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Abstract.
This paper discusses the rigorous enclosure of an ellipsoid by a rectangular box, its interval hull,

providing a convenient preprocessing step for constrained optimization problems.
A quadratic inequality constraint with a strictly convex Hessian matrix defines an ellipsoid.

The Cholesky factorization can be used to transform a strictly convex quadratic constraint into a
norm inequality, for which the interval hull is easy to compute analytically. In exact arithmetic, the
Cholesky factorization of a nonsingular symmetric matrix exists iff the matrix is positive definite.
However, to cope efficiently with rounding errors in inexact arithmetic is nontrivial. Numerical tests
show that even nearly singular problems can be handled successfully by our techniques.

To rigorously account for the rounding errors involved in the computation of the interval hull
and to handle quadratic inequality constraints having uncertain coefficients, we define the concept
of a directed Cholesky factorization, and give two algorithms for computing one. We also discuss
how a directed Cholesky factorization can be used for testing positive definiteness. Some numerical
test are given in order to exploit the features and boundaries of the directed Cholesky factorization
methods.
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Several state-of-the-art global optimization solvers, such as Baron (by Sahini-
dis & Tawarmalani [22]) or COCOS (by Schichl et al. [23]), combine a number
of methods and strategies to find one or more global solutions of a constrained opti-
mization problem. Most of the techniques (e.g branch and bound, heuristics) require
explicit bounds for each variable from below and from above. If a problem lacks these
explicit prior bounds, the usual remedy is to set default upper and lower bounds on
the variables, thereby changing the problem. If the global minimum lies outside the
default bounds, the solver cannot find the solution.

A rigorous enclosure technique for strictly convex quadratic constraints presented
in this paper gives the possibility to obtain rigorous bounds on variables that are
consequences of the constraints, without the need of giving explicit bounds on them.
This makes the method a convenient preprocessing step for constrained optimization
problems. On the other hand since the enclosures obtained by the method are rigorous,
the method is also applicable in verified global optimization (e.g., Kearfott [10],
Lebbah [11], Domes [7]) and in computer-assisted proofs (see, e.g., Neumaier [14]).
Since it reduces the search space, it may also be important for stochastic, sampling-
based optimization methods.

The paper is logically divided into two parts. The first part (Sections 2 - 4)
is about computing rigorous enclosures for strictly convex quadratic constraints. In
the second part (Sections 5 - 7) the theory of the directed Cholesky factorization is
developed as an essential tool for making the results of the first part rigorous.

In the first section we find an optimal box enclosure of an ellipsoid defined by a
simple Euclidean norm inequality constraint. In Section 2 we extend these results and
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generate optimal enclosures for strictly convex quadratic constraints. We also consider
the case of inexact arithmetic, where the error of the factorization of the coefficient
matrix has to be controlled. The need of scaling when confronted with ill-conditioned
coefficient matrices is discussed in Section 3. In Section 4 we develop the method into
a useful tool for preprocessing constrained optimization problems to get finite bounds
on the variables or to improve the existing ones. Since the method is rigorous, our
preprocessing step finds finite bounds for all variables if each unbounded variable
occurs in some strictly convex quadratic constraint, without losing any feasible point.
These bounds on all n variables are obtainable with O(n3) operations. The method
is implemented in the GloptLab optimization environment (see Domes [7]).

To rigorously account for the rounding errors involved in the computation of the
interval hull and to handle quadratic inequality constraint having uncertain coeffi-
cients, we define the concept of a directed Cholesky factorization.

In the second part of the paper, we give algorithms which compute, if possible, for
a real, symmetric matrix A a nonsingular triangular matrix R (a directed Cholesky
factor) such that the error matrix A − RTR of the factorization is small compared
to the entries of |A|, and guaranteed to be positive semidefinite. Clearly, this implies
that A is positive definite; conversely (in the absence of overflow), any ‘sufficiently’
positive definite symmetric matrix has such a factorization with R representable in
floating point arithmetic. The challenge is to find such a representation which makes
the error as small as possible and works even for nearly singular matrices.

Two different versions of the directed Cholesky factorization for real symmetric
matrices are discussed in Section 5. Both of them check positive definiteness and,
when successful, compute a directed Cholesky factor with positive semidefinite error
matrix containing small entries. The first approach uses an a priori error estimate,
an approximate Cholesky factorization, and the so-called Gerschgorin test (explained
later). The second one uses directed rounding and diagonal pivoting to obtain a
directed Cholesky factor. Section 6 contains some tests and comparison of the two
directed Cholesky factorization methods.

In some applications, it is necessary to safeguard the computations in order to
ensure the mathematical correctness of the assertions in spite of rounding errors.
This applies to computer-assisted proofs in which positive definiteness must be verified
rigorously (a potential application to Lie group representations is described in Adams
[1]). This also applies to box reduction methods for global optimization (see, e.g.,
[13, 21]) to guarantee that no feasible point is lost.

The last section is concerned with applications of the directed Cholesky factoriza-
tion for verifying positive definiteness rigorously. Previous work includes Adjiman et
al. [2, 4, 5], Neumaier [13], Rump [16, 17, 18, 19]. We show that a directed Cholesky
factorization can be employed for the same task, and that the positive definiteness of
a complex Hermitian matrix can be checked in real arithmetic by factorizing a related
real matrix of twice the size.

Notation. We shall use the following notation. N0 denotes the set of natural
numbers including zero, and R+ the set of nonnegative reals. The n-dimensional
identity matrix is denoted by In and the n-dimensional zero matrix is denoted by
0n. The jth row of a matrix A is denoted by Aj:, the kth column by A:k and the
number of nonzero entries by nnz(A). For an n × n matrix A, diag(A) denotes the
n-dimensional vector with diag(A)i = Aii. For an n-dimensional vector x, Diag(x)
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denotes the n× n, diagonal matrix A with

Diag(A)ij :=
{
xi if i = j,
0 otherwise.

The expression ‖A‖2 := sup{‖Ax‖2 | ‖x‖2 = 1} denotes the spectral norm of a
matrix A. The expression λ(A) denotes the set of all eigenvalues of a square matrix
A. Furthermore, λmax(A) denotes the largest and λmin(A) the smallest eigenvalue of
A. The comparison operators =, 6=, <, >, ≤, ≥ for vectors and matrices, and the
absolute value |A| of a matrix A are interpreted componentwise. We denote (AT )−1

by A−T . We classify a matrix A as very small with respect to a matrix B if |A| < |B|
and for a fixed, given tolerance 0 < κ � 1 (chosen by the implementation of the
method)

max
i,j

(Dij) ≤ κ where Dij :=
{
|Aij |/|Bij | if |Aij | ≥ 1
|Aij | otherwise. (0.1)

For example if

A =
(

0.001 10
0.002 0.004

)
, B =

(
0.1 10000

0.003 0.02

)
, then D =

(
0.001 0.001
0.002 0.004

)
and |A| < |B|, the matrix A is very small with respect to B if the tolerance κ satisfies
κ ≥ maxi,j(Dij) = 10−3.

An interval vector x = [x, x] ∈ IRd is the Cartesian product of the closed real
intervals xi := [xi, xi], representing a (bounded or unbounded) axiparallel box in Rd.
The values −∞ and ∞ are allowed as lower and upper bounds, respectively, to take
care of one-sided bounds on variables. IRd denotes the set of interval vectors with d
components.

〈x〉 := min(|x|, |x|)

defines the mignitude,

|x| := max(|x|, |x|)

defines the magnitude and

mid(x) := (x+ x)/2

defines the midpoint of an interval x. We also use the notation mid(x) component-wise
for a bounded box x.

To account for inaccuracies in computed entries of a matrix, consider the interval
matrices, standing for uncertain real matrices whose coefficients are between given
lower and upper bounds. The expression A := [A,A] ∈ IRm×n denotes an m × n
interval matrix with lower bound A and upper bound A. A ∈ IRn×n is symmetric if
Aik = Aki for all i, k ∈ {1, . . . , n}. The comparison matrix 〈A〉 of a square interval
matrix A is defined by

〈A〉ij :=
{
−|Aij | for i 6= j,
〈Aij〉 for i = j.



4 FERENC DOMES & ARNOLD NEUMAIER

A real matrix A is identified with the thin interval matrix with A = A = A; in
particular, its comparison matrix is

〈A〉ij :=
{
−|Aij | for i 6= j,
|Aij | for i = j.

The width and the radius of an interval matrix A are real matrices and are defined as

wid(A) := A−A, and rad(A) := wid(A)/2,

respectively. A symmetric interval matrix A ∈ IRn×n is called positive definite if all
symmetric A ∈ A are positive definite:

xTAx > 0 for all x ∈ Rn, x 6= 0, A = AT ∈ A.

An interval matrix A ∈ IRn×n is called an H-Matrix iff a vector u > 0 with 〈A〉u > 0
exists (see, e.g. Neumaier [12]).

The well-known theorem of Gerschgorin, (see, e.g. Stoer & Bulirsch [25])
implies that every symmetric H-matrix with non-negative diagonal entries is posi-
tive definite; we call this the Gerschgorin test for positive definiteness. Other suffi-
cient conditions for positive definiteness based on scaled Gerschgorin theorems and
semidefinite programming, form the basis of the αBB method Adjiman et al. [3] and
Androulakis [6] and are given in Adjiman et al. [2, 4]. For further tests see the
discussion in Section 7.

1. Bounding strictly convex norm constraints. In this section we construct
an optimal box enclosure of an ellipsoid defined by the Euclidean norm constraint

‖Rx‖22 + 2aTx ≤ α, (1.1)

for a given R ∈ Rn×n, a ∈ Rn and α ∈ R. The following result — for ellipsoids
centered on the origin (a = 0 in (1.1)) — is the basic tool for finding an optimal
enclosure of (1.1).

Proposition 1.1. Suppose that R,C ∈ Rn×n, 0 < β ∈ R and 0 < d ∈ Rn satisfy

di ≥
√

(CCT )ii for all i = 1, . . . , n, (1.2)

as well as

βd ≤ 〈CR〉d. (1.3)

Then R is invertible, and for x ∈ Rn

‖Rx‖22 ≤ δ2 ⇒ |x| ≤ δ

β
d. (1.4)

Proof. We first note that (1.2) implies (CCT )ii ≤ d2
i . Since CCT is positive

semidefinite, |(CCT )ik|2 ≤ (CCT )ii(CCT )kk ≤ d2
i d

2
k, so that

|CCT | ≤ ddT .
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Since (1.3) implies that CR is an H-matrix (Neumaier [12, Section 3.7]), the matrix
CR is invertible (hence also R), and |(CR)−1| ≤ 〈CR〉−1. Moreover, multiplying (1.3)
by 〈CR〉−1β−1 ≥ 0, we find 〈CR〉−1d ≤ β−1d. Now let z := R−T ei with the ith unit
vector ei = I:i. Then ei = RT z, hence

x2
i = (eiTx)2 = (zTRx)2 ≤ ‖z‖22‖Rx‖22 ≤ δ2‖z‖22 = δ2zT z

= δ2eiTR−1R−T ei = δ2eiT (CR)−1CCT (CR)−T ei

≤ δ2eiT 〈CR〉−1ddT 〈CR〉−T ei = (δeiT 〈CR〉−1d)2

≤ (δβ−1eiT d)2 = (δβ−1di)2,

(1.5)

proving (1.4). ut

Example. 1.2. For the ellipsoid

‖Rx‖22 ≤ δ2 with R =
(

2 −1
0 1

)
and δ2 = 10,

choosing C = R−1, di =
√

(CCT )ii, β = 1 and applying the results of Proposition 1.1
we find the enclosure

|x| ≤ δ

β
d =

( √
5√
10

)
≈
(

2.24
3.17

)
(see Figure 1.1).

Matlab code for testing Example 1.2.
R=[2 -1;0 1], delta=sqrt(10), C=inv(R),
d=sqrt(diag(C*C’)), beta=1, bound=delta/beta*d

Fig. 1.1. Box enclosure found for the ellipsoid from Example 1.2
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We now show that the choice for the parameters C, d and β we made in the above
example was the optimal one.

Proposition 1.3. Under the assumptions of Proposition 1.1, the bound on x is
optimal if C = R−1, di =

√
(CCT )ii and β = 1.

Proof. From βd ≤ 〈CR〉d with C = R−1 follows that β ≤ 1. Therefore β is
maximal if β = 1 and di is minimal if di =

√
(CCT )ii. The assertion that the bound

is optimal follows if we show that for all i = 1, . . . , n the points

x̂i := ± δ

di
R−1R−T ei

satisfy ‖Rx̂i‖2 = δ and the ith component of x̂i matches the boundary of the box
[−δdi, δdi] enclosing the ellipsoid. Since

di =
√

(CCT )ii =
√
eiTR−1R−T ei = ‖R−T ei‖2 > 0

holds, the first claim follows from

‖Rx̂i‖2 = ‖ ± δ

di
RR−1R−T ei‖2 =

δ

di
‖ ±R−T ei‖2 = δ,

and the second claim follows from

dix̂
i
i = di(eiT x̂i) = ±δeiTR−1R−T ei = ±δ‖R−T ei‖22 = ±δd2

i , (1.6)

after division by di. ut

If we shift the center of the ellipsoid by replacing x in Propositions 1.1 and 1.3
by x− x̃, we find:

Corollary 1.4. Suppose that R ∈ Rn×n is invertible, x̃ ∈ Rn, di ≥
√

(R−1R−T )ii,
and βd ≤ 〈R−1R〉d then

x ∈ Rn, ‖R(x− x̃)‖2 ≤ δ ⇒ |x− x̃| ≤ δ

β
d. (1.7)

The bound on x− x̃ is optimal if di =
√

(R−1R−T )ii and β = 1. ut

We use Propositions 1.1 and 1.3 to achieve the main result of this section given
by the following theorem; we derive cheap and in inexact arithmetic only slightly non
optimal bounds on x for the general norm inequality (1.1). The theorem, which is
valid for arbitrary z̃, x̃ ∈ Rn, will be used with

z̃ = R−Ta, x̃ = −R−1z̃ = −R−1R−Ta, (1.8)

to make γ small. We know that if the choice is exact then γ = 0 and the bounds
would be optimal.

Theorem 1.5 (Ellipsoid Hull). For given R ∈ Rn×n, a ∈ Rn and α ∈ R, under
the assumptions of Proposition 1.1, for arbitrary z̃, x̃ ∈ Rn and γ,∆ ∈ R satisfying

γ ≥ ‖z̃ +Rx̃‖2 + β−1dT |a−RT z̃|, (1.9)

and

∆ ≥ γ2 + α− 2aT x̃− ‖Rx̃‖22, (1.10)
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the following statements hold:

(i) If ∆ < 0 then

‖Rx‖22 + 2aTx ≤ α (1.11)

has no solution x ∈ R.

(ii) If ∆ ≥ 0 then (1.11) implies that

‖R(x− x̃)‖2 ≤ δ := γ +
√

∆, |x− x̃| ≤ δ

β
d. (1.12)

Proof. For any x ∈ Rn, Proposition 1.1 implies

|x− x̃| ≤ ε

β
d, where ε = ‖R(x− x̃)‖2. (1.13)

If (1.11) holds then

‖Rx‖22 ≤ α− 2aTx ≤ ∆− γ2 + 2aT x̃+ ‖Rx̃‖22 − 2aTx
= ∆− γ2 + ‖Rx̃‖22 − 2aT (x− x̃).

Therefore

ε2 = ‖R(x− x̃)‖22 = (x− x̃)TRTR(x− x̃)
= xTRTRx− 2x̃TRTRx+ x̃TRTRx̃
= ‖Rx‖22 − 2x̃TRTRx+ ‖Rx̃‖22
≤ ∆− γ2 − 2aT (x− x̃)− 2x̃TRTRx+ 2‖Rx̃‖22
= ∆− γ2 − 2(a+RTRx̃)T (x− x̃).

By (1.9), the inequality∣∣∣(a+RTRx̃)T (x− x̃)
∣∣∣ =

∣∣∣(z̃ +Rx̃)TR(x− x̃) + (a−RT z̃)T (x− x̃)
∣∣∣

≤ ‖z̃ +Rx̃‖2 ‖R(x− x̃)‖2 + |a−RT z̃|T |x− x̃|
≤ ‖z̃ +Rx̃‖2ε+ |a−RT z̃|T ε

βd ≤ εγ,

holds. We therefore conclude

(ε− γ)2 ≤ ∆− 2εγ + 2
∣∣∣(a+RTRx̃)T (x− x̃)

∣∣∣ ≤ ∆.

If ∆ < 0, we get a contradiction, proving (i). And if ∆ ≥ 0, we find ε ≤ γ +
√

∆ = δ,
and (ii) follows from (1.13). ut

For the choice (1.8) and assuming that the computations are exact, we get the
optimal bounds

x̃− δ

β
d ≤ x ≤ x̃+

δ

β
d,

by using Theorem 1.5. This is shown by the following corollary.
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Corollary 1.6. If we chose

C = R−1,
β = 1,
di =

√
(RTR−T )ii,

γ = ‖z̃ +Rx̃‖2 + β−1dT |a−RT z̃|,
∆ = γ2 + α− 2aT x̃− ‖Rx̃‖22,
z̃ = R−Ta,
x̃ = −R−1R−Ta,

then Theorem 1.5 holds, and in the case of ∆ ≥ 0 the bound on x − x̃ in (1.12) is
optimal.

Proof. By the choice of C, β, d, γ and ∆ we have

γ = ‖z̃ +Rx̃‖2 + β−1dT |a−RT z̃| = 0, (1.14)

and

∆ = α− 2aT x̃− ‖Rx̃‖22
= α+ 2aTR−1R−Ta− ‖ −RR−1R−Ta‖22 = α+ ‖R−Ta‖22.

(1.15)

By the choice of z̃ and x̃ we have

‖R(x− x̃)‖22 = ‖Rx‖22 + ‖Rx̃‖22 − xTRTRx̃− x̃TRTRx
= ‖Rx‖22 + ‖R−Ta‖22 + 2aTx,

Therefore, ‖R(x− x̃)‖22 ≤ δ2 = ∆ implies ‖Rx‖22 + ‖R−Ta‖22 + 2aTx ≤ α+ ‖R−Ta‖22
by (1.15), hence ‖Rx‖22 + 2aTx ≤ α. This gives the forward direction of

‖R(x− x̃)‖2 ≤ δ ⇔ ‖Rx‖22 + 2aTx ≤ α

and the reverse direction follows from (1.12). By the choice of di and β, we can apply
the second part of Corollary 1.4, proving that the bound on x− x̃ is optimal. ut

In practice, one cannot make the required choices in Corollary 1.6 exact, since
rounding errors affect the results of the defining formulas. However, using approxima-
tions for x̃ and z̃ computed by ordinary floating point arithmetic, tight bounds which
take account of the rounding errors are easy to get with directed, upward rounding.
In this way we get nearly optimal enclosure. In 2 dimensions, the results are visu-
ally indistinguishable from the optimal enclosures. In exact arithmetics however, by
Theorem 1.5 and Corollary 1.6 we can summarize:

Theorem 1.7. Let ‖Rx‖22 + 2aTx ≤ α be an ellipsoid. Suppose that R is invert-
ible, then

x = [x̃− δd, x̃+ δd]

with di =
√

(R−1R−T )ii, x̃ = −R−1R−Ta and δ =
√
α+ ‖R−Ta‖22 defines the inter-

val hull for the given ellipsoid. ut

Example. 1.8. For the ellipsoid

‖Rx‖22 + 2aTx ≤ α with R =
(

2 −1
0 1

)
, 2aT = (2 3), α = 10,
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which is shown Figure 1.2, we apply Theorem 1.7 and obtain the outward rounded (to
three significant digits) interval hull

x =
(

[− 3.92, 1.42]
[− 5.78, 1.78]

)
.

Matlab code for testing Example 1.8.
R=[2 -1;0 1], a=[2;3]./2, alpha=10, C=inv(R),
d=sqrt(diag(C*C’)), delta=sqrt(alpha+norm(C’*a)^2,
xhat=-C*C’*a, xl=xhat-delta*d, xu=xhat+delta*d

Fig. 1.2. Optimal box enclosure of the ellipsoid defined in Example 1.8

2. Enclosing strictly convex quadratic constraints. In this section we ap-
ply results of the previous section to enclose strictly convex quadratic constraints in
inexact arithmetic. To efficiently cope with the rounding errors we use a method called
the directed Cholesky factorization to transform a strictly convex quadratic constraint
into a Euclidean norm constraint (1.1). The directed Cholesky factorization takes the
rounding errors involved in the transformation into account and is discussed in detail
in Sections 5.

Let A be a symmetric, positive definite matrix. The strictly convex quadratic
constraint

xTAx+ 2aTx ≤ α (2.1)

describes an ellipsoid. We derive a nearly optimal enclosure x for this ellipsoid such
that each x satisfying (2.1) is contained in the box x (hence the method is rigorous).

We compute a permutation matrix P and an upper triangular matrix R such
that the residual matrix Ê := PAPT − R̂T R̂ is positive semidefinite and is very small



10 FERENC DOMES & ARNOLD NEUMAIER

with respect to PAPT (details in Section 5). If the factorization fails, the positive
definiteness of A cannot be verified and the enclosure cannot be computed. (This case
only happens when A is an indefinite or a nearly indefinite matrix.) If the factorization
is successful the constraint is strictly convex and we have

A = PT R̂T R̂P + PT ÊP, (2.2)

where the residual matrix Ê (and also PT ÊP ) is positive semidefinite and very small
with respect to A. Substituting in (2.1) we have

xT (PT R̂T R̂P + PT ÊP )x+ 2aTx = ‖R̂Px‖22 + xTPT ÊPx+ 2aTx ≤ α,

and if we define R := R̂P , we end up in

‖Rx‖22 + 2aTx ≤ α− xTPT ÊPx ≤ α. (2.3)

This proves that the ellipsoid defined by (2.1) is fully contained in the ellipsoid given
by the norm constraint

‖Rx‖22 + 2aTx ≤ α. (2.4)

Note that (2.3) is only then a valid inequality if the residual matrix Ê is positive
semidefinite. Since Ê is very small with respect to PAPT , the relative approximation
error

δ(x) :=
xT Êx

‖Rx‖22
,

is also small, for all x ∈ x.
We apply the main result of Section 1, Theorem 1.5 and Corollary 1.6, to (2.4),

choosing z̃ ≈ R−Ta and x̃ ≈ −R−1z̃ by ordinary floating point calculations, and
the remaining variables optimally, by computing the corresponding expressions with
directed rounding or interval arithmetic. The details are given in the following algo-
rithm.

Algorithm 2.1 (Ellipsoid Hull).
Compute a box enclosure of strictly convex quadratic constraint xTAx+ 2aTx ≤ α:

1. Find a directed Cholesky factorization of the matrix A:
(a) if the factorization fails, the positive definiteness of A cannot be verified

and the enclosure cannot be computed,
(b) otherwise a directed Cholesky factor R is obtained.

2. Compute the approximative inverse C of the matrix R.
3. Compute d with di = inf(

√
(CCT )ii) by using directed rounding.

4. Use upward rounding to compute h = 〈CR〉d and obtain β = max{hi/di|i =
1 . . . n} which must be approximately one.

5. Set z̃ = CTa and x̃ = −Cz̃ and compute an enclosure [γ, γ] of the expression

‖z̃ +Rx̃‖2 + β−1dT |a−RT z̃|

and an enclosure [∆,∆] of the expression

γ2 + α− 2aT x̃− ‖Rx̃‖22,

by using interval arithmetic.
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6. Finally, use outward rounding to compute the interval

[δ, δ] := [γ +
√

∆, γ +
√

∆].

7. The result is an approximate but rigorous enclosing ellipsoid for (2.1), given
by the norm constraint ‖R(x− x̃)‖2 ≤ δ, as well as the rigorous box enclosure

x ∈
[
(δ/β)d− x̃, (δ/β)d+ x̃

]
.

The algorithm applies with trivial modifications if A and a are uncertain (their
components vary in intervals). This form is implemented in GloptLab (see [7]).

3. Scaling. The ellipsoid hull approximation which was presented in the pre-
vious section may have difficulties when used on badly scaled systems. Scaling the
constraints before applying the Cholesky factorization increases the range of matrices
which can be successfully factorized1.

To demonstrate this behavior we discuss a four dimensional problem, first pre-
sented in Domes & Neumaier [8], consisting of the single constraint

4x2
1 + 4Nx1x2 + 12x1x3 − 28x1x4 + (1 +N2)x2

2 + (6N − 2)x2x3

−(14N + 10)x2x4 + 11x2
3 − 32x3x4 + 75x2

4 + 2x2 + 2Nx3 + 26 ≤ 0. (3.1)

Writing (3.1) in the form xTAx + 2ax ≤ −26 with x = (x1, x2, x3, x4)T , 2a =
(0, 2, 2N, 0) and

A = BTB, where B :=
(
R S
0 I

)
, R =

(
2 N
0 1

)
and S =

(
3 −7
−1 −5

)
,

we see that the symmetric matrix A is manifestly positive definite. Thus (3.1) de-
scribes an ellipsoid. If N is chosen large enough, A is very ill-conditioned.

For example if we choose N = 5 · 106 then the 2-norm condition number of A is
approximately 5 · 1021, therefore A is nearly singular; the lowest eigenvalue is approx-
imately 5 · 10−15. It is no surprise that for this matrix both the directed Cholesky
factorization using the Gerschgorin test and the directed Cholesky factorization with
pivoting fails (the reasons for this and both methods are explained in Section 5).

If we use the scaling algorithm ScaleLP from Domes & Neumaier [8] on the
problem, we obtain

D = Diag(106 1 106 105)

as scaling matrix for the variables. Here, scaling makes an essential difference since
the scaled problem

xTDADx+ bDx ≤ −26

has a 106 times lower condition number (approximately 6 · 1015) which — however it
is still high — it is small enough for the directed Cholesky factorization with pivoting
to be successful. Therefore we obtain the factorization

PDADPT = RTR+ E

1It is interesting that Rump [19] also mentions the importance of scaling of the matrix A in his
algorithm for checking definiteness. He uses a minimum degree ordering and a scaling technique
based on the results of the van der Sluis method given in Higham [9, Chapter 7])
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with

P =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 , R =


5.0 · 106 3.0 · 106 −7.0 · 105 2.0 · 106

0 1.4 · 106 3.5 · 105 2.8 · 10−1

0 0 3.7 · 105 2.7 · 10−1

0 0 0 1.1 · 10−2

 .

Finally, computing the interval hull by the method from Section 2 we find the bounds

x ∈ ([− 146, 1442], [− 5 · 108, 5 · 107], [− 3 · 10−5, 10−12], [− 10−2, 10−3])T

for the constraint (3.1).
If we compute an upper bound for the residual E by using interval arithmetic we

obtain the positive definite matrix:

E = sup(PDADPT−RTR) =


3.52 · 10−2 0 0 0

0 2.58 · 104 2.44 · 10−4 9.77 · 10−4

0 2.44 · 10−4 2.42 · 103 2.44 · 10−4

0 9.77 · 10−4 2.44 · 10−4 146 · 10−3

 .

As one can notice the second and the third diagonal entry of E is very large. This seem
to be a contradiction since E is supposed to be very small. However the component
wise relative error

δ := max
i,j

∣∣∣Eij
Aij

∣∣∣ = 1.0317 · 10−9,

indicates that E must be a very small perturbation of A. Thus E is indeed very small
with respect to A in the sense as defined in (0.1) in notation part of the first section.

4. Preprocessing constrained optimization problems. Optimization is a
constantly developing, complex and important field of the numerical mathematics.
The goal of solving an optimization problem is to find a local or a global minimum of
the objective function f(x), subject to the general constraints G(x) ∈ w (including
equality and inequality constraints) and to the bound constraints x ∈ x:

minimize f(x)
s.t. G(x) ∈ w,

x ∈ x.
(4.1)

If we search for a global minimum of the problem, it is called a global optimization
problem.

If an x̂ ∈ x satisfies G(x̂) ∈ w, x̂ is called a feasible point. If there is no objective
function given or it is constant, the goal is to find a good enclosure of the set of all
feasible points. In this case the problem is called a constraint satisfaction problem.
Also in the case of a global search the first step is often to solve the constraint satis-
faction problem in order to bound and reduce the search space as much as possible.
In this chapter we show how the ellipsoid hull enclosure technique presented in the
previous sections can be used for this purpose.

Several state of the art global optimization solvers (e.g., [23] or [22]) combine a
number of methods and strategies to find one or more global solution of (4.1). Most of
the techniques (e.g branch and bound, heuristics) require that the bound constraints
x ∈ x are finite. If a problem lacks the desired bounds, the usual remedy is to set
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default upper and lower bounds on the variables, thus changing the problem. If the
global minimum lies outside the default bounds, the solver cannot find the solution.

The main advantage of the enclosure techniques from sections 1 and 2 is that
they give us the possibility to obtain rigorous bounds on some variables which are
consequences of the constraints without the need of having explicit bounds on the
variables.

Since the enclosures are rigorous, the method is also applicable in verified global
optimization (e.g., [7], [10], [11]) and in computer-assisted proofs (see e.g., [14]).

If we already have found a good and feasible point x̂ ∈ x we can apply Algorithm
2.1 to the constraint satisfaction problem

minimize 1
s.t. f(x) ≤ f(x̂),

G(x) ∈ w,
x ∈ x,

(4.2)

and may obtain new bounds on the variables as well as on the objective function
f(x). This makes our method a valuable tool not only for preprocessing and solving
constraint satisfaction problems but also for global optimization.

To enhance the results of sections 1 and 2, we discuss the application to optimiza-
tion problems given in the form of (4.1). The m general constraints are interpreted
as componentwise enclosures Gi(x) ∈ wi (i = 1 . . .m). This includes equality con-
straints if wi = [wi, wi] is a degenerate interval with wi = wi, inequality constraints
if one bound of wi is infinite, and two sided inequalities wi ≤ Gi(x) ≤ wi if both
bounds are finite. If we have bounds on the objective function, it should be treated
like an ordinary general constraint. Similarly, the n bound constraints are interpreted
as enclosures xj ∈ xj with j = 1 . . . n. Again, fixed variables and one-sided bounds
on the variables are included as special cases.

We may apply Algorithm 2.1 for each quadratic constraint Gi(x) ∈ wi separately.
Thereby only the finite bounds of wj are taken into account resulting in one or two
inequality constraints in the form of

xTAx+ 2aTx ≤ α (4.3)

with coefficients obtained by the Taylor expansion of Gj(x) around x = 0,

Ajk =
1
2
∂2Gi
∂xj∂xk

(0), 2aj =
∂Gi
∂xj

(0), α = wj −Gj(0) if wj is finite

Ajk = −1
2
∂2Gi
∂xj∂xk

(0), 2aj = −∂Gi
∂xj

(0), α = −wj −Gj(0) if wj is finite

The size of the problem can of course be restricted to those variables on which Gj(x)
actually depends.

If the constraint (4.3) is strictly convex we obtain new bounding box u on the
variables. If we cut the original bound constraints x ∈ x with u we obtain the new
bound constrains

x ∈ x̂ with x̂i := ui ∩ xi = [max(xi, ui),min(xi, ui)]. (4.4)

Because u is bounded, the box x̂ is also bounded. If we process all quadratic Gj(x) ∈
wj , we obtain an interval enclosure of the intersection of all strictly convex quadratic
constraint.
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The method can be greatly enhanced by removing the linear variables. This is
crucial in the presence of slack variables which are only linear in the constraints. If
the linear variables are not removed the matrix A has a zero row and column, hence
it is singular, therefore the directed Cholesky factorization will fail and we cannot
compute new bounds. To remove the linear terms from the constraint

xTAx+ 2aTx ≤ β

we write

xTI ÂxI + 2aTxI + cTxJ ≤ β (4.5)

with J being the index set of the variables which are only linear and I being the index
set of the variables which have nonlinear terms in the constraint. The dimension of
Â and a is reduced to n′ := |I|, and the dimension of c is n′′ := |J |. We modify (4.5)
by bounding and removing the linear variables and obtain

xTI ÂxI + 2aTxI ≤ β +
∑
j∈J

(−cjxj). (4.6)

Here bracketing the right hand side of the above expression yields a correct bound
when evaluating it using floating-point arithmetic with upward rounding. We can
now write the new inequality (4.6) in the form of (4.3), with

x := xI , A := Â, α := β +
∑
j∈J

(−cjxj)

and factorizing A using a directed Cholesky factorization method. From this point
on, all steps are the same as above, except for the fact that we compute new bounds
only on the remaining n′ variables. This should be accounted for when cutting the
resulting |x| ≤ u with the original box. Thus we compute x̂i as in (4.4) only for i ∈ I
and set the remaining x̂j := xj for all j ∈ J . Proceeding in this way allows us to
handle a bigger class of problems, by avoiding unnecessary singularity of the matrix
A.

In practice, many problems have nonquadratic constraints. These relaxations
can be handled as above if convex quadratic relaxations of such constraints can be
computed (see Skutella [24] and Rendl [15] for possible techniques). This further
extends the scope of our methods.

5. Directed Cholesky factorization. Let A be a symmetric matrix. A di-
rected Cholesky factorization of the matrix A is an approximate factorization A ≈
RTR with nonsingular upper triangular R such that the error matrix A − RTR of
the factorization is positive semidefinite. The matrix R is called a directed Cholesky
factor of A.

Proposition 5.1. A directed Cholesky factorization exists iff A is positive defi-
nite.

Proof. If R is a directed Cholesky factor of A then E := A − RTR is positive
semidefinite, therefore A = E + RTR is positive definite. Conversely, if A is positive
definite, we may take for R the Cholesky factor of A then A − RTR = 0 is positive
semidefinite; hence R is a directed Cholesky factor of A. ut

In finite precision arithmetic, however, R is usually not representable exactly, and
simply rounding it is often not sufficient to make A−RTR positive semidefinite. Thus
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finding a directed Cholesky factorization needs additional considerations. To represent
the general setting we factor a symmetric interval matrix A := [A,A] ∈ IRn×n. This
form also represents the case when a matrix is not exactly known, as it is the result
of inaccurate measurements or computations. We present the following methods to
compute a directed Cholesky factorization such that the residual matrix A−RTR is
very small with respect to the matrix A.

5.1. Directed Cholesky factorization using the Gerschgorin test. Our
first method for computing a directed Cholesky factorization for an interval matrix
A is based on the Gerschgorin test2. If Aii ≤ 0 for any i ∈ {1, . . . , n} then not
all symmetric A ∈ A are positive definite and a factorization with a nonsingular R
is not possible. If the lower bounds of the diagonal entries of A are positive, we
choose a matrix Ã ∈ A and slightly perturb its diagonal entries by using a suitable
chosen a priori error estimation constant σ. Then we apply the approximate Cholesky
factorizationRTR ≈ Ã to the perturbed matrix. If the error estimation constant σ was
chosen correctly, even positive but nearly indefinite matrices (where the approximate
Cholesky factorization would fail for the unperturbed matrix) can be factorized. If the
Cholesky factorization succeeds the error matrix E := A−RTR is computed by using
interval arithmetic. Finally we test E for positive definiteness with the Gerschgorin
test. Again the right choice of σ is crucial, since if it was chosen unnecessary large the
increased width of the interval error matrix has a negative effect on the outcome of
the Gerschgorin test. If the Gerschgorin test is positive then R is a directed Cholesky
factor of the matrix A.

The following algorithm summarizes the above consideration:
Algorithm 5.2 (DirCholG).

Compute a directed Cholesky factorization of a symmetric interval matrix, using the
Gerschgorin test:

1. Let A = [A,A] be a symmetric n–dimensional interval matrix.
2. If Aii ≤ 0 for some i ∈ {1, . . . , n} the factorization is not possible. Stop.
3. We define the matrix

Ãij =
{
Aij if Aij ≥ −Aij and i 6= j
Aij otherwise .

(5.1)

4. Perturb the diagonal entries of the matrix Ã:
(a) Generate a diagonal perturbation matrix D (Dij = 0 for i 6= j) which

depends on the diagonal entries of Ã and the width of the interval matrix
A:

Dii := Ãii −
∑n
j=1(Aij −Aij)uj

ui
, where ui = 1/Ãii for all 1 ≤ i ≤ n.

(b) Choose an approximate a priori error estimation constant σ such that
the Cholesky factorization of A′ := Ã − σD is positive definite enough
even in a nearly indefinite case (suitable selections for σ are discussed
later).

5. Compute A′ ≈ RTR approximately, and E := A − RTR by using interval
arithmetic.

2the Gerschgorin test is described in the notation of the first section of this paper.
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6. If Eii ≥ 0 for all i and E is an H-matrix then E is positive definite (Ger-
schgorin test), the factorization is successful and the directed Cholesky factor
R is returned.

Proposition 5.3. If Algorithm 5.2 is successful we obtain a directed Cholesky
factor R such that for all symmetric A ∈ A, A−RTR is positive definite.

Proof. Let be R the matrix returned by the algorithm. Since we use interval
arithmetic in Step 5 of Algorithm 5.2 the bound E on A−RTR is rigorous. Since by
Step 6 of Algorithm 5.2, E is a H-matrix, the Gerschgorin test implies the assertion.

ut

Comments on Algorithm 5.2:
(ad 3.) The algorithm would be also correct if Ã in (5.1) is replaced by an

arbitrary Ã ∈ A with Ãii = Aii.
(ad 4.) The perturbation applied to the diagonal entries of Ã is needed for nearly

indefinite matrices. By using this approach we may obtain the approximate Cholesky
factor of the perturbed matrix, even if we would fail for the unperturbed one.

(ad 6.) The test whether or not the matrix E is an H-matrix can be done by
choosing a suitable u > 0 and test whether or not 〈E〉u > 0 holds. Different choices
of u are

• u = (1, . . . , 1)T is the simplest, proving diagonal dominance, but not scaling
invariant,

• u ≈ 1/ diag(E), is a generally good and cheap choice,
• u ≈ 〈E〉−1 (1, . . . , 1)T , is the best choice (see Neumaier [12]), but requires
O(n3) operation for solving the linear system.

The selection of an approximate a priori error estimation constant σ is critical
for nearly indefinite matrices. If we choose σ too small, the approximate Cholesky
factorization will possibly fail; if we choose it to large, the error matrix E will be too
large and it will not pass the H-matrix test.

The following theorem which can be found in Higham [9, pp. 203–224] gives
information about the feasibility of a numerical Cholesky factorization when all arith-
metic operations are executed with a relative error of at most ε (when no overflow or
underflow occurs).

Theorem 5.4 (Demmel). Let A ∈ Rn×n be a symmetric matrix with positive
diagonal elements, and a diagonal matrix D with Dii = A

−1/2
ii . If

λmin(DAD) > σ :=
n(n+ 1)ε

1− 2(n+ 1)ε
(5.2)

then the Cholesky factorization applied to A succeeds and produces a nonsingular R.
If λmin(A) ≤ −σ then the computation is certain to fail.

Theorem 5.4 seems to give a good choice for σ, but in reality it is significantly
larger than would be needed to successfully factor nearly indefinite matrices by the
approximate Cholesky factorization. This makes it harder to pass Gerschgorin test.
By our heuristic experiments we found a more suitable choice for σ; we try σ =
ε(0.015 nnz(A)+0.5n) in the first run, then in the case of failure σ = ε(0.015 nnz(A)+
n) in the second one. The results of this strategy are satisfactory.
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5.2. Directed Cholesky factorization with pivoting. For a symmetric, pos-
itive definite interval matrix A, the directed Cholesky factorization with diagonal piv-
oting computes a permutation matrix P and an upper triangular matrix R such that
for every A ∈ A, the residual matrix E := PAPT − RTR is positive semidefinite
and is very small with respect to A. We first state the algorithm, then discuss the
conditions under which the residual matrix is positive semidefinite and is very small.

The following algorithm either computes a directed Cholesky factor R and a
permutation matrix P such that the residual matrix E is positive semidefinite and is
very small with respect to A, or it terminates with an error message and returns an
incomplete factorization:

Algorithm 5.5 (DirCholP).
Directed Cholesky factorization of symmetric interval matrix, using directed rounding
and diagonal pivoting.

1. Let A = [A,A] be an n–dimensional symmetric interval matrix. Set A1 = A,
R = 0n, P = In, and the rounding mode to upward rounding.

2. For k = 1, . . . , n do the following steps:
(a) Find the pivot element α = max(diag(Ak)) on the diagonal of the matrix

Ak ∈ Rn−k+1. Let j denote the index of the pivot element; interchange
row j with the first row and column j with the first column, in the in-
terval matrix Ak. Ak remains symmetric. Exchange the same rows and
columns in the matrix P .

(b) Partition the permuted interval matrix Ak as:

Ak =
(

αk aT

ak Bk

)
.

(c) If αk ≤ 0 terminate Step 2. and return an error message.
(d) Choose γk with 0 < γk < 1, ρk = γk

√
αk and rk = (ak + ak)/(2ρk).

(e) Set Rkk = ρk and Rk,k:n = rTk .
(f) Compute δk := αk + ρk(−ρk) and dk := max(ak + ρk(−rk), ρkrk − ak).
(g) If the residual pivot δk ≤ 0 terminate Step 2. and return an error

message.
(h) Set Ak+1 := [Bk − rkrTk − dkdTk /δk, Bk + (−rk)rTk + dkd

T
k /δk].

3. If Step 2. is finished without an error message we obtain the upper triangular
matrix R and the permutation matrix P , if an error message was produced
the incomplete factorization is returned.

Theorem 5.6. Suppose that Algorithm 5.5 used for the symmetric interval matrix
A terminates without an error message and returns the matrix R. Then PAPT−RTR
is positive semidefinite for all symmetric A ∈ A.

To prove the proposition we need some preparations:
Proposition 5.7. Let

A :=
(
α aT

a B

)
∈ A :=

(
α aT

a B

)
∈ IRn×n, (5.3)

then:
(i) For arbitrary ρ ∈ R, |ρ| < √α, r ∈ Rn−1 and

ε := α− ρ2 > 0, e := a− ρr, A0 := B − rrT − eeT

ε
, (5.4)
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we have

A =
(
ρ
r

)(
ρ
r

)T
+
(
ε eT

e eeT /ε

)
+
(

0 0
0 A0

)
. (5.5)

(ii) The bounds ε ≥ δ and |e| ≤ d and A0 ∈ A0 are satisfied if

0 < δ ≤ α+ ρ(−ρ),
d ≥ max(a+ ρ(−r), ρr − a),
A0 ⊇ [B − rrT − ddT /δ, B + (−r)rT + ddT /δ].

(5.6)

Proof. (i) Since |ρ| < √α we have ε = α − ρ2 > α − α ≥ 0 for all α ∈ α, so that
ε > 0. Thus (5.5) is well defined. Substituting (5.4) into (5.5) gives

A =
(
ρ2 + ε ρrT + eT

ρr + e rrT + eeT /ε+A0

)
=
(
α aT

a B

)
.

(ii) By (5.4) we have

ε = α− ρ2 ≥ α+ ρ(−ρ) ≥ δ > 0, (5.7)

e = a− ρr ≤ a+ ρ(−r), − e = −a+ ρr ≤ ρr − a,
|e| ≤ max(a+ ρ(−r), ρr − a) ≤ d, (5.8)

and

A0 = B − rrT + eeT /ε.

Since |eeT /ε| ≤ ddT /δ by (5.7) and (5.8) we find that

A0 ≥ B − rrT − ddT /δ ≥ A0, A0 ≤ B + (−r)rT + ddT /δ ≤ A0,

resulting in A0 ∈ A0. ut

Evaluating the right hand side of (5.6) in finite precision arithmetic, with directed
rounding and priorities given by the parentheses, results in the correct bounds A, A,
δ and d which satisfy (5.6).

We now use the Proposition 5.7 to prove the following proposition, which is then
used in the induction proof of Theorem 5.6.

Proposition 5.8. Suppose that for some real constants δ, ε and ρ, for some
(n− 1)-dimensional vectors d, r and e, for

A :=
(

α aT

a B

)
∈ IRn×n, (5.9)

and for some symmetric interval matrix A0 ∈ IR(n−1)×(n−1) the inequalities

|ρ| < √α,
0 < δ ≤ α+ ρ(−ρ),
d ≥ max(a+ ρ(−r), ρr − a),
A0 ⊇ [B − rrT − ddT /δ, B + (−r)rT + ddT /δ],

(5.10)
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are satisfied. If for all symmetric matrices A0 ∈ A0 an R0 ∈ R(n−1)×(n−1) exists such
that A0 − RT0 R0 is positive semidefinite, then for every symmetric matrix A ∈ A an
R ∈ Rn×n exists such that A−RTR is positive semidefinite.

Proof. By assumption, the Cholesky factorization

LLT = A0 −RT0 R0 (5.11)

exists, with a lower triangular matrix L ∈ Rn×n.
Since by (5.9) every symmetric A ∈ A can be written as (5.3), the representation

(5.5) holds by Proposition 5.7 for arbitrary ρ ∈ R, |ρ| < √α, r ∈ Rn−1 and

ε := α− ρ2, e := a− ρr, A0 := B − rrT − eeT

ε
.

By (5.10) and the same proposition, the bounds ε ≥ δ > 0 and A0 ∈ A0 are satisfied.
If we substitute (5.11) into (5.5), we get

A =
(
ρ2 + ε ρrT + eT

ρr + e rrT + eeT /ε+RT0 R0 + LLT

)
=

=
(
ρ2 ρrT

ρr rrT +RT0 R0

)
+
(
ε eT

e eeT /ε+ LLT

)
=

=
(
ρ 0
r R0

)(
ρ rT

0 R0

)
+
(
ε 0
e L

)(
1/ε 0
0 I

)(
ε eT

0 LT

)
=

= RTR+ STDS,

with

R =
(
ρ rT

0 R0

)
, S =

(
ε eT

0 LT

)
, D =

(
1/ε 0
0 I

)
.

Since ε ≥ δ > 0 the matrix D is positive semidefinite and

xT (A−RTR)x = xT (STDS)x = (Sx)TDSx = (Sx)TDSx ≥ 0.

holds, proving the assertion. ut

We are now prepared to prove that for all symmetric A ∈ A the residual matrix
of the directed Cholesky factorization computed by Algorithm 5.5 is positive semidef-
inite:

Proof of Theorem 5.6: First we show by induction that the interval matrices Ak,
k = 1, . . . , n constructed by Algorithm 5.5 are symmetric. Without loss of generality
we may assume that Ak is already permuted, such that no further pivoting is required
(P = In).

A1 = A is symmetric by definition. Assuming that the interval matrix Ak is
symmetric, Bk is also symmetric as an (n − k) × (n − k) submatrix of Ak . For
arbitrary vectors r and d, the matrices rrT and ddT are symmetric by construction.
Therefore by (h) of Algorithm 5.5, the interval matrix Ak+1 ∈ IR(n−k)×(n−k) is
symmetric. From this follows that each Ak can be factorized as in (5.9).

First we assume that every computation is exact and prove by induction on m :=
n− k + 1 that Ak −RTkRk is positive semidefinite for each symmetric Ak ∈ Ak.
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For m = 1, k = n, RTnRn = ρ2
n = γ2

nαn and An = αn ∈ αn and since αn ≥ αn > 0
and 0 < γn < 1,

An −RTnRn = αn − γ2
nαn ≥ αn(1− γ2

n) > 0

is positive semidefinite for all An ∈ An.
We now assume for all symmetric matrices Ak+1 ∈ Ak+1 an Rk+1 ∈ Rn−k×n−k

exists such that Ak+1 − RTk+1Rk+1 is positive semidefinite. Since (d), (f) and (h) of
Algorithm 5.5 imply (5.10) with δ = δk, ε = εk, ρ = ρk, r = rk, e = ek, A = Ak and
A0 = Ak+1, we can find for every symmetric matrix Ak ∈ Ak an Rk ∈ Rn−k+1×n−k+1

such that Ak −RTkRk is positive semidefinite.
By induction, this holds for m = n, k = 1 when A = A1 and R = R1 proving

that PAPT −RTR is positive semidefinite for A ∈ A �.
In finite precision arithmetic, the results satisfy the required inequalities in Propo-

sition 5.8 for dk, δk and Ak+1 if the right hand sides of the inequalities in (5.10) are
computed with directed rounding.

By successfully factoring a symmetric positive semidefinite interval matrix A by
Algorithm 5.5 we obtain a matrix R such that for all symmetric A ∈ A the residual
matrix S := PAPT −RTR is positive semidefinite. In addition to this we also expect
(and our numerical experiments show that it is typically true) that S is very small
with respect to A (for a suitable tolerance, e.g. κ = 10−6). The choices of ρk, rk and
γk in Algorithm 5.5 were made to satisfy this criteria:

• To make S positive semidefinite, we had to ensure that ε > 0. Therefore we
needed δk > 0 which is the case when, |ρk| <

√
αk. If we additionally want

δk to be very small and assume that αk > 0 (which is true if A is positive
definite), we can set ρk = γk

√
αk with γk < 1. If in addition to this we choose

γk ≈ 1, the condition that δk ≈ 0 is also satisfied.
• The entries of dk = ak − ρkrk can be made to vanish by setting rk := ak/ρk.

Even when rk and ρk are computed inaccurately we can set rk = (ak +
ak)/(2ρk) using the midpoint of the interval ak to get a very small dk.

• To make dTk dk/εk very small, we also have to guarantee that dTk dk � δk. In
the case of rounding errors dTk dk = (ak−(ρkak)/ρk)T (ak−(ρkak)/ρk) = O(ε)
with ε representing the machine precision, so 1� δk = αk−γ2

kαk � ε should
be satisfied. Since ak ∈ ak the width of ak should be accounted for, too. The
heuristic choice for the regularization term γk is

γk = 1−min((
√
n+ 1)ζk, 0.01),

ζk = ε+ max(mid(ak)/w),
wi =

√
αk(Ak)ii,

where n is the dimension of A. This choice will usually produce good results.
Using these choices in Algorithm 5.5 makes the residual matrix not only positive
semidefinite but also very small with respect to A for all A ∈ A.

While the Cholesky factorization is numerically stable without pivoting, it is of
advantage to use a permuted version. To enhance the robustness of the factorization
we use diagonal pivoting. Thus in each step we permute two rows and the correspond-
ing two columns of the matrix Ak in order to have the maximum of all diagonal entries
as the pivot element α, while retaining the symmetric structure of the matrix. In our
implementation, the diagonal pivoting can be turned off in order to reduce the time
needed for the factorization in the case of very big matrices. Testing has shown that
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when we turn off the pivoting, the factorization will fail more often, and the reduction
of the computation time is not really significant unless the dimension is huge.

6. Testing the directed Cholesky factorization. We tested the new methods
on random real interval matrices of different dimension (column dim in the tables
below), width (column width in the tables below) and density (column density in
the tables below). These matrices are constructed to be positive definite but nearly
singular, with a very small inverse condition number (column icond in the tables
below). For the inverse condition number we take the median of the quotients of the
absolute value of the smallest eigenvalues and the absolute value of the largest ones of
all k test matrices, where the eigenvalues are approximately computed by Matlab,
formally:

icond := med
i

( |λmin(Ai)|
|λmax(Ai)|

)
, i ∈ {1, . . . , k}.

The following algorithm shows how the test matrices are created:
Algorithm 6.1 (Nearly singular positive definite interval matrix generator).

Given is the dimension n, a tiny singularity factor η (e.g. η = 10−12) and the required
relative width δ ≥ 0 of the interval matrix A to be created.

1. Generate a random matrix B ∈ Rn−1×n with Bij ∈ [−1, 1] for all i =
1, . . . , n− 1 and j = 1, . . . , n.

2. Generate a random vector u ∈ Rn with uj ∈ [−1, 1] for all j = 1, . . . , n.
3. Divide u by max(u) such that ‖u‖2 = 1 holds.
4. Compute C = BTB ∈ Rn×n and d = max(Cii).
5. If d = 0 start again with step 1.
6. Else set A = C/d + ηuuT and A = A + δ|A| and return the interval matrix

A := [A,A] ∈ IRn×n.
The tests show that both methods can be used to verify the positive definiteness

and to decompose ill-conditioned matrices into their directed Cholesky factors. We

first show that the approximative method factors all the matrices and the directed
methods factor nearly all of them. The comparison of the approximate Cholesky
factorization of Matlab (row Chol in the tables below), the directed Cholesky fac-
torization based on the Gerschgorin test (computed by Algorithm 5.2, row DirCholG
in the tables below) and the directed Cholesky factorization based with diagonal piv-
oting (computed by Algorithm 5.5, row DirCholP in the tables below) on 500,
20–dimensional real matrices with a small inverse condition number:

method dim density width sfact iters icond solved
Chol 20 100% 0 1e-012 500 1.3e-016 100%
DirCholH 20 100% 0 1e-012 500 1.4e-016 94%
DirCholP 20 100% 0 1e-012 500 1.5e-016 88%

The next few tests of the directed Cholesky factorization based on the Gerschgorin
test show increasing the dimension or the width makes the factorization more difficult,
while more sparsity makes it easier. A test of the directed Cholesky factorization based
using the Gerschgorin test on 500 real matrices of different dimensions (50,100,200)
with a small inverse condition number:
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method dim density width sfact iters icond solved
DirCholH 10 100% 0 1e-012 500 1.7e-016 95%
DirCholH 40 100% 0 1e-012 500 1.3e-016 90%
DirCholH 100 100% 0 1e-012 500 1e-016 74%

The test of the directed Cholesky factorization using the Gerschgorin test on 500 real
interval matrices of different dimensions (50,100,200), different average density and
with a small inverse condition number:

method dim density width sfact iters icond solved
DirCholH 10 46% 0 1e-012 500 1.3e-016 100%
DirCholH 40 39% 0 1e-012 500 5.6e-017 100%
DirCholH 100 38% 0 1e-012 500 3.7e-017 70%

A test of the directed Cholesky factorization using the Gerschgorin test on 500 real
interval matrices of width 1e− 014 of different dimensions (50,100,200) with a small
inverse condition number:

method dim density width sfact iters icond solved
DirCholH 10 100% 1e-014 1e-012 500 1.7e-016 82%
DirCholH 40 100% 1e-014 1e-012 500 1.3e-016 67%
DirCholH 100 100% 1e-014 1e-012 500 9.1e-017 55%

The last five tests Cholesky factorization with diagonal pivoting show similar re-
sults with respect to the increasing dimension and more sparsity. We can also see that
the results of this factorization method are not as good as the results of the directed
Cholesky factorization using the Gerschgorin test. Since most applications are not as
ill-conditioned as the problems in our test set and this method also returns an incom-
plete factorization it is still interesting. The fourth test is done in order to show the
correlation between the dimension and the singularity factor, while the last one shows
the effect if the pivoting is turned off. A test of the directed Cholesky factorization
with diagonal pivoting on 500 real matrices of different dimensions (50,100,200) with
a small inverse condition number:

method dim density width sfact iters icond solved
DirCholP 10 100% 0 1e-012 500 1.8e-016 93%
DirCholP 40 100% 0 1e-012 500 1.3e-016 78%
DirCholP 100 100% 0 1e-012 500 1.1e-016 65%

A test of the directed Cholesky factorization with diagonal pivoting on 500 real interval
matrices of different dimensions (50,100,200), different average density and with a
small inverse condition number:

method dim density width sfact iters icond solved
DirCholP 10 46% 0 1e-012 500 1.3e-016 100%
DirCholP 40 40% 0 1e-012 500 5.5e-017 93%
DirCholP 100 36% 0 1e-012 500 3.9e-017 81%

A test of the directed Cholesky factorization with diagonal pivoting on 500 real interval
matrices of with 1e − 014 of different dimensions (50,100,200) with a small inverse
condition number:
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method dim density width sfact iters icond solved
DirCholP 10 100% 1e-014 1e-012 500 1.7e-016 78%
DirCholP 40 100% 1e-014 1e-012 500 1e-016 65%
DirCholP 100 100% 1e-014 1e-012 500 1.1e-016 54%

A test of the correlation between the inverse condition number and the dimension for
the directed Cholesky factorization with diagonal pivoting on 500 real matrices:

method dim density width sfact iters icond solved
DirCholP 10 100% 0 1e-013 500 1.9e-017 79%
DirCholP 40 100% 0 1e-012 500 1.1e-016 76%
DirCholP 100 100% 0 3e-011 500 2.9e-015 92%

A test of the directed Cholesky factorization with diagonal pivoting on 500 real interval
matrices of with 1e − 014 of different dimensions (50,100,200) with a small inverse
condition number (pivoting turned off):

method dim density width sfact iters icond solved
DirCholP(0) 10 100% 0 1e-012 500 1.7e-016 92%
DirCholP(0) 40 100% 0 1e-012 500 1.1e-016 77%
DirCholP(0) 100 100% 0 1e-012 500 1.1e-016 65%

7. Verification of positive definiteness. Proposition 5.1 shows that the exis-
tence of a directed Cholesky factorization of a symmetric matrix A implies that A is
positive definite, and that of a symmetric interval matrix A implies that all symmetric
matrices A ∈ A are positive definite. On the other hand, if the directed factorization
fails, A either contains a singular or indefinite, or a very ill-conditioned matrix. Many
of the latter cases can still be verified when we apply an appropriate scaling before
verifying positive definiteness, see Section 3.

Such definiteness test are useful independent of the goal of this paper, for several
applications ranging from the solution of linear interval equations (see below) over
semidefinite programing problems Vandenbergh & Boyd [26] to the representation
theory of Lie groups (Adams [1]).

Any test for the positive definiteness of real symmetric matrices can easily be
extended to a test for complex Hermitian matrices, using the following result; no
complex arithmetic is required.

Theorem 7.1. A matrix H = A + iB with A,B ∈ Rn×n is Hermitian and
positive definite iff the real matrix

C :=
(
A −B
B A

)
(7.1)

is symmetric and positive definite.
Proof. The matrix C is symmetric iff AT = A and BT = −B, and this holds iff

H is Hermitian. H is positive definite iff

(x+ iy)∗(A+ iB)(x+ iy) > 0 whenever
(
x
y

)
6= 0. (7.2)
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Now

(x + iy)∗(A+ iB)(x+ iy) = (x− iy)T (A+ iB)(x+ iy)

= xTAx+ yTAy + yTBx− xTBy + i(xTAy − yTAx+ xTBx+ yTBy)

= xTAx+ yTAy − 2xTBy =
(
x
y

)T
C

(
x
y

)
since

xTAy = (xTAy)T = yTATx = yTAx,
yTBx = (yTBx)T = xTBT y = −xTBy,
xTBx = (xTBx)T = xTBTx = −xTBx ⇒ xTBx = 0,
yTBy = (yTBy)T = yTBT y = −yTBy ⇒ yTBy = 0.

Thus (7.2) holds iff C is positive definite. ut

We also note that all the results from Section 5 could be developed for the complex
case.

Rump [16, 17, 18, 19] gave criteria for the definiteness of interval matrices in the
context of solving linear interval equations. Here we discuss only his most recent work
[19]. His method is based on a single floating-point Cholesky factorization; all possible
computational and rounding errors, including underflow, are taken into account via a
floating-point error analysis. To find an error estimation of the Cholesky factorization,
Rump presents three different selection methods. These error estimations are worst
case bounds; so when they are used to perturb the diagonal entries of the matrix A
and the approximative Cholesky factorization is successful, the positive definiteness
of A is guaranteed. Uncertainties in the matrix are accounted for only coarsely by
bounding them in the Frobenius norm. Rump & Ogita [20] reduce the computational
overhead in Rump’s method, but only for exactly given floating-point matrices A.

In contrast, in our directed Cholesky factorization using the Gerschgorin test, the
perturbation terms are based on heuristics that account for the typical case rather
than a worst case floating-point analysis. To justify the heuristic choice, the ac-
tual verification is done by the additional Gerschgorin test. The directed Cholesky
factorization with diagonal pivoting is based on different principles and is not di-
rectly comparable with Rump’s approach. It is likely that the ideas of Rump can be
combined with directed Cholesky factorizations to get improved enclosures for linear
systems with positive definite interval coefficient matrices.

The following alternative test for positive definiteness of symmetric interval ma-
trices is given in Neumaier [13, p. 32].

Theorem 7.2. Let A be a symmetric interval matrix.
(i) If some symmetric matrix A ∈ A is positive definite and all symmetric matri-

ces in A are nonsingular then they are all positive definite.
(ii) In particular, this holds if the midpoint matrix

Â = (A+A)/2

is positive definite with inverse C, and the preconditioned radius matrix

∆ = |C| rad(A);



DIRECTED CHOLESKY FACTORIZATIONS AND APPLICATIONS 25

satisfies (in an arbitrary norm) the condition

‖∆‖ < 1.

Since verifying definiteness is not the focus of this paper we refrain from giving
numerical comparison of the various definiteness tests.
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