is then
clear from the definition that P** = P.

COROLLARY 2.4.7. A convex spherical polytope P is a simplex if and

only if P* is a simplex.

Let P be a convex spherical polytope whose inward pointing unit normals
are {u;} and whose vertices are {v;}.

Now we can give analogues of Lemma 3.2.6, Lemma 4.1.2, and Proposi-
tion 4.1.3 from Chapter 2.

LEMMA 2.4.8. Let V = {vy,...,v,} © S* ! = R". Suppose that lij is
the spherical distance between v; and v;. Then V is the set of vertices of
a convex spherical simplex with edges of length {;; if and only if the Gram

matriz of V is positive definite.

Proor. By Proposition 4.1.3, the Gram matrix of V' is positive definite
if and only if V is the set of inward pointing unit normals of a spherical
simplex P, which is true if and only if V' is the set of vertices of a spherical

simplex P*. O

COROLLARY 2.4.9. A spherical simplez is determined up to isometry by

the Gram matriz of its vertices, or, equivalently, by its edge lengths.

COROLLARY 2.4.10. Let C = (c¢;5) be a symmetric matriz with 1’s on the
diagonal and off-diagonal entries c;; € (—1,1). Let £;; := cos ™! cij. There
exists a spherical simplex with edges of length £;; if and only if C is positive
definite.

Proor. If C is positive definite then C' is the Gram matrix of the unit
vectors V given be the columns of v/C. By the previous lemma, these are
the vertices of a simplex, which by construction has edges of lengths /;;.

The other direction is also implied by the previous lemma. U

If P is a convex spherical polytope with inward pointing unit normals
U = {uy,...} and vertices V = {vi,...}, let C(P) be the Gram matrix
of U. Recall this is the matrix ((u;,u;)) = ({cos(Zu;,u;)). Recall that if
the codimension 1 faces normal to u; and u; intersect in a codimension 2

face then the dihedral angle of P at their intersection is 0;; = 7 — Zu;, u;,
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so —cosb;; = cos(Zu;,u;). Let C*(P) be the Gram matrix of V, which
is ((v4,v;)) = (cos(£Lv;,v;)) = (cost;;) where ¢;; is the spherical distance
between v; and v;. Evidently, C(P*) = C*(P).

LEMMA 2.4.11. If P is a convex spherical polytope such that all of its
edges have length at least w/2 then P is a simplex.

Proor. By duality, there is an edge between vertices v; and v; in P
if and only if the corresponding codimension 1 faces of P* intersect in a
codimension 2 face. All edges of P have length at least 7/2 when the off-
diagonal entries of C*(P) are non-positive. But C*(P) = C(P*), so the
dihedral angles between codimension 1 faces are 6;; such that cos6;; for
i # j is non-negative, hence #;; < m/2. Then Lemma 3.2.6 says P* is a

simplex, so P is as well. O

2.4.2. Proof of Moussong’s Lemma. Given Lemma 2.4.11, one direction

of Moussong’s Lemma is easy:

EXERCISE 2.4.12. Prove that a CAT(1) spherical simplicial complex is
a metric flag complex.

For the other direction we first state an alternative characterization of

CAT(1) spaces, then give three auxiliary lemmas.

LEMMA 2.4.13 (Bowditch’s Lemma). If X is a compact metric space of

curvature at most 1 and every closed rectifiable curve of length strictly less
than 2w is shrinkable then X is CAT(1).

Here, ‘shrinkable’ means that the curve is homotopic to a strictly shorter
curve through a homotopy of closed rectifiable curves of non-increasing
length. For example, consider a flat cylinder of circumference 27 with one
boundary component glued to the boundary of a unit hemisphere. The
remaining boundary curve is shrinkable: it can be homotoped along the
cylinder through constant length curves until one reaches the hemisphere,
at which point it can be homotoped through strictly shorter curves to a
point. For a non-example, consider S? with an open disc of radius less than
7/2 removed. The boundary circle is not shrinkable: it can be homotoped
to a point, but only by first increasing its length to 2.

LEMMA 2.4.14. The property of being a spherical simplicial complex with
all edges of length at least 7/2 is inherited by links.

PRrOOF. Let L be a spherical simplicial complex with all edges of length
at least m/2. Let v, v1, and vy be the vertices of a 2—simplex o in L. Then

there are vertices 91 and 99 in lk(vg) connected by an edge & whose length
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is the angle 6y < 7 of o at vg. Since m/2 < £;; < m, we have cos /;; < 0 and

. N . . . __ cosf19—cos o1 cos g2
sin;; > 0, so the spherical law of cosines gives cos fy = sinZo1 sin Zog <

0, so 6y = 7/2. O

LEMMA 2.4.15. The property of being a metric flag complex is inherited
by links.

ProOOF. Let L be a metric flag complex. Let vg be an arbitrary vertex
of L. Since L is simplicial, the link of vy in L only depends simplices whose
vertices are all connected to vy by edges. Let {v1,...,vr} be the vertices of
L that are adjacent to vg.

Define £;; to be the length of the edge between v; and vj, if such an edge
exists in L. Set ;; = 0 and ¢;; = 7 if v; and v; are distinct vertices not con-
nected by an edge. Define a symmetric bilinear form B on Rt by taking
coordinate vectors ey, . . ., ey, setting B(e;, e;) = cos ¢;;, and extending bilin-
early. Let V := eé‘B. Let p: RF! - Vi w — w— B(w, ep)eg. Observe, for

i # 0, that sin fp; > 0 and B(p(e;), p(e;)) = 1 — cos? £o; = sin® £y;, so we can

define e; := 51(1650) Let v; be the vertex of the link lk(vg, L) corresponding
to the edge between vy and v;.

We have:
(14) B(éi&)) — cos {;; — cos Lp; cos Lo

sin &)i sin ng

If vo, v;, and v; span a simplex in L then /;; < 7 and the angle of this
simplex at vy is some 0 < @ij < m. The Spherical Law of Cosines and (14)
give:
(15) B(éi, é]) = COS éij

Suppose that I < {1,...,k} is a set of indices whose corresponding
vertices 9; in lk(vg, L) are pairwise connected by edges. Let I := {0} u 1.
By construction B(egp,ep) = 1 and eg is B—orthogonal to €; for all i € I , SO:

(16) B is pos. def. on (&; | i€ I) «= Bis pos. def. on (e; | i € I)

We have:
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{; | i € I} can span a simplex with edge lengths /;;

2.4.10 P L . .
<= (cosyj;) for i, j € I is positive definite

15 ~
&) (B(&;,€;)) for i,j € I is positive definite
< B is positive definite on (&; | i e I)

16
29 B is positive definite on {(e; | i€ I)

<= (B(ei,ej)) for i,j € I is positive definite
<= (cos¥y;) for i, j € I is positive definite

2410 {v; | i € I'} can span a simplex with edge lengths ¢;;

Li LAl
PR {v; | i € I'} do span a simplex in L with edge lengths ¢;;

« {0; | i€ I} do span a simplex in lk(vo, L) with edge lengths £;; (]

PROOF OF MOUSSONG’S LEMMA. Let L be a spherical complex with
all edges of length at least w/2. By Lemma 2.4.11, L is simplicial. By
Exercise 2.4.12, if L is CAT(1) it is a metric flag complex.

Conversely, suppose L is a metric flag complex with all edges of length
at least /2.

Recall that the “link condition” is that the link of every vertex is a
CAT(1) space, and this is equivalent to the spherical complex being of cur-
vature at most 1. The “girth condition” is that the complex does not contain
an isometrically embedded loop of length less than 2.

Suppose L is not CAT(1). Either it is of curvature at most 1 and the
girth condition fails, or it is not of curvature at most 1, so the link condition
fails. Thus, some link is not a CAT(1) space. So either every link has
curvature at most 1 but one of them fails the girth condition, or some link is
not of curvature at most 1, so fails the link condition. Repeat the argument
for iterated links. Since the dimension drops each time we pass to a link,
eventually the links are 1-dimensional, in which case they fail to be CAT(1)
only if the girth condition fails.

Since the properties of being metric flag and having edges of length at
least m/2 pass to links, every iterated link of L has these properties. Thus,
L fails to be CAT(1) if and only if there is some iterated link L’ of L that
is a metric flag complex with edges of length at least 7/2 and curvature at
most 1 and fails the girth condition.

Supposing such an L’ exists, we apply Bowditch’s Lemma and derive a
contradiction. Bowditch’s Lemma implies that L’ contains a non-shrinkable
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loop v of length less than 27. Since L’ is compact and locally contractible, we
may assume -y is locally geodesic with minimal length among all non-trivial,
non-shrinkable loops.

Let v be a vertex of L'. Since edges of L’ have length at least /2 and

less than 7, we have the following:

e The closed ball of radius 7/2 about any vertex is isometric to the
spherical cone on its link.

e The closed ball of radius 7/2 about a vertex v is contained in the
union of closed cells containing v, the closed star of v.

e [/ is covered by open balls of radius 7/2 around its vertices.

We further claim that the covering of L’ by balls of radius 7/2 around
its vertices has nerve L')), meaning two such balls intersect if and only if
there is an edge of L’ connecting their centers. Edges of L’ have length
less than , so it is clear that the nerve contains a subgraph isomorphic to
L'D . Suppose v and v’ are vertices of L’ such that d(v,v’) < 7, so they are
adjacent in the nerve of the cover. Suppose v and v’ are not contained in
a common simplex of L. Since m is contained in the closed star of v,
and similarly for v/, the closed stars intersect. This implies that there are
simplices o and ¢’ of L’ such that o contains v, ¢’ contains v/, and o N o’
contains a point in By v N B,,/Qv’. By Lemma 2.4.2, the distance from v
to o n o’ is at least 7/2, as is the distance from v’ to o n ¢, which is a
contradiction. Thus, every pair of vertices v and v of L’ at distance less
than 7 are contained in a common simplex, hence, are adjacent in L'").

Now we claim that 4 can be homotoped to be contained in L'"). Specif-
ically, let 0 be an arc of v whose interior is contained in the ball of radius
7/2 about a vertex v of L', and whose endpoints are at distance 7/2 from v.
We claim that there is a length non-increasing homotopy of § rel endpoints
to a curve & that goes through v.

Assuming the claim, we finish the proof. Apply the claim to each open
ball along the length of . Chaining together the homotopies gives a length
non-increasing homotopy of v to a curve +/. The new «/ is locally geodesic
and non-shrinkable and has length less than 2. Consider vertices v and v’
of L such that 4" contains a point x € B, ;v N Byv'. Then there is an arc
of v/ containing z that goes through v and v/. But z, v, and v are contained
in a common simplex, so the unique locally geodesic path from v to v’ is the
edge between them.

This shows that 4’ is contained in L’(1). But +/ is a loop of length less
than 27, while edges of L' have length at least 7/2, so 4/ consists of only
3 edges. Since L/ is a metric flag complex, a triangle in L'V of length less
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than 27 is the boundary of a simplex of L/(). This gives a contradiction,
since the boundary of a 2-simplex is shrinkable, but 4’ is not.

It remains to prove the claim. Suppose that § is an arc of « whose
interior is contained in B v, and whose endpoints are at distance /2 from
v. Consider the surface S that is the union of geodesic segments of length
/2 starting at v and passing through a point of . The surface S is a finite
sequence of convex spherical 2-simplices S1,...,S5, that all have common
vertex v, and such that S; and S, share an edge of length 7/2. Choose an
isometry from S; to a simplex in S? sending v to the North pole. Then there
is a unique isometry sending So into S? that agrees with the previous map
on S1 N Sy and so that S; and Sy have disjoint interiors. Continuing in this
way, we produce a local isometry from S into the Northern hemisphere of
S2. See Figure 6, where § is violet and S is the yellow/orange ruled surface.

N

FI1GURE 6. Developing an interior arc.

The image of § under this map is a local geodesic whose endpoints are on
the equator and whose interior is strictly contained in the Northern hemi-
sphere. This implies that the endpoints of this path are antipodes, since
otherwise there is a unique local geodesic between them: the equatorial geo-
desic. If they are antipodal, then there is a whole circle’s worth of geodesics
between them, and in particular there is a constant length homotopy rel end-
points to a geodesic through the North pole. Pulling this homotopy back to
S gives the desired constant length homotopy of é to a path through v. 0O

2.4.3. The Davis complex is CAT(0).

THEOREM 2.4.16. Let (W, S) be a Cozxeter system. Its Davis complex
Y =X(W,S) is CAT(0).

Proor. ¥ is a simply connected My—polyhedral complex with finitely

many isometry types of cells, and the link of every vertex of ¥ is L =
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L(W,S), the nerve of (W,S). By Theorem 1.5.5, ¥ is CAT(0) if and only if
it satisfies that link condition, which in this case means that L is CAT(1).
This follows from Moussong’s Lemma, once we verify that L has edges of
length at least 7/2 and is metric flag.

For s,t € S, let mg be the order of st.

An edge in L corresponds to a 2—element spherical subset T' = {s,t} € S,
and the length of this edge is the dihedral angle of X7 between ¥, and X,
which is 7 — 7/mg = 7/2. So edges in L have length at least /2.

Now suppose 1" < S such that the set of vertices {¥; | t € T} in L are
pairwise connected by edges. For s,t € T, let cst = coslgy = — cosm/mgt, SO
that Cr = (cst) is the cosine matrix for (Wrp,T).

There exists a spherical simplex with edge lengths £

2.4.10 . . .
<= (7 is positive definite

g TeS

<= Yrisacell of ¥
< {¥;|teT} spans acell in L
<= {¥,;|teT} spans a simplex in L

This shows that L is a metric flag complex. U

THEOREM 2.4.17. Let (W, S) be a Cozxeter system. Every finite subgroup

of W is conjugate into a spherical special subgroup.

PrROOF. W acts geometrically on its Davis complex ¥, which is CAT(0).
A finite subgroup G of W fixes a point z of ¥, by Corollary 1.3.8. If x is
vertex let ¢ := x. Otherwise let o be the cell containing x in its interior.
The action of W on X is combinatorial, so G fixes o. Cell stabilizers are

conjugates of spherical special subgroups. U

EXERCISE 2.4.18. Show the topological walls of Exercise 2.3.8 are convex
in ¥. Recall the dual walls 25 are convex in the combinatorial metric by
Corollary 1.2.25 of Chapter 2.

3. Classification of virtually solvable subgroups

We have shown that Coxeter groups act geometrically on CAT(0) spaces,
their Davis complexes, so the general results of Section 1.4 say that every
virtually solvable subgroup of a Coxeter group W is finitely generated, vir-
tually Abelian, and undistorted. In this section we mention a finer result

that classifies such groups in terms of the Coxeter system (W, .S).
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DEFINITION 3.0.1. An affine subset T' < S is one such that (Wp,T) is a
Euclidean reflection group. Equivalently, if I' is the Coxeter graph of (W, .S),
then I'r is a disjoint union of graphs from Table 2.4.

EXERCISE 3.0.2. Show that if 7" < T' < S and T is affine then I'yv is a
disjoint union of spherical and affine pieces. If, in addition, I'p is connected,

show that T” is spherical.

If T is affine and Wr acts geometrically on E™ then Wp contains a finite
index subgroup Z"™ consisting of translations.

On the other hand, CAT(0) groups do not contain infinite torsion sub-
groups, by Chapter 3 Theorem 1.0.1, so for every non-spherical subset
T < S, Wr contains a Z subgroup.

Theorem 3.0.4 says combinations of these are essentially the only sources

of free Abelian subgroups.

DEFINITION 3.0.3. Let (W, S) be a Coxeter system with Coxeter graph
I'. Let T < S. Suppose that I'r = [ [;~, T'7; is the decomposition of I'y into
its connected components. For ¢ = 1...m we define a free Abelian subgroup
Ai of WTi:
e If T; is spherical let 4; = {1}.
o If 7} is affine let A; be the translation subgroup of Wr,.
e If T; is neither affine nor spherical let A; be any Z subgroup of Wr,.

The free Abelian subgroup A := [ [, A, is a standard free Abelian subgroup.

By definition, I'r is a full subgraph, so not only are the I'7; disjoint from
each other in I', they are not even adjacent to one another, since if there is
an edge of I' between vertices of FTZ.,I‘TJ. c I'r then the edge belongs to I'r,
so I'r; and I'r; are not connected components of I'r. Of course, the phrasing

this way is exactly so that the subgroups Wz, commute with one another.

THEOREM 3.0.4 (Krammer [19, Theorem 6.8.2]). Let (W, S) be a Coz-
eter system. Up to conjugation, every free Abelian subgroup of W has a
finite index subgroup that is a subgroup of a standard free Abelian subgroup.

Combined with the Solvable Subgroup Theorem, this gives:

COROLLARY 3.0.5. Let (W, S) be a Cozeter system. Up to conjugation,
every virtually solvable subgroup of W has a finite index subgroup that is a

subgroup of a standard free Abelian subgroup.

ExaMpPLE 3.0.6. Consider the graph I' of Figure 7. We claim that the
maximal rank of a free Abelian subgroup of W is 7. First, find affine sets
by finding full subgraphs of I' that match examples from Table 2.4.
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FIGURE 7. The maximal rank free Abelian subgroup is Z7.

None of graphs with labels appears in I'. There are no full subgraphs of
types Eg, Er, or Es. There are full copies of Dy consisting of {i,h,0,g,c, f}
and {a,b,c,d,i,g}. There is an 1213, the square, 3 copies of 1214, the 3 pen-
tagons, and an Ay given by {a,b,c,g,h, 0,7, k}.

Note that perimeter is not a full subgraph, as ¢ and g are adjacent in I
but not consecutive on the perimeter.

Each of the subgraphs mentioned above contributes a maximal stan-
dard free Abelian subgroup, since in each case the complement of the 1—
neighborhood of the defining subgraph is spherical. Thus, the maximum
rank free Abelian subgroup is the standard Z7 coming from As.

EXERCISE 3.0.7. Show that if G has a finite index subgroup A =~ Z" and
H < G then H has a finite index subgroup isomorphic to Z9 for some g < r,
with ¢ = r if and only if [G : H] < c0.

EXERCISE 3.0.8. Show that a virtually Abelian group has a finite index
normal Abelian subgroup.

EXERCISE 3.0.9. Give an example of a torsion free, nonAbelian, virtu-
ally Abelian group. Conclude, despite the previous exercise, that not every
virtually Abelian group can be expressed as a semi-direct product Z" x F
for some r and some finite F'.

A key fact used in Theorem 3.0.4 is:

LEMMA 3.0.10 ([19, Corollary 6.3.10][11, Lemma 12.7.1]). Suppose (W, .S)
1s irreducible and not spherical or affine. If w € W is an element that is not
conjugate into any proper special subgroup then {(w) = Z has finite index in

its centralizer.

For example, a Coxeter element (a power of all the generators, recall
Definition 1.3.11) is not conjugate into any proper special subgroup. Theo-
rem 1.3.12 implies this is true for powers too, in the irreducible non-spherical

case:



156 5. THE DAVIS COMPLEX

COROLLARY 3.0.11. If (W, S) is irreducible and not spherical or affine
then every nontrivial power of every Coxeter element generates an infinite

cyclic subgroup with finite index in its centralizer.

COROLLARY 3.0.12. If (W, S) be an irreducible Coxeter system that is

neither spherical nor affine then W is not virtually Abelian.

PROOF. Suppose that W has a finite index subgroup A =~ Z". Let w be
a Coxeter element. Some non-trivial power w” is contained in A. Since A is
Abelian, A is contained in the centralizer of (w™), but by Corollary 3.0.11,
that centralizer is virtually cyclic, so r = 1.

By [17], every proper special subgroup of W has infinite index. Since W
is virtually cyclic, infinite index is equivalent to finite, so W is a geometric
reflection group, by Theorem 2.2.4. The only virtually infinite cyclic geoe-
metric reflection group is Dy, which is affine, contrary to hypothesis. O

COROLLARY 3.0.13. Let (W, S) be a Cozeter system with Coxeter graph
I'. Then W is virtually Abelian if and only if I' is a disjoint union of
spherical and affine subgraphs. Furthermore, W is virtually 7" if and only

if the ranks of the translation subgroups of the affine factors of I' sum to r.

PROOF. Subgroups of virtually Abelian groups are virtually Abelian,
so, by Corollary 3.0.12, a virtually Abelian Coxeter group can have only
spherical and affine irreducible components.

The product of a group that is virtually Z™ with a group that is virtually
Z" is virtually Z™*", O

4. When is the Davis complex CAT(-1)?

Now let’s be greedy. We have shown that the Davis complex of a Coxeter
system always admits a CAT(0) metric, but maybe we can get more? Does
it admit a CAT(-1) metric? The answer is ‘not always’, but it turns out that
the ‘obvious’ obstruction is the only one. It is convenient to simultaneously

consider another generalization of negative curvature.
4.1. Gromov hyperbolicity.

DEFINITION 4.1.1. A geodesic metric space X is (Gromov) hyperbolic if
there exists a 0 such that every geodesic triangle in X is d—thin, in the sense
that each side is contained in the d—neighborhood of the other two.

A space is d—hyperbolic is it hyperbolic with the given § as a sufficient

thinness bound.

EXERCISE 4.1.2. Show that H? is (Gromov) hyperbolic. Conclude that
any CAT(-1) space is too.
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The difference between being hyperbolic and being CAT(-1) is that the
CAT(-1) condition applies at all scales, while hyperbolicity is coarser: we
essentially don’t care what happens at scales smaller than 6. For example,
R is CAT(-1), hence hyperbolic. If we instead consider R x [0,1], this
is CAT(0) but not CAT(-1); it contains small Euclidean triangles. It is
hyperbolic though; take 6 > 1. Then the d—neighborhood of a point (r, s)
contains {r} x [0,1]. If (ro,so), (r1,s1), and (re, s2) are three points then
the d—neighborhood of any two sides contains [min r;, max ;| x [0, 1], which
contains the third side.

You can make a similar argument with R x S! for an example of a space
that is hyperbolic but not CAT(0).

EXAMPLE 4.1.3. E? is not hyperbolic. For an equilateral triangle of side
length s, the distance from the midpoint of one side to either of the other
two is s1/3/4. There are arbitrarily large equilateral triangles, so there is no

uniform ¢ for which all triangles are d—thin.

THEOREM 4.1.4 (eg [6, Theorem II1.H.1.9]). Hyperbolicity is invariant

under quasiisometry.

This robustness is a main attraction of the hyperbolic definition. For

instance, compare the following two definitions:

DEFINITION 4.1.5. A group is a CAT(k) group if it acts geometrically
on some CAT (k) space.

DEFINITION 4.1.6. A group is a hyperbolic group if some, equivalently,
every, geodesic metric space on which it acts geometrically is hyperbolic.

The latter makes sense because of Theorem 4.1.4: any two spaces on
which the group acts geometrically are quasiisometric, so either both are
hyperbolic or both are non-hyperbolic. There is no need to worry about
finding the right space to witness hyperbolicity. Conversely, if G —~ X
geometrically and X is not CAT(k) then we cannot conclude that G is not
a CAT(k) group; X just is not the space to certify that property of G.

As mentioned above, it is easy to construct examples of spaces that are
hyperbolic but not CAT(0). It is not easy to construct examples of groups
that are hyperbolic but not CAT(0). In fact, it is a long-open question
whether every hyperbolic group admits a geometric action on some CAT(0)

space.

ExXAMPLE 4.1.7. e Finite groups are hyperbolic: choose a Cayley
graph and take ¢ larger than its diameter.
e Groups that act geometrically on a CAT(-1) space are hyperbolic.
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e If G = H x F where H is hyperbolic and F' is finite then G is hyper-
bolic. More generally, if G has a finite index hyperbolic subgroup

H then G is also hyperbolic, since G and H are quasiisometric.
A fundamental result about hyperbolic groups is as follows:

THEOREM 4.1.8. An infinite order element of a hyperbolic group is undis-
torted and has virtually cyclic centralizer.

COROLLARY 4.1.9. A hyperbolic group cannot contain a Baumslag-Solitar
group as a subgroup.

Recall that the notion of distortion was defined in Definition 1.4.6.
Baumslag-Solitar groups were defined nearby, and in Corollary 1.4.9 it was
shown that a group acting geometrically on a CAT(0) space contains no
nonunimodular Baumslag-Solitar subgroup, because of distortion.

EXERCISE 4.1.10. Given that the generators a and b of a Baumslag-
Solitar group are infinite order and not commensurable, show that if the
group is unimodular then there is a power of a whose centralizer is not

virtually cyclic.

4.2. Moussong’s Theorem. Our detour into hyperbolicity tells us
that for a Coxeter system (W, S), W cannot act geometrically on a CAT(-1)
space if Z2 < W. This is the ‘obvious’ obstruction to the existence of a

CAT(-1) metric on ¥. Moussong’s Theorem says it is the only obstruction:

THEOREM 4.2.1 (Moussong’s Theorem [11, Corollary 12.6.3]). Let (W, S)

be a Coxeter system with Coxeter graph I'. The following are equivalent:

(1) The Davis complex ¥ = (W, S) admits a CAT(-1) metric.

(2) W is hyperbolic.
(3) W does not contain 7.
(4) S does not contain a subset T of either of the following types:

o T is irreducible affine with |T| > 2.

o I'p =T [[Dpw with T and T” both nonspherical.

Condition (4) is known as Moussong’s condition.

PROOF SKETCH. CAT(-1) spaces are hyperbolic, and hyperbolicity is
invariant under quasiisometry, by Theorem 4.1.4. W acts geometrically on
3, by Corollary 2.2.3, so W and % are quasiisometric by Theorem 0.0.5.
Thus, (1) = (2).

(2) = (3) is a special case of Corollary 4.1.9, since Z? =~ BS(1,1).

By Theorem 3.0.4, Z?> < W if and only if W contains a standard free
Abelian subgroup Z" for r > 2. A standard free Abelian subgroup arises
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either as a subgroup of an irreducible affine subgroup, or as a subgroup
of a product of infinite special subgroups. These are the two possibilities
described by (4), so (3) < (4).

The main work is to show (4) == (1). The technical result that we
will skip is that Moussong’s condition implies that the nerve L = L(W, S) is
extra large, which implies that it does not contain geodesic loops of length
less than or equal to 2m. The idea is to repeat the CAT(0) construction for
¥, but using CAT(-1) polytopes.

Recall that if T' < S is spherical then W admits an orthogonal action
on R”, and we defined X7 (d) = X%(d) to be the convex hull, in EI7l, of the
Wy orbit of a point defined by d. However, the stabilizer of the origin in the
Poincaré ball model of HITl is also the orthogonal group, so we could do the
same thing in HIZ!: specify a point z via d using hyperbolic distances, act
on it by the finite group Wy, and take the hyperbolic convex hull Zg(&) of
the resulting finite set. The combinatorial type of Y% (d) does not depend
on the choice of d, and if d if very close to 0 then Y% (d) will be metrically
close to Y5 (d). The key difference is that the dihedral angles of ¥%(d) do
not depend on d, but the dihedral angles of 2?(&) do: they are close to
those of X%(d) when d is close to 0, but they go to 0 as all coordinates of d
go to oo.

We don’t like small dihedral angles; to go from ¥ being an M_;—
polyhedral complex to it being CAT(-1) we need to prove a link condition,
so no short loops in L. The dihedral angles of the cells become the edge
length in the link, so small dihedral angles may give short loops in the link.
The obvious thing to do is to take d very close to 0 to try to prevent this,
since we know the link condition is satisfied if we use the Euclidean metric.
The problem is that if the link in the Euclidean metric has a loop of length
exactly 27 then the link condition is satisfied, but in the hyperbolic metric
the edges in the link will be slightly shorter, so the corresponding loop will
have length < 27 and the link condition fails. The ‘extra large’ property
prevents this; there are no loops of length exactly 27, which, since L is fi-
nite, means there is a gap between 27w and the length of the shortest loop.
Then the claim is that for d close enough to 0 the link with respect to the
hyperbolic metric is close enough to the Euclidean one that there are still
no loops of length < 2. O

COROLLARY 4.2.2. Suppose (W, S) has no rank 38 spherical subgroups,
so that L = L(W,S) = LW = T, the presentation graph of (W,S). The
following are equivalent:

(1) W is hyperbolic.
(2) L is extra large.
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(3) YT does not contain a full subgraph of the following forms:
e A triangle labelled a, b, ¢ with % + % + % = 1.
e An unlabelled square.

PRrROOF. L and Y are combinatorially the same, by hypothesis. An edge
labelled m in Y (with m = 2 if the edge is unlabelled), corresponds to an
edge of length m — 7 /m in L. Since all of the labels are at least 2, L contains
a loop of length at most 27 only in the two cases of an unlabelled square
and a triangle whose reciprocal labels sum to at least 1. However, if they
sum to strictly greater than 1 this would give a rank 3 spherical subgroup,

so only the equality case needs to be ruled out. U

COROLLARY 4.2.3. Let (W, S) be a right-angled Coxeter group. This
means its presentation graph Y is unlabelled, or, equivalently, its Coxeter
graph I' has all edges labelled oo. Then W is hyperbolic if and only if T does

not contain a full subgraph that is a square.

ProOF. Consult Table 2.4 to see that the only irreducible affine graph
with all edges labelled oo is a single edge, so the first part of Moussong’s
condition cannot occur.

The spherical subsets T" of S are those such that I'r contains no edges.
Suppose I'p = I'p [ [ Tpv with T and T” nonspherical. Then I'pv and T'pw
each contain an edge, and it suffices to assume that single edge is the whole
graph, so that I'p is a full subgraph that is a disjoint union of two edges. But
then Y7 is a square. Thus, if T has no squares then Moussong’s condition
is satisfied. O

COROLLARY 4.2.4. Let Yo be any finite graph. Subdivide edges until
there are mo loops, bigons, triangles, or squares. Call the resulting graph
Y. Then Y is the presentation graph of a finitely generated 2—dimensional
hyperbolic right-angled Cozeter group.

5. Free and surface subgroups

Given a Coxeter system (W, .S), when does W contain a free subgroup?
a subgroup isomorphic to the fundamental group of a closed surface?

5.1. Free subgroups.

PROPOSITION 5.1.1. If (W, S) is a Cozeter system then the following are
equivalent:
(1) Fy is not a subgroup of W.
(2) W is virtually Abelian.
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(3) The Cozxeter graph T is a disjoint union of spherical and affine
subgraphs; that is, of graphs appearing in Table 2.2 and Table 2.4.

Proor. By Corollary 4.0.4 Coxeter groups are linear, so by Theorem 1.0.1
they satisfy the Tits Alternative: every finitely generated subgroup, in par-
ticular W itself, is either virtually solvable or contains a free subgroup of
rank 2. By Corollary 3.0.5 if W is virtually solvable then it is virtually a
standard free Abelian subgroup. Thus, (1) < (2).

(2) < (3) is Corollary 3.0.12. O

5.2. Splittings.
5.2.1. Background.

DEFINITION 5.2.1. An amalgamated product of groups Ay,..., A, over
a subgroup C' is the group obtained by gluing together the A; along a copy
of a common subgroup C. Given ¢;: C — A; the amalgamated product
ke A; is obtained from the free product of the A; by taking the quotient by
the equivalence relation generated by the condition:

Vee C,V1 <i,j <n, ¢i(c) = ¢;(c)

When C = {1} the amalgamated product over C' is simply the free
product.

DEFINITION 5.2.2. An HNN extension of a group A over a subgroup C'is
the group obtained by gluing A to itself along two, not necessarily distinct,

copies of C. Given ¢: C — A and ¢: C — A:
Axc = Ax(t)/ ~, where Yce C, t71o(c)t = (c)

The new generator t in the resulting group is an infinite order element known
as the stable letter.

DEFINITION 5.2.3. An amalgam is a group that is either an amalgamated
product or HNN extension. A splitting of a group is an expression of the

group as an amalgam.

The study of group amalgams and their corresponding actions on trees
is called ‘Bass-Serre Theory’.

In Algebraic Topology, van Kampen’s Theorem says that when suffi-
ciently nice spaces are glued together along subspaces, the fundamental
group of the result is an amalgam of the fundamental groups of the spaces
you started with.

DEFINITION 5.2.4. The set of ends Ends(X) of a topological space X is

the inverse limit lim . Compact{umbounded components of X — K}.
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For proper spaces we might as well use closed balls in place of compact
sets, so points in Ends(X) correspond to chains of nested set that are un-
bounded complementary components of increasingly large balls about some
basepoint. Two such chains are different ends if eventually their constituents

are separated by some ball.

EXAMPLE 5.2.5. A bounded set has 0 ends, because balls do not have
any unbounded components.

In R?, the complement of any ball consists of exactly 1 unbounded sub-
set, and no two such sets are separated by a ball, so R? has one end.

Consider R. Each ball about the origin has two unbounded components
(—o0,r) and (r,0). Two such sets are separated by a ball if and only if one of
them is unbounded in the negative direction and the other is unbounded in
the positive direction. Therefore, Ends(R) has two points, which we identify
with +oo0.

The ends of a space should be thought of as the topologically distinct
ways of going off to infinity. It is a fact that a quasiisometry induces a
bijection between sets of ends, so it makes sense, for a finitely generated
group G, to define Ends(G) as the set of ends of any Cayley graph of G.

The number of ends of a space or group is the cardinality of its set of

ends. For spaces this number can be a non-negative integer or infinity.

EXERCISE 5.2.6. Let G be a finitely generated group with more than
two ends. Show G has infinitely many ends.

THEOREM 5.2.7. If G is a finitely generated group, there are the following
possibilities:
o GG has 0 ends, which occurs if and only if G is finite.
e GG has 1 end.
e GG has 2 ends, which occurs if and only if G is virtually Z.
e G has infinitely many ends.

THEOREM 5.2.8 (Stallings’s Theorem). A finitely generated group splits
as an amalgam over a finite subgroup if and only if it has more than one

end.

One consequence of Stallings’s Theorem and some basic Bass-Serre The-

ory is:

LEMMA 5.2.9. If G splits as an amalgam over a finite subgroup and
H < G is a 1-ended subgroup then H is conjugate into one of the factors of
the splitting.
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On might try to split inductively: If G has more than one end, split it
as an amalgam over a finite subgroup, and then look at the factor groups.
If they have more than one end, split over a finite subgroup, etc. This
process potentially goes on forever, but if it terminates then the group is
called accessible, and the final stage expresses G as an iterated amalgam
over finite groups where the factor groups that are left at the end are either
0 ended (finite) or 1 ended.

THEOREM 5.2.10 (Dunwoody’s Theorem). Finitely presented groups are

accessible.

For an accessible group, the terminal splitting over finite subgroups,
resulting in finite or 1-ended factors, is called the Dunwoody-Stallings de-

composition.

THEOREM 5.2.11. An infinite, finitely presented group is virtually free if
and only if its Dunwoody-Stallings decomposition consists of finite groups;
that is, it has no 1—-ended factors.

Using Bass-Serre Theory, we can further refine which groups occur as
virtually free groups:

THEOREM 5.2.12. Let G be a finitely presented group with no 1-ended

factor in its Dunwoody-Stallings decomposition. Then one of the following
holds:

(1) G is finite <= G has 0 ends < G 1is virtually trivial.

(2) G has infinitely many ends <= G is virtually F for F a non-
Abelian free group.

(3) G has 2 ends <= G is virtually Z <= One of the following is
true:
(a) G=~7Z % H for H finite.
(b) G = Axc B for A and B finite with [A: C] = [B:C] = 2.

5.2.2. Splittings of Coxeter groups. Recall that connected components of
the presentation graph T of a Coxeter system correspond to free factors in a
free splitting of W. We could read this fact off directly from the presentation,
according to Exercise 2.0.3. Let us generalize:

PROPOSITION 5.2.13. Let (W, S) be a Cozeter system with nerve L, Sup-
pose there is a spherical set Ty < S such that the simplex o, < L corre-
sponding to Ty disconnects L. Let T; be the vertex set of the i—th component
of L —or,. Then W splits as an amalgamated product Wi, Wr,ot, over
the finite group Wr,.

The set L — o7 is called a punctured nerve.
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Proor. Let ¢;: Wq, — Wr,,p, be the injection determined by the
inclusion Ty < 7;. The amalgamated product K, Wr,um, has a defining
presentation with generators the disjoint union of the T; u Ty. (That is, T;
plus a separate copy of Tp for each i.) The relations are the relations of each
Wr,ot,, together with additional relations ¢;(w) = ¢;j(w) for each w e Wr.
The additional relations simply say to identify the distinct copies of T in
this presentation, so this presentation Tietze reduces to the original Coxeter
presentation of W. O

In fact, this is the only way splittings over finite groups occur:

THEOREM 5.2.14 ([11, Theorem 8.7.2]). Let (W, S) be a Coxeter system.
W splits over a finite subgroup, or, equivalently, W has more than one end,
if and only if there exists a spherical T < S such that L—or is not connected.
(Here, T = ( is possible, in which case take op = &.)

This gives an algorithm for computing the Dunwoody-Stallings decom-
position: Check if W is finite. If not, check if there exists spherical Tj
such that L — o7, is not connected. If not, W has 1 end. If so, let T3,
i=1,...,n be the vertex sets of the components, so that i, Wr,ot,- For

each W, 1,, repeat.

THEOREM 5.2.15. Let (W, S) be a Coxeter system. W is virtually free if

and only if the above procedure does not uncover any 1-ended pieces.

The special case of being virtually infinite cyclic can be recognized more

explicitly:

THEOREM 5.2.16. Let (W, S) be a Coxeter system with Cozxeter graph T’
and presentation graph Y. W is 2-ended if and only there is a spherical Tj

such that the following equivalent conditions hold:

S1 00 S2

e '=I1 0

o T is the suspension of T, that is S = Ty U {s1, s2}, and for each
i the vertex s; is connected to every vertex in Yr,, but there is no
edge between s and ss.

Thus, W is a product of Doy = Wiy, 5,3 and the finite group Wr,.

COROLLARY 5.2.17. The only irreducible virtually Z Cozeter system is:
0

PROOF. Dy, has a Z of index 2, so the product of Dy, with a finite group
has a finite index Z subgroup. This is equivalent to being 2—ended.
Conversely, suppose W is 2—ended. Item item 3a of Theorem 5.2.12 can-

not occur because W is generated by torsion elements, so it does not surject
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onto Z. Thus item 3b of Theorem 5.2.12 together with Theorem 5.2.14 im-
plies that W = Wr, o, *Wr, Wr,om, with Tp € S, no edges between 77 and
Ty, and [Wr,or, : Wp,] =2 for i € {1,2}.

Consider the longest element Ag, of Wr,. For i € {1,2}, let s; € T;.
Then s;Ar, is the longest element of s;Wr,. If [Wrur, : Wrg] = 2 then
Wrory, = Wr, b siWr,, so T; = {s;} and s;Ag, is the longest element of
Wr,or,- By Lemma 4.0.11 s; commutes with all ¢ € Ty. O

THEOREM 5.2.18. Let (W, S) be a Cozeter system. W is virtually a
nonAbelian free group if and only if it is infinite, is virtually free, as in
Theorem 5.2.15, and is not virtually Z, as in Theorem 5.2.16.

5.3. Surface subgroups. A well-known question of Gromov asks if
every 1-ended hyperbolic group contains a surface subgroup, meaning, the
a subgroup isomorphic to the fundamental group of a closed surface.

Let us explain the ‘1-ended’ hypothesis. Recall that a finitely presented
group G either has some 1-ended factor in its Dunwoody-Stallings decom-
position, or all groups in the decomposition are finite and G is virtually
free. In the latter case, G has no l-ended subgroups, so it cannot con-
tain a surface subgroup, since the plane is 1-ended. It is also true that a
group is hyperbolic if and only if all of the 1-ended factors in its Dunwoody-
Stallings decomposition are hyperbolic. Thus, there is no loss in restricting
the question from hyperbolic non-(virtually free) groups to hyperbolic 1-

ended groups.

THEOREM 5.3.1 (Gordon, Long, and Reid [15, Theorem 1.1]). A Cozeter

group contains a surface subgroup if and only if it is not virtually free.

Note that by Moussong’s Theorem Theorem 4.2.1 a Coxeter group is
nonhyperbolic only if it contains Z?, which is the fundamental group of a
torus, so it is the hyperbolic case that is interesting.

Before proving the theorem we have two technical conditions that will

be used in an induction.

DEFINITION 5.3.2. Say that (W, S) is 2-spherical if every pair {s,t} < S

is spherical.

LEMMA 5.3.3 (cf [15, Theorem 2.3]). If (W, S) is 2-spherical then either

it is spherical or it contains a surface subgroup.

PROOF. Suppose W is infinite, and let T  be a minimal nonspherical
subset. Since W < W, it suffices to find a surface subgroup in Wr, so we
may assume T = S. Thus, every proper special subgroup of W is spherical.
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By Theorem 2.2.4, W is a simplicial geometric reflection group. By hypoth-
esis, W is infinite, so it is not a spherical reflection group. Also, since it is
2-spherical it is not virtually cyclic. If W contains Z? then we are done, W
contains a subgroup isomorphic to the fundamental group of a torus, so we
can exclude the Euclidean reflection groups. Thus, it suffices to consider the
case that W is a simplicial hyperbolic reflection group.

In dimension 2 this means that (W, S) is a hyperbolic triangle group.
By Theorem 1.0.1, W has a finite index torsion-free subgroup, G. The
restriction of the action of W on H? to G is still geometric, since G has
finite index, so G = 71 (G\H?) where G\H? a closed surface.

In dimension greater than 2 there are only finitely many simplicial hy-
perbolic reflection groups, as in Table 2.3. The discussion following [15,
Theorem 2.3] shows that in each case one can take a 2—-dimensional face of
the simplicial fundamental domain and see that this face tiles a copy of H?
with a subgroup of W acting cocompactly. Passing to a torsion-free finite

index subgroup of this subgroup gives the desired surface group. O

DEFINITION 5.3.4. A chordal graph is a finite simplicial graph that be-
longs to the smallest class C of graphs that contain complete graphs and are
closed under amalgamation over complete subgraphs. This means, if A and
B are in C and K is a complete graph that occurs as a subgraph of both A
and B, then the graph A Ug B obtained from the disjoint union of A and
B by identifying the two copies of K is also in C.

THEOREM 5.3.5 (Dirac’s chordal graph theorem). A finite connected

sitmplicial graph is either chordal or it contains a full n—cycle for somen = 4.

PrROOF OF THEOREM 5.3.1. Let (W, S) be a Coxeter system with pre-
sentation graph T.

Case 1: T contains a full n—cycle for n > 4. Let T' < S be the vertices
such that Y is the n—cycle. Then Y7 is the presentation graph for (Wp, T)).
If all of the edges of Y7 are unlabelled (= labelled by 2’s) then W =~ Cyy xCo
has a finite index Z2, so W contains a surface subgroup. Otherwise, if the
edges of Yr are labelled my, ..., my, then > | 1/m; <n/2 <n—2, so, by
Proposition 2.4.1 (Wr, T') acts on H? as a reflection group with fundamental
domain an n—gon. Pass to a finite index torsion-free subgroup to get a
surface subgroup of Wr, hence of W.

Case 2: T is a complete graph. In this case (W, S) is 2-spherical, so it
is either finite or contains a surface subgroup, by Lemma 5.3.3.

Case 3: T is not complete and does not contain an n—cycle for n > 4.
By Theorem 5.3.5, T is chordal, but it is not complete, so it is a non-trivial
amalgam: T = A Ug B where A and B are full subgraphs with An B = K
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complete. Let Ty be the vertex set of K, and 17 and T, the vertex sets
of A and B, respectively. Since Y7, = K is complete, by the previous
case either Wy, is finite or it contains a surface subgroup. If it contains a
surface subgroup then so does W. If it is finite then Tj is the vertex set of
a simplex og, € L(W,S), and L — op, is disconnected, into the subcomplex
with vertex set T7 — Tp and the subcomplex with vertex set T — 1. This
gives us a splitting of W as an amalgamated product over a finite subgroup,
W = Wr, swy Wry, by Proposition 5.2.13. By Lemma 5.2.9, if there is a
surface subgroup in W then it is conjugate into either W, or Wr,.

It either W, or Wr, is infinite repeat the argument. The number of
generators goes down with each step, so either at some point this process
produces a subgroup that contains a surface group, or it terminates in finite
groups, in which case we have expressed W as an amalgam of finite groups,

so W is virtually free. O






CHAPTER 6

Right-angled Coxeter groups

In this chapter we specialize to right-angled Coxeter groups. This means
that all of exponents in the Coxeter presentation mg are either 2 or infinity.
Consequently, the Davis complex for such a Coxeter group can be chosen,
by taking d = (1/2,1/2,...,1/2), to be a cube complex.

What’s the point? In CAT(0) cube complexes there is a naturally de-
fined system of walls with properties very similar to the case of reflection
systems (but without the hypothesis of a reflection group action). We have
seen for reflection systems how the combinatorics of walls leads to geomet-
ric consequences; for example, an edge path being geodesic if and only if it
crosses each wall at most once. It turns out that there is a duality between
(discrete) wall spaces and CAT(0) cube complexes, so, in a sense, CAT(0)
cube complexes are the natural way to combinatorialize all wall spaces, and
the geometry is reflected by the combinatorial metric on the CAT(0) cube
complex, that is, by the edge-length metric on the 1-skeleton. It must be
stressed that the cube complex is not CAT(0) with respect to the combina-
torial metric. One interpretation of what we’re going to do is that for finite
dimensional CAT(0) cube complexes there are strong connections between
the CAT(0) metric, the combinatorial metric, and the wall metric. We will
see an example, Example 1.4.1, where a fairly simple CAT(0) polygonal com-
plex has an obvious wall structure, but the CAT(0) cube complex encoding
that wall structure is much more complicated than the polygonal complex,
so for non-cubical examples there is not the same close connection between
the three metrics.

We will explore all of these topics in Section 1. Here is a motivating
question. Suppose G is a CAT(0) group, which, recalling Definition 4.1.5,
means that G acts geometrically on some CAT(0) space X. Let H be a
finitely generated subgroup of G. When is H a CAT(0) group? This is an
open question. It is not clear that if H is a CAT(0) group then the defining
geometric action on a CAT(0) space should be related to the action of H
on X, but that would be a natural place to start. Specifically, we would
have a positive answer if H acts geometrically on a CAT(0) subspace of
X. Try the following: Let x € X and let H.x be the H—orbit of . The
action of H on H.x is cocompact, but H.x is not connected, so it is certainly

169
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not CAT(0). Enlarge it to make it CAT(0) by passing to the convex hull
H(H.x), the smallest convex subset of X containing H.x. Convex subsets
of CAT(0) spaces are CAT(0), and H fixes H.x, so it acts on H(H.z).
Proper discontinuity is inherited from G —~ X. However, we need to worry
about cocompactness. How much did it cost to enlarge H.x to H(H.z)?
Is there some bound R such that H(H.x) € Nr(H.x)? We will compute
such a bound in Theorem 1.5.9 when X is a finite dimensional CAT(0) cube
complex and H.x is quasiconvex.

DEFINITION 0.0.1. A subset Y of a geodesic metric space X is Q-
quasiconvex if every geodesic between points of Y is contained in the Q-
neighborhood of X. It is quasiconvex if there exists a ) such that it is

(Q—quasiconvex.

So, quasiconvexity allows an additive error in the definition of convexity.
This property has been used extensively in the case of hyperbolic groups, in
the sense of Definition 4.1.1. There it is a very natural property because, in
a sense, additive errors are baked into the definition of hyperbolicity. For
example, it is not hard to see that a quasiconvex subset of a hyperbolic space
is hyperbolic, and that quasiconvexity is invariant under quasiisometries
between hyperbolic spaces. In particular, it makes sense to say a subgroup
H of a hyperbolic group G is or is not quasiconvex, because the property
does not depend on which geometric model of G is chosen. The situation
is different in CAT(0) spaces. The CAT(0) property is sensitive to small
perturbations of the metric, and quasiconvexity is not a robust property.
In Section 2 we introduce further generalizations of convexity, including
the Morse Property, which is quasiisometry invariant, hence a well-defined
subgroup property. In Section 3 we show that a refined version of the Morse
property has a nice interpretation in right-angled Coxeter groups. There is
much more to say about right-angled Coxeter groups, but this is as far as I

can make it in one semester.

1. Combinatorics of cube complexes

There are two natural metrics to consider on a cube complex: the piece-
wise Euclidean metric coming from thinking of the whole space will all of
the cells filled in, or the combinatorial metric on the vertex set thinking only
of the 1-skeleton as defining edge paths. We have previously focused on the
piecewise Euclidean metric, particularly in the CAT(0) case. Now we will

look at the combinatorial metric.



1. COMBINATORICS OF CUBE COMPLEXES 171

Figure 1 has a preview of the circle of ideas we will explore. The point
is, the CAT(0) condition is geometric. We want to bring in some combi-
natorics. There are two different viewpoints on how to do this: median
graphs and wall spaces. We can push both of these to an even further to an
algebraic/combinatorial level of abstraction, median algebras and pocsets,
respectively. The circular nature of Figure 1 is not important. It is possible
to prove other of the implications directly.

To get started we make some definitions:

Given a graph, one can turn it into a cube complex:

DEFINITION 1.0.1. Let T" be a simple graph. Let Cube(I") be the cube
complex whose 1-skeleton is I', and where an n—cube is attached wher-
ever there is an isometrically embedded subgraph of I' isomorphic to the
1-skeleton of an n—cube.

ExAMPLE 1.0.2. Cube(Ky3) =~ §?

EXERCISE 1.0.3. If X is a finite dimensional CAT(0) cube complex then
Cube(XM) = X.

DEFINITION 1.0.4. A wall structure on a set is a nonempty collection of
nonempty subsets that is closed under taking complements, denoted .

The chosen sets are called halfspaces, and a complementary pair of half-
spaces {A, A*} is called a wall.

A wall structure is discrete if there are only finitely many walls separat-
ing any pair of points. That is, if x and y are points in the underlying space
there are only finitely many walls {A, A*} with x € A and y € A*.

If {Hy, H{} and {H2, H3} are walls then say they are transverse if all of
Hy n Hy, Hy n Hy, Hf n Hy, and H{ n H5 are all nonempty. Otherwise
they are nested.

For example, the halfspaces of a reflection system form a discrete wall
structure on the vertex set of the underlying graph. In the case of reflec-
tion systems there were further hypotheses about a group action and how
it related to the wall structure. For wall structures we do not need to have
any group action at all.

We will look at wall structures on the vertex set of a graph. The def-
inition is very abstract. There is no requirement that it has anything to
do with the graph structure, so we cannot possibly hope for a result, as in
reflection systems, that the graph distance between two points is the same
as the wall distance. Sageev [22] essentially! showed how to build a new
ISageev actually worked in a specific case of wall structure involving a group-subgroup

pair, but the construction can be made to work more generally, as observed by Niblo and
Chatterji [8].
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ambient space for the walls in which the wall metric is closely related to
the geometry of the space, and retaining the natural relationships between
the walls. To do this, on first builds a graph I' and the cubes it to get a
cube complex Cube(I") that is CAT(0) and in which the original walls are
represented as hyperplanes.

This gives an equivalence between wall structures and CAT(0) cube com-
plexes.

Shortly later two other equivalence were added. Roller [21] went even
more abstract and proved equivalences of pocsets, median algebras, and
CAT(0) cube complexes, while Chepoi [9] proved that median graphs are
exactly the 1-skeleta of CAT(0) cube complexes.

X = Cube(T) is a finite
dimensional CAT(0)
cube complex

hyperplanes in X

I' is a median give a wall
graph structure on
x(0) = 1(0)

1.3.30 i

halfspaces of T’
are a discrete,
1.3.34 finite width
pocset

' is a discrete,
finite width <
median algebra

FIGURE 1. The various reformulations of CAT(0) cube com-
plex

1.1. Hyperplanes in cube complexes.

DEFINITION 1.1.1. If [-1/2,1/2] x --- x [—1/2,1/2] is a parameterized

cube, a midcube is a subset such that one coordinate is set to 0.

Here are some cubes with midcubes:

DEFINITION 1.1.2. Define an equivalence relation [-]x on the edges of a
cube complex X by declaring two edges to be equivalent if they are equal
or if they are opposite edges of a square. If o is a single cube then a [-],—

equivalence class consists of edges of ¢ transverse to a midcube of o.
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The hyperplane transverse to the [-]x—equivalence class £ is the cube
complex built from cubes isometric to the midcubes dual to [-],—equivalence
classes of o n & for each cube o of X. These cubes are glued together in the

same way that their corresponding midcubes are.

Some cube complexes with hyperplanes are shown in Figure 2. Note that
the examples of Figure 2 are non-positively curved, but the hyperplanes
do not give the walls of a wall structure on the O-skeleton: the second
example has a hyperplane that is not embedded, resulting in more than 2
complementary components, and the third is a Md&bius strip in which the

indicated hyperplane does not separate the space.

=N (-

F1GURE 2. Hyperplanes in non-positively curved cube com-
plexes

To clarify, what does it mean that ‘the hyperplane is not embedded’
in the second example of Figure 2?7 The point is that ‘the hyperplane’
is not a subset of X, it is an abstract cube complex that comes with a
natural map into X, and that map is not an embedding. (In the example,
‘the hyperplane’ is a segment of length 5.) This distinction in language is
sometimes ignored, as when we say for the second and third examples that
the hyperplane does not separate the space into two components, but we
really mean that the image of the hyperplane in X does not separate X
into 2 components. We will see that in CAT(0) cube complexes there is no

confusion, because hyperplanes are embedded.

DEFINITION 1.1.3. If H is a hyperplane in a CAT(0) cube complex, its
carrier N(H) is the union of closed cubes intersecting H.

EXERCISE 1.1.4. Let X be a finite dimensional CAT(0) cube complex,
and let H be a hyperplane in X.

e Show that H lifts to a closed, convex hyperplane in the universal

cover N(H) of its carrier.
o If p: N(H) — N(H) is the universal covering map, show that
N(H) 5 N(H) — X is a local isometry.

e Show H is a closed, convex set in X. (Recall Exercise 1.3.3.)

EXERCISE 1.1.5. Show that a hyperplane in a finite dimensional CAT(0)
cube complex has precisely two complementary connected components. Hint:
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If H is transverse to an edge e in X @ m is the midpoint of e, and 7e: X — e

is closest point projection, show that H = 7, 1(m).

COROLLARY 1.1.6. Let X be a finite dimensional CAT(0) cube complex.
An edge path in X is a geodesic in the combinatorial metric if and only

if it crosses each hyperplane at most once.

COROLLARY 1.1.7. Let X be a finite dimensional CAT(0) cube complex.

The hyperplanes determine a discrete wall structure on the vertices of X.
1.2. Pocsets. This is from [23]. Look there for more references.

DEFINITION 1.2.1. A pocset is a partially ordered set (P,<) with a
involution # (complemement) such that:

e YVAe P, A and A* are incomparable.
e VA BeP, A< B = B* < A*.

For example, the halfspaces of a wall system, partially ordered by inclu-
sion, form a pocset.

Define transverse, nested, and discrete similarly to the wall system case:

DEFINITION 1.2.2. A, B € P are nested if A< Bor B< Aor A< B*
or B* < A, and transverse otherwise, which is the case when An B, A* N B,

A n B* and A* n B* are all nonempty.

DEFINITION 1.2.3. If A < B, then the interval from A to B is [A, B] :=
{CeP|A<C < B}.

DEFINITION 1.2.4. A pocset is discrete if its intervals are finite, and it

has finite width if there is a bound on the size of a pairwise transverse set.

DEFINITION 1.2.5. An ultrafilter o on a pocset (P, <,#) is a subset of
P satisfying two conditions:
(choice) VA € P, exactly one of A or A* is in a.
consistency) If A€ o and A < B then B € a.

An ultrafilter satisfies the descending chain condition (DCC) if every de-
scending chain A; > Ay > --- with A; € a eventually terminates.

ExaMPLE 1.2.6. Consider a tree. Think of the midpoint of each edge as a
wall dividing the vertex set of the tree into two complementary components.
Take the set of such components partially ordered by inclusion with * as the
complement operation. This gives a pocset.

The ‘choice’ condition of an ultrafilter says that for each edge we must
choose one side or the other. Visualize this by orienting each edge with

arrow pointing toward the halfspace we have chosen. ‘Consistency’ says if
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I have already made this choice .Bii._,‘,_. then I am forced to extend
| A* \A

. . B* B . B¥* B
by this choice . 4, 4 | because this one .. L, | _has A e a and
| A* ‘A | A* ‘A

A< Bbut B¢ a.

On the other hand, having .li,‘,B_._L_. does not force the choice orien-
| A* \A
tation of the {A, A*} edge; both Z°4”, + _and .]i,,B_._*_. are consis-
| A* A | A* A
tent.

In fact, ultrafilters on tree posets as above can be completely described
as a choice of orientation of the edges such that every vertex has at most
one outgoing edge. It is possible that some vertex has no outgoing edges.
If such a vertex v exists then it is unique, because for every other vertex w

the orientations of edges along the geodesic from v to w all point toward v.

EXERCISE 1.2.7. For an ultrafilter on a tree pocset as in the above ex-
ample, show that the DCC ultrafilters are in bijection with vertices of the
tree.

ExAMPLE 1.2.8. Consider the integer lattice Z? — R%. Consider the
‘walls’ to be vertical and horizontal lines in R? at half-integer coordinates,
each of which separates Z? into two complementary halves. We get a pocset
consisting of these halfspaces ordered by inclusion.

The set of ultrafilters can be described by pairs (z,y) where x,y €
Z v {0, —w} as follows: If z € Z then for all vertical walls select the half-
space containing the vertical line at coordinate z. If x = oo then for all
vertical walls select the right halfspace. If x = —oo then for all vertical walls
select the left halfspace. Similarly, the y coordinate determines the choice
of halfspace for the horizontal walls. The ultrafilter described in this way
is DCC if and only if both of x and y are in Z, so, as in the tree case, the
DCC ultrafilters correspond to the vertices of Z2.

The next example shows not every DCC ultrafilter comes from a vertex
of the original graph.

ExaMpPLE 1.2.9. Consider the following graph. The dashed ‘walls’ each
subdivide the graph into two connected components. Take these as the
elements of a pocset, ordered by inclusion, with = being complement. We
pick a O-side and a 1-side for each wall, and label the vertices in the order
red, green, blue for the side of the respective wall.

In this example all the walls are transverse, so all 22 possible choices of

halfspaces are valid ultrafilters. Most of these correspond to the vertices of
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the original graph, but in this example there is one DCC ultrafilter, ‘100,
that is new. In a preview of what’s to come, the DCC ultrafilters can be
arranged into a graph I' in which two DCC ultrafilters are adjacent if they
differ on exactly one wall. In this example, Cube(I") is a single 3—cube, and
we see the original walls represented as midcubes that partition the vertices

in the same way as the original walls.

011 111
010 110
001 101
000
000 100
(A) A graph with walls (B) Its dual cube complex

The extra vertex is important; If it were missing then the resulting cube
complex would only be three squares incident at a common vertex, which is
not CAT(0).

Now we will make precise the construction of a graph from a pocset as

illustrated in the previous example.

DEFINITION 1.2.10. Given a a discrete, finite width pocset (P, <, *), de-
fine a graph I'(P) by taking a vertex for each DCC ultrafilter, and connecting
two ultrafilters by an edge if they differ on a single pair {4, A*}.

‘We will show:

THEOREM 1.2.11. If (P, <, *) is a discrete, finite width pocset then T'(P)

s a nonempty, connected graph.

It is possible to show directly using properties of ultrafilters that Cube(T'(P))
is a CAT(0) cube complex. Instead, we will show that T'(P) is a median
graph, and that whenever I' is a median graph Cube(T") is a CAT(0) cube
complex. The benefit of doing it this way is that it lets us port geometric

properties of median graphs to the cube complex setting.

LEMMA 1.2.12. If (P, <,*) is a discrete, finite width pocset then DCC

ultrafilters exist.

ProOOF. Let T < P be a maximal pairwise transverse subset. It is finite
by the finite width hypothesis. Define w to contain 7, and extend to the
rest of P as follows. For any B € P such that B and B* are not in T, there
exists A € T such that A and B are nested. Otherwise we could add B to
T to get a larger transverse set. Add B to w if A < B or B* < A, and
add B* tow if B < A or A < B*. One of these is true since A and B are
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nested. This is well defined, because if A’ € T is also nested with B then
transversality of A and A’ prohibits A < B < A’ and A’ < B* < A, so if A
says B should be in w then A’ agrees. Now w satisfies the ‘choice’ condition.

Suppose that B < C and B € w. There exists A € 7 nested with B such
that either A < B < C or C* < B* < A. In both of these cases we defined
C € w. Thus, w satisfies the ‘consistency’ condition; it is an ultrafilter.

Now suppose By > By > ... is a descending chain in w. For each A4; in
T define:

1 if By and A; are transverse
n; = #[Aj,Bl] if Aj < B
#[B1, A;] if B < A

The second and third cases are the two possibilities for B being nested with
Aj when By € w. These numbers are finite since the pocset is discrete. Let
n := max; n;, which exists since the pocset is finite width.

Now consider any element B; ¢ T in the chain. By definition of T, B;
is nested with some A; € T, and since B; € w the possibilities are 4; < B;
or B < Aj. In the first case, we have By > By > --- > B; > A;, and in
the second case we have Bf < By < --- < B} < A;. In both cases this
implies ¢ < n; —1 < n—1, so the chain contains an initial segment of non—7"
elements of length at most n — 1. It is then possible that B,, € 7. By the
way we constructed w, there is no B € P such that for some A € T we have
B > A and B € w, so if there is such a B, then it is the terminal element of
the chain. Thus, this chain (in fact, any descending chain starting with Bj)
has length at most n. O

LEMMA 1.2.13. If o is a DCC ultrafilter with A € o then there is a DCC
ultrafilter that differs from o only on the pair {A, A*} if and only if A is

minimal in o.

PROOF. Suppose w differs from « only on {A, A*}, with A € . First we
check that w is an ultrafilter. The ‘choice’ condition is obviously satisfied
by w.

If B < Athen B € anw, but then B < A with B € w and A* € w means
w is not consistent, so minimality is necessary for consistency.

To see that minimality is also sufficient we only have to check that A
minimal and A* £ B implies B € w, since consistency for pairs not involving
A* is inherited from «. We have B* < A, so by minimality of A, B* ¢ «,
so B € a. Since a and w agree off {4, A*}, B € w.

Finally, the DCC condition is inherited from «: Notice that A being
minimal in « implies A* is minimal in w. If By > By > ... is a descending
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chain in w then either it contains A*, which, being minimal, must be the
last element of the chain, or it does not contain A*, so it is also a chain in
« and is therefore finite by the DCC for a. O

LEMMA 1.2.14. If (P, <, *) is a finite width pocset and o and w are two
DCC ultrafilters then Diff (a,w) ;= {Ae P | Ae o and A ¢ w} is finite.

PROOF. Descending chains in Diff = Diff(«,w) are finite by the DCC
for a;, and ascending chains in Diff are finite by applying * and the DCC
for w, so chains in Diff are finite. Thus, every chain can be extended to a
maximal finite chain. If Diff is infinite then finite width implies there are
arbitrarily long chains. Consider a sequence of maximal descending chains of
unbounded length. Consider the first element of each chain. No pair of such
elements can be nested, because that would either violate consistency of «, or
it would allow us to extend a maximal chain. Thus, the set of first elements
is pairwise transverse. By finite width, this set is of bounded size, so at least
one of these elements, call it A1, occurs as the first element of infinitely many
of the chains. Pass to the subsequence of chains consisting of those that start
with A;. Repeat for the second element of each chain. Again, there cannot
be any nesting relationships between these elements, because it would either
contradict consistency of a or maximality of the chains. Since there are still
infinitely many chains, some Ay occurs as the second element of infinitely
many chains. Pass to the subsequence of chains consisting of those that
start with A; > As. Continuing in this way, there is an infinite descending
chain A1 > Ay > ... in Diff, which is a contradiction. O

Now we can prove the graph is connected:

PROOF OF THEOREM 1.2.11. Let (P, <, *) be a discrete, finite width
pocset and I'(P) its graph. The graph is nonempty by Lemma 1.2.12.
Take any two vertices, corresponding to DCC ultrafilters o and w. By
Lemma 1.2.14, Diff(a,w) := {A € P | A€ a and A ¢ w} is finite, so it has
minimal elements. Suppose A € Diff (o,w) and B < A for some B € . Then
B cannot be in w, by consistency, so B is also in Diff («,w). This shows that
minimality in Diff (e, w) implies minimality in . Thus, by Lemma 1.2.13, for
any minimal element Ay € Diff (o, w) there is a DCC ultrafilter «v; that differs
from ap := «a only on {Ag, Aj}. We have Diff (o, w) = Diff (ap,w) — {Ao}-
Repeat. We get a sequence a = ag, a1, ag, ... of adjacent DCC ultrafilters
in I'(P) such that Diff («;,w) decreases in size by 1 with each step, so for
n = # Diff (o, w) we have a,, = w. We have constructed a path from o to w

in ['(P). In fact, it is easy to argue that this path is geodesic. O
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1.3. Median graphs and median algebras. The history of median
algebras is long and complicated by the fact that the ideas were rediscovered
several times in different settings. Two references are Birkhoff and Kiss
[4], who work in the setting of distributive lattices, and Isbell [18], who
axiomatizes median algebras as a distinct algebraic structure. Bowditch
[5] has extensive notes. We will develop some of the geometry of median
graphs for application to right-angled Coxeter groups. We will also look at
the equivalence between median graphs and median algebras, because there
are some (rather complicated) results known for median algebras that have
geometric interpretations in median graphs.

1.3.1. Median graphs.

DEFINITION 1.3.1. A modular graph is a connected simple graph in which
for every three vertices x,y,z there exists a median vertex m(z,y,z) €
[z,y] 0 [y, 2] n [z,z], where the interval [x,y] is the union of geodesics
from x to y.

A median graph is a modular graph in which every three vertices have

a unique median.

EXERCISE 1.3.2. Show that any tree is a median graph.

Y

EXAMPLE 1.3.3. A triangle = is not modular; [z,y] N [y, 2] N

[z,2] = &.

x

a @ b
The graph Ky 3 = is modular but not median; [z, y] N [y, z] N
[Z,$] = {CL, b}

Here are some median graphs: B \%

EXERCISE 1.3.4. For the median graph examples in Example 1.3.3, con-

L

vince yourself that they are median. Show that for any vertices w,z,y, z

that m(w,:p,m(y,m, Z)) = m(m(wv €, y)v £, Z)

EXERCISE 1.3.5. Show that modular graphs are bipartite. Hint: Pick
a base vertex v and show that two vertices equidistant from v cannot be

adjacent. Find a graph that is bipartite but not modular.

COROLLARY 1.3.6. Modular graphs contain no triangles. Median graphs
contain no Ko 3.
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There are actually full characterizations of modular and median graph
in terms of subgraph structure. We will state a condition for modular graphs
in Theorem 1.3.10, and prove a characterization of median graphs in Theo-

rem 1.3.11. Let us introduce some shorthand notation:

DEFINITION 1.3.7. Write xg — 1 — -+ — x, if there exists a geodesic

from zg to x, that passes through x1, x2, ...in that order.

The point is that in writing xg — x1 — x2 we suppress the fact that
there could be many geodesics from zy to 1 and many geodesics from x; to
x2. They are interchangeable, in the sense of the next lemma, whose proof

is trivial.

LEMMA 1.3.8. If a + 8 + 7 is a geodesic and 3’ is a geodesic with the

same endpoints as B then o+ 3 + v is a geodesic.

COROLLARY 1.3.9. If xg — --- — x, and for some 0 < 7 < j < n we
have x; — y1 — -+ — Yy — x; then:

THEOREM 1.3.10 (see [9, Lemma 4.1]). A graph is modular if and only
if it has no triangles and satisfies the following geodesic bigon condition:
Suppose x and y are neighbors of w with w — x — z and w — y — z. Then
there exists a common neighbor v of x and y such that w — x — v — z and

w—Y—v— 2.

It is clear that the geodesic bigon condition is necessary: take v to be a

median of x,y, z.

THEOREM 1.3.11. A modular graph is median if and only if it does not

contain Ko 3 as a subgraph.
We need a lemma first.

LEMMA 1.3.12. In a modular graph, w € [z, y]|n [z, z] implies m(w, y, z) <

m(x,y, 2).

ProoF. Let m be a median point for w,y, z. We have © — w — y and
w—m —y,soxr — w—m — y. Similarly, m € [z, z]. But m € [y, z], so
me [2,5] 0 [9:2] [, 2], O

Proor or THEOREM 1.3.11. We have seen that K5 3 cannot be a sub-
graph of a median graph. We prove the other direction: Suppose we have
a modular graph that is not median. Then there exist triples g, x1,x2
with more than one median. Among all such triples, choose one such that
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> d(x;, x;41) is minimal. Let my and my be two medians of xg,x1,x2. For
each i, choose a median y; for x;, mqg, mj.

For each i # k € {0,1,2} and j € {0,1} we have ; — m; — xj and
x; — Y; — mj, so, by Lemma 1.3.8, z; — y; — m; — yp — 1. So mg and
m are also medians for the triple yg, y1, y2. This contradicts minimality of
> d(xi,xi41) unless x; = y;, so each x; sits on a geodesic between my and
mi.

Consider the schematic diagram, where capital letters indicate distances:

(17)

We have A+ B = d(xg,z1) = C+ D and A+ C = d(mg,m1) = B+ D,
which implies A = D and B = C. Similarly, with x¢ and xo we find A = F
and C' = E. The same computation for x; and 9 gives B=F and D = F.
Thus, A= D =FE=C =B =F. If D=1 then since modular graphs
contain no triangles, there is no edge from x; to x; when 7 # j, and we have
found a K>3 subgraph, so we are done.

In the case D > 1 there exist vertices z; # m; at distance 1 from o
with o — 2z; > m;. By Lemma 1.3.12 m; is a median for zg, x1, 2;. For
1€ 0,1 let n; be a median for x;, zg, z1. By our choice of zy and z1, neither
T9 nor z; lies on a geodesic from zy to xg or x1, and vice versa, so the n; are
distinct from zg, z1, and zo. However, d(zo, z1) = 2, so both n; are adjacent
to each z;. Modular graphs have no triangles, so there are no edges between
ng, n1, and xy. If ng and nq are distinct then ng, nq, x2, 29, and z; are the
vertices of a K> 3, so we are done. Suppose not, so suppose n := ng = n1.

Let w be a median for n, xg, z1. By Lemma 1.3.12, w is a median for
20, g, 1. We would like this to be a different median that my.

(18) ™

We have z; > ny — 1 and ny > w — x1, s0 21 > n; — w — x1. This
cannot be the case for mg: if z1 — my — x1 then, since z;1 — x9 — mg, we
would have z; — x93 — mg — x1, which implies d(z1,21) = 2D + 1. That is
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wrong; d(z1, 1) = 2D — 1 via 21 — mj — x1, so w # mg. We have shown
that the triple xg, x1, 2o has distinct medians mg and w. This contradicts

the choice of xg, x1, T2, since:
Zd({L‘Z’, l’i+1) =6D >6D —2= d(xo, Zo) + d({L‘l, Z(]) + d(l’o, .%'1) O
1.3.2. Cubings of median graphs are CAT(0).

EXERCISE 1.3.13. Show that if I" is a modular graph then Cube(I") is
simply connected. To do this, take an arbitrary loop v in I' and show it
can be filled in Cube(I")?). Hint: Consider o 4 e + (3, where e is an edge
of v and « and [ are geodesics between v(0) and either end of e. Apply
Exercise 1.3.5 and Theorem 1.3.10 to this loop.

THEOREM 1.3.14 (Chepoi [9, Theorem 6.1]). IfT is a median graph then
Cube(I') is a CAT(0) cube complex. Conversely, the 1-skeleton of a CAT(0)
cube complex is a median graph.

We will not prove this theorem. The direction claimed by Figure 1 is
the easier direction: show that Cube(I") is CAT(0). Exercise 1.3.13 estab-
lishes that Cube(I") is simply connected, so we only need to verify the link
condition. The following is the lowest dimensional case, and contains the

essential ingredients of verifying the link condition.

PROPOSITION 1.3.15. Suppose a median graph T' has the following sub-

x Yy
b c
graph A: z
Then there exists a vertex m such that the following subgraph A’ is iso-
a Yy
metrically embedded: ° g

The point is that the first picture looks like it will give three squares
that yield a short loop in the link of w in K(T'), so if K(T') is going to be
CAT(0) there needs to be a 3—cube filling that loop in the link.

PRrOOF. First, A is isometrically embedded: By Exercise 1.3.5, modular
graphs are bipartite, so there are no odd-length cycles. Thus, the parity of
the distance between two vertices in A is the same as in I'. In particular,
vertices at distance 2 from each other in A are at distance 2 in I', and vertices

at distance 3 from each other in A are at distance either 1 or 3 from each
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other in I'. Up to symmetry, to verify A is isometrically embedded we only
have to check that a and z, which are at distance 3 in A, are not adjacent in
I'. An edge between a and z would mean that a, b, ¢, w and z span a Ks 3
subgraph of I'; which is forbidden.

Notice that A itself is not a median graph; x, y, z have no median in A.
Let m := m(z,y, z) be their median in I'. Since d(z,y) = d(y, z) = d(z,x) =
2 and m ¢ A, m is a common neighbor of x, ¥, and z, so I' contains the
desired subgraph. No-odd-cycles implies m is not a neighbor of a, b, or c,
and is not at distance 2 from w. Finally, if m were a neighbor of w then w,
x, y, a, m would be the vertices of a K33 subgraph, which also forbidden,

so A’ is isometrically embedded in T'. O
1.3.3. Some geometry of median graphs.

PropoSITION 1.3.16. Intervals in median graphs are convexr: For any

interval [y, z] and any w, x € [y, z] we have [w, z] < [y, 2].

This is not obvious. It is clear that the convex hull of y and z should
contain geodesics between y and z, but we also need geodesics between
points of geodesics between y and z, etc. We need to show that those were

already part of [y, z].

PROOF. Given y and z, suppose that there exist w,x € [y, z] such that
[w,z] ¢ [y,z]. We may assume that among all such pairs w, & we choose
one such that d(w, z) is minimal. Note that w # x, since otherwise [z, w] =

{z} ={w} < [y, 2].
Let v € [w,z] — [y,2]. Define a := m(v,z,y), b := m(v,z,2), and
c:=m(v,a,b).
From the definitions of the points, we have y - a — z and x — b — 2
and y —> x — z and a — ¢ — b. Apply Lemma 1.3.8:
y—>a—xr & yoxr—oz = y—oa—>x—z

r—o>b—oz & yDa—-zr—>z = y—o>a—>r—o>b-oz

a—>c—b & yoa—-zr-boz —= y—->a—->c—ob-oz
Similarly, w - v - x and v - a — z and v — ¢ — a, so:

wov—ozr & voa—or = w—ov—oa—x
voc—a & wov—oa—or = WoUV—o>C—oADT
So v € [w,c] and ¢ is strictly closer than x to w, unless ¢ = x = a. This

would contradict minimality of d(w, x), so ¢ = z = a. A symmetric argument

shows b = = as well.
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Now, we have x = a € [y,v] and z = b € [z,v] and z € [y, 2], so z is a
median of y, z, v.

Run the same argument with the roles of x and w swapped to see that
w is also a median of y, z,v. By uniqueness of medians, w = x, which is a

contradiction. O

LEMMA 1.3.17. Given three vertices x,y, z of a median graph, the median

m = m(x,y, z) is the unique closest point of [y, z] to x.

PROOF. Suppose there exists w with y — w — z and d(w, z) < d(m, z).

d(z,y) +d(z,z) <

So all of the inequalities are equalities, which implies d(z,y) = d(z,w)
d(w, y) and d(z, y) = d(z, w)+d(w, 2). Thus, w € [z, 5]~ [y, 2|0 [z, 2] = {m

0= +

by uniqueness of medians.

PROPOSITION 1.3.18. In a median graph, w € [z,y] N[z, z] and v € [y, 2]

implies w € [x,v].

In words this is ‘convexity of betweenness’: if w is between x and y and
w is between x and z then w is between x and anything in the interval of y

and z.

PrROOF. We have x — w — y and w — m(w,y,2) — y, so . —> w —
m(w,y,z) — y. If we also had © — m(w,y,z) — v, then it would follow
that x — w — m(w,y, z) — v, as desired, so it suffices to prove the lemma
in the case w = m(w,y, z).

By Lemma 1.3.12, m(z,y,2) = m(w,y,z2), so w = m(z,y,z). By
Lemma 1.3.17, w = m(x,y,z) is the unique closest point of [y, z] to .
By Proposition 1.3.16, [w,v] < [y,z], so w is closer to x than any other
point in [w,v]. But by Lemma 1.3.17, the closest point of [w,v] to x is

m(x,w,v), so w=m(z,w,v) € [x,v]. O
We will use this result in the next subsection:

LEMMA 1.3.19. Let w,x,y, 2z be vertices in a median graph.

m(m(x,w,y),w, z) = m(x,w, m(y, w, 2))
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PROOF. Let u := m(w,x,y) and v := m(w,y, z) and t := m(u, v, w).

We have u € [z, w]n [z, y] and v € [w,y], so, by Proposition 1.3.18, u € [z, v].
Then u € [z, w] N [z,v], so, by Lemma 1.3.12, m(v, w, z) = m(u,v,w) = t.
The symmetric argument with z and v swapped with x and u gives

m(u,w, z) = t. Thus:
m(m(z,w,y),w, z) = m(u,w, 2)
=1
=m(z,w,v)
=m(z,w,m(y,w,z)) O

DEFINITION 1.3.20. A subset Y < X is gated if for every z € X there
exists a gate for x, w(x) € Y, such that for every y € Y there exists a geodesic

from x to y through w(z). The map x — w(x) is the gate map.
PRrROPOSITION 1.3.21. Convex subgraphs of a median graph are gated.

ProOOF. Let C be a convex subgraph of a median graph. Let x be
arbitrary. Let y be a closest point of C to x, and let z € C be arbitrary.
Consider m = m(z,y,z). It lies on [z, y], so it is closer to = than y, unless
m = y. It also lies on [y, z], which is contained in C' since C' is convex, so
it cannot be strictly closer to x than y. Thus m = y. Now, m also lies on
[z, z], so it is strictly closer to « than z if z # m = y. This shows that y is
the unique closest point of C' to z, and that as z varies throughout C, there
is always a geodesic from x to z that goes through y, so y is the gate for
x. U

COROLLARY 1.3.22. For vertices y and z in a median graph, |y, z] is

gated and the gate map is x — w(x) = m(z,y, ).
PRrROOF. If w € [y, z] then by Proposition 1.3.18, m(z,y, z) € [z,w]. O

The ‘gate’ terminology suggests a property stronger than the definition.
The gate for a point is not the only entry into the gated set. Consider the

z Yy

simple example w  =. There is an interval [w, x| = {w,z}. The gate for
z on this interval is w. For every point in [w, z] there is a geodesic from z
to that point through w. There are also geodesics that do not go through
the gate, like z — y — x. So one should not imagine that the gate is the
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only way into [w, z], only that there is no shortcut that can be obtained by
avoiding the gate. It does follow immediately from the definition that the
gate for a point is the unique closest point of the gated set, so the gate map

is closest point projection.

PRrOPOSITION 1.3.23 (Lipschitz projection to convex sets). Let C' be a
convex subgraph of a median graph. The gate map w of C is Lipschitz: for
all x and y we have d(w(z),w(z)) < d(x,y).

PROOF. It is enough to show the proposition when d(z,y) = 1, then
extend along geodesics. So suppose d(z,y) = 1.

Suppose d(z,C) # d(y,C). Without loss of generality, assume d(z,C) <
d(y,C). Then 1+ d(z,C) = d(y,C) < d(y,w(x)) < 1+d(x,C), so these are
equalities and w(x) realizes the distance from y to C, so w(y) = w(z).

Suppose d(z,C) = d(y,C). The gate property says:

d(y,w(y)) + d(w(y),w(z)) = d(y,w(x))
But d(y, w(z)) < d(y, =) + d(z,w()). Thus:
d(w(z),w(y)) < d(z,y) + d(z,w(z)) — d(y,w(y)) =1 O
1.3.4. Median algebras.

DEFINITION 1.3.24. A median algebra is a set M and a symmetric
ternary operation (-): M3 — M satisfying, for all v,w,z,y, 2 € M:
M (majority) {x,z,y) =
A (associativity) {(x,w,y), w, z) = {z,w,{y, w, z))
D (distributivity) ((z,w,y), v, z) = {x,{w, v, 2),{y, v, 2))
By setting v = w, (M) and (D) imply (A). It is also true that (M) and
(A) imply (D), but this takes some work, eg [5, Theorem 3.2.1]. We take it
as a fact, the point being that to prove something is a median algebra it is

enough to prove (M) and (A), but (D) gives us a new tool.
DEFINITION 1.3.25. If (M,{-)) is a median algebra and z,y € M, the

median interval between x and y is [z, y|y 1= {z € M | {z,y,2) = z}.
It follows immediately from the definitions that:
(19) <$,y, Z> = [xvy]M (@ [y’Z]M M [va]M

DEFINITION 1.3.26. A median algebra is discrete if all median intervals
are finite.

EXAMPLE 1.3.27. Z and R are median algebras with the usual (statis-
tical) median and the usual intervals. Z is a discrete median algebra; R is

not discrete.
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PROPOSITION 1.3.28. The vertex set of a median graph with the median
operation in the graph is a median algebra whose median intervals agree with

the graph intervals.

Notice this gives us new results for median graphs, since we can now
apply Condition (D) of Definition 1.3.24:

LEMMA 1.3.29. In a median graph, mjy, ;) © T[y,z] = T 0] () a0 (2)]

PROOF OF PROPOSITION 1.3.28. Weset (z,y,2) := m(x,y,z) = [z,y]n
[y, z] N [z,2z]. This is symmetric, and [z,z] = {z}, so {(z,z,y) = [z,z] N
[z,y] = {z}. Property (A) was Lemma 1.3.19.

[z, ylm = {2 [ {2, y,2) = 2}
={z |z =m(z,y,2)}
={zlz=[z,y]ln[y,2] n [z 2]}
={z|z€z,y]}
= [z, y] O

The converse of Proposition 1.3.28 is true for discrete median algebras:

PROPOSITION 1.3.30. If (M,<-)) is a discrete median algebra then there
is a median graph whose vertex set is M, the graph median is {-), and the
graph intervals are the median intervals.

To prove this we need some facts about median algebras analogous to
properties of median graphs.

LEMMA 1.3.31. x € [y, z]a implies [y, x|p < [y, z]m and [z, 2]y <
[y7 Z]M

PROOF. By the definition of median intervals, x € [y,z]y and w €
[y, z]ar means x = (z,y,z) and w = (w,z,y). Then:

(w,y,2) = Lw,2,9),9,2)
= {w,y,2),y,2)
= (w,y,{x,y,2))
= (w,y, @)
= (w, z,y)
=w

So w € [y, z]ar. The other claim is similar. O
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LEMMA 1.3.32. Suppose x € |y, z|p. If © # z then z ¢ [y, x| Ifx #y
then y ¢ [z, 2]

PROOF. Suppose z # z € [y, z]p. Then (z,y,x) = x # 2,50 z ¢ [y, x| .
The other claim is similar. O

LEMMA 1.3.33. Let (M,{-)) be a median algebra. For any y,z € M
deﬁne Ty, 2]ar - M — [yaz]M T <(L‘,y,Z>. Then W[w@]M([yaZ]M) =
[ﬂ[w,x]M (y)a Tw,x]ar (Z)]M

PRrROOF. For any u € [y, z]pr we have:

Tw,aly (4) = (W, 2, 1)
= (w,z,{u, Y, 2))
= (u, {w, 7, y),(w, x, 2))
= (U, Tw,z] 0 (Y)s T, ar (2))
€ [Mw,alar (V)5 Tw,alar (2)] 0

For any v € [Ty 4], (¥)s Tlw,a]a (2)]0, consider u := (v, y, 2) € [y, z]m-

Tw,z]y (W) = (w, x,u)
= (w, z,{v,y,2))
= (v, {w, 2, y),{w, z, 2))
=0 U

PROOF OF PROPOSITION 1.3.30. Define a chain in M to be a sequence
xo, X1, .., %y such that [z, zi41]p = {zi, xi11}-

We claim that for any two points y,z € M there exists a chain from y
to z contained in [y, z]ps. This is proved by induction on interval size. If
#|y, z]am = 2 then y, z is already a chain. Suppose the claim is true for all
intervals of size at most n = 2, and suppose #[y,z]ys = n + 1 = 3. Then
there exists = € [y, z]m — {y,2}. By Lemma 1.3.32, [y, ]y and [z, z]am
are strictly smaller than [y, z]as, so by the induction hypothesis there exist
chains from y to z in [y, z]as, and from z to z in [z, z] ;. By Lemma 1.3.31,
[y, z]ar v [z, z]am < [y, 2], so the claim is proved.

Define a graph by taking the vertices to be the set M, and adding an edge
between x and y if and only if [z, y]a = {x,y}. Chains in M correspond to
vertices along an edge path in the graph, so the existence of chains between
any pair of elements shows the graph is connected.

Consider a geodesic in the graph from y to z. Its vertices give a minimal
length chain from y to z. By Lemma 1.3.33, the projection to [y, z]as gives
a chain. By minimality the projection is bijection between the chain and its

image.
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Suppose there exists a first vertex x on the geodesic that is not in [y, z]as.
Let w be its predecessor. Since w and x are adjacent, [w, z]y = {w,z}. By
bijectivity of the projection w # {x,y, z), and since w and = are adjacent,
so are w and {(x,y, z). Now observe:

w # {x,y,z)
= (&, w,2),y,2)
= (z,{w,y,2),{x, Y, 2))
= (@, w,{x,y,2))
€ [w,z]p N [w, <z, y, 2)]n 0 [z, 42, y, 2)]m
= {w, 2z} n{w,{z,y, D} 0 [2,{2,y,2)]m

< {w}

That is a contradiction, so [y, z] < [y, z]ar-

Conversely, suppose = € [y, z]y. Take any minimal length chain y =
wo, . .., wy = z. Let i be the first index such that {y,z,w;» = x. Such an i
exists because x € [y, z]a, so {(y,z,z = wy,) = . Similarly, let j be the last
index such that {(z,z,w;) = x. By Lemma 1.3.33, wo,...,w; projects via
Ty,]y t0 @ chain in [y, x|y < [y, 2] from y to x, and wy, ..., wy projects
via 7 .1,, to a chain in [z, 2]y < [y, z]p from x to z. Therefore, we have

that there exists a chain in [y, z]ps from y to z through x, given by:

y= W[y,x]M(w0)7 <o Mya] (wi—l)a L T,z s (wj+1)a s M2 v (wn) =z

Since x € [y, z]ar was arbitrary, every vertex in [y, z]ys lies on some minimal
length chain from y to z. This shows [y, z]a < [y, 2].

We have built a simple connected graph whose vertex set is the median
algebra, and whose intervals match the median intervals. The fact that it is

a median graph now follows from (19). O

In light of these results we can drop the subscript M from the median
intervals, and use {-) for the median in a median graph.
1.3.5. Median algebras vs pocsets.

THEOREM 1.3.34. The set of DCC ultrafilters of a discrete, finite width
pocset form a discrete median algebra, where the median p is defined demo-
cratically: if o, B, v are ultrafilters then p(o, B,7y) chooses A € P if a
majority of a, B, and 7y do.

PRrOOF. First we show that pu(a, 3,7) as described is a DCC ultrafilter.
The ‘choice’ condition of ultrafilters is satisfied, since for any A € P at least
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two of a, B, and v agree on A, hence also on A*. ‘Consistency’ is satisfied
because if, say, A € a n  and A < B then consistency of a and S implies
Beanp,so Be u(a,,7).

If Ay > As > -+ is a descending chain in u(a, 8,7) then the DCC for «
says only finitely many of the A; are in «, so there is a cofinite descending
subchain consisting of elements in 8 N -, but the DCC for 8 then says the
remaining chain is finite. Thus, u(a, 8,7) is a DCC ultrafilter.

The map p is clearly symmetric, and for u(a, o, ), o always wins the
vote, so p(a,a,B) = a. The associativity median axiom is true because
w(a, 6, (B, 96,v) and p(p(a, 0, 8),0,7) can both be expressed as follows: For
A € P the four ultrafilters «, 3, 7, and ¢ vote; if there is a majority then
majority rules; if there is a tie then the vote of § is decisive.

Consider DCC ultrafilters o and . By Lemma 1.2.14, Diff(«, ) is
finite. We claim this gives a bound #[a, v] < 2#P1(@7) on the size of their
median interval [, ] := {f | u(e, 8,7) = B}. How can p(«, 3,v) = B for
every A € P? [ must be on the winning side of every vote, so if a and
agree on A then (8 has to go along with the majority. When « and ~ disagree
then [ is free to be the swing vote either way. Thus the number of possible
such 8 are bounded above by the number of distinct ways of voting on the
elements of Diff(«, ). O

PROPOSITION 1.3.35. If (P, <,#) is a discrete, finite width pocset then
the graph of the pocset T'(P) of Definition 1.2.10 is isomorphic to the median
graph produced by applying Proposition 1.3.30 to the discrete median algebra
of Theorem 1.3.34.

PROOF. In both cases the vertex set of the graph is the set of DCC
ultrafilters of P. In the construction of I'(P) two ultrafilters a@ # w are
connected by an edge if and only if Diff (o, w) ;= {A € P | A€ o and A* € w}
consists of a single element. In the median algebra, we saw in the proof
of Theorem 1.3.34 that § € [a,w] when «, 8, and w are unanimous off of
Diff (v, w) UDiff (e, w)*. Flipping a minimal element of Diff (o, w) gives such a
B, so o and w are adjacent in the median graph if and only if [a, w] = {o, w},
which is true if and only if # Diff (o, w) = 1. O

In Section 1.3.7 we will show:

PROPOSITION 1.3.36. If ' is a median graph and (P, <, *) is the pocset
of median halfspaces, then T'(P) is isomorphic to T'.

This says the surprising behavior in Example 1.2.9, where there are DCC
ultrafilters that do not arise from vertices of the graph, does not occur for

median graphs. Looking back at Example 1.2.9, the new vertex ‘100’ that
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appeared was necessary precisely to be the median of vertices ‘000’, ‘101’,
‘110, which did not have a median in the original graph.

Before proving Proposition 1.3.36 we have to explain what we mean by
‘median halfspace’.

1.3.6. Median halfspaces and walls.

DEFINITION 1.3.37. A (median) halfspace H of a median graph T is a
convex subgraph such that the full subgraph H* on the set of complementary
vertices I'©) — HO) is also convex. A (median) wall in T is a pair {H, H*}
of complementary halfspaces.

PROPOSITION 1.3.38. For each edge in a median graph there is a unique

wall separating its two vertices.

COROLLARY 1.3.39. In a median graph, the graph distance is equal to

the wall distance.

Before proving Proposition 1.3.38 we need an improved version of Propo-
sition 1.3.16.

DEFINITION 1.3.40. The join of subsets A and Bis [A, B] := (J,ca pepla; b]-

This is the union of all geodesics between a point of A and a point of B.

LEMMA 1.3.41. The join of convex subgraphs of a median graph is con-

Vex.

Proor. Let A and B be convex subgraphs of a median graph, and let
C = [A,B]. Let ai,a2 € A, and let b;,by € B. Let ¢; € [a1,b1] and
co € [ag, ba]. Let c3 € [c1,c2]. We must show c3 € C.

Consider ¢} := (a1, b1, c3). It is still in [a1, b1], and by Proposition 1.3.18
we have ¢; — ¢} — ¢3. Similarly, for ¢, := {ag, be, c3) we have c3 — ¢, — co.
But we also have ¢; — ¢35 — ¢a, S0 we get ¢; — ¢ — ¢3 — ¢ — ¢9, and
we see that c3 € [¢],c,]. Thus, we might as well assume that ¢; = ¢} and

co = ch.
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Now define ag := {aj, a2, c3) and bs := (b1, by, c3). By convexity, az € A
and by € B. Compute:

(as, bs, c3) = (a1, az, c3),<{b1, b2, c3), c3)
= {ay,c3,a9),c3,{b, c3,b1))
= (a1, c3,{ay, c3,{ba, c3,b1))
= (a1, c3,{{az, c3,b2), c3,b1))
= (a1, c3,{b1,c3,{az, ba, c3)))
= {{ay,c3,b1),c3,{az, b, c3))
= a1, b1, ¢3),<az, b, c3), c3)
= (c1,¢2,¢3)

Thus, c3 is on a geodesic between ag € A and b3 € B, so it is in C. O

ProOOF OF PROPOSITION 1.3.38. Let a and b be adjacent vertices. By
Zorn’s Lemma, there exist maximal convex subgraphs containing a but not
b. Let H be any such subgraph. Suppose that H* is not convex. Then there
exist x1,xe,x3 with 1,290 € H* and x3 € [x1,22] n H. By Lemma 1.3.41,
[H,x1] is a convex set properly containing H, so by maximality of H it must
also contain b. Thus, there is an h; € H such that b € [hy,z;]. Similarly,
there is an hy € H such that b € [he,z2]. Let hy := <{b, hy,hs). Since
H is convex, hg € H. Now, we have x1 — b — hy and b — hg — hy, so
xr1 — b — hs — hi, and in particular, x;1 — b — hgz. Similarly, o — b — hs.
By Proposition 1.3.18, h3 — b — x3. This is a contradiction, because hs
and x3 are in the convex set H, but H does not contain b. Thus, {H, H*}
is a wall separating a and b.

Suppose there are distinct walls {H, Hi'} and {H2, H3} separating a
and b. Without loss of generality, we assume a € H; n Hy and there exists
ce Hy n Hy. Then convexity implies {a, b, c) € Hy n Hy, since a,c € H; and
b,c € Hy. However, a and b are adjacent, so [a,b] = {a,b}. Thus, {a,b,c) is
either equal to a ¢ Hy or b ¢ H;. O

The existence part of the argument of Proposition 1.3.38 can be im-

proved:

PROPOSITION 1.3.42 (|21, Theorem 2.8]). If A and B are disjoint convex

subgraphs of a median graph then there exist walls separating them.

DEFINITION 1.3.43. Given a wall {H, H*} in a median graph, let 0H be
the full subgraph spanned by vertices of H that are adjacent to H*.
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LEMMA 1.3.44. Given a wall {H, H*} in a median graph, 0H is convez.

PROOF. Suppose not. Then there exist x,y € 0H with [z,y] ¢ 0H.
Assume that d(z,y) is minimal among all such pairs.

By definition of dH, x has neighbors in H*. In fact, by Proposi-
tion 1.3.21, since H* is convex there is a unique closest point of H* to
x, so x has a unique neighbor ¢ in H*, and likewise y has a unique neighbor
bin H*.

For all z € [z, y] we estimate:

d(z, H*) < d(z,{a,b, 2))
= d({z,y,2),{a,b, 2))
< d(z,y,2),<a,y,2)) + d({a,y,2),{a, b, 2))
< d(z,a) + d(y,b) by Lemma 1.3.33
=2

Pick a geodesic v from z to y that contains a vertex not in dH. By mini-
mality of d(x,y), we may assume v N 0H = {z,y}.

For any z € v —{z,y}, let ¢ := {a, b, z). By the above estimate, d(c, z) =
2. There is a unique vertex w between ¢ and z: since d(c,z) = 2 and
d(z, H*) > 1, w is a closest point of H to c.

Consider (x, z,w) and (y, z,w). Since d(w,z) = 1, both of these points

are in {w, z}. They cannot both be w, or else d(z,y) < d(z,w) + d(w,y)
d(z,z)—1+d(z,y)—1 =d(z,y) — 2. Suppose {x,z,w) = z. Then z € [z, w
with z,w € 0H, so d(x,y) < d(z,w) implies d(y,z) = 1. But now d(z, ¢)
d(z,b) = 2 realize d(z, H*), so b = ¢, and then d(b,w) = d(b,y) = 1 realize
d(b,H), so w = y. Similarly, if (y, z,w) = z then w = x.

—_

So every interior vertex of « is adjacent to either x or y. The only
possibilities that do not contradict geodesicity are that v has length 2 or 3.
But length 2 has the same problem as in the previous paragraph: it implies
a and b both realize d(z, H*), so a = b, and it follows that z = y. So 7 has
length 3. We will show that this also leads to a contradiction.

Let the vertices of v be z, 21, 29,y. Consider {x, z3,b). It is in H, by
convexity, but there is a unique geodesic, of length 2, from b to 23, so it is
either 29 or y. On the other hand, 29 is on a geodesic from x to y. Thus,
{x,z9,by = z9. This implies 4 = d(z,b) = d(z,a) + d(a,b), so d(a,b) = 3.
This gives a contradiction, because d(z1,b) < 3 via z; — y — b, but a is the
gate of H* for z1, so d(z1,b) = d(z1,a) + d(a,b) = 5. O

LEMMA 1.3.45. Given a vertex v in a median graph, there is a bijection

between edges at v and halfspaces H with ve 0H.
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ProoF. By Proposition 1.3.38 every edge incident to v corresponds to
a wall for which v is in the boundary of a halfspace. We only need to show
that no two of these coincide. Suppose that two different edges belong to
the same wall, and take the opposite vertices. Both of these are at distance
1 from v, realizing the distance from v to H*. But H* is convex, so by

Proposition 1.3.21 it has a unique closest point to v. O
LEMMA 1.3.46. If v is a vertex in a median graph, define:
oy, = {halfspaces containing v}

Then a halfspace H € o, is minimal if and only if {H, H*} is the wall
corresponding to one of the edges incident to v, which, by Lemma 1.3.45, is
equivalent to v € 0H.

ProoF. Let H € «,. By Lemma 1.3.44, 0H is convex. If v ¢ 0H then by
Proposition 1.3.42 there is a wall {4, A*} separating {v} and 0H. Assume
ve Aand 0H < A*. Then A € o, and H* < A*, which implies A < H, so
H is not minimal in ay,.

Conversely, if v € 0H let e = [v,w] be the edge incident to v separated
by {H,H*}. If H # A € a, then by Proposition 1.3.38, {A, A*} does not
separate e, so w € A n H*, which means A <« H. Thus, H is minimal in
Q. O

1.3.7. Compatibility of some of the constructions. We can now prove
Proposition 1.3.36, which claimed that if I is a median graph and (P, <, )
is the pocset of median halfspaces, then I'(P) is isomorphic to T'.

PROOF OF PROPOSITION 1.3.36. Let v be a vertex of I'. It is easy to
see that ay, := {H | H is a halfspace containing v} is a DCC ultrafilter. We
will show that v — a,, induces an isomorphism I" — I'(P).

First, this map is injective on vertices, since if v and w are distinct
vertices then by Proposition 1.3.42 there is a wall { H, H*} separating them,
SO a,, and qy, disagree on H.

More specifically, by Proposition 1.3.38, v and w are adjacent in I' if and
only if they are separated by exactly one wall, which is the same as saying
# Diff (o, ciy) = 1. By construction, this is equivalent to c,, and oy, being
adjacent in I'(P).

This shows v — «, is an embedding of T" into I'(P). We still have to
see that the map is surjective on vertices. Choose a vertex v € I', and
suppose w is a DCC ultrafilter adjacent to a, in I'(P). By construction,
there is a single wall {H, H*} on which «, and w differ, and, assuming
H € o, and H* € w, we have that H is minimal in o, and H* is minimal
in w. By Lemma 1.3.46, v € ¢H. Let w € H* be adjacent to v. Then
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Diff (v, ay) = {H} = Diff (o, w), s0 w = . Since I'(P) is connected, by
Theorem 1.2.11, this implies that every DCC ultrafilter comes from a vertex
of I. O

We also note that the wall structure of a median graph, which at this
point is formally defined but might be hard to visualize, is exactly the wall

structure coming from hyperplanes in Cube(T").

ProproSITION 1.3.47. Let I' be a median graph. There is a bijection
between walls of T' and hyperplanes of Cube(T).

PROOF. Recall that a hyperplane of X := Cube(I") is dual to an equiva-
lence class of edges, where the equivalence relation Rx on edges is generated
by the condition that opposite edges of a square are related.

We can also define an equivalence relation Rr on edges of I' by saying
that two edges are equivalent if is some wall of I' that crosses both.

We will show these two equivalence relations are the same.

Let e be an edge of I'. By Proposition 1.3.38, there is a unique wall
{H,H*} separating its vertices. Suppose there is an embedded 4-cycle
[vo, v1], [v1,v2], [v2,vs], [vs,v0] in T with e = [vg,v1]. We assume vy € H
and v; € H*.

No-triangles implies I' does not contain a diagonal of this 4—cycle, so we
have v3 — vy — v1. This implies v3 € H, because if v3 € H* and v; € H*
then convexity of H* would imply vg € H*. We also have vy — v1 — wy,
which implies vo € H*, because if vo € H and vg € H then convexity of H
would imply v; € H. This implies that if two edges are Rx-related then
they are Rp-related.

Now suppose {H, H*} is a wall and vy, v3 € 0H are adjacent.

By definition, there exist vy, vy € 0H™* adjacent to vy and vs, respectively,
and no-triangles implies v1 # v9. By Lemma 1.3.44, 0H™* is convex, so
the path from v to ve through vy and ws is not geodesic, which implies
d(vy,v2) < 3. It cannot be 2 because that would give an odd-length cycle,
so it must be 1. Thus, for every edge [vg, v3] € 0H there is a corresponding
edge [v1,v2] € 0H* such that vy, v1, ve, v3 are the vertices of a square, with
the wall transverse to both elements of the pair of opposite sides [vg, v1] and
[v2, v3]. So, if two edges [v, w] and [x,y| are Rr-related, with v,z € H and
w,y € H* then by convexity of dH there is an path in 0H with vertices

v = v, V1, ...,0, = x, and, by the above, a path w = v(,v],...,v,, = y in

OH* such that for each ¢ there is an embedded 4-cycle v;, v}, v}, vis1.
Thus [v;,v]] and [v;41,v], ] are Rx—related, which, by transitivity, implies

[v,w] and [z,y] are Rx-related. O
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COROLLARY 1.3.48. If X is a finite dimensional CAT(0) cube complex
and (P, <, =) is the discrete, finite width pocset of halfspaces of hyperplanes
of X, then X is isomorphic to the CAT(0) cube complex Cube(I'(P)).

PROOF. It is enough to show that XY is isomorphic to I'(P), since the
cube complex is determined by its 1-skeleton. By Theorem 1.3.14, X1 is
a median graph, and by Proposition 1.3.47 the wall structure in the median
sense is the same as the wall structure in the CAT(0) sense, so they give
the same pocset of halfspaces on the vertices. Proposition 1.3.36 says go-
ing from median graph to pocset of halfspaces back to median graph is an

isomorphism. 0

1.4. Cubing a non-cubical complex. It is immediate from the con-
struction that if a group acts on a wall structure on a graph then it acts on
the cube complex of the pocset of halfspaces. The action may not be as nice

as one might hope. In particular, it might not be geometric.

ExaMPLE 1.4.1. Consider the Coxeter group with Coxeter graph an un-
labelled triangle. We have seen this is a 2—-dimensional Euclidean reflection
group, so its Davis complex is homeomorphic to the plane. All proper sub-
sets of the generators a spherical. The maximal special subgroup are all
isomorphic to D3, so their Coxeter cell is a FEuclidean hexagon, which we
can choose to be regular, so we can take the Davis complex to be a reg-
ular hexagonal tessellation of E2. The 1-skeleton is the Cayley graph of
the group, which forms a reflection system. In fact, looking back at Exam-
ple 2.3.1, a wall crosses a hexagon in a pair of opposite edges, so we get
three families of parallel walls, at slopes 0, 7/3, and —7/3. See Figure 4.

FIGURE 4. ¥ for A(3,3,3) is a hexagonal tessellation of E?,
with fundamental domain K shaded.

Consider the pocset for this wall structure. Walls are transverse if and
only if they have different angle, so the width of the pocset is 3. It is also
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discrete, since it is build from a wall system on a graph. What does the
corresponding cube complex look like?

Any three walls of different angle give a 3—cube. Fix two walls, say Q"
and Q°, the ones flipped by r and s, which have slope 0 and 7/3, respectively.
Each of these is transverse to every wall of slope —7/3. Let’s number them.
There is a wall of slope —7/3 through Q" n Q%; call it Wy. Let Wy := Q.
Number the others sequentially, so that we have a W; of slope —m/3 for all
1€ Z.

For all i € Z, 0", Q°, and W; are pairwise transverse, so they correspond
to a 3—cube in the dual cube complex. All of these 3—cubes have a common
face corresponding to the transverse pair 2", (2°, so the cube complex is not
locally finite.

Since the group action preserves the wall structure, there is an induced
group action on the cube complex. However, the induced action is not co-
compact. To see this, look at the action on triples of walls {Q", Q% W;}.
They cut out an equilateral triangle in the plane with side length a lin-
ear function of |i|. The group acts by isometries, so {Q", Q% W;} and
{7, Q% W;} can only possibly be in the same orbit when [i| = [j|. This
means that of the Z—many distinct 3—cubes corresponding to {Q", Q%, W;},
there are at least N-many distinct ones in the quotient, all containing edges

incident to a common vertex. So the quotient is not locally finite.

1.5. Helly, Ramsey, and Dilworth. In this section we take two the-
orems from combinatorics and apply them to hyperplanes in CAT(0) cube
complexes to see that a quasiconvex set is close to its convex hull. This is
from Hagen [16].

First, here is a property of median graphs/CAT(0) cube complexes.

THEOREM 1.5.1 (Helly Property). Let Cy,...,C, be a collection of pair-

wise intersecting convex subgraphs of a median graph. Then (\;_, C; # &.

PRrROOF. There is nothing to prove for n < 2, so suppose n > 3. Suppose
that the statement is true for collections of size at most n — 1. Then for
each 7 there exists a point z; € ﬂj€{17.._’n}7{i} C;.

Consider [z;,2;]. The point z; is in every Cj except possibly Cj, and
similarly the point z; is in every Cj}, except possibly Cj, so for k # 4,7, x;
and z; are both in Cy. Since Cy, is convex, [z;,z;] < Cy. Thus, [z, z;]
ﬂke{l,...,n}f{i,j} Ck.

Let m := m(z1, 2, xy) = 21, z2] N[22, 2p] N [Tn, x1]. Since m € [z, x2],
m is in every C} except possibly C; and Cy. Since m € [z2,xy,], m is in
every CY except possibly Co and Cy,, so it is in C;. Since m € [z, 21], m is

in every C}, except possibly C), and C1, so it is in Cj. O
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COROLLARY 1.5.2. If X is a CAT(0) cube complex, collections of halfs-
paces have the Helly property, as do collections of hyperplanes.

Now the combinatorics.

THEOREM 1.5.3 (Ramsey’s Theorem). For all r,b € N there is a Ramsey
number Ram(r,b), a least positive integer such that if K is a complete graph
with at least Ram(r,b) vertices, then for every bicoloring (red/blue) of the
edges either there is a red clique of size at least r or a blue clique of size at
least b.

ExAMPLE 1.5.4. Ram(3,3) = 6. Suppose K is the complete graph on
at least 6 vertices. Let vy be some vertex, and let v1,...,v5 be any five of
its neighbors. Among the five edges [vg, v1],. .., [vo,vs5], at least 3 of them
have a common color. Let us assume that edges [vo, v1], [vo, v2], and [vg, v3]
are red. If any one of the edges [v1,v2], [v2,v3], or [v1,v3] are red then we
would have a red triangle through vg. If all three of them are blue then they
form a blue triangle. Thus Ram(3,3) < 6.

The following bicoloring of K5 has no monochromatic triangle, which

shows Ram(3,3) > 5.

The next theorem is about finite partially ordered sets. Recall that a
chain in a partially ordered set is a totally ordered subset. An antichain is

a subset such that no two elements are comparable in the partial order.

THEOREM 1.5.5 (Dilworth’s Theorem). In any finite partially ordered set
the size of the largest antichain is equal to the size of the smallest partition

of the set into chains.

Now let X be a finite dimensional CAT(0) cube complex. Let W be
some finite collection of hyperplanes. Let W = {@ | w € W} be a choice
of one of the halfspaces for each hyperplane, and for w € W let W be the
halfspace for w that is not in W. Then W is partially ordered by inclusion.
Let A W be an antichain. Consider the complete graph with vertex set
A, and color the edges as follows: Color edge [W;, W] red if w; and w; are
crossing hyperplanes. Color edge [W;, W] blue if w; and w; are disjoint.

Suppose this graph has a red clique. By construction, the vertices of
this clique correspond to a collection of pairwise crossing hyperplanes. By
the Helly property, these hyperplanes have a common point of intersection,
so all of them contain a midcube of some common cube of X. A cube has
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as many midplanes as its dimension, so the size of a red clique is bounded
by dim X.

Now suppose this graph has a blue clique {W;};c;. Suppose |I| = 3, and
let i,j,k € I be distinct. Suppose w; € W; and wy, < W;. Since A is an
antichain, W; ¢ W;, so W; < w;. Similarly, W; d Wy, so Wy > Ww;. This
implies W; < Wy, which is a contradiction. We conclude that w; cannot

separate w; from wy.

DEFINITION 1.5.6. A facing tuple is a collection of hyperplanes that are
disjoint from one another and such that no one of them separates any pair
of the others.

PROPOSITION 1.5.7. Let X be a finite dimensional CAT(0) cube complez,
let W be a finite collection of halfspaces, and let F' be the mazximum size of a

facing tuple in W. Then W contains a chain of length strictly greater than

W
Ram(1+dim X,1+F) ~

PROOF. Let W = ]_[1021 Wi be a smallest partition of W into chains.
By Dilworth’s Theorem, there is an antichain A < W of size C. Make
a bicolored complete graph from A as above. We have seen that the size
of the largest red clique is at most dim X and the size of the largest blue
clique is at most F. By Ramsey’s Theorem, the graph must be small:
|Al < Eam(lidim X, 1+ Zi)) The average size of a chain in the partition of
Wis % = Lﬁ}' > Ram(1 +|m XITF)" At least one chain has at least average
length. O

COROLLARY 1.5.8. Let v be a finite geodesic edge path in a finite dimen-
sional CAT(0) cube complex: X. Let VW be the set of hyperplanes crossed by

~v. For any choice of W, W contains a chain of length strictly greater than

v
Ram(1+dim X,3)

PROOF. Every edge of v crosses a wall, and, since « is a geodesic, it
crosses each wall at most once, so |y| = |[W|. Suppose W contains a facing
triple {w;, w;j, wy}. Since they are disjoint, v crosses them in a well-defined
order, which we assume is alphabetical. But w; does not separate w; from
wg, because they are a facing triple, so w; and w; are on the same size of
w;. This is a contradiction, because it means that vy first crosses w;, then
wj, and finds itself on the opposite side of w; from wy. To cross wy, it would
have to first cross back over w;. This it cannot do, since a geodesic can cross
a wall at most once. Thus F' < 2.

By Proposition 1.5.7, any choice of W contains a chain of length greater

W i .

than o G fimxs) = Rem(I+dm X3)"
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THEOREM 1.5.9. For every D and Q, let R := @ - Ram(1 + D, 3). If
X is a CAT(0) cube complex of dimension at most D and Z < X is Q-
quasiconvex then H(Z) < Ngr(Z).

PROOF. Let x € H(Z), so no hyperplane separates x from all of Z. Let
y € Z be a closest point of Z to x. Let v be a geodesic from x to y. By
Corollary 1.5.8, there exists a chain {w1,ws,...,wy,} of hyperplanes crossed
by 7, for n > |y|/Ram(1 + D, 3). Let W; be the halfspace of w; containing
2. Since no wall separates x from all of Z, there exists z € Z n 1.

Consider the median m = m(z,y,z) = [z,y] N [y, 2] n [z, z]. Since
x,z € W1, which is convex, m € [z, z] < W;.

Since m € [z,y], and y is a closest point of Z to x, y is also a closest
point of Z to m, so d(m,Z) = d(m,y). Since {wi,...,wy,} is a chain with
me Wi and y € Wy, d(m,y) =n, so d(m,Z) = n.

Since y and z are both in Z, which is Q—quasiconvex, m € [y,z] <
No(2).

We now have Q > d(m, Z) = n > |y|/Ram(1 + D, 3). O

2. More robust versions of convexity

We mentioned in the previous section that quasiconvexity is a useful
property in hyperbolic spaces, but not as well behaved in CAT(0) spaces.

Let us see why.

ExaMPLE 2.0.1. Consider the combinatorial metric on the Euclidean
plane tessellated by unit squares, making it a CAT(0) square complex. Iden-
tify the vertices with the integer lattice. In this metric vertical and horizon-
tal lines are convex geodesics, but geodesics tracking diagonal lines are not
even quasiconvex. For example, consider the main diagonal {(x,x) | z € Z}.
These points lie on a (actually, on many) combinatorial geodesic. But for
a < b there is also a geodesic from (a,a) to (b,b) consisting of a vertical line
from (a,a) to (a,b) followed by a horizontal line from (a,b) to (b,b), whose

maximum distance to the diagonal is b — a.

So in the combinatorial metric on a CAT(0) cube complex, even geodesics
may fail to be quasiconvex, and there are quasiisometries taking convex
geodesic to non-quasiconvex geodesics (rotation, in this example). In the
CAT(0) metric geodesics are of course convex, since there is a unique geo-
desic between any two points, but the latter problem can still occur.

EXERCISE 2.0.2 (logarithmic spiral). Show that ¢: E? — [E? given in
polar coordinates by (r,0) — (7,60 + log(1 + r)) is a quasiisometry. Show
that the convex geodesic ray r — (r,0) is sent by ¢ to a non-quasiconvex

set.
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The essential problem is that convexity is defined in terms of geodesics,
but geodesics are not, in general, well-behaved under quasiisometries. A
quasiisometry sends a geodesic to a quasigeodesic, by definition, but, as in
Exercise 2.0.2, a quasigeodesic might be fairly wild without some stronger
condition on the space like hyperbolicity.

A solution to making a version of convexity that is well-behaved under
quasiisometry is to insist that all quasigeodesics stay close to the subspace.
Obviously, one has less control on quasigeodesics with worse quasigeodesic
constants, so ‘close’ has to take those constants into account. This version

of quasigeodesic quasiconvexity is usually called the Morse property.

DEFINITION 2.0.3. Let p: R?> — R be a function. A subset Z of a
geodesic metric space X is u—Morse if for every L and A, every (L, A)—
quasigeodesic segment y with endpoints on Z stays in the u(L, A)—neighborhood
of Z.

Say Z is Morse if there exists a p such that Z is uy—Morse.

EXERCISE 2.0.4. In the plane with Euclidean metric, estimate quasi-
geodesic constants for the map

(0,t) 0<t<s
v: [0,38] > X it —> {(t—s,5) s<t<2s
(s,3s —t) 2s<t<3s

Conclude that the x—axis is not Morse.

LEMMA 2.0.5 (The Morse Lemma). Geodesics in hyperbolic spaces are

Morse.

EXERCISE 2.0.6. Let ¢: X — Y be a quasiisometry between geodesic
metric spaces. Let Z be a Morse subset of X. Show that ¢(Z) is Morse in
Y.

A consequence of the exercise is that it makes sense, if H is a subgroup
of a finitely generated group G, to say that H is a Morse subgroup, or not,
because this property does not depend on the choice of geometric model for
G.

Here is a different formulation of the Morse property:

DEFINITION 2.0.7. Let Z < X be a closed set. Let mz: X — Z be

closest point projection. Let p: RT — RT be a non-decreasing, sublinear

function, that is, lim,_« @ = 0. Say Z is p—contracting if for all x,y € X

we have:

d(z,y) < d(z,Z) = diamnyz(x) unz(y) < pld(z, Z))
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Say Z is sublinearly contracting if it is p—contracting for some sublinear
function p. Say Z is strongly contracting if there is a constant C' such that

Z is p—contracting for the (sublinear!) constant function p = C.

In words, for any point = ¢ Z, take the biggest ball possible around
x that just barely meets Z. Project that ball to Z. Asymptotically, the
diameter of the projection is negligible compared to the diameter of the
ball.

THEOREM 2.0.8 ([2]). If X is a geodesic metric space and Z < X then

Z s Morse if and only if it is sublinearly contracting.

ExaMPLE 2.0.9. Let Z be a geodesic in a tree X. Let z ¢ Z. Let
B={ye X |d(z,y) <d(x,Z)}. Then 7z (B) = mz(x) is a single point, so
Z is 0—contracting.

EXERCISE 2.0.10. Consider a geodesic Z in the Poincare Disc model of
H?2, which, up to isometry, we may suppose is the x—axis. Consider any
point not on the geodesic, which, up to isometry, we may suppose lies on
the positive y axis. Show that every hyperbolic ball about y is contain in
the Euclidean ball B centered at (0,1/2) of Euclidean radius 1/2. Show that

wz(B) is a compact interval, and conclude that Z is strongly contracting.

EXERCISE 2.0.11. Show that given @ and ¢ there exists C' such that if Z

is a Q—quasiconvex subset of a d—hyperbolic space then Z is C—contracting.

A p—Morse set is Q—quasiconvex for @ := u(1,0), so the exercise together
with Theorem 2.0.8 shows that Morse is equivalent to strongly contracting
in hyperbolic spaces. That is why our examples have all been strongly
contracting. It turns out that the same is true in CAT(0) spaces [7] and in
finite dimensional CAT(0) cube complexes with respect to the combinatorial
metric [13]. Thus, for our purposes it will be enough to consider strong

contraction.

EXERCISE 2.0.12. Let G be a group generated by a finite set S. Let H
be a subgroup of G. Show that H is finitely generable if and only if the
subset of vertices of Cay(G,S) corresponding to elements of H is coarsely
connected, in the sense that there is some R such that any two elements of
H can be connect by a sequence hy, ha, ..., hy, in H with d(h;,hi+1) < R
in Cay(G, S).

EXERCISE 2.0.13. Show that if H is quasiconvex in Cay(G,S) then H
is finitely generable.

EXERCISE 2.0.14. Suppose K < H < G with G finitely generable. Show
that if K is Morse in H and H is Morse in G then K is Morse in G. (You
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may assume that it suffices to consider discrete quasigeodesics, meaning
those whose domain is the integral points of an interval in R.)

EXERCISE 2.0.15. e Give an example of finitely generable groups
K < H < G with K Morse in G, H isometrically embedded in G,
but K not Morse in G.
e Give an example of finitely generable groups K < H < G with H
Morse in G but K not Morse in G.

EXERCISE 2.0.16. Show that strong contraction is equivalent to the
following: There exist A and B such that d(z,y) < d(z,Z2) — A =
diam7z(z) U Tz(y) < B.

Here are two further variations on the Morse property that will appear

in the next section:

DEFINITION 2.0.17. A subspace Z of a geodesic metric space X is stable
if it both Morse in X and is itself hyperbolic.

‘Morse’ only describes how Z sits in X, not the intrinsic geometry of
Z. In a hyperbolic space Morse implies quasiconvex implies hyperbolic, so
Morse sets are automatically stable. In more general spaces this is no longer
true. For example, in Z2 = Z the Z? factor is Morse but not hyperbolic, so

not stable.

DEFINITION 2.0.18. A subspace Z of a geodesic metric space X is ec-

centric if it is minimally Morse unstable, in the following sense:

e It is Morse.

o It is not stable.

e Given p there exists € such that if Z’ < Z is p—Morse in X and not
stable then dpqus(Z', Z) <e.

Here the Hausdorff distance between two sets is:

diaus(A, B) :=inf{r | A < N,(B) and B c N;(A)}

3. Morse, stable, and eccentric subspaces of RACGs

‘Morse’ means quasigeodesic segments have to stay close to a subset. A
subset Z is not Morse if there are detours in X that allow one to travel
between points of Z without taking too much longer than staying in Z. We
had one example that was the z—axis in the plane, where we found that it
was possible to travel between points by going up, over, and down, at the
cost of being a quasigeodesic with some uniform quasigeodesic constants.

This motivates the following construction:
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ProOPOSITION 3.0.1. Let (W, S) be a right-angled Coxeter group with
presentation graph Y. Suppose T < S contains opposite vertices of a full

square in Y, but not the whole square. Then Wy is not Morse.

bo az
PROOF. Let o = B be a full square in T with a1,as € T and

ai by

b ¢ T. Since the square is full there is no edge in T between a; and as,
s0 Wi4, sy = Do and, by Theorem 2.0.1, special subgroups are convex, so
Y{a1,a2} = R is a geodesic in ¥. The same is true for {b1, b2}, and for o we
have that W, = Dy, x Dy and ¥, is a convex, square-tessellated copy of E?
in 2.

Case 1: by ¢ T. Then X n Xp = Xy, 4,) is a geodesic, and X, 3,3
is a geodesic that intersects Y only at 1. Furthermore, every edge e of
Y (b,,b,} belongs to two squares, one whose transverse sides are labelled a,
and the other whose transverse sides are labelled as. In both of these the
side opposite e has the same label as e, so we see a strip of squares with
vertical sides all labelled like e, and horizontal sides alternating a;, as. There
is a hyperplane dual to e that cuts this strip in half, separating adjacent
translates of Y. Since the wall distance equals the graph distance, this
implies Y, 5,1 and Xp are orthogonal.

For each n € N we have a path 1 — (bab1)™ + (bab1)™ — (b2b1)"(a1a2)™ +
(bob1)™(a1a2)™ — (araz)™ from 1 to (ajaz)™ that is a (3,0)—quasigeodesic
and gets 2n—far away from 7. Thus, X7 is not Morse. This is illustrated

in Figure 5.

babiaiasz

baby

bzaiaz

ba

ajaz

N R—

1

biaiaz

by

F1GURE 5. Case 1 of non-square complete implies non-Morse

Case 1: b; € T. The picture is similar except that only every other edge
in Xy, 5,) 1s orthogonal to its neighboring cosets of Xp. See Figure 6. [
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babraias baaiaz
bab1 ba
aias biaias
T by

FI1GURE 6. Case 2 of non-square complete implies non-Morse

In fact, Proposition 3.0.1 is an ‘if and only if’, but the other direction

will take some work.

DEFINITION 3.0.2. An induced subgroup of T is square complete if when-
ever it contains opposite vertices of an induced square it contains the whole

square.

THEOREM 3.0.3 ([25, Theorem 1.11],[13, Proposition 4.9]). A special
subgroup of a right-angled Coxeter group is Morse if and only if its presen-
tation subgraph is square complete.

DEFINITION 3.0.4. A grid of hyperplanes is a pair (HV) of chains of

hyperplanes H = {H;}ier and V = {V;}es such that every H; crosses every
v;.

One should imagine a grid of squares in the planes, with V' being the
vertical hyperplanes and H being the horizontal hyperplanes.

DEFINITION 3.0.5. If X is a CAT(0) cube complex and Y is subcomplex,
let $(Y') be the set of hyperplanes of X that intersect Y.

THEOREM 3.0.6 (cf [13, Proposition 4.5]). Let X be a finite dimensional
CAT(0) cube complex. Consider the combinatorial metric on XV, Let Y
be a gated subgraph of XV, The following are equivalent:

(1) Y is strongly contracting.

(2) Y is Morse.

(3) There exists Cs such that for every flat square [0,r] x [0,7] < X
with [0,7] x {0} € Y we have [0,7] x {r} ¢ N, Y.

(4) There ezists Cy such that if (H,V) is a grid of hyperplanes with
VYY) and HnH(Y) = then min{#V,#H} < Cy.

PRrROOF. We have already mentioned that (2) <= (1) in CAT(0) cube
complexes. Not (3) = not (2) is the same argument as Proposition 3.0.1,

since big squares that get arbitrarily far from Y would provide efficient
detours. Thus, (2) = (3).



206 6. RIGHT-ANGLED COXETER GROUPS

Suppose we have a grid of hyperplanes as in (4). [12, Theorem 2.7]
derives from the grid a flat rectangle of width at least a := #V — 2 and
height at least b := #H — 1 with its base on Y. Consider a square of
sidelength 7 := min{a, b} contained in the rectangle, with base on Y. Since
‘H is a chain, the top of the square is separated from the base, and from Y,
by each horizontal hyperplane that meets it, so the top of the square is not
in the (r — 1)-neighborhood of Y. Thus, C5 > r > min{#V —2, #H — 1}, or,
conversely, min{#V, #H} < C5 + 2. Thus, (3) implies (4) for Cy := C5 + 2.

Now assume (4). By Corollary 1.5.8, there is a constant D depending
only on the dimension of X such that from a collection of hyperplanes cross-
ing a geodesic one may extract a chain consisting of at least 1/D fraction
of them. Define A := C4yD and B := C4D. Suppose x and 2’ are points
of X with d(z,2’) < d(z,Y) — A and diam 7y (z) u 7y (2') > B. Since the
wall distance is equal to the graph distance, there are at least A—many more
hyperplanes separating x and Y than there are separating x and 2/, so there
are at least A-many hyperplanes separating {x,z'} from Y. There exists
a chain H in that set consisting of at least A/D = C4 many hyperplanes.
There are more than B—many hyperplanes separating my () from my (z), so
we can choose a chain V of these of size greater than B/D = Cy. Further-
more, (H,V) is a grid, as follows. Consider a geodesic from x to my (z). Each
edge crosses a hyperplane that separates z from Y, otherwise there would
be a closer point of Y to x than 7y (x). So H([z, 7y (x)]) n H(Y) = &. The
same is true for 2’ and 7y (2’). So for each V € V, my(z) and 7y (2') are
on opposite sides of V', but  and 7y (z) are on the same side and 2’ and
7y (') are on the same side. Thus, x and 2’ are on opposite sides. For
H € H, x and 2’ are on the same side and 7y (x) and 7y (2’) are both on
the opposite side. Thus, V and H cross, as we have found points in all
four possible intersections of complementary halfspaces. This grid contra-
dicts (4), so d(z,2') < d(z,Y) — A implies diam 7wy (z) U 7y (2') < B. By
Exercise 2.0.16, this implies (1). O

ProOF OoF THEOREM 3.0.3. One direction was Proposition 3.0.1. In
the other, suppose Y7 is not Morse. By Theorem 3.0.6, there are arbitrarily
large square grids (H,V) with V < $(Y) and H n H(Y) = &. Take one of
size n larger than the size of the largest clique in T. We may assume the
bottom left corner of the square is at the vertex 1. Let sy, s9, ...be the
labels on the edges dual to H; € H. Then we have s; ¢ T and s; # s;41.

Suppose all of the s; commute. Then they cannot all be distinct, since
there are more of them than the largest clique in Y. But if they all commute
and s; = s; then the word s1 - - - 55, is not geodesic, contradicting that we have

a flat square. Thus, there exists a minimal ¢ such that there is an index j for
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which s; and s; do not commute. By minimality of 7, s; and s do commute
for all k < 4. Consider the hyperplane W;, through the edge [1, s;]. Now, a
reflection through one midcube in a cube fixes all of the other midcubes, so
all s € S that commute with s; fix W;,. Now, H; = s1s9--- 81 Ws, = Ws,,
so W, does not cross Xr, so s; ¢ T'.

Similarly, find edges along the bottom of the square labelled u and v that
do not commute. The fact that these all came from a grid means s; and u

commute, s; and v commute, s; and v commute, and s; and v commute.

Thus, there is a full square : B Yo such that u,v € T and s; ¢ T. This

means T is not square complete. O

COROLLARY 3.0.7. A special subgroup of a right-angled Coxeter group is
stable if and only if its presentation subgraph is square complete and contains

no square.

ExAMPLE 3.0.8 ([3]). Consider the right-angled Coxeter group defined
by the presentation graph in Figure 7.

FicUure 7. A ‘CFS’ graph with a stable surface subgroup

There are lots of squares in this picture. In fact, every vertex lies on
a square that can be connected to a square containing any other vertex
through a sequence of squares that share a diagonal, which makes it some-
thing called a ‘CFS graph’. ¥ has lots of intersecting copies of E2, which we
might expect makes it very non-hyperbolic. However, the red subgraph is a
5—cycle that is square complete. Let T" be the vertex set of the red subgraph.
Then Wr is square complete and square-free, so it is a stable subgroup. It is
also an H? reflection group, so Y7 is a stable, quasiisometrically embedded
copy of H? in ¥.
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DEFINITION 3.0.9. Let T be a simple graph. A minsquare subgraph is
a full subgraph of Y that:

e is square complete,
e contains a square,
e and is minimal with respect to inclusion among subgraphs of YT

satisfying the first two conditions.

THEOREM 3.0.10 ([14]). Let (W, S) be a right-angled Coxeter group with
presentation graph Y. Let ¥ be the Davis complex of (W, S). Every eccentric
subspace of 3 is at bounded Hausdorff distance from some g-p where Y is

a minsquare subgraph of T.

REMARK. It is not true in general that a Morse subspace is close to a
Morse subgroup. Both minimality and non-hyperbolicity are important in

this theorem.

COROLLARY 3.0.11. The set of quasiisometry types of special subgroup
defined by a minsquare subgraph of the presentation graph is a quasiisometry

invariant for right-angled Coxeter groups.

This means, if W1 and Wy are right-angled Coxeter groups defined by
presentation graphs Y; and Yo, and if T; contains a minsquare subgraph
T’ such that there is no minsquare subgraph of Ty that generates a group

quasiisometric to W'rll , then W7 and Wy are not quasiisometric.
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