
For it is unworthy of excellent men to lose hours like slaves in the labor of calculation which could safely
be relegated to anyone else if machines were used.

Gottfried Wilhelm Leibniz (1646 - 1716)

CONCISE MANUAL
version 0.9

Ferenc Domes, Arnold Neumaier, Kevin Kofler, Peter Schodl, Hermann
Schichl

University of Vienna, Austria

1

Contents
1 Introduction 4

1.1 MSC Classification . 4
1.2 About Concise . 4
1.3 Disclaimer . 5

2 Theory 5
2.1 Semantic Memory . 5
2.2 Object . 6
2.3 Sem . 6
2.4 Record . 6
2.5 Externals . 6
2.6 Names . 7
2.7 Semantic Graph . 7
2.8 Node . 8
2.9 Edge . 8
2.10 Types and Categories . 8
2.11 Type Systems . 8

3 Concise 9
3.1 Starting Concise . 9
3.2 Main Window . 9
3.3 Session . 10
3.4 Sections of the semantic memory . 11
3.5 Serialization . 11
3.6 Views . 11

3.6.1 View Containers . 12
3.6.2 Graph View . 13
3.6.3 Text View . 13
3.6.4 Record View . 13

3.7 Type Sheet Check . 14
3.8 Code Record Execution . 14

3.8.1 File View . 14
3.9 Users . 14
3.10 Configuration . 14
3.11 Debug . 15
3.12 Editing Help . 15

4 Appendix 15
4.1 Serialization . 15

4.1.1 External table . 15
4.1.2 Authority codes . 16
4.1.3 Language codes . 16
4.1.4 Dictionary . 17
4.1.5 View roots . 17
4.1.6 Semantic memory . 17
4.1.7 Requirements . 17
4.1.8 Example . 17

4.2 System parameters . 18
4.3 External types . 18
4.4 External functions . 20

2

4.5 Source Listing . 21

3

1 Introduction
The programming system Concise is a graph-based universal programming system for manipulating se-
mantic information stored in the semantic memory (2.1). It combines in a novel way the capabilities of
imperative programming and object-oriented programming.

Graphical and textual views (3.6) enable the user to see, understand, analyze, and modify the content
of the semantic memory, and hence of documents, programs and data structures. In particular, there are
(currently rudimentary) facilities for semantically accurate automatic document creation in LaTex, written
in a user-extensible controlled form of natural mathematical language.

Although currently only an English version is available, Concise is set up to facilitate the easy genera-
tion of multiple-language versions of the documentation and the text appearing in the IDE. In particular,
type systems (2.11) and dictionaries are implemented in a way that incorporates multiple language names
and multiple meanings of names created by different authorities.

The web page on FMathL (http://www.mat.univie.ac.at/~neum/FMathL.html) (Formal Mathemati-
cal Language) contains detailed information about the theoretical background of Concise.

Note: The present help information is available both within Concise via the Help button, and separately
as a PDF document in <devdir>/docu/Manual.pdf. See Editing Help (3.12) for making changes in this
document.

1.1 MSC Classification
Language of mathematics [education; new]: 97E40
Languages and software systems (knowledge-based systems, expert systems, etc.): 68T35
Text processing; mathematical typography: 68U15
Abstract data types; algebraic specification: 68Q65 18C50
Mathematical aspects of software engineering (specification, verification, metrics, requirements, etc.): 68N30
Knowledge representation: 68T30, 68T35, 97R50
Natural language processing: 68T50, 03B65, 91F20
Logic of natural languages: 03B65 68T50, 91F20
Philosophy of mathematics: 00A30 03A05
Specification and verification (program logics, model checking, etc.): 68Q60
Mathematical modeling: 97Mxx, 00A71
e-Learning: 97U50
nonnumerical algorithms: 68W05
Graph theory (in relation to CS): 68R10
Grammars and rewriting systems: 68Q42
Formal languages and automata: 68Q45 03D05, 68Q70, 94A45
Semantics: 68Q55 03B70, 06B35, 18C50
Compilers and interpreters: 68N20
Mathematical problems of computer architecture: 68M07
Graph algorithms: 05C85 68R10, 68W05

1.2 About Concise
Concise was created by Ferenc Domes and Kevin Kofler based on the theoretical foundation elaborated
by Arnold Neumaier, Peter Schodl and Hermann Schichl.

Developement History and Funding:

4

http://www.mat.univie.ac.at/~neum/FMathL.html

Concise 0.9: (2010-2011) was created during the MoSMath project, funded by the Austrian Science Fund
(FWF) under contract number P20631. Their support is gratefully acknowledged.

1.3 Disclaimer
The authors are furnishing this software "as is". The authors does not provide any warranty of the soft-
ware whatsoever, whether express, implied, or statutory, including, but not limited to, any warranty of
merchantability or fitness for a particular purpose or any warranty that the contents of the software will be
error-free.

In no respect shall the authors incur any liability for any damages, including, but limited to, direct, in-
direct, special, or consequential damages arising out of, resulting from, or any way connected to the use of
the software, whether or not based upon warranty, contract, tort, or otherwise; whether or not injury was
sustained by persons or property or otherwise; and whether or not loss was sustained from, or arose out of,
the results of, the software, or any services that may be provided by the authors.

The short version:
NO WARRANTY!

2 Theory
This section describes the concepts needed to understand the Concise system.

2.1 Semantic Memory
The semantic memory is an organized collection of objects (2.2); parts of the semantic memory are typi-
cally displayed as semantic graphs with edges connecting these objects. The graph representation of the
semantic memory can be viewed in a graph view (3.6.2).

The semantic memory changes during a session (3.3); its current state at any time is given by the
semantic mapping that associates to any two objects a and b a third object c=a.b, which must be empty
if a or b is empty. Formally, the semantic memory of a Concise session is therefore a function of time that
assigns a semantic mapping to each point in time during which the session exists. But the time-dependence
is suppressed in notation and terminology. Depending on the context, we use SM as abbreviation both for
the semantic memory and for the semantic mapping at a particular time.

The contents of the semantic memory can be also viewed as an ordered collection of semantic units called
sems (2.3). Each sem is given by an expression handle.field=entry, where handle, field and entry are
nonempty objects. By definition, the fields of each handle are unique. Therefore adding a sem to the se-
mantic memory replaces an existing sem having the same handle and field, which now points to the newly
added entry.

In Concise, the semantic memory is implemented as an associative array of associative arrays of inte-
gers:

TreeMap<Integer, TreeMap<Integer, Integer>> sems.
The entry of a sem is found by looking up the handle from the sem, thereby obtaining the associative array

TreeMap<Integer, Integer> fieldEntryMap
and then looking up the field from the fieldEntryMap, thereby finding the entry.

5

Ordinary objects are represented as positive integers in the semantic memory, while negative integers ref-
erence external (??) objects. The number 0 represents the empty (undefined or null) object. Ordinary
objects may be associated with names (2.6).
The root object of the semantic memory of Concise is of type Secretary and has a field name which specifies
the name of the secretary given by the user (default is ’Matilde’, see starting concise (3.1)).

2.2 Object
Objects are the contents of the semantic memory (2.1) and are organized through sems (2.3).
Associated to each object is a record (2.4), which consists of all objects that can be reached from the object
by following a sequence of moves along sems from their handle to their entry.

Each object may have a value to which it refers. A value is a datum external (??) to the semantic
memory but accessible through it by Concise.
Examples of values are wall clock times, pictures, files, but also (depending on the implementation) arrays,
floating-point numbers, and integers. Concise acts on these values according to information stored in the
semantic memory, by accessing external processors that can read or change values.
In addition, certain values can be converted into semantic information represented in the semantic memory,
or in the reverse direction.

2.3 Sem
A semantic unit (short sem) is a triple h.f=e consisting of three nonempty objects, its handle h, its field
f, and its entry e. The sems are contained in the semantic memory (2.1).

- According to this definition, given a handle h and a field f, the semantic memory uniquely determines
the entry h.f; but if this entry is empty, there is no associated sem.
- If the handle f is given, we refer to e also as the entry of the field f.
- If the entry e is nonempty, we call f a field of the handle, and say that h has the field f.
- By definition of a state of Concise, it depends on the current state of the semantic memory whether a
handle has a particular field and which entry a field has.

Roughly, fields are used to look up something, while entries are used to contain something.

A sem template is a temporary version of a sem, not part of the current state of the semantic mem-
ory but ready to be added to it.

2.4 Record
A record originating from an object (2.2) (handle) is the set of all unique sems (2.3) contained in the sem
sequences originating from the given handle.

A sem sequence of length n is given by handle.field1.field2. fieldn=entry and inter-
preted as the sequence of sems handle.field1=#1, #1.field2=#2, ..., #(n-1).fieldn=entry.
A sem sequence of length 1 is just a sem.

2.5 Externals
Negative object ids from the semantic memory (2.1) are associated with external objects by the externals
table. Formally the externals table maps each (negative) object id to an external by:

6

HashMap<Integer, External> id-ExtTable.
There are two major categories of externals, the unique externals and the mutable externals. Unique
externals are objects which are unique in the way that no two unique externals of the same type with the
same value may exist in the external table. Technically, each unique external is mapped to a (negative)
object id by

HashMap<UniqueExternal, Integer> uniqExt-IdTable.
The 1-1 correspondence of ids and unique externals allows one to find newly inserted unique externals in
the external table; if a unique external of the same type and value already exists then no new id is created
for it but the existing id is returned. On the other hand, there is no way to change the value of a unique
external.
This is, however, possible for mutable externals. There can be several mutable externals having the same type
and value in the external table, and their values can be changed freely. Typical examples for unique externals
are names, colors, fonts etc, while typical examples for mutable externals are strings, numbers, matrices, etc..

External tables are serialized as described in the corresponding part of the Serialization (4.1.1) Section.
For the currently implemented external types refer to the External types (4.3) part of the Appendix.

2.6 Names
An ordinary object (with a positive id) can be associated with a name. Since programs created by dif-
ferent authors must cooperate, one needs a way to disambiguate names, and this must be recorded in the
interpreter-generated section of the semantic memory. Concise proceeds via a dictionary when a word has
several meanings, by distinguishing meanings by their source, here called an authority. For example, there
is an authority called System, referring to the standard distribution of Concise. Language support is real-
ized by introducing different languages, for instance all default system names have the language English.
Formally, the dictionary entries are created in English and in the System authority, by entering for each
quadruple (#ob,#lang,#name,#auth) the six sems

findname.#ob.#lang = #name
findauth.#ob = #auth
findob.#lang.#name.#auth = #ob

where findname, findauth, findob are located in:
Dictionary.findname=findname
Dictionary.findauth=findauth
Dictionary.findob=findob

The dictionary root can be found under (System, English) in:
Secretary.Library.Dictionary=Dictionary

2.7 Semantic Graph
Semantic graphs allow users of Concise to graphically view the part of the semantic memory they currently
focus on. (Besides such graphical views (3.6.2), which may be of a varying kind, there are also various
textual views (3.6.3).)

A semantic graph is a labelled directed graph whose nodes (2.8) and directed edges (2.9) (arcs) are
labelled by objects in such a way that every arc from a node labelled h to a node labelled e is labelled by a
field f such that h.f=e is a sem.
The rules selecting the sems represented in the view can be configured by the user, also whether different
nodes are allowed to have the same label.

In a drawing on the Concise screen, each arc defines an arrow labelled by the name of the field going
from a node labelled by the name of the handle to a node labelled by the name of the entry. In the standard

7

view, the arrows are not drawn explicitly but always go either downwards or horizontally from left to right.
The horizontal arrow is reserved for sems whose field is type; thus the type of a node (if displayed) is found
on its right side. If the value of a node is drawn in a semantic graph, it appears in a square box to the left
of the node.

Although several nodes of a semantic graph in graphical display may carry the same label, all nodes with
the same label denote the same object in the semantic memory. This enables transparent drawings even for
complex semantic relations by decomposing them through the use of multiple nodes for the same object.

2.8 Node
A node is an object shown in the graph view (3.6.2). A node has a certain shape containing its name or
its identifier. Nodes without names are called unnamed nodes. Each node has a number of outgoing and
incoming edges (2.9). The outgoing edges are called the child edges of the node while the incoming edges
are called the parent edges of the node. The child (parent) edges are unique, that means there cannot be
two child (parent) edges having the same name (under the same language and authority, see names (2.6))
or identifier.
- Left clicking on the node label selects the node.
- Right clicking on it brings up the menu of all actions applicable for the clicked node. The selectable actions
may depend on the previous actions done on the node as well as the number of children, node type etc.
- Left clicking on a node two times centers the view on it and folds or unfolds its children.
- Pressing the left button on a node and moving the mouse drags the node in the view.
- Node shapes, colors, fonts etc. can be adjusted in the configuration (3.10).
- The configuration also contains special options for customizing the representation of unnamed nodes.

2.9 Edge
An edge is an object shown in the graph view (3.6.2). An edge has a label showing its name or its identifier.
An edge has a source (parent) and a target (child) node (2.8). This defines its direction. In terms of sems,
the label of an edge is the field, that of the source is the handle, and that of the target is the entry. The
direction of an edge in the graph view (if not given by the default mentioned above) is signalled by an arrow
shown either in the edge label or at the end of the arrow line. - Left clicking on the edge label selects the
edge.
- Right clicking on it brings up the menu of all actions applicable for the clicked edge. The selectable actions
may depend on the previous actions done on the edge as well as the parent and child node etc.
- Pressing the left button on an edge and moving the mouse bends the edge.
- Edge widths, colors, label fonts etc. can be adjusted in the configuration (3.10).
- The configuration also contains special options for customizing the visualization edge directions.

2.10 Types and Categories
Each handle or entry can have a type. A type defines some requirements for the sems originating from the
typed object. If a handle or entry abides the restrictions given its type it is called well typed and ill typed
otherwise. If a record (2.4) contais only well typed objects it is called a well typed record.
A category is a generalization of type allowing to define abstract unions of types. Categories (and types) are
defined in type systems (2.11). Type systems are stored as type sheets (.cnt files) which can be checked
for correctness by using the type sheet checker (3.7).

2.11 Type Systems
A type system is a collection of a set of objects which are called the categories of that type system. Type
systems are written as type sheets. The type sheets from the <concisedir>/sheets/import directory are

8

automatically loaded when Concise starts. This directory contains type sheets for essential type systems
like BasicTypes.cnt and optional ones. The optional ones have numbers in their file names indicating the
order in which they are imported, e.g., 2-ElementaryActs.cnt means that the type system ElementaryActs is
the second optional type system. Adding a new, numerated type sheet to this directory results in automatic
import of the new type system at the next time Concise is started.
Note that errors in the imported type sheets may prevent Concise from starting up, and must be corrected
or removed in order to get the system work again. See Type Sheet Check (??).

In Concise all imported type systems can be found under (System, English) in:
Secretary.Library.Index.TypeSystem.
All type system names are inserted in the System authority and all type names of the type system under
the authority of the type system itself. This enables one to have distinct type systems with distinct type
definitions sharing the same name.

For more details on type systems refer to the paper: Peter Schodl, Arnold Neumaier – The FMathL type
system, available at the FMathL homepage (http://www.mat.univie.ac.at/~neum/FMathL.html).

3 Concise
This section describes all features of the Concise system. The theoretical background needed to understand
this part is described in the theory (2) section.

3.1 Starting Concise
When Concise is started the first time, a small window called the session selector will ask for
the location where the session (3.3) files shall be stored. The suggested default location is <concise
dir>/data/Default.cns. Later, after the session was saved more often than once, the session selector also
allows one to revert to an older saved session.
Then a name of the secretary has to be choosen. The secretary is the root of the Concise session (see
sections of the semantic memory (3.4)). The default secretary name is Matilde.
Finally, username and password have to be provided, used for identification of the different users inside
Concise. (For more details on this topic, see Section Users (3.9).)
Then the main window (3.2) of Concise will appear.

3.2 Main Window
When you start Concise, and entered your user name and password, the following window will appear:
The enumerated parts are listed as follows:
• 1 - this is the menu bar containing basic actions like saving and exiting the application showing the help
or editing the configuration (3.10).
• 2 - this is the tab where the name of root of the active view container (3.6.1) is shown. If you open
more view containers you get new tabs like this one and you can switch between them by cliking on the tabs.
• 3 - this is the main graph view (3.6.2) of the current view container. Right click on it to open the menu
of with different options or hold the left mouse button and move the mouse to pan the view. Using the
mouse wheel you can zoom in or out. More mouse actions are listed in the Graph View (3.6.2) Section.
• 4 - these are space holders for other views in the same container. Right click on one of them to open a
new view (3.6) in the corresponding part of the view conatiner.
• 5 - this is your root node (2.8) of the central graph view, named (2.6) the Secretary. Right click on
it to open the menu of with different options. Double click on it to unfold its child edges (2.9) and child
nodes. For different mouse actions and applicable keyboard shortcuts see the Graph View (3.6.2) Section.
• 6 - this label show the type (2.10) of the node.

9

http://www.mat.univie.ac.at/~neum/FMathL.html

• 7 - the number of children is shown there.
• 8 - the name of the authority (2.6) (owner and creator) of the node can be found here.
• 9 - this small text field is used to dispay system messages.

3.3 Session
The full semantic memory (2.1) can be saved as a session.

When Concise is started, either a new session is created or a saved session is restored.
- Upon creating a new session, the user is asked to enter a name for the root object of the semantic memory.
This object is the secretary, has the type Root and contains as a record the complete semantic memory.
- The session selector allows to load the last or older saved sessions. The default save location can also be
adjusted in the session selector. The last saved session has the extension .cns while the older sessions end
with .cnb. For more details on the session selector as well as starting Concise for the first time, we refer
to the Section Starting Concise (3.1).

When Concise is closed, the current session can be saved by choosing Exit and Save from the appearing
dialog. Obsolete saved sessions can be deleted manually by deleting the corresponding .cns and .cnb files.
For removing all saved sessions and restarting the system, choose Edit->Reset Session from the top menu
bar of Concise. Note that, since secretary name and user information are also stored in the session, one
will be prompted again to choose them.

Compatibility issues: If the basic functionality of Concise is drastically changed in a new version, the
saved session may contain data incompatible with the new version. In this case one may continue to use the

10

old session on one’s own risk, or create a new empty one. To ensure compatibility with a new version, it
is therefore advisable to additionally serialize (3.5) important user data. In particular, keep the previous
version of Concise to be able to do this even after an upgrade!

3.4 Sections of the semantic memory
The semantic memory (2.1) contains the full semantic information relevant for having Concise work
correctly, including the information about names of concepts and their translation to different languages.

The root object of the semantic memory is of type Root is called the Secretary and contains as a record
the complete semantic memory. The name of the secretary is given by the user upon the creation of a
new session (3.3). This name (and additional information created later) is stored as children of the object
Root.Identity=Identity.

Concise has access to the values of objects, to auxiliary information needed for navigation through and
searching the semantic matrix, and to external processors with which operations can be performed on the
values.

A complete semantic memory therefore has four different sections, represented by records whose handles
(children of the Secretary) hav the names Library, Index, Dictionary, and Workspace.
(i) The Library stores original information, including programs and background data. This is also the place
where a user works and edits.
(ii) The Index stores tables for referencing and searching the library. In particular, it has nametables for
disambiguation, as standard lexica and dictionaries. (But the contents is in the library, not in the index.)
(iii) The Dictionary stores lexical and grammatical information about the terms used, in various languages.
(iv) The Workspace stores, separately for each user, their preferences, views of the semantic memory, and
private objects, It also contains, separately for each user, all auxiliary information generated by the IDE
during a session or via the execution of objects.
However, all four sections use identical forms of representation and the same programs work on them in the
same way.

All data generated by the Concise interpreter for more than intermediate calculations is stored in the
workspace of the semantic memory, separately for each concurrent user (if there are several). The complete
semantic memory is storable as a session, a compact, but platform dependent binary file (with ending
.cns), from which the SM can be reconstructed quickly and uniqely on the same platform. Therefore, an
interrupted interactive session can be quickly resumed later by reloading the stored session.

The workspace of the semantic memory can also be used later to reason statistically about the interpreting
process, or to create permanent summaries of interest about a library.

3.5 Serialization
Concise can perform a standard serialization of views to .cnv files according to specification given in the
Serialization (4.1) Section of the Appendix. From the resulting .cnv file the deserialization can recover
the serialized view (even when the SM was essentially empty before loading it).

3.6 Views
Graphical and textual views enable the user to see, understand, analyze, and modify the content of the
semantic memory (2.1), and hence of documents, programs and data structures.

For each view, there is an object that serves as the root of the view, also called the view root. Some

11

views (e.g., graph view (3.6.2)) can have any object as root, while others need an object of a certain type
(e.g., the root object text view (3.6.3) must be of type TextDocument).

Each view has its own management in the semantic memory; different views are completely independent,
working on the semantic memory but not on the other views. For example, each graph view only (un)folds
his own nodes and not the underlying object, and of two nodes for the same object, one may be folded and
the other may be unfolded.
The information required for managing the view information is stored in the workspace (see sections of
the semantic memory (3.4)).

It is possible to see several views at the same time, or have multiple starting objects in the same view;
see view containers (3.6.1) .

3.6.1 View Containers

Each view in Concise is contained in a view container. A view container can contain up to nine views. The
center view is the root view of the view container and cannot be closed. When a new container is created,
the center view is active, and the other eight empty parts are shown as thin black areas around it: In these

empty parts of the view container, new views can be opened or closed by right clicking on them and choosing
the corresponding items of the menu.
- Changing the active view container is done by left clicking on the tabs containing its name.
- Each view container can be renamed by right clicking on their tabs.
- Pressing the left mouse button on the tab of a nonactive view container and dragging it into a non center
area of the active view container copies the center view of the dragged view container into the selected area
and closes the the dragged view container.

12

3.6.2 Graph View

Using a graph view is one way to navigate, modify, and use the objects stored in the semantic memory
(2.1). The objects in the graph view are represented either as a node (2.8) or as an edge (2.9).
- All edges and nodes have a label. A label either shows the name of the node or edge, or a number after a
hash (#) sign. The latter case indicates that the node or edge is unnamed, but it can be referenced by the
given number. The numbers are unique, and the names are unique under a given language and authority
(for more on authorities see the Section Names (2.6).
Left clicking on a node or an edge label selects the corresponding node or edge. Right clicking on a node or
an edge label opens a small menu showing the list of options applicable for the clicked object.
There are a number of global options that do not require a selected node or edge. These can be accessed by
right clicking outside a node or an edge label.

In general, one can issue commands in a graph view by using the mouse and selecting an option from
small popup menus. Alternatively, the menu items below the view can be used to issue commands.
- Clicking the left button once on a node or an edge selects the node or the edge.
- Clicking the left button twice on a node centers the view on it and folds or unfolds it.
- Pressing the left button on a node or an edge and moving the mouse drags the node or the edge.
- Pressing the left button outside a node or an edge and moving the mouse moves the view inside the view-
port.
- Turning the mouse wheel zooms the view in or out with respect to the position where the mouse pointer
is located.
- Pressing the middle button on a node and moving the mouse allows to add sems.
- Pressing the middle button on an edge and moving the mouse to a node sets a new target for the edge.
- Clicking the right button on a node or an edge brings up the allowed options for the clicked node or edge.
- Clicking the right button elsewhere brings up the general options applicable for the current view.

Keyboard shortcuts:
- The arrow keys move the view inside the viewport.
- The keys + and - zoom in and out at the current mouse position.
- Pressing backspace centers on the root and resets the zooming.
- If a node or edge is selected, pressing space centers the view on it.
- When an edge is selected, pressing delete deletes the selected edge.

3.6.3 Text View

Records of the type TextDocument can be shown in a text view.
For an example of text views, read the compressed record sheet con1.cnr.bz from the <concisedir>/test
directory into the semantic memory by right clicking on the current graph view and choosing Read->Record
Sheet. The default location for the record sheet read is Library.TextDocuments.con2=con2. Right click
on one of the black borders in the current view, select the option New Text View, enter con1 or select the
root node con1, press ok and the text view will appear.
It is possible to mark parts of the text view and inspect the record corresponding to the marked part by
right clicking on the text view and selecting Edit->New view from the menu. Close a text view by selecting
Apperance->Close view.

3.6.4 Record View

Records views show a whole record originating from a selected node. This part is unfinished and untested.

13

3.7 Type Sheet Check
A type sheet consistency check is automatically performed on all imported type sheets, but may also be
called manually on an arbitrary type sheet by calling
java -cp Concise.jar concise.TypeSheetChecker <-flags> <full path>/<sheetname>.cnt.
Flags:
c - convert .cnt to .cnr,
s - show the type system.
It is also possible to modify the checksheet (for Linux) or checksheet.bat (for Windows) scripts located
in the main Concise directory. These scripts can be used to conveniently call the type sheet consistency
checker for type sheets under development. A type sheet should be loaded to Concise only after it was
validated by this script.

3.8 Code Record Execution
A code record is a record containing an executable Concise program. To create a code record, Concise
currently needs a code record sheet. (Later, these will be replaced by code sheets, which simplifies their
creation and editing.)

The code record sheet can be loaded from the GUI by selecting the read>code record sheet option
and executing it by choosing execute>act. Code record sheets can be loaded and executed automatically
from the operation system command line by writing:
java -cp Concise.jar concise.CodeSheetExecuter [-h] [-x] [-n] cnrfile [cnrfile2 ...]

-h display help
-x execute the loaded code records
-n no graphical output
cnrfile... one or more .cnr code record sheet files

The scripts execcs (for Linux) or execcs.bat (for Windows) can be also modified and used in order to
support the development of new code record sheets.

3.8.1 File View

File views open an external file. Currently only text files can be opened.

3.9 Users
The first time Concise is started, it prompts for creating a new user or entering an existing username and
a password. In the semantic memory, the user root of the active user (referenced as <userroot>) can
be found in: Secretary.Users.CurrentUser,
while other existing users can be accessed from: Secretary.Users.<username>
The <userroot> contains the username, password, user home and the user configuration.
- The active user should work and store its data in: <userroot>.UserHome
which can be conveniently accessed from: Secretary.UserHome
- The user configuration (3.10) can be accessed from: <userroot>.Config
- The view information is stored in: Secretary.Workspace.UserData.<username>
If Concise was closed and the session was saved, this information is used to restore the working state when
the system is started again.

3.10 Configuration
The configuration of the currently active user (3.9) contains a number of global settings that can be used
to customize the look and feel of Concise. Like all user settings, it can be accessed from the top menu bar

14

Edit->Configuration, alternatively from <userroot>.Config (see the Section Users (3.9)), or by right
clicking on a graph view and selecting selecting user configuration from the appearing menu.

3.11 Debug
To enable the debug mode of Concise, place a file called debug in the main Concise directory. Starting
Concise while the debug mode is active skips the authentication procedure and automatically logs into the
system with the user name Developer and password developer. In addition to this, more details about the
system will be printed on the console when Concise starts.

3.12 Editing Help
If one has checked out the whole Concise development version (in the directory <devdir>) from the repos-
itory, one can edit this help by modifying
<devdir>/progs/concise/src/concise/resources/help.txt.
The formatting commands can be found at the beginning of the help.txt file.
The modifications will be visible when Concise is restarted or the refresh button on the right hand side is
pushed.
Note that editing the help this way influences the help of the distrubuted versions only when the jar files
are rebuilt.

A PDF version of this Help can be built (or rebuilt after an edit) by running one of the scripts makehelp (for
Linux) or makehelp.bat (for Windows), or alternatively by calling java -cp Concise.jar concise.HelpGenerator.

The generated Manual.tex and Manual.pdf files can be found in the <concisedir>/docu directory; the
images required for the LaTex document are located in the <concisedir>/docu/images directory.

4 Appendix
The appendix contains implementation details, system parameters and a list of Java classes used inside
Concise.

4.1 Serialization
Concise can perform a standard serialization of views to .cnv files according to the following specification,
and a corresponding deserialization that recovers the view from a .cnv file (even when the SM was essentially
empty before loading it).

The basic structure of a serialization is divided in several parts: the external table (4.1.1), the authority
codes (4.1.2), the language codes (4.1.3), the dictionary entries (4.1.4), the view roots (4.1.5) and the
semantic memory (4.1.6).

There are also some additional requirements (4.1.7) and rules which each implementation of the seri-
alization should abide.
A simple serialization example can be found in the section Example (4.1.8).

4.1.1 External table

The external table serializes each external object like names, strings, numbers, colors etc. This part of the
serialization starts with the line

* EXTERNAL TABLE *
and each following line contains an entry

15

id=<type;value>
where the id is a unique number identifying the external value, the type is the a three character type code
of the external value (nam, str, int, dbl, etc.) and value is the string representation of the external value.

More information about external tables can be found in the Externals (2.5) Section. The currently imple-
mented external types - divided into mutable and unique externals (explained in the External Section) - are
listed in the following table. Each line of the table contains the name of the external and its serialization
format <type;value>. Note that for the value string more explanation is given in this table as it contains
formatting information and meaning(expected format) items.
************************************* MUTABLE EXTERNALS ****************************
Boolean <bol;decision(true or false)>
Dimension <dim;width(integer >0) x height(integer >0)>
Double <dbl;number(double)>
DoubleInterval <din;lower(double),upper(double)>
EscapedString <est;escapedString(java escaped string)>
Integer <int;number(integer)>
IntegerInterval <iin;lower(integer),upper(integer)>
Matrix <mat;[a-11(double),...,a-1n(double);...;a-m1(double),...,a-mn(double)]>
Point <poi;x(double),y(double)>
Rectangle <rec;x(integer),y(integer):width(integer) x height(integer)>
String <str;string(string)>
TextLine <tln;textLine(string without linebreaks)>
Vector <vec;[a-1(double),...,a-n(double)]>
************************************ UNIQUE EXTERNALS ****************************
Abstract2DShape <sha;shapeName(string)>
Array <arr;entry1(external) & ... & entryn(external)>
Character <chr;char(character)>
Color <col;red(integer 0-255),green(integer 0-255),blue(integer 0-255)>
EscapedCharacter <ech;escapedChar(java escaped character)>
EscapedUniqueString <eus;escapedUniqueString(java escaped string)>
File <fil;pathedFileName(java escaped path string)>
Font <fon;name(string),size(integer >0),"italic"(optional),"bold"(optional)>
IntegerName <ind;uniqueInteger(integer)>
Name <nam;name(string)>
Picture <pic;pathedFileName(string)>
Timer <tim;notificationIntervalls(integer),running(boolean)>
UniqueString <ust;uniqueString(string)>

4.1.2 Authority codes

The authority codes are used in the dictionary for assigning each name to a certain owner. This part of the
serialization starts with the line

* AUTHORITY CODES *
and each following line contains an entry

aid=eid
where the aid is a unique id identifying the authority while eid, is the id of the associated external value.

4.1.3 Language codes

The language codes are used in the dictionary for assigning each name to a certain language. This part of
the serialization starts with the line

16

* LANGUAGE CODES *
and each following line contains an entry

lid=eid
where the lid is a unique id identifying the language while eid, is the id of the associated external value.

4.1.4 Dictionary

The dictionary assigns to a triple of an external name, authority and language a new id. This part of the
serialization starts with the line

* DICTIONARY ENTRIES *
and each following line contains an entry

eid,iid,aid,lid
where the iid is a unique id identifying the internal entry while eid,aid and lid are the associated external,
authority and language ids.

4.1.5 View roots

This part of the serialization starts with the line
* VIEW ROOTS *

and the next line contains a list of comma separated of internal or external ids specifying the roots of the
serialization.

4.1.6 Semantic memory

This part encapsulates the main part of the data and starts with the line
* SEMANTIC MEMORY *

while each following line contains an entry
handle: field1=entry1, ... ,fieldn=entryn

where handle and all fieldk are internal and all entryk are internal or external ids. Each line is thus a
compact representation of n sems originating from the same handle handle. For more details on sems see
the section Semantic memory (2.1).

4.1.7 Requirements

Every implementation of the serialization should abide the following basic rules:
- Neither the external table nor the dictionary should contains the special name type used for defining the
type of a Concise object. This special name is marked only by the reserved id 1.
- For the basic authority the name System and for the basic language the name English is reserved. Each
serialization should contain these.

4.1.8 Example

Minimalist example for serialization of a single type Trailer in the type sheet TextDocument. In this ex-
ample the comments start with a % sign.

* EXTERNAL TABLE *
-1=<nam;English>
-7=<nam;System>
-424=<nam;TextDocument>
-1778=<nam;Trailer>
...

17

* AUTHORITY CODES *
12=-7 % System
219=-424 % TextDocument
...
* LANGUAGE CODES *
120=-1 % English
...
* DICTIONARY ENTRIES *
-7,12,12,120 % System(English,System)
-1,12,12,120 % English(English,System)
-424,219,12,120 % TextDocument(English,System)
-1778,4690,219,120 % Trailer(English,TextDocument)
...
* VIEW ROOTS *
...
* SEMANTIC MEMORY *
6155:1=4690 % the type of the node #6155 is ’Trailer’
...

4.2 System parameters
––––––––––––––––––––––––––––––––
Properties of Concise 0.9315 at 2012.03.31 at 23:35:37 MESZ
––––––––––––––––––––––––––––––––
Sources* Files:400, Lines:67238, Words:202357, Total Size:2052kb
Imports* TypeSheets:6, Views:0
Semantic Memory* Objects:11138, Sems:24049
––––––––––––––––––––––––––––––––
Comprehensive word count reference:
Short... 7,000 to 20,000
Novella... 20,000 to 40,000
Catagory... 40,000 to 65,000
Novel... 65,000 to 90,000
Novel Plus... 90,000 to 120,000
Super Novel... 120,000+
––––––––––––––––––––––––––––––––

4.3 External types
ExternalTypes::
! ***** Type Definitions *****
Color:
nothingElse>
File:
nothingElse>
EscapedCharacter:
nothingElse>
Point:
nothingElse>
Integer:

18

nothingElse>
EscapedString:
nothingElse>
Character:
nothingElse>
Boolean:
nothingElse>
Matrix:
nothingElse>
EscapedUniqueString:
nothingElse>
Vector:
nothingElse>
UniqueString:
nothingElse>
IntegerName:
nothingElse>
String:
nothingElse>
Abstract2DShape:
nothingElse>
Array:
nothingElse>
Double:
nothingElse>
TextLine:
nothingElse>
Dimension:
nothingElse>
Picture:
nothingElse>
Name:
nothingElse>
Font:
nothingElse>
Timer:
nothingElse>
Rectangle:
nothingElse>
IntegerInterval:
nothingElse>
DoubleInterval:
nothingElse>
UniqueExternal:
union> Abstract2DShape, Array, Character, Color, EscapedCharacter, EscapedUniqueString, File,
Font, IntegerName, Name, Picture, Timer, UniqueString
MutableExternal:
union> Boolean, Dimension, Double, DoubleInterval, EscapedString, Integer, IntegerInterval,
Matrix, Point, Rectangle, String, TextLine, Vector
External:
union> UniqueExternal, MutableExternal

19

4.4 External functions
************************************* NOTATION ******************************
! - required input parameter, <> - required in-out parameter

->package: math
[Vector x] = linSol(!Matrix A, !Vector b)
Solve the linear system equation Ax=b
[Matrix res] = matAdd(!Matrix mat1, !Matrix mat2)
Add the two given matrices
[Double det] = matDet(!Matrix mat)
Compute the determinant of the given matrix
[Matrix res] = matDiv(!Matrix mat1, !Matrix mat2)
Divide the first matrix with the second
[Double dat] = matGet(!Matrix mat, !Integer row, !Integer col)
Get the given data from the given position in the given matrix
[Matrix L, Matrix U, Vector rowPiv] = matLU(!Matrix mat)
Compute the LU decomposition of the given matrix
[Matrix res] = matMul(!Matrix mat1, !Matrix mat2)
Multiply the two given matrices
matSet(<>Matrix mat, !Integer row, !Integer col, !Double data)
Set the given data in the given position in the given matrix
[Matrix res] = matSub(!Matrix mat1, !Matrix mat2)
Subtract the second matrix from the first
[Matrix matT] = matTran(!Matrix mat)
Transpose the given matrix
->package: system
alert(! out)
The string representation of the given external is displayed in a small
message window
[Boolean ok] = confirm(! question, title)
Display a small window with optional title, containingthe given question,
a yes and a no button.For yes/no, true/false is returned
disp(! out)
The string representation of the given external is displayed in the console
[Boolean equal] = equal(! ex1, ! ex2)
Compare the two given externals (as strings) and return true is they are
equal
[Array outArgs] = executeMatlabComm(!String command, !Integer outArgNum)
Execute a matlab command. The ’command’ string contains the command, while
the ’outArgNum’ specifies the required number of output arguments.
Currently only Integer, Double and String outputs and arrays of the same
types are supported.
executeShellComm(!String command, String commArgs, String envVars, String workDir)
Execute a shell command. The ’command’ string can contain command
arguments or they can additionally be specified in ’commArg’. ’commArgs’
is either empty or a list of ’;’ separated command arguments. Optional
environment variables can be given in ’envVars’ as a ’;’ separated list of
pairs <varName>=<value>. The full path of the working directory can be
optionally given in ’workDir’

20

[String time] = getTime
Return the system time as a string.
[String text] = input(! question, text, title)
Display a small input window with an optional title, the given question,
an input field containingthe given optional text, and an ok and a cancel
button.The input text or an empty text for cancel is returned
strApp(<>String s, !String s2)
Append the second string to the first.
[String res] = strMerg(!String s, !String s2)
Merge the two string return the result
writeFile(! out, !File file, Boolean append)
Write the string representation of the given external data to a file.
->package: text
ifNotEmpty(testarg, text)
If the first argument is empty, the second will be written in the output.
resetAttribs
Reset all style attributes to their default values.
resetColor
Reset the color attribute to its default value.
resetFontSize
Reset the font size attribute to its default value.
setBold
Set the bold attribute.
setColor(!Integer red, !Integer green, !Integer blue)
Set the color attribute to the given rgb value.
setFontSize(!Integer size)
Set the font size attribute to the given value.
setItalic
Set the italic attribute.
setNonBold
Clear the bold attribute.
setNonItalic
Clear the italic attribute.
toggleBold
Toggle the bold attribute.
toggleItalic
Toggle the italic attribute.
->package: tokensource
out(!Integer mainId, Integer supplementaryId)
This function has either one or two integer args which are passed to the
tokensource.

4.5 Source Listing
main:

CodeSheetExecuter,
ConciseAboutBox,
ConciseApp,
ConciseView,
HelpGenerator,
SystemInfo,

21

SystemVersion,
TypeSheetChecker,
ViewPlotGenerator

acts:
ElementaryAct,
ElementaryActRegistry,
ExecutionException

acts.core:
ConstInfo,
Constant,
ExternalFunction,
Function,
InternalFunction,
VarConst,
VarConstInfo,
VarInfo,
Variable

acts.impl:
Ask,
Assign,
Call,
Convert,
Do,
ForAllFields,
Get,
Goto,
Identical,
Resume,
Return,
Set,
Supervise,
Vcopy

acts.parser:
ActRecordParser

acts.run:
AbstractEnvironment,
ElementaryActReturn,
ExecutionResult,
LocalEnvironment,
RuntimeEnvironment,
Supervisor

acts.run.action:
EndSuperviseAction,
EndSuperviseDialogAction,
ExecuteActAction,
ExecutionAction,
JumpAction,
LeaveLocalAction,
LoopAction,
ResumeAction,
ReturnAction,

22

StartSuperviseAction,
StartSuperviseDialogAction

core:
ConciseException,
ConciseVersionMismatchException,
Config,
DeserializationException,
Serializable

core.action:
Action,
ActionList,
SemAction,
SemActionUI

core.graph:
SemEdge,
SemNode,
SemNodeCollectorWalker,
SemanticGraph,
SemanticGraphEvent,
SemanticGraphExecutionWalker,
SemanticGraphListener,
SemanticGraphUISettings

core.memory:
AuthedName,
LangedAuthedName,
LangedName,
Name,
NameSequence,
Sem,
SemSequence,
SemTemplate,
SemanticIterator,
SemanticMemory,
SemanticMemoryEvent,
SemanticMemoryListener,
SimpleSem,
SingleName

develop:
ComplexRecord,
EditorRecordView,
Misc,
Record,
SemSequence,
SemanticMemory-old,
SimpleRecord

editor:
Editor,
EditorAction,
EditorAdapter,
EditorException,
EditorListener,

23

EditorView,
EditorViewContainer,
EditorViewEvent,
EditorViewListener,
EditorViewSelectorPanel

editor.browserview:
BrowserView

editor.fileview:
FileView

editor.graphview:
GraphItemSelectionEvent,
GraphItemSelectionListener,
GraphView,
GraphViewPanel,
GraphViewToolset

editor.matlabview:
MatlabConsoleView

editor.recordview:
RecordEditor,
RecordUnitTreeNode,
RecordUnitTreeNodeEvent,
RecordUnitTreeNodeListener,
RecordView,
RecordViewPanel

editor.textview:
TextView

external:
External,
ExternalConversionException,
ExternalConverter,
ExternalConverters,
ExternalDynamicObject,
ExternalObjectEvent,
ExternalObjectListener,
ExternalRegistry,
ExternalSelectorUI,
ExternalTable,
ExternalUI,
ExternalVisualObject,
ExternalsEditorUI,
MutableExternal,
UniqueExternal

external.convert:
ExternalFileToString,
ExternalIntegerToString,
ExternalNameToString,
ExternalStringToFile,
ExternalStringToInteger,
ExternalStringToName

external.functions:
ExternalFunArgInfo,

24

ExternalFunException,
ExternalFunRegistry,
ExternalFunResult,
ExternalFunction,
FunArgInfo

external.functions.math:
LinearSolve,
MatrixAdd,
MatrixDet,
MatrixDiv,
MatrixGet,
MatrixLU,
MatrixMul,
MatrixSet,
MatrixSub,
MatrixTrans

external.functions.system:
Alert,
Confirm,
Disp,
Equal,
ExecuteMatlabComm,
ExecuteShellComm,
GetSystemTime,
Input,
StrApp,
StrMerg,
WriteFile

external.functions.text:
IfNotEmpty,
ResetAttribs,
ResetColor,
ResetFontSize,
SetBold,
SetColor,
SetFontSize,
SetItalic,
SetNonBold,
SetNonItalic,
TextConstants,
TextFun,
TextReturn,
ToggleBold,
ToggleItalic

external.functions.tokensource:
Out

external.interfaces:
ExternalCharSequence

external.objects:
ExternalAbstract2DShape,
ExternalArray,

25

ExternalCharacter,
ExternalColor,
ExternalEscapedCharacter,
ExternalEscapedUniqueString,
ExternalFile,
ExternalFont,
ExternalIntegerName,
ExternalName,
ExternalPicture,
ExternalTimer,
ExternalUniqueString

external.values:
ExternalBoolean,
ExternalDimension,
ExternalDouble,
ExternalDoubleInterval,
ExternalEscapedString,
ExternalInteger,
ExternalIntegerInterval,
ExternalMatrix,
ExternalPoint,
ExternalRectangle,
ExternalString,
ExternalTextLine,
ExternalVector

matlab:
MatlabConnector

parser:
ConciseTokenSource,
Grammar,
GrammarException,
TextParagraphIterator,
Unlexer

records:
RecordException,
RecordRoot,
RecordSheet,
RecordUnit

session:
Dictionary,
DictionaryEntry,
Session,
SessionAuthority,
SessionConstant,
SessionConstants,
SessionLanguage,
SessionSettingSelector,
SessionSystemConstant,
SessionUI,
Workspace

test:

26

ActsTest,
ConstantsTest,
ConvertTex2cnr,
CoreTest,
EditorTest,
ExternalMatrixTest,
ExternalTest,
GrammarTest,
GraphTest,
LatexTest,
MatlabTest,
OEdit,
ParserTest,
PgfTestJava,
RecordTest,
TextViewTest,
TypeCheckTest,
TypeSystemTest,
UsageTest,
ZoomPanelTest

types:
TypeCheckException,
TypeChecker,
TypeException

types.def:
TypeDef,
TypeDefUI,
TypeRestriction,
TypeRestrictionUI

types.entries:
TypeEntry,
TypeEntryCollection,
TypeEntryEquationList,
TypeEntryNameList,
TypeEntryOneName,
TypeEntryRegistry,
TypeEntryTrivial,
TypeEntryUI,
TypeEntryUnited

types.entries.data:
TypeEntryData,
TypeEntryEquationData,
TypeEntryNameData

types.entries.impl:
TypeEntryAllOf,
TypeEntryArray,
TypeEntryAtomic,
TypeEntryComplete,
TypeEntryFixed,
TypeEntryIndex,
TypeEntryItself,

27

TypeEntryNothing,
TypeEntryNothingElse,
TypeEntryOneOf,
TypeEntryOnly,
TypeEntryOptional,
TypeEntrySomeOf,
TypeEntrySomeOfType,
TypeEntryTemplate,
TypeEntryUnion

types.system:
TypeSheetParser,
TypeSystem,
TypeSystemImport,
TypeSystemImports,
TypeSystemRecordParser

types.usage:
LitSubst,
LitVar,
LitVars,
TargetLabels,
Usage,
UsageConstants,
UsageException,
UsageTarget,
UsageToken,
UsageTokenArray,
UsageTokenMap,
UsageTokenRegistry,
UsageWalker,
UsageWalkerAdapter,
Usages

types.usage.atoms:
CatVar,
CatVarId,
CatVarName,
CatVarRec,
ChrRan,
FunArgs,
Function,
LineBreak,
LitId,
LitVal,
Literal

types.usage.expressions:
Alternative,
Anytimes,
ChrRanges,
Expr,
Multiple,
Once,
Optional,

28

RegExpr
types.usage.matches:

Except,
Expect,
MatchCase,
Maximal,
PatternMatch,
Taboo

users:
User,
UserException

29

	Introduction
	MSC Classification
	About Concise
	Disclaimer

	Theory
	Semantic Memory
	Object
	Sem
	Record
	Externals
	Names
	Semantic Graph
	Node
	Edge
	Types and Categories
	Type Systems

	Concise
	Starting Concise
	Main Window
	Session
	Sections of the semantic memory
	Serialization
	Views
	View Containers
	Graph View
	Text View
	Record View

	Type Sheet Check
	Code Record Execution
	File View

	Users
	Configuration
	Debug
	Editing Help

	Appendix
	Serialization
	External table
	Authority codes
	Language codes
	Dictionary
	View roots
	Semantic memory
	Requirements
	Example

	System parameters
	External types
	External functions
	Source Listing

