
Splitting Line Patterns in Free Groups

CHRISTOPHER H. CASHEN

We construct a boundary of a finite rank free group relative to a finite list of
conjugacy classes of maximal cyclic subgroups. From the cut points and uncrossed
cut pairs of this boundary we construct a simplicial tree on which the group acts
cocompactly. We show that the quotient graph of groups is the JSJ decomposition
of the group relative to the given collection of conjugacy classes.

This provides a characterization of virtually geometric multiwords: they are the
multiwords that are built from geometric pieces. In particular, a multiword is
virtually geometric if and only if the relative boundary is planar.
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1 Introduction

Let F = Fn be a free group of finite rank n > 1. Let [w] = {[〈w1〉], . . . , [〈wk〉]} be
a multiclass, a non-empty collection of distinct conjugacy classes of maximal cyclic
subgroups.

The goal of this paper is to find splittings of F relative to [w] (rel [w]), that is, splittings
of F as a free product or as an amalgam over cyclic subgroups in such a way that
each [〈wi〉] ∈ [w] is elliptic. We do this by analyzing the topology of a certain relative
boundary D of F , defined as follows:

The free group F has a well-defined Gromov boundary ∂F that is homeomorphic to a
Cantor set. Left multiplication of F on itself extends continuously to an action of F on
∂F by homeomorphisms. For each non-trivial element f ∈ F , the f –action on ∂F has
an attracting fixed point f∞ and a repelling fixed point, which is the attracting fixed
point of f = f−1 , and is denoted f∞ .

Definition 1.1 Define the boundary pattern associated to [w] to be:

∂[w] = {{w∞,w∞} | 〈w〉 is a maximal cyclic subgroup with [〈w〉] ∈ [w]}

http://www.ams.org/mathscinet/search/mscdoc.html?code=20F65,(20F67, 20E05, 57M05, 20E06)
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Definition 1.2 The decomposition space D = D[w] of ∂F associated to [w] is the
quotient of ∂F obtained by identifying the two points ξ0 and ξ1 for each {ξ0, ξ1} ∈ ∂[w].
Let ∆ : ∂F → D be the quotient map.

The action of F on ∂F preserves the boundary pattern ∂[w], so it induces an action of
F on D by homeomorphisms.

It is not hard to see that if F has a free splitting rel [w] then D is not connected.
Similarly, if F splits over 〈f 〉 rel [w], where 〈f 〉 is a maximal cyclic subgroup, then
D \∆(∂〈f 〉) is not connected. If [〈f 〉] ∈ [w] then ∆(∂〈f 〉) is a single point in D , so
there is a point whose removal disconnects D . If f is non-trivial and [〈f 〉] /∈ [w] then
∆(f∞) and ∆(f−∞) are distinct points in D , so there is a pair of points whose removal
disconnects D .

We will focus on the case that F does not split freely rel [w], in which case we will see
that D is connected. The previous paragraph then suggests that we analyze cut points
and cut pairs of D .

We show that the cut points and cut pairs of D encode a simplicial tree on which F acts
cocompactly. The quotient graph of groups gives us a canonical decomposition of F
rel [w]. The main result, the Relative JSJ-Decomposition Theorem (Theorem 4.25),
is that this canonical graph of groups decomposition of F obtained from D is the JSJ
decomposition of F relative to [w] (the rJSJ). That is, it is the decomposition that
encodes all cyclic splittings of F relative to [w], and satisfies certain universality and
maximality properties, in the sense of Guirardel and Levitt [9] (see also [12]).

In Section 2 we introduce some preliminaries, including various versions of Whitehead
graphs.

In Section 3 we use generalized Whitehead graphs to investigate topological features of
D . We regard this section as semi-preliminary, as it is a development of ideas that were
present in [4]. However, some of the proofs are technical, so they are presented here in
detail in the interests of rigor and of making this paper self-contained.

In Section 4 we construct a simplicial tree from the cut points and cut pairs of D and
show that the quotient graph is the rJSJ.

We apply these results in Section 5 to characterize virtually geometric multiclasses,
which will be introduced in Section 1.2.

A benefit of our approach to relative splittings via the decomposition space and
generalized Whitehead graphs is that the arguments end up being combinatorial. It
follows that not only is the rJSJ algorithmically constructible, which was already known
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by work of Kharlampovich and Miasnikov [12], but there is a combinatorial algorithm
that is actually implementable. In subsequent work with Manning, we have extended
the methods of this paper to get an implementable algorithm to construct the rJSJ, and
we have written a computer program [5] (see also [6]) that will compute the rJSJ and
decide whether or not a given multiclass is virtually geometric.

1.0.1 First Examples

We give two examples to give an idea of what decomposition spaces and relative JSJ
decompositions can look like. These examples are of a very special type: the free group
F can be viewed as the fundamental group of a compact, connected, orientable surface
with boundary, and the multiclass includes the conjugacy class of each of the boundary
curves of the surface. In this case there are no relative free splittings, and we can
‘see’ the relative cyclic splittings—they correspond to essential, non-peripheral simple
closed curves1 in the surface that can be homotoped to be disjoint from a multicurve
representing the multiclass.

Much of the work in Section 3 is about how to ‘see’ relative cyclic splittings when no
ambient surface topology is available.

Example 1.3 Consider F = 〈a, b〉 and [w] = {[〈abab〉]}. The decomposition space
is homeomorphic to the circle. To see this, view F as the fundamental group of a
complete, finite volume hyperbolic punctured torus Σ, and represent abab as a simple
closed curve running around the puncture. The universal cover of Σ is the hyperbolic
plane H2 , see Figure 1. The group F acts by deck transformations on H2 , and the

Figure 1: Horocycles in H2 demonstrating D = ∂H2 = S1 .

1A curve is essential if it not homotopic to a curve that bounds a disc and non-peripheral if it
not homotopic to a curve that bounds a once-punctured disc or an annulus.
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action extends to a continuous surjection ∂F → ∂H2 that is 2 to 1 on the parabolic
points and 1 to 1 off them. The curve representing abab is freely homotopic to the
quotient of a horocycle. The element abab acts parabolically, fixing a point ξ ∈ ∂H2 ,
and the preimage of ξ in ∂F is exactly the two points (abab)∞ and (abab)−∞ of ∂F .
Since there is only one orbit of parabolic points, we conclude D = ∂H2 = S1 .

Alternatively, we could take Σ′ to be a hyperbolic one-holed torus with geodesic
boundary component representing abab. The universal cover sits inside of H2 as a
thickened tree, and ∂F embeds into ∂H2 . The points (abab)∞ and (abab)−∞ are
sent to the endpoints of a interval in ∂H2 not containing any other points of ∂F , so
the quotient map ∆ : ∂F → D = S1 can be viewed as a circular analogue of the map
collapsing missing intervals of the ternary Cantor set to get the unit interval.

In this example the rJSJ is trivial — a single vertex stabilized by F . This is due to the
universality requirement, see Theorem 4.25. The reason is that cyclic splittings of F rel
{[〈abab〉]} correspond to essential, non-peripheral simple closed curves in Σ′ , but for
every such curve there is another intersecting it, so none of these splittings are universal.
♦

Example 1.4 Consider the marked surface Σ in Figure 2. The labeled curves are
generators of the fundamental group F5 = 〈a, b, c, d, e〉.

ac

bd
e

Figure 2: A marked surface

a

c

d

e

ac

dcdc dcdcababe

Figure 3: A multi-curve representing [w]

Consider the multiclass:

[w] = {[〈a〉], [〈c〉], [〈d〉], [〈e〉], [〈ac〉], [〈dcdc〉], [〈dcdcababe〉]}

Figure 3 shows a multicurve representing [w].

In this example, all boundary curves of the surface belong to the multicurve, so D is
connected as in Example 1.3.
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Σ1 Σ2

A3

A4

Figure 4: Decomposition of a surface.

〈a〉

〈
dcdca

〉
〈
dcdca, bab, e

〉
〈a, c, d〉

dcdca

a

a a

bab

dcdca
dcdca dcdca

Figure 5: Corresponding graph of groups

Consider the decomposition of Σ into subsurfaces given in Figure 4. The corresponding
graph of groups in Figure 5 is the rJSJ for this example. In Figure 5 the vertices are
labelled with their stabilizer subgroups. The edge stabilizers are all infinite cyclic, and
the label at each end of each edge indicates the image of a fixed generator of the edge
stabilizer in the vertex group.

This is the rJSJ because every essential, non-peripheral simple closed curve in Σ

that does not intersect a curve of the multicurve is either homotopic to an essential,
non-peripheral simple closed curve in the subsurface Σ2 or to the core curve of annulus
A3 or annulus A4 .

Let us examine the four subsurfaces:

(1) Subsurface Σ1 is ‘filled’ by the multicurve, in the sense that every essential,
non-peripheral simple closed curve in Σ1 intersects one of the curves of the
multicurve. This means that Σ1 does not contribute any relative splittings of F .
The fundamental group of Σ1 is an example of what will be called a rigid vertex
group.

(2) The subsurface Σ2 is a sphere with four holes. It is ‘empty’, in the sense that there
are no curves of the multicurve in its interior. Thus, any essential, non-peripheral
simple closed curve in Σ2 yields a cyclic splitting of F rel [w]. However, as in
the previous example, these splittings are not universal. The fundamental group
of Σ2 is an example of what will be called a QH-surface vertex group2.

(3) The annulus A3 has a core curve representing [〈a〉] ∈ [w], so ∆(a∞) = ∆(a∞)
is a cut point of D .

(4) The core curve of annulus A4 is not homotopic to a curve of the multicurve. The
points ∆((dcdca)∞) and ∆((dcdca)−∞) are distinct points in D . They form a
cut pair in D .

2These are the torsion-free examples of the ‘quadratically hanging’ vertex groups of Rips
and Sela [18].
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Observe the following features of this decomposition, and compare Theorem 4.25.
The decomposition is bipartite: there is a collection of annuli and a collection of
more complicated subsurfaces, and each subsurface is adjacent only to members of the
opposite collection. Among the more complicated subsurfaces there are those that are
filled (the rigid vertices) and those that are empty (the QH-surface vertices). Every
splitting of F rel [w] comes from either the core curve of one of the annuli or an
essential, non-peripheral simple closed curve in one of the empty subsurface pieces. ♦

1.1 The Decomposition Space and the rJSJ

We are interested in cut sets of D . If D is connected and D \ {x} is not connected,
then x is called a cut point. Similarly, if D is connected and {x0, x1} is a pair of points,
neither of which is a cut point, such that D \ {x0, x1} is not connected, then {x0, x1} is
called a cut pair. We call (F, [w]) rigid if D is connected with no cut points and no cut
pairs3. We call (F, [w]) a QH-surface if there exists a compact surface with boundary,
Σ, such that F = π1(Σ) and [w] = [∂Σ]. In this case we write (F, [w]) ∼ (Σ, [∂Σ]).

1.1.1 Induced Multiclasses

Definition 1.5 Let G be a non-cyclic vertex group of a graph of groups decomposition
Γ of F rel [w] with cyclic edge stabilizers. Define the induced multiclass in G,
denoted IndG

Γ([w]), to be the set of distinct G–conjugacy classes of G–maximal cyclic
subgroups that either contain the image of an edge injection into G or are contained in
an F–maximal cyclic subgroup whose conjugacy class is in [w].

In Example 1.4, the induced multiclass in π1(Σ1) is:

{[〈a〉], [〈c〉], [〈d〉], [〈ac〉], [〈dcdc〉], [〈dcdca〉]}

These classes come from the four curves of the multicurve in the interior of Σ1 , plus
the two boundary curves, one of which was a member of the multicurve, and one of
which was not.

Similarly, Indπ1(Σ2)
Γ = {[〈bab〉], [〈e〉], [〈dcdcababe〉], [〈dcdca〉]}. All of these classes

correspond to boundary curves of Σ2 , three of which were members of the multicurve,
and one of which was not.

3The fact that (F, [w]) is quasi-isometrically rigid if and only if D is connected with no
cut points and no cut pairs is the main result of [4]. Since we will not be concerned with
quasi-isometric rigidity in this paper, we take these condition on D to be the definition of
rigidity.
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The vertex corresponding to G is said to be rigid or QH if (G, IndG
Γ([w])) is rigid or is a

QH–surface, respectively. It will turn out that all non-cyclic vertices of the rJSJ are
either rigid or QH.

1.1.2 Outline of the Construction of the rJSJ

Suppose that F does not split freely relative to [w], which is equivalent to supposing
that D is connected, by Theorem 2.17. Suppose that {x0, x1} and {y0, y1} are cut pairs
such that y0 and y1 lie in different complementary components of {x0, x1}. In this case,
we say {y0, y1} crosses {x0, x1}. If there does not exist a cut pair crossing {x0, x1}
then we say {x0, x1} is uncrossed.

Proposition 4.6 generalizes a construction of Bowditch to show that if F does not split
freely rel [w], and if (F, [w]) is neither rigid nor a QH-surface, then D contains a cut
point or an uncrossed cut pair.

Proposition 4.10 says that an uncrossed cut pair is rational4, that is, it is stabilized by an
infinite cyclic subgroup of F . Moreover, there are only finitely many conjugacy classes
of stabilizers of uncrossed cut pairs.

We show in Proposition 4.13 that the collection of cut points and uncrossed cut pairs
in D has the structure of a simplicial tree. Otal proved this for the cut points. We
generalize his proof to work simultaneously with the cut points and uncrossed cut pairs.
Since F acts by homeomorphism on D , and since there are finitely many conjugacy
classes of stabilizers of cut points and uncrossed cut pairs, we get a cocompact F–action
on this cut point/uncrossed cut pair tree. Theorem 4.25 says the rJSJ is the quotient
graph of groups of this action.

A consequence of Proposition 4.13 is that every uncrossed cut pair of D corresponds to
a cyclic splitting of F rel [w].

The main work is proving Proposition 4.6, Proposition 4.10, and Proposition 4.13.
Verifying that the resulting graph of groups satisfies the desired properties of the rJSJ is
routine.

4∂F can be thought of as the set of infinite, freely reduced words in the generators of F and
their inverses. The points whose expressions as such are eventually periodic are commonly called
‘rational’, in analogy to decimal representations of rational numbers. Being a rational point of
∂F is equivalent to being fixed by an infinite cyclic subgroup. We extend the terminology to
call a pair of points rational if they are fixed by an infinite cyclic subgroup.
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1.1.3 Otal, Bowditch, and Cut Points

Otal [17] showed that the cut points of D have a simplicial tree structure. Bowditch
[3] proved that the cut points of the boundary of a relatively hyperbolic group have a
simplicial tree structure.

It can be shown, see Manning [14], that D is equivariantly homeomorphic to the
Bowditch boundary of F relative to [w], so Otal’s result is an early special case of
Bowditch’s result. For our purposes these results are not sufficient: The cut point tree
does not see all the universal relative cyclic splittings, because it misses the ones coming
from uncrossed cut pairs. Our methods treat cut points and uncrossed cut pairs in a
unified way.

1.2 Virtual Geometricity

In Section 5 we apply the Relative JSJ-Decomposition Theorem to characterize virtual
geometricity.

[w] ⊂ F is geometric if it can be represented by an embedded multicurve in the
boundary of a handlebody with fundamental group F .

Otal’s main result in [17], suitably reinterpreted, is that in the case that the rJSJ is
trivial, [w] is geometric if and only if the corresponding decomposition space is planar.
Furthermore, planarity of the decomposition space can be deduced from the Whitehead
graph of [w].

[w] is virtually geometric if there is a finite index subgroup G of F such that the ‘lift’
of [w] to G is geometric. The lift of [w] to G, for [w] = {[〈w1〉], . . . , [〈wk〉]}, is the
multiclass of G that contains every conjugacy class of maximal cyclic subgroup of G
that is conjugate in F into one of the 〈wi〉, see Section 2.3.

We use the rJSJ to reduce virtual geometricity to geometricity of the induced multiclasses
in the vertex groups:

Characterization of Virtual Geometricity (Theorem 5.9) For a multiclass in a free
group, the following are equivalent:

(1) The multiclass is virtually geometric.

(2) The decomposition space is planar.

(3) For every non-cyclic vertex group of the rJSJ, the induced multiclass is geometric.
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Thus, virtually geometric multiclasses are those that are built from geometric pieces.

When there are no uncrossed cut pairs we use the rJSJ to explicitly construct a finite
index subgroup and handlebody that demonstrate virtual geometricity.

When there are uncrossed cut pairs we first pinch them to cut points and then apply the
previous construction. The pinching is done in such a way as to preserve planarity of
the decomposition space, using a technical fact, Proposition 3.24, that the closure of a
complementary component of a cut pair in D is arc-connected.
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2 Preliminaries

2.1 Definitions and Notation

The degree of a homomorphism from the integers into a free group is the index of its
image in the maximal cyclic subgroup containing the image.

A nontrivial element g ∈ F is indivisible if is not a proper power.

Let b be a basis of F . The Cayley graph of F with respect to b is a tree T . Assign
each edge length one; F acts isometrically on T by left multiplication. We will use 1
to denote the vertex corresponding to the identity element of F .

The tree T has a Gromov boundary at infinity ∂T that is identified with ∂F . This
boundary compactifies the tree: T = T ∪ ∂T is a compact topological space whose
topology on T agrees with the metric topology. For x, y ∈ T , there exists a unique
geodesic [x, y] connecting them. By a simplicial geodesic we shall mean an isometric
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embedding φ : [a, b] ↪→ T taking integers to vertices, with a, b ∈ Z ∪ {±∞}. We use
the notation φ : [a, b] � [x, y] to indicate a simplicial geodesic with φ(a) = x and
φ(b) = y. There is unique such simplicial geodesic if a or b is finite.

For a fixed vertex u, a basis for the topology of ∂T is given by the sets

Shadowu(v) = {ξ ∈ ∂T | v ∈ [u, ξ]} for v ∈ T \ {u}.

The resulting topology does not depend on the choice of u.

2.2 Cut Pairs

Recall that a minimal cut set is a subset Y ⊂ X such that X \ Y is not connected but
X \ Z is connected for every proper subset Z of Y .

Lemma 2.1 Let Y be a closed minimal cut set of connected, locally connected space
X . Every complementary component limits to every point of Y .

Proof X \ Y is locally connected, so components are proper, non-empty clopens. If
y ∈ Y is not a limit point of a component C then C is still a proper, non-empty clopen
in X \ (Y \ y), contradicting minimality of Y .

Definition 2.2 If Y is a cut set of X then Z crosses Y if there are points z0, z1 ∈ Z in
different components of X \ Y .

Recall that a cut pair is a minimal cut set of size two, and a cut pair is said to be
uncrossed if no cut pair crosses it. The following lemma is easily verified:

Lemma 2.3 Let X be a connected, locally connected space in which cut points and
cut pairs have finitely many complementary components.

(1) Crossing is a symmetric relation among cut pairs.

(2) A cut pair cannot cross a cut point.

(3) A cut pair with at least three complementary components is uncrossed.
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2.3 A Multiclass Lifted to a Finite Index Subgroup

Definition 2.4 The lift of [w] to a finite index subgroup G is the multiclass [w]G

consisting of the distinct G–conjugacy classes of G–maximal cyclic subgroups that are
contained in an F–maximal cyclic subgroup whose conjugacy class is in [w].

The inclusion ι : G ↪→ F extends to a homeomorphism ∂ι : ∂G → ∂F that takes
∂[w]G to ∂[w], inducing a G–equivariant homeomorphism D[w]G → D[w] .

Example 2.5 Let F = 〈a, b〉. Let [w] = {[〈a〉], [〈b〉]}. Let G be the index 2 subgroup
G = 〈a2, b, aba〉 < F . The lift of [w] to G is [w]G = {[〈a2〉], [〈b〉], [〈aba〉]}.

F = π1(H) = 〈a, b〉
[w] = {[〈a〉], [〈b〉]}

G = π1(H̃) = 〈a2, b, aba〉
[w]G = {[〈a2〉], [〈b〉], [〈aba〉]}

Figure 6: Lifting to a finite index subgroup

We can visualize the situation by taking F to be the fundamental group of a handlebody
H and picking curves representing [〈a〉] and [〈b〉]. Then G corresponds to a 2–fold
cover H̃ of H , and [w]G is represented by the curves in H̃ covering the chosen curves
in H , as in Figure 6. ♦

2.4 Normalization

See Serre [20] for an introduction to graphs of groups and Bass-Serre theory.

Suppose Γ is a graph of groups decomposition of F with cyclic edge groups. It will be
convenient to normalize Γ. We describe a sequence of moves that change the graph
of groups description without changing the group itself or the conjugacy classes of
non-cyclic vertex groups. If e is an edge of Γ let η(e, 0) and η(e, 1) denote the initial
and terminal vertices of e, respectively. Let φe,i : Ge ↪→ Gη(e,i) be the edge injection of
an edge group into a vertex group.

First, if there is an edge incident to two non-cyclic vertex groups, subdivide it by adding
a vertex with stabilizer equal to the stabilizer of the edge group.
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Second, for each edge e let Ge = 〈ze〉 and let 〈ze,i〉 be the maximal cyclic subgroup of
Gη(e,i) containing φe,i(Ge). Since no nontrivial element is conjugate to a power of itself
in the free group, it is possible to choose the generators ze and ze,i so that for all e and i
the map φe,i takes ze to a positive power of ze,i and so that if g 〈ze,i〉 g =

〈
ze′,i′

〉
for

some g ∈ Gη(e,i) = Gη(e′,i′) then gze,ig = ze′,i′ .

Third, if an edge group maps into a non-maximal cyclic subgroup of a non-cyclic vertex
group, we may un-collapse an edge as in Figure 7.

G G 〈z〉gp g zpz

Figure 7: Un-collapse an edge.

Fourth, consider two edges e and e′ incident to a non-cyclic vertex v = η(e, i) = η(e′, i′).
Suppose φe,i(Ge) and φe′,i′(Ge′) are distinct and conjugate in Gv . Choose g ∈ Gv such
that gφe,i(Ge)g = φe′,i′(Ge′). Replace the edge map φe,i with gφe,ig.

Fifth, fold all the edges together that map into a common maximal cyclic subgroup in a
given non-cyclic vertex, as in Figure 8.

〈y〉 G 〈z〉 G 〈z〉yp y g g zq g zq zpq

Figure 8: Fold two edges.

Folding is always possible when two edges map into a common maximal cyclic
subgroup of a non-cyclic vertex because we are in the free group. Consider the possible
obstructions:

• If 〈y〉 = 〈z〉 then the two edges of Figure 8 form a loop corresponding to a stable
letter t conjugating y to y±q . This would mean 〈t, y〉 is a Baumslag-Solitar
subgroup, but free groups do not contain such subgroups.

• If 〈y〉 6= 〈z〉 we could imagine the situation depicted in Figure 9 with r > 1 and
q > 1. In this case, 〈y, z〉 is a virtually free-by-cyclic subgroup, but free groups
do not contain such subgroups.

〈y〉 G 〈z〉yr g g zq

Figure 9: Cannot occur in a free group.

Similarly, since F is free, every edge group maps onto a maximal cyclic subgroup in
one of its two vertex groups. Otherwise we would find a Baumslag-Solitar or virtually
free-by-cyclic subgroup. Therefore, for any edge that is incident to two cyclic vertices,
one of the inclusions of the edge group into the vertex groups is an isomorphism, and
we can collapse the edge, as in Figure 10.
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〈y〉 〈z〉 〈z〉yp y zq zpq

Figure 10: Collapse an edge.

We are left with a new graph of groups decomposition of F that is bipartite: vertex
groups are either maximal cyclic subgroups or are non-cyclic. Cyclic vertex groups
are adjacent only to non-cyclic vertex groups, and vice versa. For each edge, the edge
map to the incident non-cyclic vertex group maps the edge group onto a maximal cyclic
subgroup of the vertex group. Furthermore, for each non-cyclic vertex group G and
each maximal cyclic subgroup C of G there is at most one incident edge whose edge
group maps into a conjugate of C .

Remark Another normalization that if often applied to a graph of groups is to make
them reduced. This means that if there is a non-loop edge e incident to a vertex η(e, i)
such that the edge inclusion φe,i is an isomorphism, then the edge e should be collapsed.
We do not assume that Γ is reduced, because in some cases doing so would ruin the
‘bipartite’ condition.

2.5 Whitehead Graphs

Our tool for understanding the topology of the decomposition space associated to a
multiclass is the generalized Whitehead graph of the multiclass. This machinery was
developed in [4].

2.5.1 Classical Whitehead Graph

Let [〈w〉] be a conjugacy class of maximal cyclic subgroups of F . The (classical)
Whitehead graph Wb(1){[〈w〉]} of [〈w〉] with respect to a basis b of F is a graph with
2n vertices labeled with the elements of b and their inverses. Let w be a freely and
cyclically reduced word in b± that generates a representative of [〈w〉]. One edge of
Wb(1){[〈w〉]} joins vertex x to vertex y for each occurrence of xy in w, thought of as
a cyclic word. This definition extends to a multiclass by adding edges for each class of
the multiclass. We will see a geometric interpretation and examples in Section 2.5.3.

Let |[〈w〉]|b be the minimal b–length of a generator of a representative of [〈w〉].
The complexity of the Whitehead graph is the number of edges, which is equal to∑

[〈w〉]∈[w] |[〈w〉]|b . A Whitehead graph Wb(1){[w]} is minimal if its complexity is
minimal among the complexities of Wφ−1(b)(1){[w]} for φ ∈ Aut(F).
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Whitehead’s Algorithm [22] picks a basis b for which Wb(1){[w]} is minimal. The
proof shows that there is a finite set of ‘Whitehead automorphisms’ so that if Wb(1){w}
is not minimal then there exists a Whitehead automorphism φ that strictly reduces
the complexity. The algorithm checks if any Whitehead automorphism reduces the
complexity, and repeats this process until no reducing Whitehead automorphism exists.

A important observation in the proof is that if a Whitehead graph Wb(1){[w]} is
connected and has a cut vertex, then it is not minimal.

An easy extension of Whitehead’s methods yields the following:

Proposition 2.6 The following are equivalent:

(1) Some Whitehead graph for [w] is not connected.

(2) Every minimal Whitehead graph for [w] is not connected.

(3) F splits freely rel [w].

It is easy to see that if F splits freely rel [w] then D is not connected:

Corollary 2.7 If there is a basis b such that Wb(1){[w]} is not connected, then D is
not connected.

The converse is also true, see Theorem 2.17.

2.5.2 Standing Assumption

From now on, unless otherwise noted, we assume that [w] = {[〈w1〉], . . . , [〈wk〉]} is
fixed and b is a basis of F such that Wb(1){[w]} is connected without cut vertices. Let
T denote the Cayley tree of F with respect to b.

Having fixed a reference basis, we simplify notation by considering the multiword
w = {w1, . . . ,wk}, where the wi are cyclically reduced and generate non-conjugate
maximal cyclic subgroups. Similarly, by choosing representatives we pass from the
induced multiclass in a vertex group of a splitting to an induced multiword, and from a
lifted multiclass in a finite index subgroup to a lifted multiword.

We drop [w] and b from the notation unless they are necessary for clarity.

Remark There is no loss of generality from these assumptions. If F splits freely
relative to [w] then first pass to a maximal relative free splitting and then deal with
the factors separately. If there is no such free splitting then Proposition 2.6 says that
to ensure the no-cut-vertex assumption it suffices to choose the basis that gives the
minimal complexity Whitehead graph. However, minimality is not necessary.
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2.5.3 Generalized Whitehead Graph and Friends

For each {(f wif )∞, (f wif )∞} ∈ ∂w there is a unique bi-infinite geodesic with endpoints
(f wif )∞ and (f wif )∞. The stabilizer 〈f wif 〉 acts cocompactly with translation length
|wi|.

Definition 2.8 The line pattern generated by w is the set L (=Lw ) of ‘lines’, bi-infinite
geodesics L in T , with endpoints L−, L+ ∈ ∂T such that {L−,L+} ∈ ∂w.

Definition 2.9 Let X be a connected subset of T with X ∩ T 6= ∅. The Whitehead
graph over X , denoted W(X ) (= Wb(X ){w}) is a graph with one vertex for each
component of T \ X and one edge E joining vertices V and V′ for each L ∈ L with
one endpoint in V and the other in V′ .

Additionally, each vertex and edge carries a piece of data that records whence it came:
Let TV denote the component of T \ X corresponding to vertex V, and let LE be the
line in L corresponding to edge E.

Recall that 1 denotes the vertex of T corresponding to the identity element of F , so the
notation Wb(1){[w]} of the previous section refers to the Whitehead graph over the
vertex 1.

We have partially defined functions from T and L to W(X ):

Definition 2.10 If x ∈ T \ X define ΘX (x) to be the vertex of W(X ) corresponding
to the component of T \ X containing x .

If L ∈ L such that L ∩ X 6= ∅ and ∂L ∩ ∂X = ∅, define ΘX (L) to be the edge of
W(X ) contributed by L.

We shorten the notation to Θ when X is apparent.

The point of this extra data is to consider Whitehead graphs not just as abstract graphs,
but as pictures of L in T .

Figure 11 depicts the line pattern L{ab,abāb̄} in F = 〈a, b〉. It also shows closeups of
the lines that pass through the vertex b and through the edge [1, a]. The Whitehead
graphs W(b){ab, abab} and W([1, a]){ab, abab} in Figure 12 show the corresponding
Whitehead graphs.

Notice that the Whitehead graph over X looks like the closeup of the line pattern
passing through X , with lines exiting X through a common edge of T pinched to a
vertex. It will sometimes be convenient not to do this pinching, but at the same time
remember the incidence of the edges. For this we introduce the following formalism:
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Closeup at b

Closeup over [1, a]
Figure 11: Line pattern L{ab,abāb̄} with closeups.

Definition 2.11 A graph with loose ends at v1, . . . , vk is a graph Γ with a specified
subset of vertices {v1, . . . , vk} that have been marked ‘deleted’. An edge e of Γ incident
to a deleted vi is said to have a loose end at vi .

A component of a graph with loose ends is an equivalence class of edges and undeleted
vertices given by the incidence relation.

Definition 2.12 For connected sets X ⊂ Y ⊂ T with X ∩ T 6= ∅, let W(X ) } Y
denote W(X ) with loose ends at each vertex V ∈W(X ) such that TV ∩ Y 6= ∅.

In other words, to construct W(X ) we look at the lines of L passing through X and
pinch off a vertex for each edge e of T \ X incident to X . For W(X ) } Y , we do
the same, except that we do not pinch a vertex if e ∈ Y . Instead we will have loose
ends at a deleted vertex corresponding to such an e. See Figure 13 for an example,
and compare to Figure 12. The utility of this definition is that it will let us build up
large Whitehead graphs from smaller pieces. The idea, which will be made precise
in Section 2.5.5, is that if Y =

∐
iXi is a connected subset of T written as a disjoint

union of connected pieces Xi then we can build up W(Y) from the various ‘graphs
with loose ends’ W(Xi)} Y by ‘splicing loose ends’.
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W(b){ab, abāb̄} W([1, a]){ab, abāb̄}

Figure 12: Whitehead graphs

Figure 13: Whitehead graph with loose ends W([1, a]){abāb̄, ab}} [b̄, ab]

Definition 2.13 For connected sets X ⊂ Y ⊂ T with X ∩ T 6= ∅, let C be a
component of W(X )} Y .

C has a loose end at V if it contains an edge with a loose end at V. C has an end at
ξ ∈ ∂T if ξ is a limit point of

⋃
E∈C LE .

Define ∂TC =
∐

V∈C ∂TV .

2.5.4 Splicing

Manning [13] gave a construction for combining two graphs called splicing. Let Γ0

and Γ1 be graphs with vertices γi ∈ Γi of the same valence. Let a splice map σ be a
bijection between edges incident to γ0 and edges incident to γ1 . The result of splicing
Γ0 and Γ1 at γ0 and γ1 by σ is defined to be a graph whose vertices are the union of
vertices of Γ0 and Γ1 , minus γ0 and γ1 . Edges not incident to γ0 or γ1 are retained. If
e0 = [u, γ0] and e1 = σ(e0) = [γ1, v], then add an edge [u, v] in the new graph. In the
above terminology, take the graph Γ0 with loose ends at γ0 and the graph Γ1 with loose
ends at γ1 and ‘tie up’ the loose ends by matching them using the given splice map σ .

2.5.5 Cutting Whitehead Graphs into Pieces and Splicing them Together

The following lemma is the motivation for the splicing construction:
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Lemma 2.14 For connected sets X ⊂ Y ⊂ T with X ∩ T 6= ∅, suppose X0 q X1 =

X \ e for some edge e of X in T . Then W(X )} Y is obtained from W(X0)} Y and
W(X1) } Y by discarding any edges E with ∂LE ∩ X 6= ∅ and splicing remaining
loose ends at ΘX0(e) in W(X0)} Y to loose ends at ΘX1(e) in W(X1)} Y .

In this situation we say W(Xi)}Y includes into W(X )}Y via splicing. See Figure 14.

W(b̄)} Y

W([1, a])} Y

W(Y)

W(ab)} Y

Figure 14: Inclusion via splicing for F = 〈a, b〉 , w = {abāb̄, ab} , Y = [b̄, ab]

Manning states a similar result in the case that X = Y is bounded. The proof is
immediate from the definitions. The essential observation is that there is a natural
splicing map defined by sending an edge E ∈W(X0)} Y with a loose end at ΘX0(e)
to the unique edge E′ ∈W(X1)} Y with a loose end at ΘX1(e) such that LE = LE′ .

Manning notes that splicing two graphs that are connected without cut vertices yields a
graph that is connected without cut vertices. W(1) is connected without cut vertices,
by our standing assumption, so, by induction on the number of vertices of X :

Lemma 2.15 ([13]) If X is a bounded connected subset of T then W(X ) is connected
without cut vertices.

2.6 A First Connectivity Lemma

Recall that ∆ : ∂F → D is the quotient map.
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Lemma 2.16 ([17, Prop 2.1][15, Theorem 49]) Let e be an edge in T with endpoints
u and v. Let A = Shadowu(v). The set A = ∆(A) is connected in D .

We include the proof for completeness:

Proof Suppose B, C ⊂ D are open with A ⊂ B ∪ C and A ∩ B ∩ C = ∅. Let
B = A ∩ ∆−1(B) and C = A ∩ ∆−1(C). Compactness of ∂T implies B and C
are compact clopens. Since B is compact and open, there are finitely many vertices
x1, . . . , xa so that B = ∪a

i=1 Shadowu(xi). Assume x1, . . . , xa contains as few points as
possible, ie, the shadows of a proper subcollection of the xi have union a proper subset
of B . There is a similar finite collection y1, . . . , yb that determines C .

Assume B is non-empty. If x1 = v then B = A, so C = ∅, and we are done. Otherwise,
consider the convex hull H of {xi}a

i=1 ∪ {yj}b
j=1 ∪ {u}; it is a finite tree with leaves

{xi}a
i=1 ∪ {yj}b

j=1 ∪ {u}. Let X = H \ ({xi}a
i=1 ∪ {yj}b

j=1 ∪ {u}). By Lemma 2.15,
W(X ) is connected without cut vertices.

Consider the vertex Θ(x1) ∈W(X ). Since Θ(u) is not a cut vertex, there are edges of
W(X ) incident to Θ(x1) and not Θ(u). Such an edge corresponds to a line L ∈ L with
one endpoint in the shadow of x1 and the other endpoint in the shadow of z for some
z ∈ {xi}a

i=2 ∪ {yj}b
j=1 . In the decomposition space these two endpoints are identified,

so they must both be in B , hence z ∈ {xi}a
i=2 . Since W(X ) is connected and Θ(u)

is not a cut vertex, we conclude that all the vertices of W(X ) except Θ(u) belong to
{Θ(x1), . . . ,Θ(xn)}, so C = ∅. Thus, A is connected.

Together with Proposition 2.6, this implies:

Theorem 2.17 Let [w] be an arbitrary multiclass (not necessarily satisfying the
standing assumption of Section 2.5.2). F admits a free splitting relative to [w] if and
only if D[w] is not connected.

Proof Choose a basis b for F such that [w] is Whitehead minimal. By Proposition 2.6,
F splits freely rel [w] if and only if Wb(1){[w]} is not connected. If Wb(1){[w]} is
not connected then D is not connected by Corollary 2.7.

Suppose Wb(1){[w]} is connected. Pick an edge e ∈ T with vertices u and v.
Let A = Shadowu(v) ⊂ ∂T and A′ = Shadowv(u) ⊂ ∂T . Note ∂T = A

∐
A′ .

Whitehead minimality implies that Wb(1){[w]} has no cut vertex, so Lemma 2.16
applies. Moreover, ∆(A) and ∆(A′) have a point in common, since Wb(1){[w]}
connected implies there is some line in L crossing e. Thus, D = ∆(A) ∪∆(A′) is a
union of connected sets with non-empty intersection, so it is connected.
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3 The Topology of the Decomposition Space

In this section we prove some results for later use. We begin, in Section 3.1 by recalling
Moore’s Decomposition Theorem, which will be needed in Section 5. This theorem
requires a technical hypothesis called ‘upper semi-continuity’.

In Section 3.2 we explicitly construct a neighborhood basis for D . It follows quickly
that the decomposition we consider is upper semi-continuous and that D is metrizable.
Furthermore, when D is connected it is locally connected and arc connected.

In the two remaining subsections we prove technical results that will be used in Section 4
to show that when the rJSJ is non-trivial there do exist cut points or uncrossed cut pairs
of D , and that uncrossed cut pairs are rational.

The purpose of Section 3.3 is to make rigorous the idea that we can ‘see’ a neighborhood
of x ∈ D by looking at components of a Whitehead graph over a ray in T tending
towards a point of ∆−1(x) in ∂F . Precisely, given a point x ∈ D and a neighborhood
N′ of x there exists a connected open neighborhood N ⊂ N′ of x such that for any
simplicial geodesic φ : [0,∞]→ T with φ(∞) ∈ ∆−1(x) one of the following holds:

• ∆−1(x) /∈ ∂w and there is a bijection between the components of N \ {x} and
components of W(φ([1,∞]))} φ([0,∞]).

• ∆−1(x) ∈ ∂w and there is a bijection between the half of the components of
N \ {x} and components of W(φ([1,∞]))} φ([0,∞]).

In the second case we only see half the components of N \ {x} because |∆−1(x)| = 2.
The other half of the components correspond to components of a Whitehead graph over
a ray tending towards the other point in ∆−1(x) ∈ ∂F .

There are two main results of Section 3.4. One, Proposition 3.25, is a refinement of a
rational approximation result from [4]. The other, Lemma 3.32, says that if H is the
convex hull in T of the preimage of a cut pair of D then at every point x of H the
Whitehead graph W(x)}H has at least two components.

3.1 Aside on General Decomposition Spaces

We recall some results about more general decomposition spaces.

Let X be a topological space. Let X =
∐

i∈I Xi be a decomposition of X as a disjoint
union. The non-degenerate elements are the non-singleton Xi . The decomposition
space is the index set I with the quotient topology induced by Xi 7→ i.
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Definition 3.1 A decomposition X =
∐

i∈I Xi is upper semi-continuous if for each
i ∈ I the set Xi is compact and for each open set U ⊃ Xi there is an open set V ⊃ Xi

such that for all j ∈ I if Xj ∩ V is non-empty then Xj ⊂ U .

Lemma 3.2 ([11, Theorem 3-33]) The decomposition space of an upper semi-
continuous decomposition of a compact Hausdorff space is Hausdorff.

The following theorem will be used in Section 5.

Theorem 3.3 (Moore’s Decomposition Theorem [16]) An upper semi-continuous
decomposition of the 2–sphere into connected, non-separating sets has decomposition
space homeomorphic to the 2–sphere.

3.2 Basic Topology of the Decomposition Space

We now return our attention to the decomposition space D of ∂F associated to w.

Let L|X = {L ∈ L | L ∩ X 6= ∅}. If X is bounded, L|X is finite.

3.2.1 Neighborhood Basis

The goal of this section is to describe a neighborhood basis of D . A set A in ∂T is
saturated if A = ∆−1(∆(A)). The ∆–image of an open saturated set is open. First we
build open saturated neighborhoods of points ξ ∈ ∂T . The construction proceeds in
stages. The idea is to start with a basic neighborhood of ξ in ∂T . This neighborhood
might not be saturated, so we add some points to make it saturated. The resulting set
might not be open, so add basic neighborhoods of all of the newly added points, and
repeat.

Let M be the ‘maximum overlap’ in L: the maximum length of L ∩ L′ for distinct
lines L and L′ in L. This is finite, since w consists of finitely many words.

Let ξ0 be a point in ∂T , and let r ∈ N.

Let φ0 : [0,∞] � [1, ξ0] be the simplicial geodesic. If ξ0 is the endpoint of a line
[ξ0, ξ1] ∈ L let r0 = max{r, 1 + dT (1, [ξ0, ξ1])}. Otherwise, there is at most one line
of L with one endpoint in Shadow1(φ0(r + M + 1)) and the other in the complement
of Shadow1(φ0(r)). If there are none, let r0 = r . If there is one, L, let r0 > r
be the minimal number such that L ∩ [1, ξ0] ⊂ φ0([0, r0 + M]). Then no line of L
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has one endpoint in Shadow1(φ0(r0 + M + 1)) and the other in the complement of
Shadow1(φ0(r0)), since such a line would overlap L by more than M .

Consider two neighborhoods of ξ0 , an ‘inner neighborhood’ S0 = Shadow1(φ0(r0 +

M + 1)) contained in an ‘outer neighborhood’ O0 = Shadow1(φ0(r0)). Let L′0 be the
lines of L with exactly one endpoint in S0 and both endpoints in O0 .

If ξ0 does not belong to an element of ∂w then L′0 accounts for all lines with exactly one
endpoint in S0 and we define ‘stage 0’ to be {S0}. Otherwise L = [ξ0, ξ1] is the unique
line with one endpoint in S0 and one outside of O0 . Let φ1 : [0,∞]� [1, ξ1] be the
simplicial geodesic. Let S1 = Shadow1(φ1(r0 + M + 1)) and O1 = Shadow1(φ1(r0)).
Let L′1 =

(
L|φ1(r1+M) ∩ L|φ(r1+M+1)

)
\ {L}. Define ‘stage 0’ to be {S0,S1}. Note in

this case ∆(L−) = ∆(L+) ∈ ∆(S0) ∩∆(S1).

Suppose now we have constructed stage k . Let rk+1 = rk + M + 1. Let I be the
indices of the stage k sets. For i ∈ I and Li,j ∈ L′i , let φi,j : [0,∞] � [1, ξi,j] be
the simplicial geodesic, where ξi,j is the endpoint of Li,j that is not in Si . Define
an inner neighborhood Si,j = Shadow1(φi,j(rk+1 + M + 1)) and outer neighborhood
Oi,j = Shadow1(φi,j(rk+1)) of ξi,j .

For fixed i and all j we have Oi,j ⊂ Oi and Oi,j is disjoint from Si and from every Oi,j′

for j′ 6= j.

Let L′i,j be the lines of L with exactly one endpoint in Si,j and with both endpoints in
Oi,j . We know that there is one line of L with an endpoint in Si,j and the other not in
Oi,j — it is Li,j , and its other endpoint is in Si . There can be no other such line, for it
would overlap Li,j by more than M .

Call Si the predecessor of Si,j . Let ‘stage k + 1’ be the sets Si,j produced from the sets
of stage k . By construction, the stage k + 1 sets are disjoint from each other and from
all sets in the previous stages. This is true for their ∆ images in D as well, except that
∆(Si,j) ∩∆(Si) = ∆(L−i,j) = ∆(L+

i,j).

Repeat this construction for as many stages as possible, potentially infinitely many, to
produce a collection {Sτ}τ of disjoint open sets. Let S(r) = ∪τSτ . By construction,
S(r) is an open saturated neighborhood of ξ0 , so its image Sξ0(r) = ∆(S(r)) is an open
neighborhood of ∆(ξ0).

Definition 3.4 For x ∈ D pick ξ0 ∈ ∆−1(x) and define N(x, r) = Sξ0(r).

By construction, N(x, r) does not depend on the choice of ξ0 ∈ ∆−1(x).

It is immediate from the construction that:

Proposition 3.5 {N(x, r) | r ∈ N} is a neighborhood basis for x .
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3.2.2 Upper Semi-continuity

Proposition 3.6 The decomposition of ∂T whose non-degenerate elements are ∂w is
an upper semi-continuous decomposition.

Proof This follows directly from Section 3.2.1 since the sets Sξ0 are saturated.

Corollary 3.7 D is Hausdorff.

Proposition 3.8 D is metrizable.

Proof ∆ : ∂T → D is a continuous map from a compact space to a Hausdorff
space, by Corollary 3.7, so it is a closed map. The codomain is first-countable by
Proposition 3.5. The domain is metrizable, so a theorem of Stone [21, Theorem 1] says
D is metrizable.

3.2.3 Connectivity

Lemma 3.9 For every x ∈ D and r ∈ N, the set N(x, r) is connected.

Proof Lemma 2.16 says that for each of the sets Sτ in the construction of N(x, r), the
set ∆(Sτ ) is connected in D . If there are two stage 0 sets their ∆–images have a point
in common, and the ∆–image of every set from a higher stage has a point in common
with the ∆–image of its predecessor. Thus N(x, r) is connected.

Proposition 3.10 (cf [17, Proposition 2.1]) D is connected and locally connected.

Proof It is locally connected by Lemma 3.9.

Let u and v be neighboring vertices in T . Let A = Shadowu(v). Then Ac =

∂T \ A = Shadowv(u). By Lemma 2.16, ∆(A) and ∆(Ac) are each connected. W(1)
is connected, so there exists L ∈ L|u∩L|v , and ∆(L−) = ∆(L+) ∈ ∆(A)∩∆(Ac).

An arc is an embedded path. A space is arc-connected if any two points can be joined
by an arc. A space is Peano if it is compact, Hausdorff, connected, locally connected,
and metrizable.5

5Alternatively, a space is Peano if it is a continuous image of the unit interval. These
definitions are equivalent for Hausdorff spaces by the Hahn-Mazurkiewicz Theorem.
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Proposition 3.11 D is Peano.

Proof D is compact. It is Hausdorff by Corollary 3.7, connected and locally connected
by Proposition 3.10, and metrizable by Proposition 3.8.

Theorem 3.12 ([23, Theorem 31.2]) A Peano space is arc-connected.

Corollary 3.13 D is arc-connected.

3.3 Whitehead Graphs and Cut Sets of the Decomposition Space

Lemma 3.14 If x ∈ D such that |∆−1(x)| = 1 then x is not a cut point.

Proof Let ξ = ∆−1(x). Let φ : [0,∞] � [1, ξ] be the simplicial geodesic. For all
i ∈ N the set ∆(Shadowφ(i)(φ(i − 1))) is connected, by Lemma 2.16. D \ {x} is an
increasing union of such sets, so it is connected.

Proposition 3.15 (cf [4, Lemma 4.9]) Let S ⊂ D be closed with |∆−1(S)| > 1,
and let H be the convex hull of ∆−1(S). Then C 7→ ∆(∂TC) is a bijection between
components of W(H) and components of D \ S .

Proof Let C be a component of W(H). Let V be a vertex of C. By Lemma 2.16,
∆(∂TV) is connected in D . If vertices V and V′ are joined by an edge E in C then,
by definition, LE ∈ L is a line with one endpoint in ∂TV and the other in ∂TV′ , so
∆(∂TV) and ∆(∂TV′) have a point in common. This implies ∆(∂TC) is connected. It
is also open, since ∂TC is open and saturated.

Since S is closed, for every ξ ∈ ∂T \ ∆−1(S) there is a vertex v ∈ H such that
[v, ξ] ∩H = {v}. Therefore, ΘH(ξ) is a vertex of W(H) with ξ ∈ ∂TΘH(ξ) .

Letting C range over all components of W(H), we get disjoint, connected, open subsets
of the form ∆(∂TC), whose union is all of D \ S .

Lemma 3.16 Let S ⊂ D be a closed minimal cut set, and let H be the convex hull of
∆−1(S). For all x ∈ S , each component C of W(H) has an end at a point in ∆−1(x).

Proof C has an end at a point in ∆−1(x) if and only if ∆(∂TC) has x as a limit point,
which it must, by Lemma 2.1.
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Definition 3.17 Let φ : [0, l]→ T be a simplicial geodesic for some l ∈ N \ {1}. An
edge path E0, . . . ,Ek in W(φ([1, l− 1]))} φ([0, l]) is non-backtracking if the path in
T obtained by concatenating the segments LEi ∩ φ([0, l]) does not backtrack.

Lemma 3.18 For l ∈ N \ {1}, let φ : [0, l]→ T be a simplicial geodesic. Let E be
an edge of W(φ([1, l − 1])) } φ([0, l]). There exists a non-backtracking edge path
E = E0, . . . ,Ek with LEk ∈ L|φ(0) .

Proof Let r be the smallest integer such that φ(r) ∈ LE0 . If r ≤ 0 we are done.
Suppose not. By minimality of r , the edge Θφ(r)(LE0) is incident to an undeleted vertex
V ∈W(φ(r))} φ([0, l]).

W(φ(r)) is connected without cut vertices, so the vertex Θφ(r)(φ(r+1)) is not a cut vertex.
Thus, there is an edge path E′1, . . . ,E

′
j in W(φ(r)) connecting V to Θφ(r)(φ(r − 1))

that does not go through the vertex Θφ(r)(φ(r + 1)). Choosing the shortest such path
guarantees that LE′i ∩ φ([0, l]) = φ(r) for all i < j, and LE′j ∩ φ([0, l]) = φ([r′, r]) for
some r′ < r . Extend the existing edge path by edges Ei = Θφ([1,l−1])(LE′i ). This gives
a non-backtracking edge path beginning with E that reaches closer to φ(0). Proceed by
induction.

The number of lines in L|e for an edge e ∈ T corresponding to basis element b is equal
to the valence of the b–vertex in W(1).

Corollary 3.19 The maximum valence of a vertex in W(1) is an upper bound for the
number of components of W(φ([1,∞]))} φ([0,∞]).

Proposition 3.20 D \ S has finitely many components for every finite S ⊂ D .

Proof Let {ξ1, . . . , ξk} = ∆−1(S), and suppose D\S is not connected. Then k ≥ 2, by
Lemma 3.14. Let H be the convex hull of ∆−1(S). If k = 2, let X be an arbitrary vertex
in H; otherwise, let X be the convex hull of the branch points of H . For 1 ≤ i ≤ k ,
let φi : [0,∞] ↪→ T be the simplicial geodesic ray with φi([0,∞]) ∩ X = φ(0) and
φ(∞) = ξi . By Lemma 2.14, W(H) is obtained by splicing the W(φi([1,∞]))}H to
W(X ) }H . The former have finitely many components by Corollary 3.19, and the
later is finite, so W(H) has finitely many components. By Proposition 3.15, D \ S has
finitely many components.

Lemma 3.21 Let φ : [−∞,∞]� [g∞, g∞] be a simplicial geodesic for some cycli-
cally reduced g ∈ F . Let L, L′ ∈ L|φ((0,1)) . Then Θφ([−∞,∞])(L) and Θφ([−∞,∞])(L′)
are in the same component of W(φ([−∞,∞])) if and only if Θφ([1,∞])(L) and
Θφ([1,∞])(L′) are in the same component of W(φ([1,∞]))} φ([0,∞]).
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Proof W(φ([1,∞]))} φ([0,∞]) includes into W(φ([−∞,∞])) via splicing, so the
‘if’ direction is clear.

For the converse, consider the finitely many lines in L|φ((0,1)) . For every pair Li and Lj

that contribute edges to a common component of W(φ([−∞,∞])), choose an edge
path Pi,j connecting them.

Define a g–action on W(φ([−∞,∞])) by sending edge E to edge Θφ([−∞,∞])(gLE).
The g–action permutes components, and by replacing g with a suitable power we may
assume the permutation is trivial. Let m be sufficiently large so that for all i and j and
all E ∈ Pi,j , we have gmLE ∩ φ([−∞,∞]) ⊂ φ([1,∞]).

By Lemma 3.18, there is a non-backtracking edge path connecting Θφ([1,∞])(L)
to an edge E such that LE ∈ L|gmφ(1) , and a similarly defined edge E′ for L′ .
Since the g–action is trivial on components, Θφ([−∞,∞])(LE) and Θφ([−∞,∞])(LE′)
are in the same component of W(φ([−∞,∞])). Therefore, they are connected in
W(φ([1,∞])) } φ([0,∞]) by one of the gmPi,j . Concatenating these three paths
connects Θφ([1,∞])(L) and Θφ([1,∞])(L′) in W(φ([1,∞]))} φ([0,∞]).

Lemma 3.22 For every x ∈ D and every neighborhood N′ of x and every simpli-
cial geodesic φ : [0,∞] → T with ∆(φ(∞)) = x there exists a connected open
neighborhood N ⊂ N′ of x such that:

#(N \ {x}) = |∆−1(x)| lim
r→∞

# (W(φ([r,∞]))} φ([0,∞]))

Here, | · | denotes cardinality and #(·) denotes number of components.

Note that x is a cut point in D if and only if:

lim
r→∞

# (W(φ([r,∞]))} φ([0,∞])) > 1 and |∆−1(x)| = 2

Proof As r increases, # (W(φ([r,∞]))} φ([0,∞])) is a non-decreasing sequence of
integers that by Corollary 3.19 is bounded above. Thus, for any sufficiently large r1 we
may assume that the limit has been achieved and that ∆(Shadowφ(0)(φ(r1))) ⊂ N′ . Let
C1, . . . ,Ck be the components. For each i, let Li,1, . . .Li,mi be the lines of L that cross
the edge φ((r1 − 1, r1)) and satisfy Θφ([r1,∞])(Li,j) ∈ Ci .

For each Li,j take a connected open neighborhood Ni,j of ∆(L+
i,j) as in Section 3.2.1.

We can take these neighborhoods small enough so that they are disjoint and contained
in N′ . For each i define Ni = ∆(∂TCi) ∪

⋃
j Ni,j . The Ni are disjoint, connected, open

sets that all have x as a limit point, and x is the only limit point that any two have in
common.
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If ∆−1(x) = φ(∞) then let N = {x} ∪
⋃

i Ni and we are done. Otherwise, let φ′

be a simplicial geodesic ray converging to the other point in ∆−1(x), and repeat the
construction to produce connected open sets N′1, . . . ,N

′
k . The number k of components

is the same since there is a group element acting cocompactly on [φ′(∞), φ(∞)]. Let
N = {x} ∪

⋃
Ni ∪

⋃
N′i .

Proposition 3.23 Let φ : [−∞,∞]� [hw∞, hw∞] be a simplicial geodesic for some
w ∈ w. Let x0 = ∆(hw∞), and suppose x0 is not a cut point.

lim
r→∞

#(W(φ([r,∞]))} φ([0,∞])) = #(W(φ([1,∞]))} φ([0,∞])) = 1

Furthermore, for every neighborhood N′ of x0 there exists an open connected neighbor-
hood N ⊂ N′ of x0 such that N \ {x0} has precisely two components.

Proof The first statement is true because 〈w〉 acts cocompactly on φ((−∞,∞)) and
x0 is not a cut point. The second statement is an application of Lemma 3.22.

The next fact will be used in Section 5, but it is convenient to prove it now:

Proposition 3.24 If A is the closure of a complementary component of a cut point or
cut pair in D , then A is arc-connected.

Proof Let x be the cut point or one of the points of the cut pair. Let N′ be a
neighborhood of x in D . Construct open connected sets Ni ⊂ N′ as in Lemma 3.22.
Let N = {x} ∪

⋃
Ni⊂A Ni . Then N ⊂ A ∩ N′ is a connected set containing x that is

open in A. Therefore, A is locally connected at x .

A is arc-connected just as in Corollary 3.13, since all of the other necessary properties
are inherited from D .

3.4 Cut Point and Cut Pair Detection and Approximation

Proposition 3.25 If x ∈ D is a cut point then the stabilizer of x is conjugate to 〈w〉
for some w ∈ w. In particular, there are finitely many orbits of cut points.

Proof By Lemma 3.14, ∆−1(x) consists of two points, so ∆−1(x) = {hw∞, hw∞}
for some h ∈ F and w ∈ w. The stabilizer of x is therefore h〈w〉h.

Lemma 3.26 (Rational Approximation cf [4, Lemma 4.12]) Let φ : [0,∞]→ T be
a simplicial geodesic. There exist elements g, h ∈ F and a ∈ b ∪ b such that:
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(1) the oriented edges [h, ha] and [gh, gha] belong to φ([0,∞]) ∩ [g∞, g∞],

(2) components of W([ha, gh]) } [h, gha] that are in different components of
W(φ([1,∞]))} φ([0,∞]) are in different components of W([g∞, g∞]), and

(3) for each line L ∈ L|h∩L|ha , the lines L and gL ∈ L|gh∩L|gha contribute edges
to the same component of W(φ([1,∞]))} φ([0,∞]).

Moreover, g is conjugate to an element whose word length with respect to b is bounded
in terms of the rank of F and the maximum valence among vertices in W(1), independent
of φ.

Proof n = rank(F). Let x be the maximum valence of W(1). Let y be the x–th
Bell number, the number of distinct partitions of x items into nonempty subsets. Let
z = 1 + (2n)y+2 . Along any directed segment X of φ([1,∞]) of length z there is some
a ∈ b ∪ b such that there are at least y + 2 many directed a–edges in the segment. Fix
the first of these, e = [g0, g0a].

Fix a numbering of the components of W(φ([1,∞])) } φ([0,∞]). The set L|e of
lines of L that contain e is finite. Fix a numbering of them 1, . . . , k . Of course,
k ≤ x , by Corollary 3.19. Partition them into subsets according to which component of
W(φ([1,∞]))} φ([0,∞]) the corresponding edge belongs.

Consider an element g′ ∈ F such that the oriented edge g′e is in X . There is a bijection
L|e → L|g′e : L 7→ g′L. Push forward the numbering of L|e to L|g′e , and consider the
partition of 1, . . . , k according to which component of W(φ([1,∞]))} φ([0,∞]) each
line of L|g′e belongs to. So g′ gives a new partition of 1, . . . , k .

There are at least y + 1 such elements g′ , but at most y distinct partitions of the
numbers 1, . . . , k , so there exist g1 and g2 such that the oriented edges g1e and g2e are
edges of φ([1,∞]) (say, with g2e between g1e and φ(∞)) and for each line L ∈ L
containing g1e, the corresponding line g2g1L containing g2e is in the same component
of W(φ([1,∞]))} φ([0,∞]).

The desired elements are h = g1g0 and g = g2g1 . The word length of hgh is the
distance from g1e to g2e, which is at most z.

Corollary 3.27 With notation as above, D \ ∆({g∞, g∞}) has at least as many
components as W(φ([1,∞]))} φ([0,∞]).

Corollary 3.28 If D does not have any cut points or cut pairs with more than two
complementary components, then for every simplicial geodesic φ : [0,∞]→ T there
are at most two components of W(φ([1,∞]))} φ([0,∞]).
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Lemma 3.29 Let φ : [−∞,∞] → T be a simplicial geodesic such that ∆(φ(∞))
and ∆(φ(−∞)) are distinct points and neither is a cut point. If, for some increasing
sequence (ri) of non-negative integers, there are at least two components of every
W(φ([−ri, ri]))} φ([−ri − 1, ri + 1]), then ∆({φ(−∞), φ(∞)}) is a cut pair.

Proof W(φ([−∞,∞])) has at least two components. Let H be the convex hull of
∆−1(∆({φ(−∞), φ(∞)})). By Proposition 3.15 we must show W(H) has at least
two components. We are done if H = φ([−∞,∞]). Otherwise, we obtain W(H)
from W(φ([−∞,∞])) by deleting at most two vertices and splicing on connected
graphs at the deleted vertices. Thus, W(H) has the same number of components as
W(φ([−∞,∞])).

Lemma 3.30 Let H be the convex hull of a subset of ∂T , and let Y be a connected
subset of H . Let C be a component of W(Y)}H , and let X = Y ∩

⋃
E∈C LE .

(1) For every leaf v of X there exists an edge E ∈ C with v ∈ LE and an edge
e ∈ H \ Y incident to v such that E has a loose end at ΘY (e).

(2) The sum of the number of distinct ends and loose ends of C is at least two.

Proof Let v be a leaf of X . There is at most one edge e0 of X incident to v.

Let E be an edge of C such that v ∈ LE . Let e1 6= e0 be an edge of LE incident to v.
Since v is a leaf of X , e1 is not an edge of Y , so there exists a vertex ΘY (e1) ∈W(Y).
If e1 ∈ H \ Y then we are done: E has a loose end at ΘY (e1). If there are no such
edges then, since W(v) is connected without cut vertices, it would mean that v is a leaf
of H , but H has no leaves. This proves (1).

(2) follows directly from (1) unless X is a single vertex. If X = v then repeat the above
argument with e0 = e1 to find a second edge e2 6= e1 such that C also has an edge with
a loose end at ΘY (e2).

Lemma 3.31 Let S ⊂ D be a closed minimal cut set that is not a cut point and contains
a point x such that |∆−1(x)| = 2. For ε ∈ ±, let ψεx : [0,∞] → T be a simplicial
geodesic ray such that ψεx([1,∞]) contains no branch point of the convex hull H of
∆−1(S) and such that {ψ−x (∞), ψ+

x (∞)} = ∆−1(x). Then for ε ∈ ± there is a unique
component Cε ⊂W(H) such that ψεx([1,∞]) ∩

⋃
E∈Cε LE 6= ∅, and these are the only

two components of W(H). Hence, S has exactly two complementary components.
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Proof By Proposition 3.23, each W(ψεx([1,∞])) } φ([0,∞]) is connected. Since
ψεx([1,∞]) contains no branch point of H , it follows that W(ψεx([1,∞]))}φ([0,∞]) =

W(ψεx([1,∞])) } H includes into W(H) via splicing. Therefore, there is a single
component Cε ⊂W(H) containing the image of W(ψεx([1,∞]))} φ([0,∞]).

If C is a component of D \ S then by Lemma 3.16 the corresponding component C of
W(H) has an end at ψεx(∞) for at least one ε, so C is either C− or C+ .

Lemma 3.32 Let {x, y} be a cut pair in D . Let H be the convex hull of ∆−1({x, y}).
Let φ : [0, l]→ H be a simplicial geodesic of finite length l ≥ 2. Then W(φ([1, l−
1]))} φ([0, l]) has at least two components.

Proof If ∆−1({x, y}) is two points then φ can be extended to be a simplicial geodesic
φ : [−∞,∞] � H . It is an easy consequence of Lemma 3.18 that if W(φ([1, l −
1]))} φ([0, l]) is connected then so is W(H), so suppose |∆−1({x, y})| > 2.

Let X = φ([1, l− 1]) and Y = φ([0, l]).

For z ∈ {x, y}, if |∆−1(z)| = 2 then for ε ∈ ± let ψεz : [0,∞]→ T be the simplicial
geodesic rays such that {ψ−z (∞), ψ+

z (∞)} = ∆−1(z) and such that ψεz (0) is the
only branch point of H in the image of ψεz . Let Lz ∈ L be the line such that
{L−z ,L+

z } = ∆−1(z).

We make three preliminary claims:

Claim 3.32.1 Let Z ⊂ H be connected. Let z ∈ {x, y} with |∆−1(z)| = 2. Then
ΘZ (Lz) is the only possible component of W(Z)}H that, for both ε ∈ ±, contains
edges Eε with LEε ∩ ψεz ([1,∞]) 6= ∅.

Proof of Claim. Every component of W(Z)}H that is not equal to ΘZ (Lx) or ΘZ (Ly)
includes into a component of W(H) via splicing. The claim follows from Lemma 3.31.
♦

Claim 3.32.2 Let Z ⊂ H be connected. No component of W(Z)}H has loose ends
at three distinct deleted vertices.

Proof of Claim. If Z does not contain a branch point of H then the claim is trivial
because W(Z)}H has at most two deleted vertices.

If there is only one branch point, or if there are two and Z contains both, or if Z is
disjoint from one of Lx or Ly , then the claim follows from Claim 3.32.1.
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The remaining possibility is that Lx ∩ Ly contains an edge and Z contains exactly one
branch point of H . Then W(Z)}H has at most three deleted vertices, which, without
loss of generality, we may assume are ΘZ (ψ+

x (∞)), ΘZ (ψ+
y (∞)), and ΘZ (ψ−x (∞)) =

ΘZ (ψ−y (∞)).

Suppose C is a component with loose ends at all three deleted vertices. Let Z ′ =

Z ∪ (Lx ∩ Ly). Consider the component C′ of W(Z ′) } H containing the image
of C under splicing W(Z) } H to W((Lx ∩ Ly) \ Z) } H . Since C had loose
ends at ΘZ (ψ+

x (∞)) and ΘZ (ψ+
y (∞)), so does C′ . Since C had a loose end at

ΘZ (ψ−x (∞)) = ΘZ (ψ−y (∞)), the set
⋃

E∈C′ LE contains an edge in Lx ∩ Ly . Thus,
Z ′∩

⋃
E∈C′ LE contains a leaf v ∈ Lx∩Ly with v 6= ψ+

x (0) = ψ+
y (0). By Lemma 3.30,

we conclude that v = ψ−x (0) = ψ−y (0) and that C′ has a loose end at either ΘZ′(ψ−x (1))
or ΘZ′(ψ−y (1)). In either case this contradicts Claim 3.32.1. ♦

Claim 3.32.3 Let Z ⊂ H be a bounded, connected set such that for z ∈ {x, y} and
ε ∈ ± we have four distinct vertices ΘZ (ψεz (∞)). For ε, ε′ ∈ ±, let Pε,ε

′
be the set of

components of W(Z)}H that contain an edge with a loose end at ΘZ (ψεx(∞)) and an
edge with a loose end at ΘZ (ψε

′
y (∞)). Then one of the following is true:

• P+,+ and P−,− are non-empty and P+,− and P−,+ are empty.

• P+,− and P−,+ are non-empty and P+,+ and P−,− are empty.

Proof of Claim. Lemma 3.30 and Claim 3.32.1 imply that every component except
ΘZ (Lx) and ΘZ (Ly) belongs to one of the Pε,ε

′
. Claim 3.32.2 implies that no component

belongs to more than one of the Pε,ε
′
. If fewer than two of the Pε,ε

′
are non-empty then

W(Z) is not connected without cut vertices, which we know it is.

Proposition 3.23 implies that each W(ψεz ([1,∞]))}ψεz ([0,∞]) is connected. Therefore,
by splicing, we see that all of the components in Pε1,ε2 and Pε3,ε4 include into a common
component of W(H) if ε1 = ε3 or ε2 = ε4 . W(H) has at least two components, so the
claim follows. ♦

We now proceed with the proof of the lemma.

If Y ⊂ Lz for z ∈ {x, y} then W(X )} Y has one component that is the single edge
ΘX (Lz) with two loose ends, and at least one other component containing vertices, so
at least two components.

Otherwise, if X does not contain a branch point of H then X separates ∆−1(x) from
∆−1(y) and W(X )}H = W(X )}Y . If this is connected then at most one component
of W(H) has ends in ∆−1(x) and ∆−1(y), contradicting Lemma 3.16.
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If W(X )}H has four deleted vertices then partition the components into parts ΘX (Lx),
ΘX (Ly), and the non-empty Pε,ε

′
of Claim 3.32.3. Assume, without loss of generality,

that P+,+ and P−,− are non-empty. W(X ) } Y is obtained from W(X ) } H by
un-deleting two vertices ΘX (ψεx(∞)) and ΘX (ψε

′
y (∞)).

If ε′ = −ε then the two components of W(X )} Y are:

ΘX (ψεx(∞)) ∪ΘX (Lx) ∪
⋃

C∈Pε,ε
C

and
ΘX (ψ−εy (∞)) ∪ΘX (Ly) ∪

⋃
C∈P−ε,−ε

C

If ε′ = ε then the components of P−ε,−ε remain separate components in W(X )} Y ,
distinct from the component containing the un-deleted vertices.

If W(X )}H has three deleted vertices then partition the components of W(X )}H
into three parts according to their two loose ends. To get W(X )} Y we un-delete one
vertex, which combines two of the parts into a single component but leaves the other
part alone.

4 Splittings

Armed with the machinery of Section 3, we are now prepared to construct the relative
JSJ decomposition.

Otal [17] makes the following observation:

Lemma 4.1 If F splits over 〈g〉 relative to w then ∆({g∞, g∞}) is a cut point or cut
pair in D .

Since a rigid decomposition space has no cut points or cut pairs:

Corollary 4.2 If (F,w) is rigid there are no cyclic splittings of F relative to w.

We will prove a converse in Theorem 4.14. This takes care of one case for which the
rJSJ is trivial. We saw another trivial case in Example 1.3, in which the decomposition
space is a circle. We explore this case in Section 4.1. In particular, a circle has no cut
points or uncrossed cut pairs.
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In the language of Guirardel and Levitt [9], a subgroup of F is universally elliptic rel w
if it is elliptic in every cyclic splitting of F rel w. A graph of groups decomposition is a
JSJ decomposition if all the splittings are over universally elliptic subgroups and the
decomposition is maximal with respect to this property. Our goal is to show that cut
points and uncrossed cut pairs correspond to universally elliptic relative cyclic splittings.
The first step is to show that the stabilizer of a cut point or uncrossed cut pair is an
infinite cyclic group over which F splits rel w. For cut points this was already noted by
Otal. We show that uncrossed cut pairs have infinite cyclic stabilizers in Section 4.2,
and in Section 4.3 we construct a simplicial tree with a cocompact F–action whose
edge stabilizers are the stabilizers of cut points and uncrossed cut pairs of D .

In Section 4.4 we prove the stabilizers of cut points and uncrossed cut pairs of D are
exactly the maximal cyclic universally elliptic subgroups of F rel w over which F splits
rel w. In Section 4.5 we conclude that the splitting we have constructed is the rJSJ.

4.1 Crossing Pairs and the Circle

In this subsection we give criteria for the decomposition space to be a circle.

Lemma 4.3 ([17, Theorem 2], [4, Theorem 6.1]) The following are equivalent:

(1) (F,w) is a QH–surface.

(2) Some Whitehead graph for w is a circle.

(3) Every Whitehead graph for w with no cut vertex is a circle.

(4) D is a circle.

(5) Every minimal cut set of D is a cut pair.

Proofs of the following two lemmas are elementary and are left to the reader.

Lemma 4.4 (Cut Pair Exchange) Suppose {x0, x1} and {y0, y1} are crossing cut
pairs in D . Then {x0, y0} is a cut pair.

Lemma 4.5 Suppose {x, y} and {y, z} are cut pairs of D and for every neighborhood
N′ of y there exists a connected neighborhood N ⊂ N′ of y such that N \ {y} has
exactly two components. Then {x, z} is a cut pair.

The following proposition is a generalization of a construction of Bowditch for
boundaries of hyperbolic groups [2].
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Proposition 4.6 D is a circle if and only if all of the following are satisfied:

(1) D is connected.

(2) D has no cut points.

(3) D has cut pairs.

(4) Every cut pair in D is crossed by a cut pair.

Proof A circle satisfies these conditions. We prove the converse.

Define an equivalence relation on D by x ∼ y if x = y or if {x, y} is a cut pair.
Transitivity follows from Claim 4.6.1 and Lemma 4.5.

Claim 4.6.1 For every cut pair {x0, x1} and every neighborhood N′ of x0 there exists a
connected neighborhood N ⊂ N′ of x0 such that N \{x0} has precisely two components.

Proof of Claim. Every cut pair is crossed, so by Lemma 2.3 every cut pair has precisely
two complementary components. By Corollary 3.28, for every simplicial geodesic
φ : [0,∞]→ T there are at most two components of W(φ([1,∞]))}φ([0,∞]). From
this and the fact that there are no cut points, Lemma 3.22 gives the desired neighborhood.
♦

Claim 4.6.2 Equivalence classes are closed.

Proof of Claim. If [x] is a single point we are done. Otherwise, suppose (yi) → y
for x 6= yi ∈ [x]. For some η ∈ ∆−1(y) there exists a subsequence of (yi) and
a choice of ηi ∈ ∆−1(yi) so that (ηi) → η in ∂T . Choose ξ ∈ ∆−1(x) and let
φ : [−∞,∞] � [ξ, η] be a simplicial geodesic. Passing to a further subsequence
of (ηi), there are positive integers ri such that ri+1 > ri + 1 and [ξ, ηi] ∩ [ξ, η] =

φ([−∞, ri + 1]). Since x 6= yi ∈ [x], each {x, yi} is a cut pair, so there are at least two
components of W(φ([−ri, ri]))}φ([−ri−1, ri + 1]), by Lemma 3.32. By Lemma 3.29,
∆({φ(−∞), φ(∞)}) = {x, y} is a cut pair, so y ∈ [x]. ♦

Claim 4.6.3 All of D is in one equivalence class.

Given the claim, every point of D is a member of a cut pair, and it follows from
Lemma 4.3 that D is a circle.

Proof of Claim. We have assumed that a cut pair exists, so there is an equivalence class
[x] consisting of more than one point. Suppose that [x] is not all of D .
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Let U be a component of D \ [x]. Since D is locally connected by Proposition 3.10,
and since [x] is closed by Claim 4.6.2, U is open in D . Since D is connected without
cut points, U has at least two limit points in [x]. Pick distinct points y0 and y1 in
U ∩ [x]. Since they are in [x], these points are a cut pair, and D \ {y0, y1} has exactly
two components, A0 and A1 . Assume U ⊂ A0 .

Let {z0, z1} be a cut pair crossing {y0, y1} with complementary components B0 and
B1 . Assume z0 ∈ A0 , z1 ∈ A1 , y0 ∈ B0 and y1 ∈ B1 .

By Lemma 4.4, z0 and z1 are in [x] ⊂ D \ U . Thus, U is contained in Bε , where ε is
either 0 or 1. Since U ⊂ A0 , we have U ⊂ A0 ∩ Bε .

Now, {yε, z0} is a cut pair whose components are C0 = A0 ∩ Bε and C1 = A1 ∪ B1−ε ∪
{y1−ε} ∪ {z1}. However, U , and hence C0 , has y1−ε ∈ C1 as a limit point, which is a
contradiction. Thus, [x] = D . ♦

Corollary 4.7 If D is not rigid and not a circle then D contains cut points or uncrossed
cut pairs.

4.2 Uncrossed Cut Pairs

In this section we show that uncrossed cut pairs have infinite cyclic stabilizers. A priori,
the preimage in ∂F of a pair of points in D could be as many as four points. This first
step is to rule out that possibility.

Lemma 4.8 The preimage of an uncrossed cut pair is two points.

Proof Let {x0, x1} ⊂ D be an uncrossed cut pair, and suppose |∆−1(x0)| = 2. Then
there is an h ∈ F and a w ∈ w such that ∆−1(x0) = {hw∞, hw∞}. Replacing {x0, x1}
by {hx0, hx1}, we may assume h is trivial. Let H be the convex hull of ∆−1({x0, x1}).
Let φ : [−∞,∞] � [w∞,w∞] be the simplicial geodesic with φ(0) = 1. Let p be
large enough so that φ([−∞,−p− 1]) ∪ φ([p + 1,∞]) contains no branch point of H .

By Lemma 3.31, for each ε ∈ ± there is a unique component Cε ⊂W(H) such that
∪E∈CεLE meets φ([ε · (p + 1), ε · ∞]), and these are the only two components.

We reach a contradiction by exhibiting a cut pair crossing {x0, x1}. For each ε ∈ ±,
we have wε·(2p+1)x1 ⊂ ∆(∂TCε), so {w2p+1x1,w−2p−1x1} crosses {x0, x1}.

{w2p+1x1,w−2p−1x1} is a cut pair by Lemma 4.5: w2p+1{x1, x0}={w2p+1x1, x0} and
w−2p−1{x0, x1}={x0,w−2p−1x1} are both cut pairs, and, by Lemma 3.22, for every
neighborhood N′ of x0 there exists a connected neighborhood N ⊂ N′ such that
N \ {x0} has exactly two components.
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Lemma 4.9 If ∆({ξ, g∞}) is a cut pair, for some g ∈ F and ξ ∈ ∂T with ξ 6= g∞,
then it is a crossed cut pair.

Proof We assume, without loss of generality, that g is cyclically reduced. Let H be
the convex hull of {g∞, g∞, ξ}.

There is a g–action on W([g∞, g∞]) given by E 7→ Θ[ḡ∞,g∞](gLE) for an edge E.
This action permutes the components of W([g∞, g∞]). Replacing g by a suitable
power, we may assume the components are fixed.

Let ψ : [0,∞] be the simplicial geodesic ray with ψ(∞) = ξ and ψ([0,∞]) ∩
[g∞, g∞] = ψ(0). Let φ : [−∞,∞] � [g∞, g∞] be the simplicial geodesic with
φ(0) = ψ(0).

Let L ∈ L|φ((0,1)) be a line such that ΘH(L) belongs to a component of W(H) with
an end at ψ(∞). Then there exists an edge path P : Θ[ḡ∞,g∞](L) = E0, . . . ,Ek in
W([g∞, g∞]) with Ek incident to Θ[ḡ∞,g∞](ψ(∞)). For all sufficiently large m, we have
φ([−∞,∞])∩

⋃
E∈gmP LE ⊂ φ([1,∞]). Since the g–action preserves components, E0

and gmE0 are in the same component. By Lemma 3.18 and Lemma 3.21, there is an edge
path in W(φ([1,∞]))}φ([0,∞]) that connects Θφ([1,∞])(LE0) to Θφ([1,∞])(LgmE0). By
concatenating gmP, we see that Θφ([1,∞])(LE0) is in the Θφ([1,∞])(gmψ(∞)) component
of W(φ([1,∞]))} φ([0,∞]). Since this is true for all sufficiently large m, every line
in L|φ((0,1)) that contributes an edge to a component of W(H) with an end at ψ(∞)
contributes an edge to the same component of W(φ([1,∞]))} φ([1,∞]), so there is
only one component, C+ , of W(H) with ends at φ(∞) and ψ(∞). The same argument
in the φ(−∞) direction shows there is only one component, C− , of W(H) with ends
at φ(−∞) and ψ(∞). Since ∆({ψ(∞), φ(∞)}) is a cut pair, C+ 6= C− .

It follows from Lemma 3.30 that for ε ∈ ±, H ∩
⋃

E∈Cε LE = [ψ(∞), φ(ε · ∞)],
so ΘH(gε·1ψ(∞)) ∈ Cε . The map E 7→ Θ[ψ(∞),φ(∞)](LE) sends C+ onto a com-
ponent of W([ψ(∞), φ(∞)]) not containing the vertex Θ[ψ(∞),φ(∞)](φ(−∞)), and
sends C− into the component of W([ψ(∞), φ(∞)]) containing Θ[ψ(∞),φ(∞)](φ(−∞)),
so Θ[ψ(∞),φ(∞)](gψ(∞)) and Θ[ψ(∞),φ(∞)](gψ(∞)) are in different components of
W([ψ(∞), φ(∞)]). Moreover, for L ∈ L|[ḡφ(0),gφ(0)] we have that ΘgH(L) ∈ gC−
if and only if ΘḡH(L) ∈ gC+ . It follows that W([gψ(∞), gψ(∞)]) has a compo-
nent not containing Θ[ḡψ(∞),gψ(∞)](φ(−∞)) and Θ[ḡψ(∞),gψ(∞)](φ(∞)). Therefore,
∆({gψ(∞), gψ(∞)}) is a cut pair, and it crosses ∆({ψ(∞), φ(∞)}).

Proposition 4.10 Uncrossed cut pairs are rational: For every uncrossed cut pair S
there exists an non-trivial element f ∈ F such that 〈f 〉 is the stabilizer of S .
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Proof Let S = {x0, x1}. By Lemma 4.8, |∆−1(xi)| = 1 for both i ∈ {0, 1}. Let
φ : [−∞,∞]� [∆−1(x0),∆−1(x1)] be a simplicial geodesic.

For increasing r , the sequence #W(φ([r + 1,∞])) } φ([r,∞]) is a non-decreasing
sequence of integers, bounded above by the maximum valence of W(1). Assume r is
large enough so that the sequence has achieved its maximum.

Let g, h, and a be the elements provided by Lemma 3.26 for φ : [r,∞]→ T . There
is some r′ > r such that φ(r′) = h and some r′′ > r′ + 1 such that φ(r′′) = gha.
Because of our choice of r , Lemma 3.26 (3) implies that for L ∈ L|φ([r′,r′+1]) , the
edges Θφ([r′+1,∞])(L) and Θφ([r′+1,∞])(gL) are in the same component of W(φ([r′ +
1,∞]))} φ([r′,∞]).

If φ(∞) 6= g∞ and φ(−∞) 6= g∞ then, since ∆({g∞, g∞}) is a cut point or cut
pair by Corollary 3.27 and S is uncrossed, Θφ([−∞,∞])(g∞) and Θφ([−∞,∞])(g∞)
are in the same component of W(φ([−∞,∞])). Let L ∈ L|φ((r′,r′+1)) be a line
such that Θφ([−∞,∞])(L) is in a component of W(φ([−∞,∞])) not containing
Θφ([−∞,∞])(g∞) and Θφ([−∞,∞])(g∞). Then Θφ([r′+1,∞])(L) and Θφ([r′+1,∞])(gL)
are in the same component of W(φ([r′ + 1,∞])) } φ([r′,∞]), which, in light of
the inclusion via splicing, implies that Θφ([−∞,∞])(L) and Θφ([−∞,∞])(gL) are in
the same component of W(φ([−∞,∞])). This implies that Θφ([−∞,∞])(gφ(−∞))
is in a component of W(φ([−∞,∞])) not containing the vertex Θφ([−∞,∞])(g∞).
However, Θφ([−∞,∞])(gφ(∞)) is in the component of W(φ([−∞,∞])) containing
Θφ([−∞,∞])(g∞), and ∆({gφ(−∞), gφ(∞)}) is a cut pair. This contradicts the hypoth-
esis that S is uncrossed.

In the two cases that [g∞, g∞] and φ([−∞,∞]) share exactly one endpoint, Lemma 4.9
gives a contradiction to the hypothesis that S is uncrossed. Therefore φ(∞) = g∞ and
φ(−∞) = g∞ , and we take f to be an indivisible root of g.

Proposition 4.11 D has finitely many orbits of uncrossed cut pairs.

Proof The element g in Proposition 4.10 is conjugate to a word of bounded length
provided by Lemma 3.26. There are finitely many such conjugacy classes.

Lemma 4.12 If D is not rigid or a circle then there is an indivisible element g ∈ F
such that ∆({g∞, g∞}) is a cut set that is not crossed by any cut pair.

Proof By Corollary 4.7 there exist cut points or uncrossed cut pairs. For cut points
apply Proposition 3.25; for uncrossed cut pairs apply Lemma 4.8.
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4.3 The Splitting Criterion

Proposition 4.13 is a generalization of a construction of Otal [17], who proves it in the
case that {Si}i∈I is a single orbit of cut points. The main change is Claim 4.13.1, which
replaces Otal’s Lemma 3.3.

Proposition 4.13 Consider a non-empty, F–invariant collection of disjoint cut sets
{Si}i∈I in D satisfying the following conditions:

(1) For each i ∈ I there is an indivisible gi ∈ F such that Si = ∆({gi
∞, g∞i }).

(2) The cut sets are pairwise non-crossing.

(3) The set {Si}i∈I is a union of finitely many F–orbits.

Then F splits as a graph of groups rel w with cyclic edge stabilizers. The vertex set is
bipartite, with Type 1 vertices stabilized by maximal cyclic subgroups generated by the
gi and Type 2 vertices stabilized by non-cyclic subgroups.

Proof For each i ∈ I there is a partial ordering <i on {Sj}j∈I\{i} defined by Sj <i Sk if
Sj separates Si from Sk , that is, if Si and Sk are in different complementary components
of Sj . Since the cut sets are pairwise non-crossing, the complementary component of Sj

containing Sk is well defined.

Claim 4.13.1 There exist <i –minimal elements.

Proof of Claim. Suppose Si , Sj , and Sk are elements of {Si}i∈I . Let X be [g∞i , g
∞
i ] ∩

[g∞k , g
∞
k ], if this intersection is non-empty. Otherwise, let X be the geodesic segment

in T connecting [g∞i , g
∞
i ] to [g∞k , g

∞
k ]. Suppose [g∞j , g

∞
j ] does not intersect X .

Then there exists an edge e ∈ T incident to, but not contained in, [g∞j , g
∞
j ], such that

e separates [g∞j , g
∞
j ] from at least three of the points g∞i , g∞i , g∞k , and g∞k . It then

follows from Lemma 2.16 that Si and Sk contain points in a common component of
D \ Sj , so Sj does not separate Si from Sk in D .

We conclude that for fixed Si and Sk the only Sj such that Sj <i Sk belong to the finite
set of those for which [g∞j , g

∞
j ] intersects X . ♦

Define a graph on which F acts without inversions as follows. The graph has two types
of vertices. There is a Type 1 vertex vi for each Si . Given a Type 1 vertex vi , Si has
finitely many complementary components Ci,1, . . . ,Ci,mi . For each i, j, consider the
subset {vi} ∪ {vk | Sk is <i –minimal, and Sk ∈ Ci,j}. Define this subset to be a Type
2 vertex. Define adjacency by inclusion.
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Since the Si are cut sets, this graph is a tree. The quotient of this tree by the F–action
contains one vertex of Type 1 for each orbit of cut set, and some finite number of
adjacent Type 2 vertices. The stabilizers of the Type 1 vertices are the groups 〈gi〉, so
we have a cyclic splitting of F .

The generators of the line pattern must be conjugate into the vertex groups, otherwise we
would have a line in the pattern crossing from one component of some W([gj

∞, g∞j ])
to another, which is absurd.

Combining Proposition 4.13 and Lemma 4.12 gives us a splitting theorem:

Theorem 4.14 (Splitting Theorem) If D is not rigid then either (F,w) is a three-holed
sphere or F splits over Z relative to w.

Proof If D is neither rigid nor a circle then Lemma 4.12 provides a g so that the
translates of ∆({g∞, g∞}) satisfy the hypotheses of Proposition 4.13, which gives a
relative splitting.

If D is a circle then, by Lemma 4.3, (F,w) is a surface with boundary. Either this is a
three-holed sphere, or there exists an essential, non-peripheral simple closed curve in
the surface, which gives a relative splitting.

4.4 Refining Splittings

Theorem 4.14 tells us when we can split F rel w. In this subsection we determine when
a splitting can be refined.

Definition 4.15 Let Γ be a graph of groups decompositions of F rel w with cyclic
edge stabilizers. Define the augmented multiword AugΓ(w) to be a multiword in F
obtained by choosing generators of representatives of the distinct conjugacy classes
of maximal cyclic subgroups of F containing the elements of w and the generators of
each of the edge groups of Γ. The choices can be, and are, made so that w ⊂ AugΓ(w).

Definition 4.16 Define the augmentation map, αΓ , to be the quotient map αΓ : Dw →
DAugΓ(w) . Note that ∆AugΓ(w) = αΓ ◦∆w .

Lemma 4.17 Let G be a non-cyclic vertex group of Γ. The decomposition space
DIndG

Γ(w) of G corresponding to IndG
Γ(w) embeds naturally into the decomposition space

DAugΓ(w) of F corresponding to AugΓ(w).
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Proof The inclusion ι : G ↪→ F extends to an embedding ∂ι : ∂G ↪→ ∂F . The
equivalence relation on ∂G coming from IndG

Γ(w) is the restriction to ∂ι(∂G) of the
equivalence relation on ∂F coming from AugΓ(w).

Lemma 4.18 Let Γ be a graph of groups decomposition of F rel w with cyclic edge
groups. Let G be a non-cyclic vertex of Γ. The decomposition space DIndG

Γ(w) of G

with respect to IndG
Γ(w) is connected.

Proof By Proposition 3.10, if DIndG
Γ(w) is not connected there is a free splitting of G

rel IndG
Γ(w). This gives a free splitting of F rel AugΓ(w), which implies that DAugΓ(w)

is not connected. This is not possible since DAugΓ(w) is a quotient of Dw , which, by our
standing assumption, is connected.

Lemma 4.19 Let Γ be a graph of groups decomposition of F rel w with cyclic edge
groups. Let G be a non-cyclic vertex of Γ such that DIndG

Γ(w) is rigid. Let 〈g〉 be the
stabilizer of an edge incident to G. Then S = ∆w({g∞, g∞}) is either a cut point or
uncrossed cut pair of Dw .

Proof Suppose not. S is a cut set, so by Lemma 2.3 it is a cut pair with exactly two
complementary components, B0 and B1 . Assume ∆(∂G) ⊂ B0 .

Since S is crossed then there is a cut pair R of Dw crossing S . Let r be the point of R
in B0 , and let A0 and A1 be the complementary components of R.

Let {Si}i∈I be the collection of cut points and cut pairs corresponding to the edges of
Γ. S is one of these, so set S = Si0 . Set:

J = {j 6= i0 | Sj crosses R and Sj ⊂ B0}

If J = ∅ then αΓ(r) ∈ DIndG
Γ(w) , and:

αΓ(A0) ∩ αΓ(A1) ∩ DIndG
Γ(w) = αΓ({Si0 , r})

If J 6= ∅ then there is a <i0 –minimal element Si1 of {Sj}j∈J , and:

αΓ(A0) ∩ αΓ(A1) ∩ DIndG
Γ(w) = αΓ({Si0 , Si1})

In either case we get a cut pair of DIndG
Γ(w) , contradicting rigidity.

Definition 4.20 An uncrossed collection in Dw is a non-empty union of orbits of cut
points and uncrossed cut pairs.
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There are finitely many such orbits by Proposition 3.25 and Proposition 4.11, so, given
an uncrossed collection {Si}i∈I , Proposition 4.13 provides a corresponding graph of
groups decomposition Γ. For the remainder of this section, fix an uncrossed collection
{Si}i∈I and corresponding graph of groups Γ with Bass-Serre tree BS(Γ).

Lemma 4.21 (Universality of Uncrossed Splittings) The stabilizer of a cut point or
cut pair of Dw is elliptic in Γ.

Proof Let S be a cut point or cut pair. By considering the F–action on the convex
hull of ∆−1(S) it is clear that the stabilizer of S is either trivial or a maximal cyclic
subgroup. If its stabilizer is trivial we are done, so assume its stabilizer is 〈g〉.

If g is not elliptic then it has an axis in BS(Γ). A Type 1 vertex on this axis corresponds
to a cut set Si separating the two points of S . By Lemma 2.3, this would mean S crosses
Si , contradicting the hypothesis that the Si are uncrossed.

Lemma 4.22 If S is a cut point or cut pair of Dw then αΓ(S) is a cut point or cut pair
of DAugΓ(w) . If R is a cut point or cut pair of DAugΓ(w) then α−1

Γ (R) is a cut point or cut
pair of Dw .

Proof αΓ identifies points of uncrossed cut pairs, so αΓ(S) fails to be a cut set only if
some uncrossed cut pair crosses S . That is impossible, since by Lemma 2.3 crossing is
a symmetric relation.

Conversely, let R be a cut point or cut pair of DAugΓ(w) . It is clear that α−1
Γ (R) is a cut

set in Dw ; we just need to show that it consists of at most two points.

Suppose a point r ∈ R has preimage α−1
Γ (r) consisting of two points. Then r is

stabilized by a conjugate of an element h ∈ AugΓ(w) \ w, so α−1
Γ (r) = Si for some i.

By the first part of the lemma, αΓ(Si) = {r} is a cut point, so R = {r}, and α−1
Γ (R) = Si

is a cut pair.

Lemma 4.23 Let G be a non-cyclic vertex group of Γ. Let g be an element of G
such that ∆IndG

Γ(w)({g∞, g∞}) is a cut point or uncrossed cut pair in DIndG
Γ(w) . Then

∆w({g∞, g∞}) is a cut point or uncrossed cut pair, respectively, of Dw that is not in the
uncrossed collection.

Proof There is a Type 2 vertex {vj}j∈J of BS(Γ) corresponding to G. For each j ∈ J ,
the corresponding cut set Sj becomes a point in DIndG

Γ(w) , and each complementary
component of the image of ∆IndG

Γ(w)({g∞, g∞}) in DIndG
Γ(w) contains some of these
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Sj points, so α−1
Γ (∆IndG

Γ(w)({g∞, g∞})) = ∆w({g∞, g∞}) is a cut point or cut pair in
Dw separating some of these Sj . The Type 2 vertices are subsets {vj}j∈J such that for
j0, j1 ∈ J there is no i ∈ I such that Si separates Sj0 from Sj1 . Thus, ∆w({g∞, g∞}) is
a cut set that is not in {Si}i∈I .

Since ∆w({g∞, g∞}) is not one of the Si , its cardinality is the same as that of the image
in DIndG

Γ(w) . Thus, they are either both cut points or both cut pairs.

It remains only to show that if ∆IndG
Γ(w)({g∞, g∞}) is an uncrossed cut pair then

∆w({g∞, g∞}) is uncrossed. Suppose ∆w({g∞, g∞}) is crossed by some other cut
pair R of Dw . R cannot cross any of the Si , so R ⊂ ∆(∂G), which implies αΓ(R)
and αΓ(∆w({g∞, g∞})) are crossing cut pairs in the embedded copy of DIndG

Γ(w) in
DAugΓ(w) . Thus we get crossing cut pairs of DIndG

Γ(w) , contrary to hypothesis.

Lemma 4.24 (Refinement Lemma) Let G be a non-cyclic vertex of Γ. If DIndG
Γ(w) is

neither a circle nor rigid then there is a refinement Γ′ of Γ obtained by splitting G rel
IndG

Γ(w). This is a splitting over an uncrossed collection containing {Si}i∈I .

Proof By Lemma 4.18, DIndG
Γ(w) is connected. If it is not a circle and not rigid, then

by Lemma 4.12 there is an element g ∈ G such that ∆IndG
Γ(w)({g∞, g∞}) is a cut

point or uncrossed cut pair that is not in the uncrossed collection. By Lemma 4.23,
∆w({g∞, g∞}) is a cut point or uncrossed cut pair of Dw . Thus, we can add the orbit
of ∆w({g∞, g∞}) to the set {Si}i∈I to get a larger uncrossed collection, and hence a
graph of groups decomposition Γ′ refining Γ.

4.5 The Decomposition Theorem

Theorem 4.25 (Relative JSJ-Decomposition Theorem) There exists a canonical
relative JSJ–decomposition (rJSJ), a graph of groups decomposition Γ of F relative to
w with cyclic edge groups, satisfying the following conditions:

(1) If there is more than one vertex, the graph is bipartite. Cyclic vertex groups are
adjacent only to non-cyclic vertex groups, and vice-versa. Furthermore, if G is a
non-cyclic vertex group the incident edge groups map onto G–maximal cyclic
subgroups of G in distinct G–conjugacy classes. Finally, the sum of the degrees
of the edge inclusions at any cyclic vertex group is at least 2.

(2) Γ is universal: if F splits over a cyclic subgroup relative to w then the cyclic
subgroup is conjugate into one of the vertex groups.

(3) Γ is maximal: it cannot be refined and still satisfy these conditions.
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Moreover, the rJSJ is characterized by splitting F over the stabilizers of cut points and
uncrossed cut pairs in Dw . There are three mutually exclusive possibilities:

(a) (F,w) is rigid. Dw has no cut points or cut pairs. The rJSJ is trivial.

(b) (F,w) is a QH–surface. Dw is a circle. The rJSJ is trivial.

(c) The rJSJ is nontrivial. For every non-cyclic vertex group G we have that
(G, IndG

Γ(w)) is either rigid or a QH–surface. Stabilizers of cut points and
uncrossed cut pairs are conjugate to the cyclic vertex groups.

Consequently, if F splits over 〈g〉 relative to w then 〈g〉 is conjugate into the stabilizer
of one of the cyclic vertices or one of the QH–surface vertices of the rJSJ.

Remark Conditions (2) and (3) are standard requirements for a JSJ decomposition.
In general there is not a canonical JSJ decomposition satisfying these condition, but a
whole deformation space of JSJ decompositions [9]. A particular JSJ decomposition can
be chosen from this deformation space by applying the normalizations from Section 2.4.
Condition (1) says these normalizations have been performed.

Proof If (F,w) is rigid or is a three-holed sphere then there are no splittings rel w.
The rJSJ is trivial, and we are done.

If (F,w) is a QH–surface other than a three-holed sphere then splittings rel w come
from essential, non-peripheral simple closed curves on the surface. For any such curve
we can find another intersecting it, giving us an incompatible splitting. Therefore, no
such splitting is universal, so the rJSJ is trivial, and we are done.

If we are not in either of these cases then by Corollary 4.7 there exists a cut point or an
uncrossed cut pair in Dw .

Take the uncrossed collection {Si}i∈I consisting of all cut points and uncrossed cut
pairs, and let Γ be the graph of groups provided by Proposition 4.13.

The tree BS(Γ) is canonically defined by the topology of the decomposition space,
and the F–action is induced by the F–action on D , so the resulting graph of groups
decomposition is canonical.

We will show Γ satisfies conditions (1)-(3). Conversely, we will show that any Γ′

satisfying conditions (1)-(3) has Bass-Serre tree BS(Γ′) equivariantly isomorphic to
BS(Γ), so Γ and Γ′ are equivalent graph of groups decompositions.

Condition (1) says that the graph of groups is normalized as in Section 2.4. Using the
facts that F is free and that the cyclic vertex groups of Γ are maximal cyclic subgroups
of F it is easy to see that Γ satisfies these conditions.
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Uncrossed splittings are universal by Lemma 4.21, so Γ satisfies condition (2).

If for some non-cyclic vertex G of Γ the pair (G, IndG
Γ(w)) is neither rigid nor a

QH–surface then by Lemma 4.24 there is a refinement of Γ coming from a larger
uncrossed collection. This is absurd; we have already included all cut points and
uncrossed cut pairs in our uncrossed collection. Together with condition (2) this implies
that any refinement of Γ must come from splitting a QH–surface vertex group. The
resulting splitting would not be universal, because if there is a way to split the surface
then there is always an incompatible way to split it. Thus, condition (3) is satisfied.

Now suppose Γ′ is another graph of groups decomposition of F rel w satisfying
conditions (1)-(3). Condition (c) must be satisfied or else it would be possible to refine
Γ′ in a universal way, contradicting maximality.

Consider a cyclic vertex group 〈g〉 of Γ′ . We would like to show S = ∆({g∞, g∞}) is
a cut point or uncrossed cut pair in Dw . The number of components of Dw \ S is equal
to the sum of the degrees of the edge maps into the vertex group. By condition (1), this
is at least two, so S is a cut point if g ∈ w or cut pair otherwise.

If the sum of the degrees of the edge maps is greater than two, or if the sum of the
degrees is equal to two and one of the adjacent non-cyclic vertices is rigid, then S is an
uncrossed cut pair, by Lemma 4.19.

Otherwise, either the vertex separates two QH-surfaces glued along boundary curves or
it is adjacent to one QH–surface and the edge maps into the cyclic vertex group with
degree 2. In the first case, the cyclic vertex can be removed by gluing together the
two QH–surfaces to give a larger QH–surface. In the second case, the cyclic vertex
can be removed by gluing a Möbius strip to the corresponding QH–surface along their
boundary curves. In either case, the new surface contains an essential, non-peripheral
simple closed curve that intersects the curve we just glued along. This would provide a
splitting of F rel w incompatible with Γ′ , contradicting universality. Thus, each cyclic
vertex group of Γ′ is the stabilizer of a cut point or uncrossed cut pair. Furthermore, the
cyclic vertex groups account for all the cut points and uncrossed cut pairs, since Γ′ is
maximal.

BS(Γ) and BS(Γ′) are both equivariantly isomorphic to the tree constructed in Proposi-
tion 4.13, hence, to each other.

5 Virtually Geometric Multiwords

A handlebody is a 3–manifold obtained by gluing 1–handles to a 3–ball. These are
commonly imagined as thickened graphs, although we do not assume orientability.
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A multiword w = {w1, . . . ,wk} in F = Fn is geometric if there exists a handlebody H
with fundamental group F such that the conjugacy classes of the wi can be represented by
an embedded multicurve in the boundary of H . The multiword is virtually geometric if it
becomes geometric upon lifting to a finite index subgroup of F . (Recall Definition 2.4)

Example 5.1 w = {a2bab} in F2 = 〈a, b〉

a

a

b

b

2
4
1

2
4
1

5
3

3
5

Figure 15: W(1){a2bab}

a

a

b

Figure 16: Corresponding handlebody for a2bab

In Figure 15 we have a Whitehead graph with vertices blown up to discs and a numbering
around each vertex. Following the edges according to the numbering reads off the word
a2bab. Embed this graph on the surface of a three-ball.

The numbering around the b–disc can be read 3− 5 going counterclockwise, and the
numbering around the b–disc can be read 3− 5 going clockwise, so we can glue these
discs together, matching the numbering, to make an orientable b–handle.

The numbering around both the a–disc and a–disc is 1− 4− 2 going counterclockwise.
We can glue these discs together and match the numbering, but we must do it in a
non-orientable way. In drawing the corresponding handlebody in Figure 16 we leave
the a–disc and a–disc apart, but one should imagine that they have been identified to
create a non-orientable a–handle. ♦

Similarly, any multiword with a Whitehead graph that is planar and valence at most
three is geometric. The same argument shows, more generally:

Proposition 5.2 ([7]) If there exists a Whitehead graph of w with a planar embedding
such that the cyclic orderings of edges incident to inverse vertices are consistent (either
the same or opposite), then w is geometric.

In fact, more is true. If a multiword is geometric then every minimal Whitehead graph
of w has a planar embedding such that the cyclic orderings of edges incident to inverse
vertices are consistent.
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Thus, there is an algorithm to determine geometricity: The Whitehead graph is finite,
so it is possible to check by brute force to see if there exists a planar embedding that
respects cyclic ordering around the vertices.

These claims follow from work of Zieschang [7] (see also Berge’s Documentation for
the program Heegaard [1]).

There is a positive algorithm for checking virtual geometricity of w by enumerating
subgroups of successively larger index, computing the lift of w, and then checking for
geometricity. There is not an obvious bound on how large an index is necessary for
a given multiword, so there is not a corresponding negative algorithm. Gordon and
Wilton [8] even asked whether every one element multiword is virtually geometric.
Manning [13] answered in the negative by showing that the word w = bbaaccabc in
F3 = 〈a, b, c〉 is not virtually geometric.

Otal [17] notes that a free splitting of the free group corresponds to a connected sum of
the corresponding handlebodies, so, as usual, we will confine our attention to the case
that F does not split freely rel w.

5.1 Rigid Multiwords and Geometricity

Lemma 5.3 ([17, Proposition 0]) If w is geometric then D is planar.

We include the proof for completeness:

Proof Realize w by an embedded multicurve on the surface of a handlebody, which
lifts to a collection of disjoint arcs on the boundary surface of the universal cover of
the handlebody. The universal cover is a thickened tree, and may be compactified by
including the Cantor set boundary of the tree. The resulting space is a 3–ball with
a collection of disjoint arcs in the bounding 2–sphere. By Moore’s Decomposition
Theorem (Theorem 3.3), collapsing each of these arcs to a point sends the 2–sphere
to the 2–sphere, and the image of the Cantor set in the quotient is the decomposition
space, embedded, non-surjectively, into S2 .

Inclusion of a finite index subgroup induces a homeomorphism of decomposition spaces,
so:

Corollary 5.4 If w is virtually geometric then D is planar.

Theorem 5.5 (cf [17, Theorem 1]) Let (F,w) be rigid. The following are equivalent:
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(1) The multiword w is geometric.

(2) The decomposition space Dw is planar.

(3) Every minimal Whitehead graph for w has an embedding in the plane with
consistent cyclic orderings of edges incident to inverse vertices.

Proof Lemma 5.3 shows (1) implies (2).

(2) implies (3) is the content of [17, Lemma 4.4]. The hypotheses for this lemma are
that every element of the multiword is ‘indecomposable’ and that the decomposition
space embeds into S2 in such a way that closures of the complementary regions
intersect pairwise in at most one point. The first hypothesis is unnecessarily strong.
Indecomposability of each element of the multiword is only used to prove that the
decomposition space has no cut points. The second hypothesis is satisfied if the
decomposition space has no cut pairs. Therefore, rigidity is a sufficient hypothesis.

(3) implies (1) by Proposition 5.2.

Corollary 5.6 Virtual geometricity implies geometricity for rigid multiwords.

5.2 Non-rigid Multiwords and Virtual Geometricity

In this section we prove the Characterization of Virtual Geometricity (Theorem 5.9). We
first (Theorem 5.7) prove the theorem in the special case that the decomposition space
has no uncrossed cut pairs. Given Theorem 5.7, the proof of Theorem 5.9 amounts
to showing that if the decomposition space is planar then uncrossed cut pairs can be
pinched to cut points without making the space non-planar.

Theorem 5.7 Assume that Dw is connected with no uncrossed cut pairs. Let Γ be the
JSJ decomposition of F relative to w. The following are equivalent:

(1) The multiword w is virtually geometric.

(2) The decomposition space Dw is planar.

(3) IndG
Γ(w) is geometric for every non-cyclic vertex group G of Γ.

Proof Corollary 5.4 shows (1) implies (2).

Let G be a non-cyclic vertex group of Γ. Since there are no uncrossed cut pairs,
w = AugΓ(w), so Lemma 4.17 shows that the decomposition space DIndG

Γ(w) embeds
into Dw . Thus, if DIndG

Γ(w) is non-planar then Dw is non-planar as well. Therefore,
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(2) implies that DIndG
Γ(w) is planar. If (G, IndG

Γ(w)) is a QH–surface then IndG
Γ(w) is

geometric. If (G, IndG
Γ(w)) is rigid and DIndG

Γ(w) is planar Theorem 5.5 says IndG
Γ(w) is

geometric. Thus, (2) implies (3).

Now assume (3). From a graph of groups we may build a corresponding graph of
spaces [19]: For each vertex group choose a vertex space with fundamental group
isomorphic to the vertex group. For each edge group choose a space with fundamental
group isomorphic to the edge group, and let the edge space be the product of that space
with the unit interval. Use the edge injections of the graph of groups to define attaching
maps of edge spaces to the corresponding vertex spaces. The resulting space will have
fundamental group isomorphic to the fundamental group of the graph of groups.

For each non-cyclic vertex group, the induced multiword is geometric, so we can choose
the vertex space to be a handlebody with an embedded multicurve in the boundary
representing the induced multiword.

For the edge spaces we use annuli. Later we will want to thicken them to make the
resulting graph of spaces a 3–manifold.

For the moment we will also make a geometricity assumption on the cyclic vertex
groups. Suppose one of the following possibilities are true for each cyclic vertex group
〈g〉:

• There are some number k of incident edges and each edge injection is degree one.
In this case we choose the vertex space to be a solid torus with k + 1 disjoint
curves on the boundary, one representing the element g and k to be attaching
curves to which we will glue boundary curves of annulus edge spaces.

• There are some number k of incident edges and the degrees of the edge injections
are all two except for possibly one of degree one. In this case we choose the
vertex space to be a solid Klein bottle, and again we have k + 1 disjoint curves
on the boundary representing g and the attaching curves.

The resulting graph of spaces has fundamental group F and has an embedded multicurve
representing w such that the multicurve is disjoint from the edge spaces. It is not yet
a 3–manifold with boundary; we need to fatten the annuli. To see if this is possible,
consider for each boundary component of each annulus a small tubular neighborhood
of the attaching curve in the boundary of the corresponding handlebody. If for each
annulus the two neighborhoods are either both annuli or both Möbius strips then the
annuli may be fattened to make the graph of spaces a 3–manifold. Now, a fattened
annulus is composed of a 1–handle and a 2–handle, so this does not explicitly give
the resulting space a handlebody structure. However, a graph of aspherical spaces is
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aspherical [19], and a compact aspherical 3–manifold with free fundamental group is a
handlebody [10], so this space really is a handlebody, and w is geometric.

Thus, assuming (3), there are two possible obstructions to geometricity:

(a) The degrees of the edge injections into some cyclic vertex group are not of one
of the two forms described above.

(b) Some annulus cannot be fattened because one boundary neighborhood is an
annulus and the other is a Möbius strip.

Claim 5.7.1 These obstructions vanish in a finite index subgroup of F .

Lift w to this finite index subgroup, and then apply the graph of spaces construction to
see (3) =⇒ (1).

Proof of Claim. There are finitely many elements gi ∈ w such that ∆({g∞i , g∞i }) is a
cut point in Dw .

From the proof of Proposition 4.13, an edge injection of degree greater than one into
a cyclic vertex group 〈gi〉 occurs when the gi –action permutes some components of
Dw \∆({g∞i , g∞i }). There are only finitely many components, so there exists some
minimal positive power ai of gi such that the gai

i –action fixes each complementary
component. Additionally, if some edge incident to the 〈gi〉 vertex attaches to a
handlebody around a non-orientable handle, and if ai is odd, then consider g2ai

i .

Marshall Hall’s Theorem implies there exists a finite index subgroup Hi of F in which
gai

i (alternatively, g2ai
i ) generates a free factor. Let H be the finite index subgroup ∩iHi .

If we apply the Relative JSJ-Decomposition Theorem to H we get a graph of groups
covering the graph of groups decomposition for F . By construction, the smallest power
of gi in H is a multiple of gai

i , so all edge inclusions are degree one. This takes care of
obstruction (a), and we can choose all the cyclic vertex spaces to be solid tori.

Furthermore, we can take the vertex spaces to be handlebodies finitely covering the
original handlebodies. If some attaching curve in the original decomposition ran along
a Möbius strip then it runs along an even covering of the Möbius strip in the covering
handlebodies. Thus, all attaching curves have annulus neighborhoods, which takes care
of obstruction (b). ♦

We would now like to show that if Dw is planar then DAugΓ(w) is planar. To get
DAugΓ(w) from Dw we must pinch uncrossed cut pairs to points. To make sure planarity
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is preserved we first embed Dw in a sphere and then find an upper semi-continuous
collection of arcs so that collapsing the arcs achieves the pinching of the uncrossed cut
pairs. It will suffice to find such a collection of arcs for an arbitrary vertex group of the
rJSJ:

Lemma 5.8 If Dw is planar then for each non-cyclic vertex group G of the rJSJ, the
decomposition space DIndG

Γ(w) is planar.

Proof Let χ : Dw ↪→ S2 be an embedding. Let {Si}i∈I be the collection of uncrossed
cut pairs of Dw in ∆(∂G). Let Si = {xi,0, xi,1}. Since G is a vertex group of the rJSJ,
for each i ∈ I all of ∆(∂G) \ Si is contained in a single complementary component Ci

of Si , for otherwise we could use Lemma 4.24 to find a refinement of the rJSJ. There
is at least one other complementary component C′i of Si . By Proposition 3.24 and
Lemma 2.1, there exists an arc Ai ⊂ C′i connecting the two points of Si . Note that
Ai ∩∆(∂G) = Si . Recalling the terminology of Section 3.1:

Claim 5.8.1 The sets χ(Ai) are the non-degenerate elements of an upper semi-
continuous decomposition of S2 .

Assuming the claim, Moore’s Decomposition Theorem (Theorem 3.3) then says that the
quotient of the sphere obtained by collapsing each of these arcs to a point is again the
sphere. The image of χ(∆(∂G)) in this quotient is DIndG

Γ(w) embedded, non-surjectively,
in S2 . Thus, DIndG

Γ(w) is planar, and the lemma is proven.

Proof of Claim 5.8.1. Essentially the proof is that each Si separates Ai \ Si from
all of the other arcs, so arcs can only be close at their endpoints, and we know the
endpoints are well behaved because the boundary pattern of a multiword gives an upper
semi-continuous decomposition of the boundary of the free group.

Formally, fix an i ∈ I and let U be an open neighborhood of χ(Ai) in S2 . We will
produce an open neighborhood V of χ(Ai) such that χ(Aj) ∩ V 6= ∅ implies χ(Aj) ⊂ U
for all j ∈ I .

By Lemma 4.8, for each j and k the set ∆−1(xj,k) is a single point; call it ξj,k . Let U′

be an open neighborhood of χ(Ai) in S2 such that U′ ⊂ U .

Claim 5.8.2 J = {j ∈ I | χ(Sj) ⊂ U′ and χ(Aj) 6⊂ U} is finite.
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Proof of Claim. Suppose not. For each j ∈ J choose a point χ(yj) ∈ χ(Aj) \ U . There
is some σ : N ↪→ J such that (χ(yσ(k))) is a convergent sequence, converging to a
point χ(y) ∈ χ(Dw) \ U . By Proposition 3.10, y has a neighborhood basis in Dw of
connected neighborhoods N(y, r). Thus, given r there is a K so that for all k > K we
have yσ(k) ∈ N(y, r). But Sσ(k) is a cut set in Dw separating yσ(k) from all of the other
yj , so if yσ(k) and yj are both contained in the connected set N(y, r) then so is at least
one of the points of Sσ(k) . Thus, y is a limit point of ∪j∈JSj , so χ(y) is a limit point of
χ(∪j∈JSj). This is impossible, since ∪j∈Jχ(Sj) ⊂ U′ ⊂ U′ and {χ(yj)}j∈J ⊂ S2 \ U
are contained in disjoint closed sets. ♦

Let U′′ = U′ \ (∪j∈Jχ(Aj)). This is an open neighborhood of χ(Ai) contained in U .
By Proposition 3.6, the decomposition of ∂T whose non-degenerate elements are
elements of the boundary pattern for AugΓ(w) is upper semi-continuous. Thus, for the
neighborhood U ′′ = ∆−1(χ−1(χ(Dw) ∩ U′′)) ⊂ ∂T of {ξi,0, ξi,1} there exists an open
neighborhood V ⊂ U ′′ of {ξi,0, ξi,1} so that if for some j and k we have ξj,k ∈ V then
ξj,1−k ∈ U ′′ . As in Section 3.2.1, we may assume V is saturated and ∆(V) has two
components, one containing xi,0 and the other containing xi,1 . Since χ is an embedding,
there exists an open set V ′ ⊂ S2 such that V ′ ∩ χ(Dw) = χ(∆(V)).

Let W = S2 \ χ(Ci), and let V = U′′ ∩ (V ′ ∪W).

Suppose, for some j 6= i, that χ(Aj)∩V 6= ∅. Since Ci is the complementary component
of Si containing Aj , we have χ(Aj) ∩W = ∅, so Aj ∩∆(V) 6= ∅. On the other hand, Sj

separates Si from Aj \ Sj , and ∆(V) consists of connected neighborhoods of the two
points of Si , so if Aj ∩∆(V) 6= ∅ then one of the xj,k must be in ∆(V). By definition of
V , this means that {ξj,0, ξj,1} ⊂ U ′′ . By definition of U ′′ , this means that χ(Aj) ⊂ U .
♦

Theorem 5.9 (Characterization of Virtual Geometricity) Assume that Dw is con-
nected. Let Γ be the JSJ decomposition of F relative to w. The following are
equivalent:

(1) The multiword w is virtually geometric.

(2) The decomposition space Dw is planar.

(3) For every non-cyclic vertex group G of Γ, the induced multiword IndG
Γ(w) is

geometric.

Thus, virtually geometric multiwords are those that are built from geometric pieces.
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Proof Corollary 5.4 shows (1) implies (2).

If the decomposition space is planar then Lemma 5.8 shows that the induced decom-
position spaces of each of the vertex groups in the rJSJ are planar. Theorem 5.5 and
the fact that QH–surface multiwords are always geometric show that all of the induced
multiwords are geometric. Thus, (2) implies (3).

By Theorem 5.7, if the induced multiword in each non-cyclic vertex group of the rJSJ is
geometric then AugΓ(w) is virtually geometric. This implies w is virtually geometric,
since w is a subset of AugΓ(w), so (3) implies (1).

5.3 Examples

5.3.1 Baumslag’s Word

w = a2bababab in F2 = 〈a, b〉 is known as Baumslag’s word. In response to a question
of Gordon and Wilton, Manning showed, by brute force, that this word becomes
geometric in an orientable handlebody with fundamental group an index four subgroup
of F2 .

The rJSJ for F = 〈a, b〉 ∼=
〈
a, b, c | c = bab

〉
is shown in Figure 17.

〈a, c〉 〈a〉
a

c

a

a

Figure 17: rJSJ-Decomposition of 〈a, b〉 for a2bababab (c = bab)

The word w becomes a2cac when rewritten in the rank two vertex group, so the induced
multiword is {a2cac, a, c}. One can check that this multiword is rigid, so this is the
rJSJ. (Checking rigidity takes some work, using techniques of [4].)

In Figure 18 we have a reduced Whitehead graph/Heegaard diagram for the induced
multiword that shows it is geometric. Figure 19 shows a (non-orientable) handlebody
with embedded multicurve representing {a2cac, a, c}.

The obstruction to geometricity of w is that the curve representing c runs around a
orientable handle, while the curve representing a does not. We cannot achieve the
conjugation of a to c by a fattened annulus.

To correct this problem, pass to the index two subgroup G =
〈
A = a2, b,B = aba

〉
.
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a

a

c

c

2
4
1

6

2
4
1

6

5
3

7

7
3

5

Figure 18: Whitehead graph/ Heegaard dia-
gram

a

a

c

Figure 19: Corresponding non-orientable handle-
body for {a2cac, a, c}

After applying the automorphism that sends B to bB and fixes b and A, the image of
w2 is A(bAb)BABAB2(bAb).

The splitting over 〈A〉 is an HNN extension with b conjugating A to C , and the induced
multiword in the vertex group 〈A,B,C〉 is {A,C,ACBABAB2C}, which is geometric
in a non-orientable handlebody, as seen in Figure 20.

A

C

B

B

Figure 20: A non-orientable handlebody for {A,C,ACBABAB2C}

This time we can build a 3–manifold graph of spaces because we only need to conjugate
words that run around orientable handles. Gluing on a fattened annulus conjugating A
to C gives a non-orientable handlebody with fundamental group isomorphic to G for
which the image of w2 is geometric.

5.3.2 Baumslag-Solitar Words

Another interesting family of examples is given by the Baumslag-Solitar words wp,q =

aqbapb in F2 = 〈a, b〉. We will assume that 0 < p ≤ q. Gordon and Wilton [8] have
shown that wp,q is virtually geometric when p and q are relatively prime.
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The decomposition space associated to wp,q is connected without cut points. The pair
∆({a∞, a∞}) is a cut pair. W([a∞, a∞]) has components C+

j = {Θ(aib) | i ≡ j
mod p} for 0 ≤ j < p that are cyclically permuted by the a–action, and components
C−j = {Θ(aib) | i ≡ j mod q} for 0 ≤ j < q that are cyclically permuted by the
a–action.

The case p = q = 1 is special; in this case the Whitehead graph is a circle, which
implies the decomposition space is a circle and the word is geometric.

Otherwise, the number of complementary components is p+q > 2, so that ∆({a∞, a∞})
is an uncrossed cut pair. The rJSJ for this case is shown in Figure 21.

〈
bapb, aq

〉
〈a〉

aq

bapb

aq

ap

Figure 21: rJSJ-Decomposition of 〈a, b〉 for aqbapb

The rank two vertex group is
〈
A = aq,C = bapb

〉
, and the induced multiword in

this vertex group is {A,C,AC}. The Whitehead graph for this multiword is a circle,
which implies the vertex decomposition space is a circle and the induced multiword is
geometric. Thus, Theorem 5.9 says wp,q is at least virtually geometric.

The cyclic vertex group has edge inclusions of degrees p and q.

If p = 1 and q = 2 we can make this geometric by using a solid Klein bottle for the
cyclic vertex space. (We saw the non-cyclic vertex space for this example back in
Example 5.1.)

If p = q the word is also geometric, because two disjoint degree p curves fit into the
boundary of a solid torus.

In all other cases, the word wp,q is not geometric. Virtual geometricity can be verified
by passing to the index m = lcm(p, q) subgroup:

G = 〈A,B0,B1, . . . ,Bm−1 | A = am,Bi = aibai〉
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[4] Christopher H. Cashen and Nataša Macura, Line patterns in free groups, Geom. Topol.
15 (2011), no. 3, 1419–1475.

[5] Christopher H. Cashen and Jason F. Manning, virtuallygeometric, 2014, computer pro-
gram, https://bitbucket.org/christopher_cashen/virtuallygeometric.

[6] Christopher H. Cashen and Jason F. Manning, Virtual geometricity is rare, LMS J.
Comput. Math. 18 (2015), no. 1, 444–455.
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