
Exercise 41 ( without Matlab except for e) and f))

We aim at solving the linear system Ax = b, where

A =

 1 1 1
2 2 5
4 6 8

 et b =

 1
2
5


with the Gauss elimination method.

a) Verify that the Gauss algorithm can not be executed till the end.

b) Find a matrix of permutations P such that the matrix PA can be
facotrized. Write the linear system equivalent to Ax = b (i.e. with
the same solution x) which has PA as associated matrix.

c) Apply the Gauss algorithm to the matrix PA, and compute the LU -
factorization of PA.

d) Compute x by solving the equivalent linear system of point b), starting
from the obtained factorization and using the algorithms of forward
and back forward substitution.

e) (To solve with Matlab) Compute the LU -factorization of A with
Matlab, and verify that Matlab has used a permutations of lines of A.
(Hint: visualize the permutation matrix P computed by the command
lu).

f) (To solve with Matlab) Compute with Matlab the solution of Ax =
b starting from the factorization obtained at point e). In particular,
solve the triangular linear systems with the Matlab command \.

Exercise 42

Consider a set of many linear systems Ax1 = b1, Ax2 = b2, Ax3 = b3, . . .,
with the same matrix A,

A =


5 0 1 3
0 4 −2 7
−1 2 −3 0
2 9 −9 −5

 .
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Since all the systems have the same matrix, it is possible to compute only
once the LU -factorization of A. In particular, if we solve the linear systems
with

b1 =


1
0
0
0

 , b2 =


0
1
0
0

 , b3 =


0
0
1
0

 , b4 =


0
0
0
1

 ,

we can build the inverse matrix of A,

A−1 =

[
x1

∣∣∣∣ x2

∣∣∣∣ x3

∣∣∣∣ x4

]
.

The Matlab command inv(A) follows the same procedure to compute the
inverse of a matrix A ∈ Rn×n.

a) Using Matlab, compute the inverse of the matrix A before using the
described procedure and then with the Matlab command inv, and
verify that the same result is obtained. Use the Matlab command \
to solve the linear systems.

b) Let N = 80. Consider the matrix A of size 6400× 6400 obtained with
the command gallery(’poisson’,N), and the vector b obtained with
the command rand(N*N,1). Solve the linear system Ax = b, with
the command A\b and the command inv(A)*b. Which is the faster
command and why? (Hint: the execution time of a set of commands
can be measured with the commands tic and toc ).

Exercise 43

Consider the linear system Ax = f where the matrix A is tri-diagonal and
invertible:

A =



a1 c1 0 · · · 0

b2 a2 c2
. . .

...

0 b3 a3
. . . 0

...
. . .

. . .
. . . cn−1

0 · · · 0 bn an


.
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a) Show that the matrices L and U of the LU -factorization of the matrix
A are bi-diagonal matrices of the form,

L =



1 0 0 · · · 0

β2 1 0
. . .

...

0 β3 1
. . . 0

...
. . .

. . .
. . . 0

0 · · · 0 βn 1


, U =



α1 γ1 0 · · · 0

0 α2 γ2
. . .

...

0 0 α3
. . . 0

...
. . .

. . .
. . . γn−1

0 · · · 0 0 αn


,

and give the expressions of the coefficients αi, βi and γi as a function
of the coefficients of A.

b) Compute the coefficients of the vector x, solution of the linear system
Ax = f , with f = (fi)

n
i=1 ∈ Rn, as a function of the coefficients αi, βi, γi

et fi.

Exercise 44

Consider the matrix of size n×n built up with the command A=gallery(’binomial’,n).

a) Visualize the non-zero elements of the matrix for n = 400, with the
command spy(A).

b) Compute the LU -factorization and check that permutations of lines
have been done. (Hint: visualize the matrix P with spy(P) ).

c) Visualize the non-zero elements of L and U . Use the command nnz to
count the number of non-zero elements of the matrices A, L and U .
What can be observed?

d) Estimate the time needed by Matlab to compute the LU -factorization
of A, using the commands tic and toc.

e) Repeat points c) and d) for n = 202, 212, . . . , 352. Visualize the com-
putation time and the number of non-zero elements of the matrices
L and U as a function of n on logarithm plots. Comment the re-
sults. How do the computation time and the memory storage grow as
a function of n?
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Exercise 45

Consider the Vandermonde matrix

A =


xn−11 · · · x21 x1 1

...
... x22 x2 1

...
...

...
...

...
xn−1n · · · x2n xn 1

 ∈ Rn×n.

where the points x1, . . . , xn are equi-spaces in the interval [0, 1]. We want
to solve the linear system Ax = b where

b =

1 + x21
...

1 + x2n

 .

The exact solution is x = (0, . . . , 0, 0, 1, 0, 1)T .

a) Solve the linear system with Matlab, using the command \. Let xc

be the obtained solution. Evaluate the relative error εn = ‖xc−x‖
‖x‖ for

n = 4.

b) An upper bound for the relative error is given by

ηn = κ(A) eps

where κ(A) is the condition number of the matrix A (in Matlab can
be computed with the command cond). Compare the relative error εn
computed at the previous point with the upper bound ηn for n = 4.

c) Repeat points a) and b) for n = 4, 6, 8, . . . , 20. Visualize the error εn,
the upper bound ηn and the normalized residual rn = ‖b−Axc‖/‖b‖
as a function of n, on both a logarithmic and a semilogarithmic plot.
Which kind of error convergence can be observed? Is the residual rn
a good indicator of the error εn?

d) Repeat point c) for the matrix

A =



2 −1

−1 2
. . .

. . .
. . .

. . .
. . .

. . . −1
−1 2
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and the vector b = (2, 2, · · · , 2)T , with n = 5, 10, . . . , 100. The exact
solution is

x =


1 · (n)

2 · (n− 1)
3 · (n− 2)

...
n · 1

 .

Comment the obtained results.
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