Exercise 41 (without Matlab except for e) and f))

We aim at solving the linear system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 5 \\
4 & 6 & 8
\end{array}\right) \quad \text { et } \quad \mathbf{b}=\left(\begin{array}{l}
1 \\
2 \\
5
\end{array}\right)
$$

with the Gauss elimination method.
a) Verify that the Gauss algorithm can not be executed till the end.
b) Find a matrix of permutations P such that the matrix $P A$ can be facotrized. Write the linear system equivalent to $A \mathbf{x}=\mathbf{b}$ (i.e. with the same solution \mathbf{x}) which has $P A$ as associated matrix.
c) Apply the Gauss algorithm to the matrix $P A$, and compute the $L U$ factorization of $P A$.
d) Compute \mathbf{x} by solving the equivalent linear system of point b), starting from the obtained factorization and using the algorithms of forward and back forward substitution.
e) (To solve with Matlab) Compute the $L U$-factorization of A with Matlab, and verify that Matlab has used a permutations of lines of A. (Hint: visualize the permutation matrix P computed by the command lu).
f) (To solve with Matlab) Compute with Matlab the solution of $A \mathbf{x}=$ \mathbf{b} starting from the factorization obtained at point e). In particular, solve the triangular linear systems with the Matlab command \backslash.

Exercise 42

Consider a set of many linear systems $A \mathbf{x}_{1}=\mathbf{b}_{1}, A \mathbf{x}_{2}=\mathbf{b}_{2}, A \mathbf{x}_{3}=\mathbf{b}_{3}, \ldots$, with the same matrix A,

$$
A=\left(\begin{array}{cccc}
5 & 0 & 1 & 3 \\
0 & 4 & -2 & 7 \\
-1 & 2 & -3 & 0 \\
2 & 9 & -9 & -5
\end{array}\right)
$$

Since all the systems have the same matrix, it is possible to compute only once the $L U$-factorization of A. In particular, if we solve the linear systems with

$$
\mathbf{b}_{1}=\left(\begin{array}{c}
1 \\
0 \\
0 \\
0
\end{array}\right), \quad \mathbf{b}_{2}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
0
\end{array}\right), \quad \mathbf{b}_{3}=\left(\begin{array}{c}
0 \\
0 \\
1 \\
0
\end{array}\right), \quad \mathbf{b}_{4}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

we can build the inverse matrix of A,

$$
A^{-1}=\left[\begin{array}{l|l|l|l}
\mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{3} & \mathbf{x}_{4}
\end{array}\right]
$$

The Matlab command $\operatorname{inv}(\mathrm{A})$ follows the same procedure to compute the inverse of a matrix $A \in \mathbb{R}^{n \times n}$.
a) Using Matlab, compute the inverse of the matrix A before using the described procedure and then with the Matlab command inv, and verify that the same result is obtained. Use the Matlab command \} to solve the linear systems.
b) Let $N=80$. Consider the matrix A of size 6400×6400 obtained with the command gallery ('poisson', N), and the vector \mathbf{b} obtained with the command $\operatorname{rand}(N * N, 1)$. Solve the linear system $A \mathbf{x}=\mathbf{b}$, with the command $A \backslash b$ and the command $\operatorname{inv}(\mathrm{A}) * \mathrm{~b}$. Which is the faster command and why? (Hint: the execution time of a set of commands can be measured with the commands tic and toc).

Exercise 43

Consider the linear system $A \mathbf{x}=\mathbf{f}$ where the matrix A is tri-diagonal and invertible:

$$
A=\left(\begin{array}{ccccc}
a_{1} & c_{1} & 0 & \cdots & 0 \\
b_{2} & a_{2} & c_{2} & \ddots & \vdots \\
0 & b_{3} & a_{3} & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & c_{n-1} \\
0 & \cdots & 0 & b_{n} & a_{n}
\end{array}\right)
$$

a) Show that the matrices L and U of the $L U$-factorization of the matrix A are bi-diagonal matrices of the form,

$$
L=\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
\beta_{2} & 1 & 0 & \ddots & \vdots \\
0 & \beta_{3} & 1 & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \beta_{n} & 1
\end{array}\right), \quad U=\left(\begin{array}{ccccc}
\alpha_{1} & \gamma_{1} & 0 & \cdots & 0 \\
0 & \alpha_{2} & \gamma_{2} & \ddots & \vdots \\
0 & 0 & \alpha_{3} & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & \gamma_{n-1} \\
0 & \cdots & 0 & 0 & \alpha_{n}
\end{array}\right)
$$

and give the expressions of the coefficients α_{i}, β_{i} and γ_{i} as a function of the coefficients of A.
b) Compute the coefficients of the vector \mathbf{x}, solution of the linear system $A \mathbf{x}=\mathbf{f}$, with $\mathbf{f}=\left(f_{i}\right)_{i=1}^{n} \in \mathbb{R}^{n}$, as a function of the coefficients $\alpha_{i}, \beta_{i}, \gamma_{i}$ et f_{i}.

Exercise 44

Consider the matrix of size $n \times n$ built up with the command A=gallery ('binomial' , n).
a) Visualize the non-zero elements of the matrix for $n=400$, with the command spy (A).
b) Compute the $L U$-factorization and check that permutations of lines have been done. (Hint: visualize the matrix P with spy (P)).
c) Visualize the non-zero elements of L and U. Use the command nnz to count the number of non-zero elements of the matrices A, L and U. What can be observed?
d) Estimate the time needed by Matlab to compute the $L U$-factorization of A, using the commands tic and toc.
e) Repeat points c) and d) for $n=20^{2}, 21^{2}, \ldots, 35^{2}$. Visualize the computation time and the number of non-zero elements of the matrices L and U as a function of n on logarithm plots. Comment the results. How do the computation time and the memory storage grow as a function of n ?

Exercise 45

Consider the Vandermonde matrix

$$
A=\left(\begin{array}{ccccc}
x_{1}^{n-1} & \cdots & x_{1}^{2} & x_{1} & 1 \\
\vdots & \vdots & x_{2}^{2} & x_{2} & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
x_{n}^{n-1} & \cdots & x_{n}^{2} & x_{n} & 1
\end{array}\right) \in \mathbb{R}^{n \times n} .
$$

where the points x_{1}, \ldots, x_{n} are equi-spaces in the interval $[0,1]$. We want to solve the linear system $A \mathbf{x}=\mathbf{b}$ where

$$
b=\left(\begin{array}{c}
1+x_{1}^{2} \\
\vdots \\
1+x_{n}^{2}
\end{array}\right) .
$$

The exact solution is $\mathbf{x}=(0, \ldots, 0,0,1,0,1)^{T}$.
a) Solve the linear system with Matlab, using the command \backslash. Let $\mathbf{x}_{\mathbf{c}}$ be the obtained solution. Evaluate the relative error $\varepsilon_{n}=\frac{\left\|\mathbf{x}_{\mathrm{c}}-\mathbf{x}\right\|}{\|\mathbf{x}\|}$ for $n=4$.
b) An upper bound for the relative error is given by

$$
\eta_{n}=\kappa(A) \mathrm{eps}
$$

where $\kappa(A)$ is the condition number of the matrix A (in Matlab can be computed with the command cond). Compare the relative error ε_{n} computed at the previous point with the upper bound η_{n} for $n=4$.
c) Repeat points a) and b) for $n=4,6,8, \ldots, 20$. Visualize the error ε_{n}, the upper bound η_{n} and the normalized residual $r_{n}=\left\|\mathbf{b}-A \mathbf{x}_{\mathbf{c}}\right\| /\|\mathbf{b}\|$ as a function of n, on both a logarithmic and a semilogarithmic plot. Which kind of error convergence can be observed? Is the residual r_{n} a good indicator of the error ε_{n} ?
d) Repeat point c) for the matrix

$$
A=\left[\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & \ddots & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & -1 \\
& & & -1 & 2
\end{array}\right]
$$

and the vector $b=(2,2, \cdots, 2)^{T}$, with $n=5,10, \ldots, 100$. The exact solution is

$$
\mathbf{x}=\left(\begin{array}{c}
1 \cdot(n) \\
2 \cdot(n-1) \\
3 \cdot(n-2) \\
\vdots \\
n \cdot 1
\end{array}\right) \text {. }
$$

Comment the obtained results.

