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Abstract. A directed Cholesky factorization of a symmetric interval matrix A consists of
a permuted upper triangular matrix R such that for all symmetric A ∈ A, the residual matrix
A − RT R is positive semidefinite with tiny entries. This must hold with full mathematical rigor,
although the computations are done in floating-point arithmetic.

Similarly, a directed modified Cholesky factorization of a symmetric interval matrix A consists
of a nonsingular permuted upper triangular matrix R and a non-negative diagonal matrix D such
that for all A ∈ A the residual matrix A + D −RT R is positive semidefinite with tiny entries.

The paper shows how to construct a directed modified Cholesky factorization with the additional
property that the entries of D are tiny, too, if A is nearly positive definite, and they are zero for
numerically positive definite matrices. The construction is based on an incomplete version of the
directed Cholesky factorization Domes & Neumaier (SIAM J. Matrix Anal. Appl. 32 (2011), 262–
285), which performs better on nearly singular positive definite matrices. The incomplete method
also allows one to select a set of columns which are eliminated before the other columns are processed.
If the factorization fails, but the selected part was successfully processed an incomplete factorization
is returned, needed for the new modified factorization. For the new factorization and relaxation
methods detailed algorithms are given. Directed rounding or interval computations are used to make
sure that the methods are rigorous in spite of the use of floating point arithmetic.

As application, new techniques are given for pruning boxes in the presence of an additional
quadratic constraint, a problem relevant for branch and bound methods for global optimization
and constraint satisfaction. Using either the incomplete directed Cholesky or the directed modified
Cholesky factorization, a convex quadratic relaxation is created and an improved box enclosing the
set of points in the original box satisfying the relaxed constraint. If the quadratic constraint is strictly
convex and the box is sufficiently big, the relaxation and the enclosure are optimal up to rounding
errors.

Numerical test show the usefulness of the new factorization methods in the context of pruning.
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1. Introduction. A directed Cholesky factorization of a symmetric interval ma-
trix A consists of a permuted upper triangular matrix R such that for all symmet-
ric A ∈ A, the residual matrix A − RTR is positive semidefinite with tiny entries.
This must holds with full mathematical rigor, although the computations are done in
floating-point arithmetic.

Domes & Neumaier [1] presented two methods for obtaining a directed Cholesky
factorization. The method proved to be useful for other researchers (e.g., [4, 6, 7, 8]).
In this paper we discuss two new methods: the incomplete directed Cholesky factor-
ization and the directed modified Cholesky factorization. The development of these
methods was motivated by our research in global optimization (Domes & Neumaier
[2]) where we had to factorize the reduced Hessian for which theory requires, that a
certain submatrix is positive definite, but the remainder of the matrix can be indefi-
nite.

In general the incomplete directed Cholesky factorization (discussed in Section
4) performs better on nearly singular positive definite matrices as the methods from
[1]. The method also allows us to select a set of columns which are eliminated before
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the other columns are processed. If the factorization fails, but the selected part was
successfully processed the method returns an incomplete factorization which can be
useful in many applications.

A directed modified Cholesky factorization of a symmetric interval matrix A
consists of a nonsingular matrix R and a non-negative diagonal matrix D such that
the residual matrix A+D −RTR is positive semidefinite and its entries are tiny for
all A ∈ A. In addition to this if A is nearly positive definite the entries of D are
expected to be tiny and zero for numerically positive definite matrices. This method
works for severely ill-conditioned and even for indefinite matrices. In addition to this
like in the incomplete directed Cholesky factorization a certain set of columns can be
selected which are eliminated before the other columns are processed. An algorithm
for constructing a directed modified Cholesky factorization is presented in Section
5. It is a correctly rounding interval version of the (approximate) modified Cholesky
factorization discussed, e.g., in Schnabel & Eskow [10, 11].

In the second part of this paper we discuss enhancements to the indefinite case
of the ehull enclosure technique from Domes & Neumaier [1] for strictly convex
quadratic constraints. Two new methods are presented in Section 3. One of them is
based on the incomplete directed Cholesky factorization from Section 4 and the other
one is based on the directed modified Cholesky factorization from Section 5. The new
methods widen the application scope of the old ehull since they can compute convex
quadratic relaxations for general quadratic constraints. They also perform better on
problems where the quadratic coefficient matrix is positive definite but nearly singular.

For the new factorizations and relaxation methods detailed algorithms are given.
Directed rounding or interval computations are used to make sure that the methods
are rigorous in floating point arithmetic. Numerical test of the new directed Cholesky
factorization methods are presented in Section 6.

The techniques presented give the possibility to obtain rigorous bounds on vari-
ables that are consequences of the constraints, without the need of giving explicit
bounds on them. As already the original ehull enclosure, this makes the method a
convenient step in branch and bound methods for solving constrained optimization
problems (e.g., [3, 6, 7, 9]).

Acknowledgments This research was supported by the Austrian Science Fund
(FWF) under the contract numbers P23554-N13 and P22239-N13.

2. Notation.

2.1. Matrices. Rm×n denotes the vector space of all m×n matrices A with real
entries Aik (i = 1, . . . ,m, k = 1, . . . , n), and Rn = Rn×1 denotes the vector space of
all column vectors of length n. For vectors and matrices, the relations =, 6=, <, >,
≤, ≥ and the absolute value |A| of a matrix A are interpreted component-wise.

The n-dimensional identity matrix is denoted by I and the n-dimensional zero
matrix is denoted by 0 . The transpose of a matrix A is denoted by AT , and A−T is
short for (AT )−1. The ith row vector of a matrix A is denoted by Ai: and the jth
column vector by A:j . For an n × n matrix A, diag(A) denotes the n-dimensional
vector with diag(A)i = Aii.

The number of elements of an index set N is denoted by |N |. The set ¬N denotes
the complement of N . Let I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n} be index sets and let
nI := |I|, nJ := |J |. For an n-dimensional vector x, xJ denotes the nJ -dimensional
vector built from the components of x selected by the index set J . For an m × n
matrix A, the expression AI: denotes the nI × n matrix built from the rows of A
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selected by the index sets I. Similarly, A:J denotes the m× nJ matrix built from the
columns of A selected by the index sets J . Instead of using the index sets I and J we
also write Ai:k,j:l if I = {i, i+ 1, . . . , k} and J = {j, j + 1, . . . , l}.

2.2. Boxes. A box x = [x, x], i.e., the Cartesian product of the closed real
intervals xi := [xi, xi], representing a (bounded or unbounded) axiparallel box in Rn.
IRn denotes the set of all n-dimensional boxes. To take care of one-sided bounds on
variables, the values −∞ and ∞ are allowed as lower and upper bounds of a box,
respectively. The condition x ∈ x is equivalent to the collection of simple bounds

xi ≤ xi ≤ xi (i = 1, . . . , n),

or, with inequalities on vectors and matrices interpreted component-wise, to the two-
sided vector inequality x ≤ x ≤ x. Apart from two-sided constraints, this includes
with xi = [a, a] variables xi fixed at a particular value xi = a, with xi = [a,∞] lower
bounds xi ≥ a, with xi = [−∞, a] upper bounds xi ≤ a, and with xi = [−∞,∞] free
variables. For the notation in interval analysis we mostly follow [5].

2.3. Uncertain vectors and matrices. To rigorously account for inaccuracies
in computed entries of a matrix, we use interval matrices, standing for uncertain real
matrices whose coefficients are between given lower and upper bounds. Note that all
boxes may be considered as interval vectors, i.,e., column vectors (n×1 matrices) with
uncertain components, whose values are known only to lie withing given intervals. The
midpoint, width and the radius of an interval matrix A are the noninterval matrices
defined by

mid(A) := (A+A)/2, wid(A) := A−A, rad(A) := wid(A)/2,

respectively. An interval, interval vector, or interval matrix is called thin or de-
generate if its width is zero, and thick if its width is positive. A real matrix A is
identified with the thin interval matrix with A = A = A.

The expression A := [A,A] ∈ IRm×n denotes an m × n interval matrix with
lower bound A and upper bound A. A ∈ IRn×n is symmetric if Aik = Aki for all
i, k ∈ {1, . . . , n}. The comparison matrix 〈A〉 of a square interval matrix A is defined
by

〈A〉ij :=
{
−|Aij | for i 6= j,
〈Aij〉 for i = j.

3. Convex quadratic relaxations. Domes & Neumaier [1, Section 2] de-
scribe a method for computing nearly optimal, rigorous enclosure of a strictly convex
quadratic constraint. The method makes use of a directed Cholesky factorization. In
this section we present two improved versions of the original method: one of them
is based on the incomplete directed Cholesky factorization from Section 4 and the
other one is based on the directed modified Cholesky factorization from Section 5.
The new methods widen the application scope of the old one. They also perform bet-
ter for problems where the quadratic coefficient matrix is positive definite but nearly
singular.

For a symmetric interval matrix A ∈ IRn×n, an interval vector a ∈ IRn, a
constant α and a box x ∈ IRn we define the uncertain quadratic constraint

xTAx+ 2aTx ≤ α, x ∈ x, A ∈ A, a ∈ a. (3.1)
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For this constraint we compute a strictly convex quadratic relaxation (which is nearly
optimal in case A is positive definite) as well as a box x′ ⊆ x such that each x
satisfying (3.1) is contained in the box x′ (hence the method is rigorous). We first
assume that A does not contain zero rows. This means that each variables occurs
non-linearly in (3.1); the case where some variables enter the constraint only linearly
will be discussed separately in Subsection 3.4.

For later use we also define the index sets of the bounded and unbounded variables
by

N := {i | xi is bounded}, M := ¬N, (3.2)

and denote the subspace of Rn defined by the directions xi, i ∈M by RM .

3.1. Enclosing the solution set of norm constraints. In this subsection we
summarize the main result of [1, Section 1] applied to the norm constraint

‖Rx‖2
2 + 2aTx ≤ α̂. (3.3)

Let C be the inverse of the matrix R, d ∈ Rn with di = inf(
√

(CCT )ii), h = 〈CR〉d,
β = max{hi/di | i = 1 . . . n} ≈ 1, z̃ = CTa and x̃ = −Cz̃. Denote the enclosure of
the expression

‖z̃ +Rx̃‖2 + β−1dT |a−RT z̃| (3.4)

by [γ, γ], and denote the enclosure of the expression

γ2 + α̂− 2aT x̃− ‖Rx̃‖2
2, (3.5)

by [∆,∆]. If ∆ ≥ 0 then by [1, Theorem 1.5 and Corollary 1.6], (3.3) implies that

‖R(x− x̃)‖2 ≤ δ, (3.6)

must be satisfied with

[δ, δ] := [γ +
√

∆, γ +
√

∆]. (3.7)

Therefore the ellipsoid defined by (3.6) is an enclosure of (3.3). By the same theorem
we also obtain the box

x̂ :=
[
(δ/β)d− x̃, (δ/β)d+ x̃

]
, (3.8)

enclosing the solution set of (3.3).
In floating point arithmetic we compute z̃ ≈ R−Ta and x̃ ≈ −R−1z̃ by floating

point calculations, and the remaining variables optimally, by computing the corre-
sponding expressions with directed rounding or interval arithmetic.

3.2. Convex quadratic relaxation by incomplete Cholesky factoriza-
tion. The first method is very similar to the one described in Domes & Neumaier
[1, Section 2], but instead of using the directed Cholesky factorization on A we use
the incomplete directed Cholesky factorization (Algorithm 3) on A and the index set
M . In the original method, no enclosure was computed if the factorization failed,
the constraint was not strictly convex. Now if the incomplete directed Cholesky
factorization fails but AMM was successfully factored, the results of the incomplete
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factorization, namely the permutation matrix P and the matrix Rm are obtained. If
we put R := RmPMM by Section 4 we know that the residual matrix

Γ := AMM −RR, (3.9)

is positive semidefinite and tiny in respect to the entries of AMM .
Proposition 3.1. For x ∈ x ∈ IRn consider an uncertain quadratic constraint

as in (3.1). Let N,M ∈ {1, . . . , n}, be defined as in (3.2) and let R := RmPMM ∈
R|M |×|M | be the result of the incomplete directed Cholesky factorization given in Al-
gorithm 3 applied to A and M . Let for the norm inequality

‖RxM‖2
2 + 2aT

MxM ≤ α̂, xM ∈ xM , AMM ∈ AMM , aM ∈ aM , (3.10)

with

α̂ := α− inf(xT
NANNxN + 2aT

NxN ). (3.11)

the box x̂ be computed by (3.8), then all x ∈ x satisfying (3.1) are also contained in
the box

x′ with x′M := x̂, x′N := xN . (3.12)

Proof. Since R := RmPMM is the result of the incomplete directed Cholesky
factorization, the residual matrix given in (3.9) is positive semidefinite. Therefore for
all x ∈ x, A ∈ A and a ∈ a we obtain (3.10) and (3.11) by

xTAx+ 2aTx ≤ α⇒
‖RxM‖2

2 + xT
NANNxN + 2aT

MxM + 2aT
NxN ≤ xTAx+ 2aTx ≤ α⇒

‖RxM‖2
2 + 2aT

MxM ≤ α̂ := α− inf(xT
NANNxN + 2aT

NxN ).

Since by the definition (3.2) of N the bound α̂ is finite, the results of Subsection
3.1 can be applied to the m-dimensional norm constraint (3.10) to obtain a convex
quadratic relaxation (3.6) of (3.1) in the subspace RM . In addition to this since the
box x̂ from (3.8) encloses the solution set of (3.10) and (3.10) is a relaxation of (3.1)
(in the subspace RM ), all x ∈ x satisfying (3.1) are contained in the box x′.

Proposition 3.1 forms the basis of the rigorous method given by Algorithm 1.

3.3. Relaxation by directed modified Cholesky factorization. The second
method uses the directed modified Cholesky factorization (presented in Section 5)
applied to A, M and ζ = 0. If the factorization is successful, a nonsingular matrix R
and a diagonal matrix D ≥ 0 is obtained such that

A ≤ RTR−D + Γ, ∀A ∈ A and DMM = 0, (3.13)

and the residual matrix Γ is positive semidefinite and very small with respect to A−D
(details in Section 5).

Proposition 3.2. For x ∈ x ∈ IRn consider an uncertain quadratic constraint
as in (3.1). Let M ∈ {1, . . . , n} be defined as in (3.2) and let R and D be the result
of the directed modified Cholesky factorization given in Algorithm 4 applied to A and
M . Let for the norm inequality

‖Rx‖2
2 + 2aTx ≤ α̂, x ∈ x, A ∈ A, a ∈ a (3.14)
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Algorithm 1: Convex quadratic relaxation using incomplete directed Cholesky
factorization (QRelIDChol)

Input: The constraint xTAx+ 2aTx ≤ α, x ∈ x with A ∈ A and a ∈ a.
Output: A convex quadratic relaxation and the rigorous box enclosure x ∈ x′.

1 Compute M by (3.2) and use the incomplete directed Cholesky factorization
(Algorithm 3) on A, M ;

2 if the factorization failed but Rm 6= ∅ then
3 We have obtained P and Rm; put R← RmPMM , A← AMM and

compute α̂← α′ by (3.11), using interval arithmetic;
4 else if the factorization was successful then
5 We have obtained P and R; put R← RP and α̂← α;
6 else return signaling failure;
7 Compute the approximative inverse C of the matrix R;
8 Compute d with di = inf(

√
(CCT )ii) by using directed rounding;

9 Use upward rounding to compute the values h = 〈CR〉d and
β = max{hi/di | i = 1 . . . n} ≈ 1;

10 Set z̃ = CTa and x̃ = −Cz̃ and compute an enclosure [γ, γ] for (3.4), an
enclosure [∆,∆] for (3.5) using interval arithmetic;

11 if ∆ < 0 then return signaling failure;
12 else
13 Compute the interval [δ, δ] from (3.6) by using outward rounding;
14 return The convex quadratic relaxation, given by the norm constraint

(3.7) and the rigorous box enclosure (3.12)
15 end

with

α̂ := α+ sup
∑

i∈¬M

Diix2
i . (3.15)

the box x̂ be computed by (3.8), then all x ∈ x satisfying (3.1) are also contained in
the box

x′ := x ∩ x̂. (3.16)

Proof. Since R and D the result of the directed modified Cholesky factorization
given in Algorithm 4 applied to A and M , they must satisfy (3.13). Substituting
(3.13) into (3.1) results in

xTAx+ 2aTx ≤ xT (RTR−D + Γ)x+ 2aTx
= ‖Rx‖2

2 − xTDx+ xT Γx+ 2aTx ≤ α,

and using that D ≥ 0 and the residual matrix Γ is positive semidefinite, we end up in

‖Rx‖2
2 + 2aTx ≤ α+ xTDx− xT Γx ≤ α+ xTDx ≤ α̂, (3.17)

with

α̂ := α+ sup
x∈x

xTDx = α+ sup
∑

i∈¬M

Diix2
i , (3.18)
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for all x ∈ x, A ∈ A and a ∈ a, which is exactly (3.3). This proves that the solution
set of (3.1) is fully contained in the ellipsoid given by the norm constraint (3.3). If we
apply Subsection 3.1 to the norm constraint (3.14) we obtain the convex quadratic
relaxation (3.6) of (3.1) as well as the box x̂. Therefore for all x ∈ x satisfying (3.1)
x ∈ x′ := x ∩ x̂.

Note that if D = 0, A is positive definite, α̂ = α does not depend of the box x
and since Γ is very small with respect to A, the relative approximation error

δ(x) := xT Γx
‖Rx‖2

2
,

is also small. Therefore if (3.1) is strictly convex, (3.15) is a nearly optimal approx-
imation. On the other hand if D 6= 0, by (3.2) the bound (3.15) has to be finite; so
(3.3) is a nontrivial inequality.

Proposition 3.2 forms the basis of the rigorous method described by Algorithm 2.

Algorithm 2: Convex quadratic relaxation using directed modified Cholesky
factorization (QRelMDChol)

Input: The constraint xTAx+ 2aTx ≤ α, x ∈ x with A ∈ A and a ∈ a.
Output: A convex quadratic relaxation and the rigorous box enclosure x ∈ x′.

1 Compute M by (3.2) and use the directed modified Cholesky factorization
(Algorithm 4) on A, M and ζ = 0 to obtain D and R;

2 if the factorization failed then return signaling failure;
3 else
4 Compute α̂ by (3.15), using interval arithmetic;
5 Compute the approximative inverse C of the matrix R;
6 Compute d with di = inf(

√
(CCT )ii) by using directed rounding;

7 Use upward rounding to compute the values h = 〈CR〉d and
β = max{hi/di | i = 1 . . . n} ≈ 1;

8 Set z̃ = CTa and x̃ = −Cz̃ and compute an enclosure [γ, γ] for (3.4), an
enclosure [∆,∆] for (3.5) using interval arithmetic;

9 if ∆ < 0 then return signaling failure;
10 else
11 Compute the interval [δ, δ] from (3.6) by using outward rounding;
12 return The convex quadratic relaxation, given by the norm constraint

(3.7) and the rigorous box enclosure (3.16)
13 end
14 end

3.4. Removing purely linear terms. If some variables occur only linearly in
(3.1) the corresponding rows and columns of A have only zero entries, therefore A is
singular, and depending on the method computing the relaxation becomes impossible
or at least inefficient. Therefore we define the index sets

J := {j | Ajk = 0, ∀k = 1, . . . , n}, K := ¬J,

and eliminate the variables xJ from (3.1) obtaining

xT
KAKKxK + 2aT

KxK ≤ α′, xK ∈ xK , AKK ∈ AKK , aK ∈ aK , (3.19)
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where

α′ := α− inf(2aT
J xJ). (3.20)

If α′ is finite we can apply the methods discussed in the previous subsections without
modifications to the lower dimensional system (3.19) instead of (3.1) to obtain a
convex quadratic relaxation of (3.1) in the subspace spanned by xK as well as the box
enclosure

x ∈ x′, x′K := xK ∩
[
(δ/β)d− x̃, (δ/β)d+ x̃

]
i
, x′J := xJ . (3.21)

3.5. Diagonal test for indefiniteness. Since the new methods require that
at least AMM is positive definite, it is useful to perform a simple diagonal test for
positive definiteness and immediately signaling failure if Aii < 0 for any i ∈M . This
saves computation time and should be done every time before a factorization of A is
computed.

4. Incomplete directed Cholesky factorization. A directed Cholesky fac-
torization of a symmetric interval matrix A ∈ Rn×n constructs an upper triangu-
lar matrix R′ ∈ Rn×n and a permutation matrix P such that the residual matrix
Γ := A − PTR′TR′P is positive semidefinite for all A ∈ A, and all Γij are tiny. If
we combine the matrices P and R to R := R′P (which is in general no longer upper
triangular), we obtain Γ = A−RTR.

If the directed Cholesky factorization fails since A is not (numerically) positive
definite, we want the resulting partial factorization to satisfy at least some of the
properties of the full factorization. We achieve this by appropriately modifying Al-
gorithm DirCholP by Domes & Neumaier [1, Algorithm 5.5], to either compute a
directed Cholesky factor R and a permutation matrix P such that the residual matrix
E is positive semidefinite and is very small with respect to A, or terminates with an
error message and returns an incomplete factorization. In addition to this we also
want to make sure that specific diagonal elements are selected first as pivots. For this
reason allow the input of an index set M and ensure for the first m := |M | steps only
pivots αk with k ∈M are chosen.

Theorem 5.6 of Domes & Neumaier [1] (which details the properties of the
factorization resulting from the old algorithm) still holds for the resulting Algorithm
3, with trivial modifications. In case the factorization failed after k steps, the in-
complete factorization computed by the new algorithm still has the property that
Γk := (PAPT )KK − RT

KKRKK is positive semidefinite for K := {1, . . . , k}. This is
particularly useful in case both M 6= ∅, Rm 6= ∅, and we need the fact that

Γm := (PAPT )MM −RmTRm (4.1)

is positive semidefinite.
The method given in Domes & Neumaier [1] for selecting the parameter γk in

line 8 of Algorithm 3 proved to have some limitations when a submatrix is nearly
singular. We therefore present an improved method for selecting the parameter γk in
Algorithm 3.

The improvement is based on the expectation (checked in numerical experiments
to be typically valid for a suitable tolerance, e.g., κ = 10−6) that each Γk is very small
with respect to A. Therefore we choose ρk, rk and γk in Algorithm 3 as follows:



LINEAR AND PARABOLIC RELAXATIONS 9

Algorithm 3: Incomplete directed Cholesky factorization (IDirChol)
Input: A symmetric interval matrix A ∈ IRn×n and the index set M (which

can be empty) with M ⊆ {1, . . . , n} and |M | = m.
Success: The upper triangular matrix R ∈ Rn×n and a permutation matrix

P ∈ Rn×n such that PAPT −RTR is positive semidefinite for all
symmetric A ∈ A.

Incomplete: In case M 6= ∅, the complete factorization failed but the first m
steps were successful, return the matrix Am ∈ IRn−m×n−m, P
and Rm ∈ Rm×m

1 if Aii < 0 for any i ∈M then return signaling failure;
2 Put A1 = A, N = M , Am = ∅, R = 0n, Rm = ∅, P = In and change to

upward rounding mode;
3 for k = 1, . . . , n do
4 Find the pivot element

α = max(diag(Â)), Â :=
{
ANN if N 6= ∅,
Ak ∈ Rn−k+1 otherwise.

Let j denote the index of the pivot element in Ak; exchange row j with
the first row and column j with the first column of Ak. Exchange the
same rows and columns in the matrix P ;

5 If the pivot was selected from N remove its index from N ;
6 Partition the permuted interval matrix Ak as:

Ak =
(

αk aT
k

ak Bk

)
if αk ≤ 0 then return Am, P , Rm and an error message;

7 else
8 Choose 0 < γk < 1, ρk = γk

√
αk and rk = (ak + ak)/(2ρk);

9 Set Rkk = ρk, Rk,k:n = rT
k and compute δk := −(−αk + ρ2

k),
dk := max(ak + ρk(−rk), ρkrk − ak);

10 if the residual pivot δk ≤ 0 then
11 return Am, P , Rm and an error message;
12 else Set Ak+1 :=[Bk− rkr

T
k − dkd

T
k /δk, Bk + (−rk)rT

k + dkd
T
k /δk];

13 end
14 if M 6= ∅ and k = m then put Am = Ak and Rm := RMM ;
15 end
16 return The matrix R and the permutation matrix P

• To make Γ positive semidefinite, we have to ensure that ε > 0. Therefore we
need δk > 0, which is the case when, |ρk| <

√
αk. If we also want δk to be

very small and assume that αk > 0 (which is true if A is positive definite),
we can set ρk = γk

√
αk with γk < 1. If in addition to this we choose γk ≈ 1,

the condition δk ≈ 0 is also satisfied.
• The entries of dk = ak − ρkrk can be made to vanish by setting rk := ak/ρk.

Even when rk and ρk are computed inaccurately, we can get a very small dk

by setting rk = ãk/(2ρk) where ãk := ak + ak.
• To make dT

k dk/δk very small, we also have to guarantee that dT
k dk � δk. Due
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to rounding errors, dT
k dk is of order

d̃k := |ak − ak|+ ε|ãk|,

where ε is the machine precision, so we want 1� δk = αk − γ2
kαk � ãk.

In order to achieve these goals in each step we need choose a suitable γk such
that the diagonal elements of Ak are likely to remain positive. Writing µk := γ−2

k , we
must ensure that the diagonal of

Ak = Bk − rkr
T
k − dkd

t
k/δk ≈ Bk −

µk

4αk

(
ãkã

T
k + d̃kd̃

T
k

µk − 1

)
is not so small. If ãT

k ãk = 0 then ãk = d̃k = 0 and we may choose γk = 1. Otherwise
we note that the trace is maximal for

µk = 1 +

√
d̃T

k d̃k

ãkãT
k

.

Thus we might choose γk = 1/√µk; but in order to avoid that γk gets small, we
safeguard it by

γk :=
{

1/min(2,√µk) if ãT
k ãk 6= 0,

1 otherwise.

Using these choices in Algorithm 3 makes the residual matrix not only positive
semidefinite but also very small with respect to A for all A ∈ A.

5. Directed modified Cholesky factorization. We now use the directed
Cholesky factorization discussed in Section 4 to define a modified directed Cholesky
factorization that also works for indefinite matrices.

The directed modified Cholesky factorization of a symmetric interval matrix A ∈
Rn×n, consists of a nonsingular matrix R ∈ Rn×n and a non-negative diagonal matrix
D ∈ Rn×n such that the residual matrix

Γ := A+D −RTR (5.1)

is positive semidefinite for all A ∈ A. We compute this factorization by trying to form
the directed Cholesky factorization of A + D for different diagonal matrices D ≥ 0
until we succeed, starting with D = 0 and using the partial results of a failed directed
Cholesky factorization to select an improved D.

In certain applications (see, e.g., Domes & Neumaier [2]) it is useful to have a
preferred index set M where theory predicts that, in all nondegenerate cases, AMM

is positive definite. In this case, we want to ensure if possible that

Dii = 0 for all i ∈M.

Therefore we put m := |M |, and write Am ∈ IR(n−m)×(n−m) for the interval matrix
to be factored after the mth pivoting step. If k pivot steps were successfully performed
in a failed directed Cholesky factorization, we define the matrix

A′ =
{
A if k < m,
Am otherwise, (5.2)
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Algorithm 4: Modified directed Cholesky factorization (ModDirChol)
Input: A symmetric interval matrix A ∈ IRn×n, the index set M ⊆ {1, . . . n}

indicating that AMM is required to be positive definite and the
corresponding positive definiteness violation tolerance ζ � 1 (e.g,
ζ = 10−6).

Output: A nonsingular matrix R ∈ Rn×n and a diagonal matrix D ∈ Rn×n

with D ≥ 0 and DMM = 0 such that Γ defined by (5.1) is positive
semidefinite for all A ∈ A.

1 Use the incomplete directed Cholesky factorization (Algorithm 3) with A and
M to obtain either R̂ and P or Am;

2 if Algorithm 3 was successful then return R := R̂P and D = 0;
3 else
4 Put m = |M | and denote the number of successfully performed pivot steps

by k;
5 Find A′ and J as given by (5.2) and (5.3);
6 Compute the minimum and the maximum eigenvalues λ, λ of the matrix

A′ and compute γ := 1 + |λ|+ |λ|;
7 for ε = 10−12, 10−8, 10−6, 10−4, 10−2, 1 do
8 if ε > ζ and k < m then
9 the claim that AMM is positive definite is significantly violated

therefore return signaling failure;
10 else
11 Compute σ = εγ + max(−λ, 0) and put D := σJ ∈ Rn×n;
12 Use the directed Cholesky factorization Algorithm 3 with A +D

and M to obtain either R̂ and P ;
13 if Algorithm 3 was successful then return R :=R̂P and D;
14 end
15 end
16 end
17 return signaling failure

and the diagonal matrix

J ∈ Rn×n, Jij :=
{

1 if i = j and (k < m or i /∈M),
0 otherwise. (5.3)

The next D is then chosen as a multiple σJ of J , trying increasing values of σ until
we succeed.

Algorithm 4 gives a precise description of our modified directed Cholesky factor-
ization algorithm

6. Testing the directed Cholesky factorizations. We compared the new
incomplete directed Cholesky factorization and the modified directed Cholesky fac-
torization methods with the old directed Cholesky factorization method on random
real interval matrices of different dimension (column dim in the tables below) and
width (column width in the tables below). These matrices can be constructed to
be positive definite or indefinite and are always nearly singular, with a very small
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inverse condition number (column icond in the tables below). For the inverse condi-
tion number we take the median of the quotients of the absolute value of the smallest
(numerical) eigenvalues and the absolute value of the largest ones of all k test matrices
A(i), formally:

icond := med
i

( |λmin(A(i))|
|λmax(A(i))|

)
, i ∈ {1, . . . , k}.

The following algorithm shows how the test matrices are created:

Algorithm 5: Nearly singular interval matrix generator
Input: Given is the dimension n, a tiny singularity factor η 6= 0 with |η| � 1

(e.g. |η| = 10−12) and the required relative width ω ≥ 0 of the interval
matrix A to be created.

Output: Nearly singular positive definite (if η > 0) or indefinite (if η < 0)
interval matrix A ∈ IRn×n, Aij ∈ [0, 1] of relative width ω

1 Generate a random matrix B ∈ Rn−1×n with Bij ∈ [−1, 1] for all
i = 1, . . . , n− 1 and j = 1, . . . , n;

2 Compute C = BTB ∈ Rn×n and d = max(Cii);
3 if d = 0 then start again with step 1;
4 else
5 Generate a random vector u ∈ Rn with uj ∈ [−1, 1] for all j = 1, . . . , n;
6 Divide u by max(|u|) such that ‖u‖∞ = 1 holds;
7 Set A = C/d+ ηuuT and A = A+ ω|A|;
8 return the interval matrix A := [A,A];
9 end

We first compare the approximate Cholesky factorization (computed with LA-
PACK, row Chol in the tables below), the directed Cholesky factorization with di-
agonal pivoting (computed by Domes & Neumaier [1, Algorithm 5.5], row DirChol
in the tables below), the incomplete directed Cholesky factorization (computed by
Algorithm 3, row IDirChol in the tables below) and the modified directed Cholesky
factorization (computed by Algorithm 4, row MDirChol in the tables below) on 200
real positive definite matrices with dimensional 20 and a very small inverse condition
number.

method dim width iters icond diagpert solved
Chol 20 0 200 1.36·10−13 0 100%
DirChol 20 0 200 1.36·10−13 0 2%
IDirChol 20 0 200 1.36·10−13 0 86%
MDirChol 20 0 200 1.36·10−13 5.09·10−13 100%

The next table shows how the efficiency of incomplete directed Cholesky factor-
ization scales with the problem dimension.

method dim width iters icond diagpert solved
IDirChol 10 0 200 1.95·10−13 0 97%
IDirChol 40 0 200 1.04·10−13 0 53%
IDirChol 100 0 200 9.94·10−14 0 4%
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The next table shows how the efficiency of incomplete directed Cholesky factor-
ization scales with the problem dimension in case the interval entries of the matrices
are not thin.

method dim width iters icond diagpert solved
IDirChol 10 10−14 200 2.03·10−13 0 89%
IDirChol 40 10−14 200 1.25·10−13 0 28%
IDirChol 100 10−14 200 1.09·10−13 0 2%

The next table shows how the efficiency of directed modified Cholesky factoriza-
tion scales with the problem dimension in case the interval entries of the matrices are
not thin.

method dim width iters icond diagpert solved
MDirChol 10 0 200 1.99·10−13 1.58·10−13 100%
MDirChol 40 0 200 1.26·10−13 1.75·10−12 100%
MDirChol 100 0 200 1.1·10−13 4.11·10−10 100%

The next table shows how the efficiency of directed modified Cholesky factoriza-
tion scales with the problem dimension in case the interval entries of the matrices are
not thin.

method dim width iters icond diagpert solved
MDirChol 10 10−14 200 2.01·10−13 2.34·10−13 100%
MDirChol 40 10−14 200 1.24·10−13 2.76·10−12 100%
MDirChol 100 10−14 200 9.48·10−14 4.11·10−10 100%

Discussion. The tests show that the new methods both improve the quality
of the old one in case we want to factor ill-conditioned matrices. In particular the
column diagpert shows the average diagonal perturbation

med
i

(max
k

(D(i)
kk ))

(which can be nonzero only for MDirChol) and the percentage of successfully factored
matrices.
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