
Journal of Global Optimization manuscript No.
(will be inserted by the editor)

Rigorous verification of feasibility

Ferenc Domes · Arnold Neumaier

2013.09.10

Abstract This paper considers the problem of finding and verifying feasible points
for constraint satisfaction problems, including those with uncertain coefficients. The
main part is devoted to the problem of finding a narrow box around an approxi-
mately feasible solution for which it can be rigorously and automatically proved that
it contains a feasible solution. Some examples demonstrate difficulties when attempt-
ing verification.
We review some existing methods and present a new method for verifying the ex-
istence of feasible points of constraint satisfaction problems in an automatically
determined narrow box. Numerical tests within GloptLab, a solver developed by
the authors, show how the different methods perform.
Also discussed are the search for approximately feasible points and the use of approx-
imately feasible points within a branch and bound scheme for constraint satisfaction.

Keywords rigorous feasibility verification · constraint satisfaction · global
optimization · verified computing · interval analysis

1 Introduction

There are many search techniques for finding solutions of a constraint satisfaction
problem (CSP) in the real domain. However, in floating point arithmetic of fixed
accuracy, local search routines typically find only approximately feasible points, even
if the problem itself is feasible.

As a consequence, local or global solvers for CSPs are often content with finding
approximately feasible points. For example, the price-winning global solver Baron
([22]) often considered as the state of the art for branch-and-bound methods, quits
once a point is found satisfies some δ-feasibility condition – irrespective of whether

F. Domes
University of Vienna, Faculty of Mathematics, Vienna, Austria, E-mail: Fer-
enc.Domes@univie.ac.at

A. Neumaier
University of Vienna, Faculty of Mathematics, Vienna, Austria, E-mail:
Arnold.Neumaier@univie.ac.at

2 Ferenc Domes, Arnold Neumaier

or not there is a nearby feasible point. This may happen even when there are feasible
points far from the boundary of the feasible set, so that every nearby floating point
vector is feasible, too. The user gets less than he could hope for from a global solver.

In a branch and bound context, one should therefore continue the search until
one can either verify the feasibility of a point, or at least guarantee the existence of a
feasible point close to the point returned. The former is possible of course only if the
problem has a feasible point representable in the floating-point format used; thus the
second alternative will usually be the case when the problem contains equality con-
straints, or more generally when the feasible domain has an empty interior. Indeed,
it is quite likely under these circumstances that no feasible point is representable
exactly in the floating-point format used.

Thus we need methods for verifying the feasibility of a point, or if that fails, for
finding close to a given point a narrow region that is guaranteed to contain a feasible
point. Such verification methods are usually based on outward rounding interval
arithmetic. They can be seamlessly integrated into branch and bound codes as these
make use of interval techniques also in other respects, e.g., in constraint propagation.

For linear and nonlinear systems of equations, the verification of feasibility is
usually based on fixed point theorems, and has a long history; see, e.g., [1, 12, 15, 16,
19–21]. General constraint satisfaction problems in the real domain usually contain
also inequalities, and the methods for equations need appropriate adaptation. In the
past, these were exclusively discussed in the context of global optimization methods,
where they are indispensable for getting verified upper bounds on the objective. In
particular, Hansen [8, Section 12] and Kearfott [9–11] discuss methods for finding
a narrow box z centered at a given approximately feasible point, such that it can be
verified that it contains a feasible point. Of course, there may be no closeby feasible
point, in which case these methods will return without a result.

In this paper, we review some existing methods and present a new method for
verifying the existence of feasible points of constraint satisfaction problems in an au-
tomatically determined narrow box. Numerical tests within GloptLab [2], a solver
developed by the authors, show how the different methods perform. Also discussed
are the search for approximately feasible points and the use of approximately feasible
points within a branch and bound scheme for constraint satisfaction.

While traditionally the coefficients of a constraint in a constraint satisfaction
problem are taken to be exactly known, we allow them to vary in (narrow) intervals,
to be able to rigorously account for uncertainties due to one of the following sources.
This defines our problem class as uncertain constraint satisfaction problems as a
generalization of traditional constraint satisfaction problems.

As already alluded to above, an important application of the techniques discussed
in this paper is to rigorous constrained global optimization. Here truly feasible points
are necessary to obtain valid upper bounds on the optimal objective function value.
Using such an upper bound from a feasible (and ideally nearly optimal) point elimi-
nates most of the search space, leaving a CSP with a tiny feasible region only. There-
fore these verification techniques usually save a large amount of time by speeding up
the branch and bound process.

The paper is organized as follows. In Section 2 we define the problem class treated,
the uncertain constraint satisfaction problems. In Section 3 we discuss finding and us-
ing approximately feasible points. In particular, finding approximately feasible points
(Subsection 3.1), re-using approximately feasible points in a new subbox (Subsection
3.2) and feasible point search in branch and bound (Subsection 3.3). In Section 4

Rigorous verification of feasibility 3

some existing verification techniques are reviewed for nonsingular systems of non-
linear equations (Subsection 4.1), for systems of nonlinear equations (Subsection
4.2), for systems of nonlinear inequalities (Subsection 4.3) and for general constraint
satisfaction problems (Subsection 4.4). Our new verification method is presented
in Section 5. We conclude our paper with Section 6, a comparison of the different
verification techniques.

Notation. The n-dimensional identity matrix is denoted by In and the n-
dimensional zero matrix is denoted by 0n. The ith row vector of a matrix A is
denoted by Ai: and the jth column vector by A:j . The number of nonzero entries
of a matrix A is denoted by nnz(A). The set ¬N denotes the complement of a set
N . The number of elements of a set N is denoted by |N |. Let I ⊆ {1, . . . ,m} and
J ⊆ {1, . . . , n} be index sets and let nI := |I|, nJ := |J |. Let x be an n-dimensional
vector, then xJ denotes the nJ -dimensional vector built from the components of x
selected by the index set J . For an m × n matrix A the expression AI: denotes the
nI × n matrix built from the rows of A selected by the index sets I. Similarly, A:J
denotes the m × nJ matrix built from the columns of A selected by the index sets
J . Instead of using the index sets I and J we also write Ai:k,j:l for some i ≤ k ≤ n
and j ≤ l ≤ m denoting that I = {i, . . . , k} and J = {j, . . . , l}. (AT)−1 is denoted
by A−T . For vectors and matrices the comparison operators =, 6=, <, >, ≤, ≥ and
the absolute value |A| of a matrix A are interpreted component-wise. For an n × n
matrix A, diag(A) denotes the n-dimensional vector with diag(A)i = Aii.

For the notation of the most used quantities and operators in interval analysis
we refer to [13]. In addition to this

µ(a) :=

a if a > 0,
a if a < 0,
0 otherwise,

(1)

denotes the minimal point,
〈a〉 := |µ(a)|

denotes the mignitude and

|a| := max(−a, a),

denotes the magnitude of an interval a. An interval is called thin or degenerate
if its width is zero.

Let S be a set then utS := [inf(S), sup(S)] is called the interval hull of S.
A box (interval vector) x = [x, x] or is the Cartesian product of the closed real

intervals xi := [xi, xi], representing a (bounded or unbounded) axiparallel box in
Rn. The values −∞ and ∞ are allowed as lower and upper bounds, respectively, to
take care of one-sided bounds on variables. The condition x ∈ x is equivalent to the
collection of simple bounds

xi ≤ xi ≤ xi (i = 1, . . . , n),

or, with inequalities on vectors and matrices interpreted component-wise, to the two-
sided vector inequality x ≤ x ≤ x. Apart from two-sided constraints, this includes
with xi = [a, a] variables xi fixed at a particular value xi = a, with xi = [a,∞] lower
bounds xi ≥ a, with xi = [−∞, a] upper bounds xi ≤ a, and with xi = [−∞,∞]

4 Ferenc Domes, Arnold Neumaier

free variables. IRn denotes the set of all n-dimensional boxes. Operations defined for
intervals (like width, midpoint, distance, mignitude and magnitude) are interpreted
component-wise when applied to boxes.

We also consider an expression p(x) in x = (x1, . . . , xn)T such that the evaluation
at any x ∈ x is a real number. The box p(x) is called an interval enclosure of p(x)
in the box x if p(x) ∈ p(x) holds for all x ∈ x. There are a number of methods for
defining p(x), for example interval evaluation or centered forms (for details, see, e.g.,
[16]).

To account for inaccuracies in computed entries of a matrix, we use interval
matrices, standing for uncertain real matrices whose coefficients are between given
lower and upper bounds. The expression A := [A,A] ∈ IRm×n denotes an m × n
interval matrix with lower bound A and upper bound A. A ∈ IRn×n is symmetric if
Aik = Aki for all i, k ∈ {1, . . . , n}. The comparison matrix 〈A〉 of a square interval
matrix A is defined by

〈A〉ij :=
{
−|Aij | for i 6= j,
〈Aij〉 for i = j.

A real matrix A is identified with the thin interval matrix with A = A = A. The
width and the radius of an interval matrix A are the noninterval matrices defined
by

wid(A) := A−A, and rad(A) := wid(A)/2,

respectively.

2 Uncertain constraint satisfaction problems

The traditional continuous constraint satisfaction problem (CSP) with equality
and inequality constraints may be written in the compact interval form

F (x) ∈ F, x ∈ x, (2)

with F : Rn → Rm, F ∈ IRm, and x ∈ IRn. Here components of F and x are thin for
equality constraints, unbounded for inequality constraints, and bounded but thick
for two-sided constraints. A point z ∈ x is called feasible or a solution of (2) if
F (z) ∈ F is satisfied. The exact constraint satisfaction problem is called feasible if
it has at least one solution otherwise it is called infeasible.

While traditionally the coefficients of a constraint in a constraint satisfaction
problem are taken to be exactly known, we allow them to vary in (narrow) intervals,
to be able to rigorously account for uncertainties due to one of the following sources:

– measurements of limited accuracy,
– conversion errors from an original representation to our normal form,
– rounding errors when creating new constraints by relaxation techniques.

Such uncertain constants can be naturally expressed if we formulate the constraints
in the form of the following uncertain constraint satisfaction problem (UCSP)

BF (x) ∈ b, x ∈ x, B ∈ B, (3)

Rigorous verification of feasibility 5

where F : Rn → Rw, b ∈ IRm, x ∈ IRn, and B ∈ IRm×w. The entries of B are not
variables but uncertain constants whose precise values within the bounds B ∈ B are
not known. Thus whether a particular vector x is a solution of the UCSP may depend
on which B ∈ B is the true value. This ambiguity makes working with uncertain
constraints nontrivial. It requires great care in the derivation of methods to ensure
the validity of an enclosure no matter which value B ∈ B is the true value.

If B contains only a single matrix, (3) becomes the exact constraint satisfac-
tion problem (ECSP)

BF (x) ∈ b x ∈ x. (4)

The traditional constraint satisfaction problem (2) is obtained from (4) if we take
w = m, B = Im and F = b. From the point of view of solvability, (4) and (2)
are equivalent, as one can redefine F̃ (x) := BF (x). However, from a computational
point of view, the form (4) has advantages that typically lead to improved linear
relaxations once B is not the identity matrix.

Any CSP with uncertain coefficients can be brought into the above form of an
UCSP, by introducing new variables for every subexpression composed of a prod-
uct with an uncertain coefficient or a linear combination in which a coefficient is
uncertain. As an example we consider the nonlinear, exact constraint satisfaction
problem

x1 + e0.1x1+0.2x2
2 ≤ 1, x1 ∈ [−1, 1], x2 ∈ [−2, 0]. (5)

Since the decimal numbers are not exactly representable as floating-point numbers,
it must be represented internally as an inexact CSP. By introducing the intermediate
variable x3 = 0.1x1 + 0.2x2

2 we obtain

0.1x1+0.2x2
2−x3 = 0, x1+ex3 ≤ 1, x1 ∈ [−1, 1], x2 ∈ [−2, 0], x3 ∈ [−∞,∞], (6)

and end up in

BF (x) ∈ [∞, 1], F (x) :=

 x1
x2

2
x3
ex3

, x ∈ x :=

 [− 1, 1]
[− 2, 0]

[−∞,∞]

, B :=
(

0.1 0.2 −1 0
1 0 0 1

)
.

(7)
In floating point arithmetic the coefficient 0.1 cannot represented, therefore the exact
problem (7) becomes an uncertain problem with

BF (x) ∈ [∞, 1], F (x) :=

 x1
x2

2
x3
ex3

, x ∈ x :=

 [− 1, 1]
[− 2, 0]

[−∞,∞]

,
B ∈ B :=

(
[∇0.1, ∆0.1] [∇0.2, ∆0.2] [− 1,−1] [0, 0]

[1, 1] [0, 0] [0, 0] [1, 1]

)
,

(8)

The definition of feasibility for the traditional CSP given above does not make
sense for the uncertain constraint satisfaction problem (3). For example, in the UCSP

ax1 + x2 = 1, x1 ∈ [−1, 1], x2 ∈ [−2, 0], a ∈ [0.79, 0.81], (9)

6 Ferenc Domes, Arnold Neumaier

no single point can be feasible since it cannot satisfy (9) for all B ∈ B. But the
problem should not be classified as infeasible since, e.g., x1 = 1 − a, x2 = 1 should
be considered as a coefficient-dependent solution. Since a is uncertain, this ”solution”
comprises the set {x ∈ R2 | x1 ∈ [0.19, 0.21], x2 = 1}. Therefore we must generalize
the definition:

Definition 1 A set Z ⊆ x is called feasible for the uncertain constraint satisfaction
problem (3) if, for all B ∈ B, there is an x ∈ Z with BF (x) ∈ F, infeasible
if BF (x) /∈ F for all B ∈ B and x ∈ Z, and partially feasible otherwise. The
problem (2) is called feasible (infeasible) if x is feasible (infeasible). The solution
set of (3) is the set

Ẑ := {x ∈ x | ∃B ∈ B : BF (x) ∈ b}

of all feasible or partially feasible points of (3).

The definition implies that if the set Z is feasible then all sets Z ′ ⊆ x containing
Z are also feasible. In particular, the definition applies to boxes z, and a feasible set
exists iff the box x is feasible, i.e., iff the problem itself is feasible. The solution set
is nonempty iff x is feasible or partially feasible.

Regarding the example (9), by Definition 1 the box z1 := ([1.2, 1.27] [0, 0])T is fea-
sible, the box z2 := ([0.9, 0.95] [0, 0])T is infeasible and the box z3 := ([1.25, 1.25] [0, 0])T
is partially feasible. The problem (9) is feasible since z1 is feasible, z1 ⊂ x and thus
the box x is feasible.

3 Finding and using approximately feasible points

In this section we discuss several aspects of finding and using approximately feasible
points. In Subsection 3.1 we define δ-feasibility of approximate solution and discuss
methods for finding them. In Subsection 3.2 we give a method for choosing of starting
point in a new subbox, while in Subsection 3.3 we discuss the δ-feasible solution
search by branch and bound.

The result of this section will be useful in Section 4 and 5, where we need δ-
feasible solutions in order to to find a (narrow) box close to them which provably
contains a feasible point.

3.1 Finding approximately feasible solutions

Given the uncertain constraint satisfaction problem (3), we use the minimal point
(1) to define the vector valued feasibility measure

∆B(x) := µ(BF (x)− b) (10)

of a point x ∈ Rn. For a given positive definite, diagonal scaling matrix D, the
number

d(x) := ‖D∆B(x)‖2 (11)

is called the feasibility distance of x for the constraint satisfaction problem (3).

Rigorous verification of feasibility 7

Fig. 1 Finding approximately feasible points of a problem consisting two equality constraints:
one of the point found is δ-feasible (but not feasible) the other is infeasible (since it is outside
of the δ-feasibility region).

A point x is called δ-feasible if x ∈ x and d(x) ≤ δ, where δ > 0 is a feasibility
tolerance. In particular, feasible points are δ-feasible for every δ > 0. In the example
of Figure 1, the set of δ-feasible points consists of the union of the two circles shown,
classifying just one of the two marked points as δ-feasible.

Since in floating point arithmetic computations not exact, the minimum of the
feasibility distance function found by the local search may be greater than zero even
if the problem is feasible. As shown in Figure 1 the solutions (feasible points) of
two equality constraints are missed by the points found by minimizing the feasibility
distance function. Intuitively if a point found x̃ is near enough to a feasible point
we could say that it is δ-feasible. Even when the computations are exact, not each
real number can be represented as a floating point number. For example, if the CSP
consists of two linear constraints in R2 intersecting in z = (0.1, 0.1), only a δ-feasible
point ẑ near z can be found since the number 0.1 has no exact representation in
finite, binary arithmetic.

In order to find a feasible point of (3) inside a given box x0 one can minmize the
feasibility distance function by solving the bound constrained optimization problem

min f(x) := 1
2‖D∆B(x)‖2

2
s.t. x ∈ x0 ⊆ x (12)

for some fixed B ≈ mid(B) in place of B. This ensures that the objective function
is continuously differentiable if F is, with gradient

∇f(x) = (BF)′(x)TD2∆B(x). (13)

Suitable methods for choosing a starting point x0 ∈ x0 are discussed in Subsection
3.2. Then local optimization techniques (see, e.g., [17]) applied to (12) yield a point
x̃ ∈ x0 that approximately has the minimal feasibility distance in a neighborhood.

In case we only have an unconstrained solver to our disposal we cannot solve (12)
directly, but we can still solve the corresponding unconstrained problem

min fu(x) := 1
2

(
‖D∆B(x)‖2

2 + ‖D′µ(x0 − x)‖2
2

)
, (14)

8 Ferenc Domes, Arnold Neumaier

where D′ is another positive definite diagonal scaling matrix. Again, fu(x) is con-
tinuously differentiable if F is, with gradient

∇fu(x) = (BF)′(x)TD2∆B(x) + (D′)2µ(x0 − x) (15)

Since the computed solution x̃′ of (14) need not satisfy the condition x ∈ x, we
project it to the box x, resulting in the point x̃ with

x̃i := min(xi,max(xi, x̃i)) for i = 1, . . . , n.

Finally, no matter how x̃ was obtained, we compute d(x̃) (using B, not B) to check
if the point x̃ is δ-feasible. If this is not the case, the feasibility search failed, which
may (or may not) be an indication that the current subbox x0 is infeasible. This
suggests that the information contained in the point might be used to prune the box
x0. A technique for doing this will be discussed in [7].

Let x̃ ∈ x0 be a δ-feasible point of (3) (d(x̃) ≤ δ) and let

I := {i | F i 6= F i}

with ns := |I| be the index set of the non-equality constraints of (3). If we introduce
additional ns slack variables xs addition to the n original variables x, then the
problem (3) in the equality form can be posed as

EF (x, xs) = 0, x ∈ x, xs ∈ FI , E ∈ E, (16)

where the mapping F is extended by linear terms for the new slack variables, formally

F (x, xs) := (F (x)T xs1 . . . xsns
)T .

In this case the point found x̃ must be extended by the value of the slack variables
at x̃ to match the equality form (16) resulting in

z :=
(

x̃
BI:F (x̃)

)
. (17)

The equality form (16) and the corresponding δ-feasible point z is needed for verifying
feasible points of constraint satisfaction problems presented in Sections 4 and 5. If the
point x̃ is not δ-feasible it can be still useful as discussed in the following subsection.

3.2 Choice of starting point in a new subbox

The points found by the local search – even if they are not sufficiently feasible –
hold valuable information. In this subsection we again assume that we have found
an unsatisfactory x̃, but we use the results of the local solver in a different manner.
Considering that we have some other methods to reduce or split x (e.g., a branch and
bound scheme) it might be useful to find another, more feasible point in a reduced
or splitted box but minimize the efforts needed for the new search.

The following table summarizes the possible statuses obtained from the local
search resulting in the point x̃ and indicates if it should be re-used as a starting

Rigorous verification of feasibility 9

point or not. The statuses depend on the results of the local solver, the feasibility
distance and the possible projection performed:

status of the point found code reuse
the point found is a δ-feasible solution f yes
the solver reached maximum number of iterations m yes
the point is random point r yes
the point has been projected p yes
the solver found an infeasible local minimum l no
the solver produced an error e no

(18)

As status p indicates that the point was found by an unconstrained solver and has
been projected inside the box. Re-using means that x̃ is taken as as a starting point
x0 for the new local search for finding feasible points (discussed in Subsection 3.1).
Not re-using means that we choose another starting point x0 ∈ x (e.g. randomly but
not too near to x̃) for the new search. Note that depending on the different statuses
other more sophisticated strategies for re-using or not re-using can be developed.

Combining the above with the a reduction step and adding natural safeguards
we propose the following algorithm.

Algorithm: 1 (Feasible point search).

Inputs: A constraint satisfaction problem given by (3), a box x0 ⊆ x, the feasi-
bility tolerance δ ≥ 0, the starting point x0 with status s0 chosen from Table (18)
and feasibility distance d0 := d(x0).
Outputs: (x, s, d), where x is a point, s the corresponding status code and d
the feasibility distance d(x).

1. If the status of the starting point is either s0 = e (error) or s0 = l (local min-
imum) choose another x0 ∈ x, set s0 = r and recompute feasibility distance
d0 = d(x0).

2. Starting from x0 use either a bound constrained local solver to solve (12) or an
unconstrained local solver to solve (14). The solution x̃ and the solver status s
are obtained.

3. If x̃ /∈ x0 project x̃ into the box x0 and change the status s = p.
4. (a) If d̂ > δ and d0 < d̂ revert to the starting point by setting x̃ = x0, s = l,

d̂ = d0 and go to Step 1.
(b) Otherwise return (x̃, s, d̂). If d̂ ≤ δ the point found is δ-feasible.

Algorithm (1) can be used in combination with filtering methods like constraint
propagation (e.g., see [5]) or linear relaxations (see, e.g., [6]). It can be also embedded
in a branch and bound scheme as discussed in the next subsection.

3.3 Feasible point search in branch and bound

In this subsection we discuss how to integrate Algorithm 1 from Subsection 3.2 into a
branch and bound scheme. This results in a cheap and fast global method for finding
δ-feasible points of feasible problems where Algorithm 1 would have failed.

10 Ferenc Domes, Arnold Neumaier

The points found during the search, which are the best (have smallest feasibility
distance) are remembered for each box. This information is stored as a quadruple

(x, x̃, d(x̃), status), (19)

where x is a box, x̃ ∈ x is the point found, d(x̃) is the feasibility distance of the
point found and status is the status code according to Table 18.

When the box x is divided into subboxes the position of x̃ decides to which part
the information from (19) belongs, namely in the part(s) x′ with x̃ ∈ x′. According
to this we set (x′, x̃, d(x̃), status) for the subbox(es) x′ and for all other parts the
status is set to e.

In order to guarantee a finite termination of the following algorithm we define a
narrow condition for a box; if this condition is met for a box x the box is not
split again. We call a box x σ-narrow (for some constant σ > 0) if

xi − xi < σ for all i = 1, . . . , n. (20)

The subdivision method has to match the narrow condition; a narrow condition and
a subdivision method are sound when all boxes in the branch and bound scheme
will become narrow sooner or later. A subdivision method matching (20) would be
to divide x into two parts by splitting the widest component of x at the midpoint.

Assuming we have specified a sound narrow condition and subdivision method,
the following algorithm is finite and makes a global search for a δ-feasible point.

Algorithm: 2 (Improved feasible point search)

Inputs: A constraint satisfaction problem given by (3), the tolerance δ ≥ 0 and
the box x.
Outputs: (x, d, S), where x is a point, d is the corresponding feasibility distance
d(x) and St is a set of boxes, called the ”narrow box storage”.
Results:
• If d ≤ δ we have found the δ-feasible point x.
• If d > δ and the narrow box storage S is empty the problem is infeasible.
• Otherwise we were not able to find a feasible point, but the problem can be

still feasible. In this case we may start the algorithm again with smaller δ,
putting all the boxes from S to the stack and setting x = ∅.

1. Set xb (the most feasible point found so far) as a random point of the box x and
its feasibility distance as db = d(xb). Initialize both the stack and S as empty.

2. If the box x is empty:
(a) If the stack is not empty get the last box from it and place it into x.
(b) If the stack is empty terminate the algorithm and returning (xb, db, S). In

this case no δ-feasible point was found.
3. If the box x has an assigned search information, place this information into x0,

s0 and d0 otherwise initialize x0 as a random point of the box x and set s0 = r,
d0 = d(x0).

4. Use filtering methods (constraint propagation, linear relaxation, etc.) on the box
x obtaining a new box x′.

5. If x′ is empty set x as empty and go to Step 2.
6. Otherwise:

(a) Apply Algorithm 1 with x′, δ, x0, s0 and d0 resulting in (x̃, s, d).

Rigorous verification of feasibility 11

(b) If d < db then the new point is more feasible than the most feasible one found
so far, therefore set xb ← x̃ and db ← d.

(c) One of the following actions is taken depending on the point x̃ and the box x̂:
i. If d ≤ δ, a δ-feasible point was found, terminate the algorithm returning

(x̃, d, S).
ii. Else if the box x̂ is δ-narrow, it is put into the narrow box storage S. We

also assign the search information (x̃, s, d) to x̂, set the box x as empty
and go to Step 2.

iii. Otherwise subdivide x′ and assign the search information (x̃, s, d) to the
part in which the point x̃ is contained. Set one part in x and push the
remaining parts on the stack. Go to Step 2.

4 Discussion of existing verification methods

In this section we consider the decision problem whether the continuous nonlinear
system

E(x) = 0, F (x) ≤ 0, x ∈ x (21)

with, E : De ⊆ Rn → Rme and F : Df ⊆ Rn → Rmf has a solution x∗ ∈ z with
E(x∗) = 0 and F (x∗) ≤ 0 for a suitable z ⊆ x.

In applications this problem arises when a δ-feasible solution has been found and
one tries to find a (narrow) box close to it which provably contains a feasible point
(see Figure 2).

Fig. 2 Verifing approximately feasible points of a problem consisting two equality constraints:
we define a box (box verified) around the δ-feasible point found (point found) and verify that
it contains a feasible point. Since in this setting the box contains a feasible point the test is
expected be positive.

12 Ferenc Domes, Arnold Neumaier

4.1 Nonsingular systems of nonlinear equations

Problem (21) can be solved by the so called interval Newton methods, which, at the
most fundamental level, are computational versions of Brouwer’s fixed point theorem:

Theorem 3 (Brouwer) Let D be a convex and compact subset of Rn with int(D) 6=
∅ then every continuous mapping G : D → D has at least one fixed point x∗ ∈ D,
i.e. a point with G(x∗) = x∗

We consider (21) with me = n and mi = 0. We also assume that E is Lipschitz
continuous in D0 ∈ D i.e. there is an l ∈ D0 such that |E(x)−E(x)| ≤ lT |x− y| for
all x, y ∈ D0. In addition to this we assume that A is a slope matrix of E at [x,y]
(see. e.g., [14]), formally that for all x ∈ x ⊆ D, y ∈ y ⊆ D the equation

E(x)− E(y) = A(x− y)

holds for some A ∈ A. If E is differentiable on x the matrix A can be chosen as the
interval extension of the Jacobian E′(x) but in general there is a slope matrix
at [x∗,x] with roughly half the radius.

Let AH denote the hull inverse AHb := ut{A−1b, A ∈ A, b ∈ b} of A then every
z satisfying

N(x, x̃) := x̃−AHE(x̃) ⊆ z (22)

has the following properties:

1. Every zero ťx∗ ∈ x of E satisfies x∗ ∈ z.
2. If x ∩ z = ∅ then E has no zero in x.
3. If z ∈ int(x) and z ⊆ x then z contains a unique zero of E.

(23)

The operator N(x̃,x) defined by (21) is called the (optimal) interval Newton
operator. While the newton operator can be used only if A is regular, there are
two other interval Newton like operators with the property (23), which require only
weaker assumptions, the Krawczyk operator

K(x, x̃) := x̃− CF (x̃)− (CA− I)(x− x̃), (24)

and the Hansen-Sengupta operator

H(x, x̃) := x̃+ Γ (CA, − CF (x̃), x− x̃), (25)

where C is a preconditioner and the operator Γ is defined as

Γ (a,b,x) := ut{x ∈ x | ax = b for some a ∈ a and b ∈ b} (26)

(see, e.g., [16]) and has the property that Γ (a,b,x) = ∅ if b = ∅ or x = ∅. Note
that the Hansen-Sengupta operator (and the Krawczyk operator) do not require the
computation of an inverse an thus they can be applied to rectangular systems.

In addition to this we have the general interval Newton operator

NG(x, x̃) := x̃− (CA)I(CF (x̃)), (27)

Rigorous verification of feasibility 13

where C is a preconditioner and (CA)I denotes the inverse of CA. The problem
(21) can be solved by the interval Newton iteration

x0 = x, xl+1 := I(xl, x̃l) ∩ xl, x̃l ∈ xl, with (l = 0, 1, . . .), (28)

where x̃l ∈ xl and I(x, x̃) ∈ {N(x, x̃), K(x, x̃), H(x, x̃), NG(x, x̃)} can be chosen
arbitrarily.

Note that the methods discussed in this and the next section apply only to sys-
tems of equations but it is possible to transform the inequalities of (21) to equalities
by introducing slack variables.

4.2 Systems of nonlinear equations

We consider (21) with 0 < me ≤ n and mi = 0. Let x̃ ∈ x an approximate solution
of (21) and let S denote an index set of the selected variables with S ⊆ {1, . . . , n}
and |S| = m. The solution method given in [9] can be summarized as follows:

Algorithm: 4 (Verification method by Kearfott)

1. Let J be the Jacobian of E at x̃ and let JO ∈ Rn×n−m be the matrix built column-
wise from the basis vectors of the null space null(J) := {x ∈ Rn | Jx = 0} of
the matrix J . Then the index set S with |S| = m is selected such that the indices
i ∈ S correspond to the variable indices where the row sum of JO is minimal.
This heuristic should maximize the chance that after fixing the variables xi for
i /∈ S (in Step 2), the linear subspace in which the Hansen-Sengupta operator is
applied (in Step 3) contains a feasible point.

2. A box z is constructed around the approximate solution x̃ by

zi =
{

[x̃i − ε, x̃i + ε] if i ∈ S
x̃i if i /∈ S , (29)

where ε is a small positive number on the order of machine epsilon. The box z
should be sufficiently narrow to avoid overestimation of the constraint gradient
ranges by the interval evaluations used to compute A in Step 3. It should be also
large enough, that the solution set of (21) can pass through it.

3. The matrix A is chosen as the interval extension of the Jacobian of E at z, the
preconditioner matrix C ∈ Rm×m is chosen approximately as mid(A:S)−1 and
the Hansen-Sengupta operator (25) is used to obtain a new box ẑ := H(z, x̃).

4. By (23), if ẑ ⊆ int(z) holds, it is proved that the box ẑ contains a solution of (21)
and if ẑ = ∅ then z contains no solution.

5. Otherwise an ε-inflation procedure (see e.g., [18]) is used on zS to obtain z̃, and
provided that z̃ ⊆ x we return to the Step 3 using z̃ in place of z.

4.3 Systems of nonlinear inequalities

We note that Algorithm 4 is an modified version of Hansen’s method [8, S12]. As
Kearfott noticed the algorithm is likely to fail if the solution x∗i ≈ xi or x∗i ≈ xi for
an unfixed coordinate i ∈ S. This can be avoided by projecting the corresponding

14 Ferenc Domes, Arnold Neumaier

coordinates of the approximately feasible solution x̃ onto the active set of the bound
constraints and led to a new improved method given in [11].

We consider (21) with me = 0 and 0 < mi. Let x̃ ∈ x denote an approximate
solution of (21), then task is to find a solution x∗ ∈ x with F (x∗) = 0 near to x̃.
Verifying if x̃ is a valid solution of (21) is possible by evaluating the interval extension
of F at [x̃, x̃], formally

F ([x̃, x̃]) ≤ 0 =⇒ F (x̃) ≤ 0, (30)

which holds because the inclusion isotonicity of the interval arithmetic. This how-
ever usually does not work if F (x̃)i ≈ 0 for some i ∈ {1, . . . , n}. For example if
the constraint f(x) < 0 with f(x) := 0.1x − 0.1 is evaluated in binary, float-
ing point, interval arithmetic at the obvious solution [1, 1], we obtain f([1, 1]) =
[∇(0.1), ∆(0.1)]− [∇(0.1), ∆(0.1)] 6≤ 0. Therefore it is crucial that the approximate
solution x̃ is slightly moved into the solution set of (21), allowing the verification by
(30).

According to [11] we denote the approximately active constraints of (30) by
Gi(x) ≤ 0 with i ∈ {1, . . . ,mi} where

Gi(x) :=

Fj(x) if Fj(x̃) ≈ 0, or
xk − xk if x̃k ≈ xk, or
xl − xl if x̃l ≈ xl,

(31)

and for the transposed Jacobian matrix of G(x) at x̃ of Aι ∈ Rn×mi we compute
the QR factorization Aι := QιRι of Aι, then the following algorithm can be used
to create a vector v ∈ Rn which likely points from x̃ into the interior of the feasible
region of (21):

Algorithm: 5 (Producing a direction into the feasible region (Kearfott))

1. If QιT:1 Aι:1 < 0 then Qι:1 ← −Qι:1.
2. Set v = −Qι:1sign(Rι11)
3. For j = 2 . . .mi do:

(a) Set δ = QιT:k A
ι
:k.

(b) If δ < 0 then set Qι:k ← −Qι:k and δ ← −δ.
(c) Set α = (2vTAι:k)/δ.
(d) If α > 0 then set u = v − αQι:k and v ← u/‖u‖2.

4. Return v

As proven in [11] Suppose that at x̃ ∈ x only mi ≤ n constraints are active, then for
a sufficiently small δ, x∗ := x̃+ δv is strictly feasible with respect to the constraints
(21). In this case the feasibility of x∗ can be verified by applying (30).

4.4 General constraint satisfaction problems

In this subsection we consider (21) with 0 < me ≤ n and 0 < mi. In this case
could apply the technique in Subsection 4.2 where the inequality constraints are
transformed to equalities by introducing slack variables.

The other possibility is using the Kearfott’s method which is based on subsec-
tions 4.2 and 4.3 as well as on [11]: Suppose that there are mi active inequality
constraints and that me ≤ n−mi. Let G(x) as defined in (31) and let Aι ∈ Rn×mi

Rigorous verification of feasibility 15

be the transposed Jacobian matrix of G(x) at x̃. Similarly, let Aε ∈ Rn×me be the
transposed Jacobian matrix of E(x) at x̃. We construct two orthogonal matrices Qι
and Q̂ε by performing two QR factorizations. The matrix Qι is constructed such as
that it will give us directions tangent to the equality constraints, in which we can
perturb x̃ into the region that is feasible with respect to the inequality constraints
and is obtained by

A := (Aε Aι) = QR = (Qε Qι QO)R. (32)

The matrix Q̂ε is constructed such as its column vectors form a basis of the space
spanned by the column vectors of Aε but within the tangent space of the inequality
constraints and is obtained by

Â := (Aι Aε) = Q̂R̂ = (Q̂ι Q̂ε Q̂O)R̂. (33)

Then according to [11] we define:

Algorithm: 6 (Improved verification method of Kearfott)

1. Let x̃ ∈ x an approximate solution of (21).
2. If (30) cannot verify F (x̃) ≤ 0, use (32) to obtain Qι. Then apply Algorithm

5 with this Qι in order to produce a vector v pointing into the solution set of
the inequality constraints but tangent to the equality constraints. Finally set x̃←
x̃+ δv for a suitably chosen δ. If (30) still cannot verify F (x̃) ≤ 0 signal failure.

3. Create and factor Ã as in (33) to obtain Q̂ε.
4. Use an interval Newton iteration as given in (28) with x defined by xi := [−ε/10, ε/10]

for suitable small ε and with x̃l ≈ mid(xl) on the square system of equations
ψ(x) = 0, where the function ψ : Rme → Rme is defined as

ψ(x) = F
(
x̃+

me∑
i=1

xiQ̂
ε
:i

)
. (34)

The iteration either converges to a nonempty box x̂ ∈ IRme with x̂ ⊆ int(x) or
we signal failure.

5. Form the box x̃ := x̃ +
∑me

i=1 x̂iQ̂ε:i and use (30) to check the feasibility of the
inequality constraint, i.e., check if F (x̃) ≤ 0. If the verification succeeds return
the narrow box x̂ containing a feasible solution of (21), otherwise signal failure.

5 New verification method

In this section we discuss a new method for verifying approximately feasible points.
The method applies the preconditioning directly to the original system, simultane-
ously finding a suitable subset of the variables which are not fixed in the verification
process. The optimal values for the remaining variables are computed by linearly
relaxing the problem and solving a suitable linear program.

Let the constraint satisfaction problem be given in the equality form (possibly
by introducing slack variables) as in (16), namely

EF (x) = 0, x ∈ x, E ∈ E. (35)

16 Ferenc Domes, Arnold Neumaier

Let x̃ ∈ x be a point with EF (x̃) ≈ 0. This x̃ can be constructed by finding a
δ-feasible point in the from of (3) by solving (12) and then transforming it to match
the equality form (16) (for details see the end of Subsection 3.1).

Let s be a scaling vector for the variables and let δ > 0. Then

z := x ∩ [x̃− δs, x̃+ δs],

is a narrow box around x̃ which is contained in the box x. For quadratic problems
the variable scaling vector s can be obtained by the method described in [4] while
the constant δ should be chosen reasonably small. The box z around the δ-feasible
point x̃ may contain a feasible point. To verify whether this is true or not we discuss
a test for deciding if there is a feasible point contained in z. If the test succeeds we
know that there is a y ∈ z such that the equality EF (y) = 0 is satisfied, proving
that z contains at least one feasible point without actually finding this point (see
Figure 2).

Let C ∈ Rm×m and let S be the index set of the selected variables with S ⊆
{1, . . . , n} and with |S| = m. Then the index set U := {1, . . . , n}\S of the unselected
variables has |U | = n−m. We define the function p : Rn → Rm with

p(x) := xS − (CE)F (x). (36)

If we compute the linear relaxation of p(x) according to [6], in the box z, we obtain
a matrix B̂ and a box b̂ such that

p(x) ∈ B̂x+ b̂ for all x ∈ z.

Substituting the bounds zS for the selected variables xS results in

p(x) ∈ BxU + b for all x ∈ z, (37)

where B := B̂:U ∈ Rm×n−m and b := b̂ +B:SzS ∈ IRm.

Theorem 7 Suppose b is bounded and the matrix C is non-singular, and suppose
that there is a w such that

w ∈ zU ∈ IRn−m, Bw ∈ zS 	 b =: c ∈ IRm. (38)

Then the box z′ ⊆ z with

z′ :=
{

z′S = v := Bw + b
z′U = [w,w] (39)

contains a solution of constraint satisfaction problem (35).

Here (a 	 b := [a− b, a− b] defines the inner subtraction of two boxes a and
b.

Proof We define the function p̃ : Rm → Rm by fixing the unselected variables in p
to w, as

p̃(v) := p(y), with yS = v, yU = w. (40)
Then by (38) we have yU = w ∈ zU and by reversing the direct subtraction in (38)
we also have yS ∈ v = Bw+ b ⊆ zS . Therefore we find that y ∈ z and we can apply
(37) to obtain

p̃(v) = p(y) ∈ Bw + b = v,

Rigorous verification of feasibility 17

implying that
p̃(v) ∈ v for all v ∈ v. (41)

Since b is bounded, v is bounded and the continuous function p̃ maps the nonempty,
compact and convex set v into itself. The fixed point theorem of Brouwer [24] implies
that p̃ has a fixed point v∗ ∈ v with v∗ = p̃(v∗). By (39) and (40) there is a
corresponding x∗ ∈ z′ with x∗U = w and x∗S = v∗, satisfying

x∗S = v∗ = p̃(v∗) = p(x∗).

By (36) we have
x∗S = p(x∗) = x∗S − CEF (x∗),

giving
CEF (x∗) = 0. (42)

Since the matrix C is assumed to be non-singular, EF (x∗) = 0 holds, proving that
x∗ ∈ z′ is a solution of the constraint satisfaction problem (35).

A suitable preconditioner C and an index set S can be selected by computing
the m × n interval extension of the Jacobian or the slope matrix S := EF[x̃, z]
then using the Gauss–Jordan inversion on S as given in [6]. Note that for the Gauss–
Jordan inversion given in [6] the permutation has to be taken in account. It also works
for under- or overdetermined systems, however in this application the set index set
S must be m-dimensional otherwise the verification will fail. The preconditioning
results in the matrix CS:S ≈ I, and if CS:S is a H-matrix then CS:S and thus C is
(strongly) regular, as required by the Theorem 7. The test whether or not the matrix
CS:S is an H-matrix can be done by choosing a suitable u > 0 and test whether or
not 〈CS:S〉u > 0 holds. Different choices of u are

– u = (1, . . . , 1)T is the simplest, proving diagonal dominance, but not scaling
invariant,

– u ≈ 1/diag(CS:S), is a generally good and cheap choice,
– u ≈ 〈CS:S〉−1 (1, . . . , 1)T , is the best choice (see Neumaier [16]), but requires
O(m3) operation for solving the linear system.

Note that by the choice of C, p(x) depends only weakly on the variables xJ since
∂p(x)/∂xk ≈ 0 for all k ∈ S.

In practice, an approximate linear solver can be used to find a solution of (38).
First the width d := c− c of c should be slightly reduced by setting c̃ := [c+ δd, c−
δd] then the linear solver is used to solve (38) with c̃ instead of c, obtaining the
approximate solution w̃. Finally

w := min(max(zU , w̃), zU) ∈ zU , v := Bw + b,

is computed. If v ⊆ zJ then the box z′ defined by (39) contains a solution of (38).
Algorithm 8 summarizes the results of this section. If the algorithm fails in Step 2

we can start it again with an smaller δ, hoping that the new S can be fully inverted.
On the other hand, choosing a bigger δ increases the chances that the linear program
can be solved and the condition Bw + b ⊆ xJ still holds.

Algorithm: 8 (Verify a feasible point) Let the constraint satisfaction problem
be given in the equality form (35) and let x̃ ∈ x such that EF [x̃, z] ≈ 0.

18 Ferenc Domes, Arnold Neumaier

1. Find a variable scaling vector s, choose a suitable δ and compute u = δs, z :=
x ∩ [x̃− u, x̃+ u] and S := EF[x̃, z].

2. Using the Gauss–Jordan inversion try to find a C with CS:S ≈ I. If |S| 6= m or
CS:S is not a H-matrix, signal failure.

3. Define the interval function p(x) := xS − (CE)F (x).
4. Linearize p(x) in the box z obtaining a matrix B̂ and an interval vector b̂ such

that p(x) ⊆ B̂x+ b̂ holds for all x ∈ z.
5. Compute b := b̂ + B̂:Szk by interval computations and set B := B̂:U .
6. Compute c with c := zJ − b and c := −(b − zJ) using upward rounding as well

as d := c− c and c̃ := [c+ δd, c− δd].
7. Solve the system of two-sided inequalities Bw ∈ c̃, w ∈ zU , using a linear solver

obtaining the approximate solution w̃.
8. Compute w = min(max(x, w̃), x) and v := Bw + b.
9. If v ⊆ xJ holds, then by Proposition 7 the box z′ with z′J = v and z′U = w

contains a feasible point. Otherwise signal failure.
10. Use a rigorous filtering method (e.g., constraint propagation) on (35) with x ∈ z′

in order to reduce the width of z′.

6 Comparison of the verification methods

In this section we present a comparison of the different verification methods discussed
in the paper. In order to be fair, all of the methods have been (re)implemented in the
same programming language and integrated in our GloptLab solver. This ensues
that all of them work on the same problem representation and use the same interval
arithmetic, linear algebra implementation etc.

From the whole Coconut Environment Testset (see [23]), we selected all quadratic
problems with no more than 300 variables and 300 constraints. The Test Envi-
ronment [3] provides the best approximate solutions of the resulting 238 problems.
For 53 problems the approximate solutions were already feasible, since the rigor-
ous, interval-valued constraint violations computed by the Test Environment
were zero. The remaining 185 problems were simplified to a standard quadratic
format. Then we constructed a narrow box z around each approximate solution
(rad(zi) = 10−5) and applied Interval evaluation(InEv), the Krawczyk Interval New-
ton (Kraw), the Hansen-Sengupta Interval Newton (HaSe), the basic method of Kear-
fott (KeBa), the improved method of Kearfott (KeIm), and our new method (DoNe)
to the constructed boxes. The results of the attempted verification is summarized in
the following table:

Test Result Summary (238 problems)
method tried verified failed error
InEv 238 53 185 0
Kraw 185 47 138 0
HaSe 185 41 144 0
KeBa 185 59 124 2
KeIm 185 57 126 2
DoNe 185 86 99 0
Total 238 143 95 0
% 100 61 39 0

Rigorous verification of feasibility 19

The results show that for the given narrow boxes 143 out of 238 problems (61%)
were verified. From the 185 nontrivial problems where simple interval evaluation
was not sufficient, our method proved for 86 problems that the box constructed
around the approximate solution contains a feasible point. The new method was the
only successful one in 29 of the problems (namely bt1, dual1, dual2, dual3, dual4,
eigmaxa, eigminc, ex2-1-2, ex3-1-2, ex9-2-8, extrasim, hs012, hs022, hs042, hs044,
hs054, hs061, hs083, maratos, meanvar, portfl1, portfl2, portfl3, portfl4, portfl6, try-
b, zecevic2, zecevic3, zecevic4). On the other hand, our method failed in 4 cases
only where one or two of the other methods succeeded in the verification: dispatch
(verified by KeIm), hs028 (verified by KeBa and KeIm), hs35mod (verified by KeBa),
and immun (verified by KeBa and KeIm). The detailed test results can be found in
the following tables.

Test Result Details
n number of variables, m number of constraints,
eq number of equality constraints, ieq number of ineqality constraints,
nd number of nodes in the DAG, qnd number of quadratic nodes
+ verification succeeded, - verification failed,
! verification error, × no feasible point in the box checked.

Trivial problems (53 problems)
problem n m eq ieq nd qnd
3pk 30 0 0 0 158 32
arglina 100 0 0 0 304 102
arglinb 10 0 0 0 52 12
arglinc 8 0 0 0 46 10
bqp1var 1 0 0 0 4 3
bt13 5 1 1 0 15 7
dixon3dq 10 0 0 0 32 12
ex2-1-1 5 1 0 1 13 8
ex2-1-6 10 5 0 5 27 17
gottfr 2 2 2 0 11 5
h106 8 7 0 7 21 16
h113 10 9 0 9 57 20
h76 4 4 0 4 15 9
h83 5 6 0 6 29 12
h84 5 4 0 4 14 10
h95 6 5 0 5 23 12
harkerp2 100 0 0 0 400 102
hilberta 10 0 0 0 32 12
hilbertb 50 0 0 0 1327 52
hs003 2 0 0 0 6 4
hs021 2 1 0 1 7 5
hs084 5 3 0 3 26 10
hs106 8 7 0 7 21 16
hs116 13 14 0 14 51 28
hs21mod 7 1 0 1 17 10
hs23 2 5 0 5 14 8
hs35 3 2 0 2 11 6

problem n m eq ieq nd qnd
hs3mod 2 0 0 0 6 4
hs44 4 7 0 7 16 12
kear3 4 4 4 0 11 9
matrix2 6 2 0 2 20 10
nasty 2 0 0 0 6 4
nnls 300 1 0 1 2302 302
o32 5 7 0 7 33 13
obstclal 64 0 0 0 766 66
obstclbl 64 0 0 0 766 66
obstclbu 64 0 0 0 766 66
oslbqp 8 0 0 0 18 10
palmer6c 8 0 0 0 36 10
palmer7c 8 0 0 0 36 10
palmer8c 8 0 0 0 34 10
powell 4 4 4 0 15 9
qudlin 12 0 0 0 20 14
rediff3 3 3 3 0 13 7
s324 2 3 0 3 10 6
sim2bqp 2 0 0 0 8 4
simbqp 2 0 0 0 8 4
tf12 3 101 0 101 105 105
tridia 30 1 0 1 92 32
virasoro 8 8 8 0 102 17
vrahatis 9 9 9 0 28 19
zangwil2 2 0 0 0 7 4
zangwil3 3 3 3 0 7 7

20 Ferenc Domes, Arnold Neumaier

Verified problems (143 problems)
problem n m eq ieq nd qnd Kraw HaSe KeBa KeIm DoNe
a 2 2 2 0 8 5 + + + + +
aircrfta 5 5 5 0 22 11 + + + + +
b 4 4 4 0 17 9 - - + + +
b1 2 2 2 0 7 5 + + + + +
bellido 9 9 9 0 37 19 + + + + +
booth 2 2 2 0 5 5 + + + + +
bronstein 3 3 3 0 12 7 + + + + +
bt1 2 1 1 0 9 5 - - - - +
chemkin 10 10 10 0 39 21 + - + + +
clo1 3 3 3 0 10 7 + + + + +
czaporgeddes 3 3 3 0 24 7 + + + + +
didrit 9 9 9 0 37 19 + + + + +
discret3 8 8 8 0 73 17 + + + + +
dispatch 4 2 1 1 17 8 - - - + -
dual1 85 1 1 0 3646 88 - - - - +
dual2 96 1 1 0 4607 99 - - - - +
dual3 111 1 1 0 6222 114 - - - - +
dual4 75 1 1 0 2877 78 - - - - +
eco9 8 8 8 0 53 17 + + + + +
eiger 4 4 4 0 13 9 + + + + +
eigmaxa 101 101 101 0 404 204 - - - - +
eigmaxb 101 101 101 0 404 204 + + + + +
eigmaxc 22 22 22 0 88 46 + + + + +
eigminb 101 101 101 0 403 203 + + + + +
eigminc 22 22 22 0 87 45 × × - - +
eqlin 3 3 3 0 7 7 - - + + +
ex2-1-2 6 2 0 2 15 10 - - - - +
ex3-1-2 5 6 0 6 33 13 - - - - +
ex9-2-8 3 2 2 0 7 7 - - - - +
extrasim 2 1 1 0 5 5 - - - - +
hatfldg 25 25 25 0 98 51 + + + + +
himmelbc 2 2 2 0 7 5 + + + + +
hong1 4 4 4 0 17 9 - - + + +
hong2 3 3 3 0 12 7 + + + + +
hs006 2 1 1 0 7 5 - - + + +
hs008 2 2 2 0 7 5 + + + + +
hs011 2 1 0 1 9 5 - - + + +
hs012 2 1 0 1 10 5 - - - - +
hs022 2 2 0 2 11 6 - - - - +
hs028 3 1 1 0 10 6 - - + + -
hs035 3 1 0 1 11 6 - - + - +
hs042 3 1 1 0 14 6 - - ! ! +
hs044 4 6 0 6 16 12 - - - - +
hs054 6 1 1 0 16 9 - - ! ! +
hs061 3 2 2 0 12 7 - - - - +
hs065 3 1 0 1 15 6 - - + - +
hs083 5 3 0 3 21 10 - - - - +
hs35mod 2 1 0 1 8 5 - - + - -
hs8 2 2 2 0 7 5 + + + + +
hypcir 2 2 2 0 7 5 + + + + +
immun 19 6 6 0 37 27 - - + + -
ipp 8 8 8 0 53 17 + + + + +
kapur 9 9 9 0 27 19 + + + + +
katsura5 6 6 6 0 37 13 + + + + +
kear11 8 8 8 0 30 17 + + + + +
kin2 8 8 8 0 56 17 + + + + +
kincox 4 4 4 0 17 9 + + + + +
kinema 9 9 9 0 37 19 + - + + +
kink 8 8 8 0 30 17 + + + + +
ku 10 10 10 0 41 21 + - + + +
ku10 10 10 10 0 31 21 + - + + +
lorentz 4 4 4 0 17 9 + + + + +
lsqfit 2 1 0 1 15 5 - - + - +
maratos 2 1 1 0 9 5 - - - - +
mathews 3 3 3 0 16 7 + + + + +
meanvar 7 2 2 0 39 11 - - - - +
mickey 2 2 2 0 8 5 + + + + +
monfroy1 4 4 4 0 14 9 + + + + +
nauheim 8 8 8 0 25 17 + - + + +
parabola 2 2 2 0 8 5 + + + + +
portfl1 12 1 1 0 139 15 - - - - +
portfl2 12 1 1 0 139 15 - - - - +
portfl3 12 1 1 0 139 15 - - - - +
portfl4 12 1 1 0 139 15 - - - - +
portfl6 12 1 1 0 139 15 - - - - +
precondk 2 2 2 0 7 5 + + + + +
puma 8 8 8 0 30 17 + + + + +
redeco5 5 5 5 0 17 11 + + + + +
redeco6 6 6 6 0 23 13 + - + + +
redeco7 7 7 7 0 30 15 + + + + +
redeco8 8 8 8 0 38 17 + + + + +
s9-1 8 8 8 0 25 17 + + + + +
simpllpa 2 2 0 2 6 6 - - - + +
supersim 2 2 2 0 5 5 + + + + +
tame 2 1 1 0 6 5 - - + + +
try-b 2 1 1 0 10 5 - - - - +
wright 5 5 5 0 16 11 + + + + +
zecevic2 2 2 0 2 7 6 - - - - +
zecevic3 2 2 0 2 10 6 - - - - +
zecevic4 2 2 0 2 9 6 - - - - +

Rigorous verification of feasibility 21

Failed problems (95 problems)
problem n m eq ieq nd qnd
abel 28 14 14 0 128 44
aircrftb 15 10 10 0 48 27
airport 84 42 0 42 3736 128
aljazzaf 3 1 1 0 15 6
ampl 2 2 1 1 6 5
biggsc4 4 7 0 7 15 13
bqpgabim 199 154 153 1 507 354
braess 4 5 4 1 14 10
braess-n 5 5 4 1 16 11
bt12 5 3 3 0 17 10
bt3 5 3 3 0 18 10
bt8 5 2 2 0 17 9
chandheq 100 100 100 0 10201 201
congigmz 3 5 0 5 13 9
dccircuit 9 10 10 0 20 20
degenlpa 20 14 14 0 36 36
discs 33 66 18 48 464 101
dualc1 9 13 1 12 69 24
dualc2 7 9 1 8 46 18
ex14-1-6 9 15 1 14 51 25
ex2-1-10 20 10 0 10 72 32
ex2-1-3 13 6 0 6 25 21
ex2-1-4 6 4 0 4 13 12
ex2-1-7 20 10 0 10 72 32
ex2-1-8 24 10 10 0 60 36
ex3-1-1 8 6 0 6 21 16
ex3-1-4 3 3 0 3 14 8
ex5-2-2 9 6 4 2 21 17
ex5-2-4 7 6 1 5 25 15
ex5-2-5 32 19 3 16 158 53
ex5-3-3 62 53 53 0 217 117
ex7-3-3 5 8 2 6 18 14
ex8-3-5 110 76 76 0 407 188
ex9-1-1 13 12 12 0 27 27
ex9-1-10 14 12 11 1 28 28
ex9-1-2 10 9 9 0 21 21
ex9-1-4 10 9 9 0 21 21
ex9-1-5 13 12 12 0 27 27
ex9-1-8 14 12 11 1 28 28
ex9-2-1 10 9 9 0 27 21
ex9-2-2 10 9 8 1 25 21
ex9-2-4 8 7 7 0 23 17
ex9-2-5 8 7 7 0 23 17
ex9-2-6 16 12 12 0 34 30
ex9-2-7 10 9 9 0 27 21
fredimage 13 12 12 0 50 26
genhs28 10 8 8 0 38 20
grouping 100 125 125 0 357 227
hanging 288 180 0 180 2058 470
hatfldh 4 7 0 7 15 13
himmel11 9 3 3 0 25 14
himmelbk 24 14 14 0 316 40
hs030 3 1 0 1 11 6
hs043 4 3 0 3 24 9
hs048 5 2 2 0 15 9
hs051 5 3 3 0 18 10
hs052 5 3 3 0 18 10
hs053 5 3 3 0 18 10
hs076 4 3 0 3 15 9
hs097 6 4 0 4 23 12
hs098 6 4 0 4 23 12
hs113 10 8 0 8 57 20
hs118 15 17 0 17 49 34
hs268 5 5 0 5 27 12
hs44new 4 5 0 5 15 11
hs6 2 2 1 1 7 5
ladders 7 13 13 0 47 21
linspanh 72 32 32 0 106 106
lotschd 12 7 7 0 27 21
makela3 21 20 0 20 62 42
makela4 21 40 0 40 62 62
markowitz 8 2 1 1 55 11
mifflin2 3 2 0 2 10 6
minmaxrb 3 4 0 4 10 8
model 60 32 26 6 94 94
optcntrl 28 19 19 0 67 49
optctrl3 118 80 79 1 551 200
optctrl6 118 80 79 1 551 200
polak4 3 3 0 3 14 7
polygon2 38 192 1 191 1005 231
prodpl0 60 29 20 9 107 91
prolog 20 22 0 22 52 44
qp1 50 2 1 1 1329 54
qp2 50 2 1 1 1329 54
qp3 100 52 51 1 204 154
qp4 79 31 30 1 141 112
qp5 108 31 30 1 141 141
res 11 7 7 0 19 19
rosenbr 4 3 2 1 11 8
rosenmmx 5 4 0 4 26 10
simpllpb 2 3 0 3 7 7
sseblin 192 72 48 24 266 266
ssebnln 192 96 72 24 290 290
swopf 82 91 77 14 270 175
tame1 2 2 1 1 6 5

22 Ferenc Domes, Arnold Neumaier

Acknowledgments

This research was supported through the research grant P23554-N13 of the FWF
(Fonds zur Förderung der wissenschaftlichen Forschung). We thank Baker Kearfott
for answering our questions regarding his verification methods. We also thank the
reviewer for the constructive suggestions.

References

1. G. Alefeld and J. Herzberger. Introduction to Interval Computation. Academic
Press, 1984.

2. F. Domes. GloptLab – a configurable framework for the rigorous global solu-
tion of quadratic constraint satisfaction problems. Optimization Methods and
Software, 24:727–747, 2009.

3. F. Domes, M. Fuchs, and H. Schichl. The Optimization Test Environment.
Optimization and Engineering, 2013. accepted.

4. F. Domes and A. Neumaier. A scaling algorithm for polynomial constraint
satisfaction problems. Journal of Global Optimization, 43:327–345, 2008.

5. F. Domes and A. Neumaier. Constraint propagation on quadratic constraints.
Constraints, 15:404–429, 2010.

6. F. Domes and A. Neumaier. Rigorous filtering using linear relaxations. Journal
Global Optimization, 53:441–473, 2012.

7. F. Domes and A. Neumaier. Constraint aggregation in global optimization. in
preparation, 2013.

8. E. R. Hansen. Global Optimization Using Interval Analysis. Marcel Dekker Inc.,
1992.

9. R. B. Kearfott. On proving existence of feasible points in equality constrained
optimization problems. Mathematical Programming, 83(1–3):89–100, 1995.

10. R. B. Kearfott. On verifying feasibility in equality constrained optimization
problems. Technical report, 1996.

11. R. Baker Kearfott. Improved and simplified validation of feasible points: In-
equality and equality constrained problems. Technical report, 2005.

12. R. Baker Kearfott, Jianwei Dian, and A. Neumaier. Existence verification for
singular zeros of nonlinear systems. SIAM J. Numer. Anal, 38:360–379, 2000.

13. R.B. Kearfott, M.T. Nakao, A. Neumaier, S.M. Rump, S.P. Shary, and P. van
Hentenryck. Standardized notation in interval analysis. In Proc. XIII Baikal In-
ternational School-seminar ”Optimization methods and their applications”, vol-
ume 4, pages 106–113, Irkutsk: Institute of Energy Systems, Baikal, 2005.

14. R. Krawczyk and A. Neumaier. Interval slopes for rational functions and asso-
ciated centered forms. SIAM Journal Numer. Anal., 22:604–616, 1985.

15. R. E. Moore. Interval analysis. Prentice-Hall, 1966.
16. A. Neumaier. Interval methods for systems of equations, volume 37 of Encyclo-

pedia of Mathematics and its Applications. Cambridge Univ. Press, Cambridge,
1990.

17. J. Nocedal and S. J. Wright. Numerical Optimization, volume 22 of Series in
Operations Research and Financial Engineering. Springer, 2006.

18. S. M. Rump. Kleine Fehlerschranken bei Matrixproblemen. PhD thesis, Univer-
sität Karlsruhe, Germany, 1980.

Rigorous verification of feasibility 23

19. S. M. Rump. Validated solution of large linear systems. In Validation Numerics.
Springer, 1993.

20. S. M. Rump. Verification methods for dense and sparse systems of equations. In
Topics in validated computations. North Holland, 1994.

21. S. M. Rump and T. Ogita. Super-fast validated solution of linear systems.
Journal Comput. Appl. Math., 199(2), 2007.

22. N. V. Sahinidis and M. Tawarmalani. BARON 7.2.5: global optimization of
mixed-integer nonlinear programs, User’s Manual, 2005.

23. O. Shcherbina, A. Neumaier, D. Sam-Haroud, Xuan-Ha Vu, and Tuan-Viet
Nguyen. Benchmarking global optimization and constraint satisfaction codes.
In Ch. Bliek, Ch. Jermann, and A. Neumaier, editors, Global Optimization and
Constraint Satisfaction, pages 211–222. Springer, 2003.

24. V. I. Sobolev. Brouwer theorem. In M. Hazewinkel, editor, Encyclopaedia of
Mathematics. Springer, 2001.

	Introduction
	Uncertain constraint satisfaction problems
	Finding and using approximately feasible points
	Discussion of existing verification methods
	New verification method
	Comparison of the verification methods

