61. For $w \in \mathbb{R}^n$ and $||w||_2 = 1$ the Housholder matrix P is defined by

 $P := \mathbb{I} - 2ww^T.$

Determine all eigenvalues of P and their eigenvectors. What is the determinant of P?

62. Let $\mathbb{C}_n[x]$ $(n \in \mathbb{N})$ be the space of polynomials of degree n with complex coefficients. A basis of this space is given by $\{1, x, x^2, \ldots, x^n\}$, the so-called monomials. For $p(x) = \sum_{i=0}^n a_i x^i$ $(a_i \in \mathbb{C})$ we denote by p'(x) its derivative. We are in interested in p'(x) with respect to the monomial basis. Show that

$$D: \mathbb{C}_n[x] \to \mathbb{C}_n[x]: p(x) \mapsto p'(x)$$

is linear. Define the corresponding matrix A_D .

63. Given are two bases of the space of the polynomials $\mathbb{C}_3[x]$, namely

$$\mu = \{1, x, x^2, x^3\}$$
 (Monomial-Basis) and
$$\eta = \{1, x, \frac{1}{2}(3x^2 - 1), \frac{1}{2}(5x^3 - 3x)\}$$
 (Legendre-Polynom-Basis).

Therefore, we can represent a polynomial of degree 3 by

$$p(x) = \sum_{i=0}^{3} a_i \mu_i = \sum_{i=0}^{3} b_i \eta_i$$

- (a) Determine the transformation matrix A, which transforms a polynomial of degree 3 from monomial basis representation to the Legendre-Basis representation; i.e., $A \cdot a = b$.
- (b) Transform $p(x) = 1 + 3x 3x^2 + x^3$ to the Legendre-Basis representation.
- (c) Let us assume we have a polynomial of degree 3 in the Legendre-Basis representation. Determine the matrix which calculates the derivative in the Legendre-Basis representation. Use (obligatory) exercise 62 (the matrix A_D for n = 3!).

64. Exercise without Matlab. Let be given the following data:

- $x_1 = 0 \quad y_1 = 12$ $x_2 = 1 \quad y_2 = 18$ $x_3 = 2 \quad y_3 = 6$
- a) Find the three polynomials of the Lagrange basis corresponding to the points $x_1 = 0, x_2 = 1$ and $x_3 = 2$.
- b) Using the Lagrangian basis, find the polynomial of order 2 which interpolates the data. Compute then the value of the interpolating polynomial in $x = \frac{1}{2}$.
- 65. Let be given the data (x_i, y_i) , i = 1, ..., n + 1 where x_i are n + 1 equidistributed knots in the interval [a, b] = [-5, 5] and y_i are the evaluations of the function

$$f(x) = \frac{1}{1 + \exp(4x)}$$

without measurement error, i.e. $y_i = f(x_i)$. We want to reconstruct the function f starting from the data (x_i, y_i) and using polynomial interpolation.

a) Consider n = 6. Using the Matlab commands polyfit and polyval (see help polyfit, help polyval), compute the polynomial p_n of degree n = 6 which interpolates the data (x_i, y_i) . Graphically compare the obtained polynomial with the "real" function f where the data come from. *Hint: evaluate both the polynomial and the function* f *on a fine grid, with much more points than* n + 1.

- b) Repeat point a) with n = 14, and make the plot of the new polynomial interpolant on the same plot obtained at point a). Is the new approximation better the first one?
- c) Repeat points a) and b) for the function

 $g(x) = \sin^2(x)$

What can be observed here?

d) Repeat points a), b) and c) using the Tchebychev knots instead of the equidistributed ones. The formula to compute k Tchebychev knots is

$$t_j = -\cos\left(\frac{j\pi}{2k}\right), \quad j = 1, 3, 5, \dots, 2k - 1$$

 $x_j = \frac{t_j + 1}{2}(b - a) + a$

Are the results obtained the same as for the equidistributed knots?