On solving mixed-integer constraint satisfaction
problems with unbounded variables

Hermann Schichl*, Arnold Neumaier,
Mihaly Csaba Markét, and Ferenc Domes

Faculty of Mathematics, University of Vienna, Austria

Abstract. Many mixed-integer constraint satisfaction problems and glo-
bal optimization problems contain some variables with unbounded do-
mains. Their solution by branch and bound methods to global optimal-
ity poses special challenges as the search region is infinitely extended.
Many usually strong bounding methods lose their efficiency or fail al-
together when infinite domains are involved. Most implemented branch
and bound solvers add artificial bounds to make the problem bounded,
or require the user to add these. However, if these bounds are too small,
they may exclude a solution, while when they are too large, the search
in the resulting huge but bounded region may be very inefficient. More-
over, if the global solver must provide a rigorous guarantee (as for the
use in computer-assisted proofs), such artificial bounds are not permitted
without justification by proof.

We developed methods based on compactification and projective geom-
etry as well as asymptotic analysis to cope with the unboundedness in a
rigorous manner. Based on projective geometry we implemented two dif-
ferent versions of the basic idea, namely (i) projective constraint propa-
gation, and (ii) projective transformation of the variables, in the rigorous
global solvers COCONUT and GloptLab. Numerical tests demonstrate
the capability of the new technique, combined with standard pruning
methods, to rigorously solve unbounded global problems. In addition,
we present a generalization of projective transformation based on asymp-
totic analysis.

Compactification and projective transformation, as well as asymptotic
analysis, are fruitless in discrete situations but they can very well be
applied to compute bounded relaxations, and we will present methods
for doing that in an efficient manner.

Keywords: Mixed-integer CSPs, constraint propagation, relaxation
methods, unbounded variables, interval analysis, directed acyclic graphs

* This work was supported by the Austrian Science Fund (FWF) grant P22239.

1 Introduction

1.1 Mixed integer Constraint Satisfaction Problems

Many real-world problems lead to mixed-integer and numerical constraint sat-
isfaction problems (MICSPs). Every MICSP is a triplet (V,C,D) consisting of
a finite set V of variables taking their values in domains D over the reals (pos-
sibly restricted to the subset of integers) subject to a finite set C of numerical
or purely combinatorial constraints. A tuple of values assigned to the variables
such that all the constraints are satisfied is called a solution. The set of all the
solutions is called the solution set. When dealing with a MICSP, depending on
the application, it might suffice to find one solution, but in some cases it might
be necessary to identify the whole solution set.

In practical problems, numerical constraints are often expressed as equations
and inequalities in factorable form, that is, they are described by functions that
are recursively composed of elementary functions such as arithmetic operators

(+, —, *, /), and univariate (sometimes bivariate) basic functions like log, exp,
sin, cos,... In other words, such an MICSP can be expressed as
F(z)eb, zex, x; ezl (1)

where F' : R™ — R™ is a factorable function, x is a vector of n real variables,
x and b are interval vectors of sizes n and m respectively, and I is the set of
integer variables.

Many solution techniques have been proposed in Constraint Programming and
Mathematical Programming to solve MICSPs. A difficulty when dealing with
continuous variables is roundoff errors. For achieving full rigor, almost all solu-
tion techniques for MICSPs use interval arithmetic (see [12,16-18]) or some of
its variants (affine arithmetic [30], Taylor arithmetic [4,5,19], etc.). During the
last two decades, a lot of work has been put into the development of inclusion
tests and contractors based on interval arithmetic. In addition, numerous re-
lazation techniques (many of them based on interval arithmetic combined with
algorithmic differentiation methods [11,25]) have been devised (see [13,20]).

The function of an inclusion test is to check whether the domain of a variable is
included in the projection of the solution set. A contractor, also called a narrow-
ing operator [2,10] or contracting operator [1,29,32], is a method that computes
a (hopefully proper) subset of the variable domains such that all solutions are
retained. Various basic inclusion tests and contractors have been described in
[13] and [20].

In particular, a contraction operator approach called interval constraint prop-
agation was developed [2,3,31], which associates constraint propagation/local
consistency techniques, as defined in artificial intelligence, with interval analytic

methods. Advanced contractors, such as the forward-backward contractor |2,
13], result from the interval constraint propagation (CP) approach. It is a way
to propagate domain reductions forwards and backwards through the computa-
tional trees of the constraints. Based on the fundamental framework for interval
analysis on directed acyclic graphs (DAGs) [27], a high performance constraint
propagator FBPD for continuous CSPs has been developed in [34].

In practical constraint solvers inclusion tests and contractors are interleaved with
some form of exhaustive search to compute a representation of the solution set.
Search by bisection or more advanced branching is the most commonly used
technique. In the context of MICSPs this leads to the branch and bound class
of algorithms, which generate a search graph consisting of subproblems that are
subsequently solved or further subdivided.

A relazation is a (usually much easier solvable) replacement MICSP whose solu-
tion set provably contains all solutions of problem (1). There are several classes
of relaxations, although linear and convex ones are mostly used, see [20, 21]. Re-
laxations usually are an efficient tool for fathoming nodes of the search graph
during the search procedure.

1.2 Unbounded Variables

An especially difficult class of MICSPs are those which contain variables whose
domain set is unbounded. Their solution by branch and bound methods poses
special challenges as the search region is infinitely extended. On the one hand,
the unboundedness cannot be removed by splitting. On the other hand most
inclusion and contraction operators become inefficient or dysfunctional when
applied to unbounded domains.

Most branch and bound solvers add artificial bounds to make the problem
bounded, or require the user to add these by forbidding unbounded problems
altogether. However, if these artificial bounds are too small, they may exclude
a solution, even render the problem infeasible, while when they are too large,
the search in the resulting huge but bounded region may be very inefficient.
Moreover, if the global solver must provide a rigorous guarantee (as for the use
in computer-assisted proofs), such artificial bounds are not permitted without
justification.

The contribution of this paper is twofold. Firstly, we developed methods based
on compactification and projective geometry to cope with the unboundedness
in a rigorous manner. We implemented two different versions of the basic idea,
namely

1. projective transformation of the variables, and

2. projective constraint propagation.
They are implemented in the rigorous global solvers GloptLab [6-8] and CO-
CONUT [23, 24], respectively. Numerical tests demonstrate the capability of the

new technique, combined with standard pruning methods, to rigorously solve
unbounded global problems.

Secondly, these projective transformations are most efficient for those MICSPs,
whose unbounded variables are continuous and all constraints involving them are
rational. Although the method is still applicable when transcendental functions
are involved, the effectiveness is significantly reduced. Therefore, we developed
an extension using asymptotic analysis that is more efficient in the presence
of transcendental functions. This is based on ideas from the unpublished the-
sis [9]. Since for discrete variables the transformation method is not applicable,
we shortly describe asymptotic relaxations for improved node fathoming in the
unbounded case.

In Section 2 we will explain explicit projective transformation and projective
constraint propagation. Section 3 generalizes that to asymptotic transforma-
tions. Some information on projective and asymptotic relaxations are given in
Section 4, and numerical results are provided in Section 5.

Throughout this paper we will need some notation: a real interval a € IR is
defined as [g,a] = {a e R| a < a <@}, witha € RU{—o0} and @ € RU{o0}. In
case both bounds ¢ and @ of a are finite, we call a a finite or bounded interval,
otherwise a is an infinite or unbounded interval. We will also need the set UR of
all finite disjoint unions of intervals. Real arithmetic and elementary functions
can be extended to intervals, see [18»11’ and to interval unions. An n-dimensional
real box (union box) x € IR"(UR") is a vector of n real intervals (interval
unions). If all components of x are finite, then x is a finite or bounded box or
interval union, otherwise x is infinite or unbounded.

2 Projective Transformation

Throughout this section we will consider factorable MICSPs of the form (1).
We will assume that the variables x; have unbounded domains and that the
other variables xx have bounded domains. Furthermore, we will for the moment
require that all integer variables are bounded, i.e., that I C K.

Since all functions involved in (1) are factorable, the problem can be represented
as a reduced computational directed acyclic graph I' = (V(I"), E(I")), see [27].
All nodes v € V(I") represent intermediate expressions y, of some constraints.
The local sources of I' correspond to constants and variables, i.e., z = y,, for
all k and some v, € V(I'), and the local sinks correspond to the constraints.

The basic idea of the projective transformation is the natural embedding of RI”Ix
X, which contains the feasible set, into the compact manifold with boundary
PRIV xxj, where PR!/| is the projective space over R!’!. For the transformation
we represent each intermediate node y, for v € V(I') in the form

Yy = Z/U\V/tmya (2)

where m,, is a rational number and ¢ is a scaling factor to be chosen. The new
variable ¢ and the exponents m,, are defined such that ¢ € [0,1] and the 7, are
well-bounded. (Actually, that can only be guaranteed in the case of a rational
MICSP. In the presence of transcendental functions some intermediate 7, may
still be unbounded. This is the motivation for the generalization in Section 3.)
Note that while these transformations are singular, the transformed problem has
no singularities, and the solution set is preserved with full mathematical rigor.

The transformation is achieved by a recursive construction, implemented in a
forward walk through I'. For the original variables x; and all interval constants,

we define
0 ifkeK,
my, = . (3)
1 ifked.

For practical reasons we put in the implementation also those indices j into J, for
which the bounds x; are huge, e.g., bigger than 107 but this limit is problem and
scaling dependent. Those bounds, in general, are artificial in the first place and
in a branch and bound context pose similar problems as unbounded variables.

For constructing the ¥, we choose a real number 0 < s < 1 and set
-1/2
t = (1 -5+ Z dm:i) (4)
kEK

with scaling factors d > 0. This leads to the constraint

(1=)+ di@f =1, (5)
from which we deduce the bounds

tet:=[0,max(0,1—s)" 2]

1/2 (6)

|| < d,, for k € K.

To guarantee that t is real, we need to choose s such that
Z dkxi >3
keK
is a valid constraint. For example,
s :=inf Z dpx?
kEK

qualifies (if necessary, rescale the dj, to have s < 1), but better bounds might be
available. A possible choice is s = 0, however in general this is suboptimal. Then

t e 0,1].

Since ¥, = zy, for the well-bounded variables, we have expressed all variables in
terms of bounded ones.

The exponent m,, for an intermediate variable y,, depends on the operation that
creates it. If y = > «a,y, then y = 3/t™ with

m:=maxm,, y:= Zautm’m”ﬂm (7)
and we get the finite enclosure
Jey = Z a, t"M My (8)

If y = [[y2~ with rational o, then y = §/t™ with

m::Za,,m,,, gj::Hﬂ,‘f”, 9)

and we get the finite enclosure
gey:=][]v (10)
This accounts for all elementary operations and powers with fixed exponent.

For other elementary functions, one can derive similar formulas, though their
derivation and implementation is more complex. For example, if y = logy, then
y =7y/t™ with

m:=1, 7:=t(logy, —m,logt),

and we get a finite enclosure derivable by monotony considerations.

For some transcendental functions y = ¢(y,) even a projective transformation
cannot in general guarantee boundedness of § (one example is ¢ = exp). In
that case, we define ¥ := ¢(t~™9y,) and get a possibly unbounded enclosure of

p(t~—™y,) for .

There are two possibilities to utilize projective transformations. The problem can
be explicitly transformed (see Section 2.1), or the projective transformation can
be used implicitly during constraint propagation (see Section 2.2) and relaxation
calculation (see Section 4).

2.1 Explicit projective transformation

We have implemented the explicit transformation method in the software pack-
age GLOPTLAB [6-8], a constraint satisfaction package for enclosing all solutions
of systems of quadratic equations and inequalities.

The special quadratic structure allows one to implement projective transforma-
tions explicitly by rewriting the original equations after a projective transforma-
tion (2) on the variables zj using (4). Then all linear inequality constraints

Ax >0

are transformed into the homogeneous linear constraints
Az — bt > 0.

Bound constraints are treated as linear constraints, too. Nonlinear quadratic
constraints

PG +cTx > y
are transformed into the homogeneous quadratic constraints
TGz +tc"z — 42 > 0.

In all cases, equations and inequalities with the opposite sign are handled anal-
ogously. The additional constraints (5) and (6) are also quadratic and linear,
respectively, and thus the transformed problem is again quadratic but bounded.
Hence, it can be solved with traditional methods. After solving the transformed
problem, one can recover the original solution from

in:&;‘\i/t, 1ft7£0

Solutions of the transformed problem with ¢ = 0 correspond to limiting solutions
at infinity of the original problem. They can be discarded in general.

Alternatively, one can solve a bigger constraint satisfaction problem containing
both the original and the transformed variables and constraints. In that case,
however, the transformation equations themselves have to be added as additional
quadratic constraints

l‘it — i“\z =0.
This allows one to exploit the features of both the original and the transformed
problem at the same time, at the cost of doubling the problem size.
Example 1. The constraint satisfaction problem

0.36x1 — o = 0.75,
207 — x5 =1,
120, 2202>0

is infeasible but the equations have a solution at
x1 ~ 0.6491, xo = —0.5163,
slightly outside the defining box, see Fig. 1.

The problem is difficult to solve with standard CP and branch and bound, since
no box x of the form x; = [a, 0], X2 = [b, o0] can be reduced by CP.

! 1 ! ! !
-2 o] 2 4 6 8 10
x

I
Fig. 1. Example 1

The projective transformation leads to the problem

0.3621 — Zo — 0.75t = 0,

227 — 73 —t* =0,

T+ A+ =1,
Z1,T9,t € [0,1]

This problem is easily found to be infeasible by CP.

2.2 Projective constraint propagation

For more general problems explicit transformation becomes more cumbersome.
For the implementation in the COCONUT Environment [23, 24], a software plat-
form for global optimization, we have therefore chosen a different approach. Fre-
quently, in the non-quadratic case a transformed MICSP is not easier to solve
than the original problem. Therefore, we utilize the projective transformation
together with a special split into a bounded subproblem and its complement.

For that observe that the transformation (2) on the variables x, has the following
property. If |Z||, = « and ¢ € [0,1] then ||z||, > a, for every p € [1, cc]. Adding
the constraint ||z||, < « to problem (1) makes it bounded, so it can be solved

by standard methods.

The complement of that ball, described by the complementary constraint ||z||, >
«, must be handled as well and can be projectively transformed using (2) and
the constraint ||Z]|, = a. The choice of the constant « is application specific.

However, this transformation is never performed explicitly. Rather, many of the
bounding tools, and foremost CP, implicitly make use of the transformation
by calculating in IPR, the set of so-called projective intervals. Those are pairs
(X,7;t) of intervals and rational numbers together with a common interval t
representing the range of the scaling parameter. The operations of projective
intervals are defined according to (7-10) with extensions for transcendental ele-
mentary functions.

Not performing the transformation explicitly has an additional advantage which
is connected to the following important observation: There exist CSPs for which
CP proceeds with range reduction on the original problem but where it has no
reducing effect on the projectively transformed problem.

Ezample 2. Consider the constraints (with o = 1)

y=a>-3 (11)
2?4+ y? > 1. (12)
From (11) we get y € [—00,00] N ([—00,0]? — 3) = [—3, oc], which reduces the

range of y.

The projectively transformed problem associated to (11-12) is as follows:

gt = 3% — 3t (13)
P+gt=1 (14)
&€ [-1,1], g€ [-1,0], t € (0,1]. (15)

From (13) we get
y € [-1,00n([-1,1]* = 3-(0,1]) = [-1,0].

Also from (13),
x? =gt + 3t € [~1,0] + (0,3] = (—1,3],

so the current range [—1, 1] of & cannot be reduced; (14) yields no improvement as
well, thus, CP cannot reduce any of the initial variable ranges of the transformed
problem.

The effect that no range reduction is possible on the original problem whereas
CP works on the transformed problem was already demonstrated in Example 1.

Consequently, we need to utilize CP simultaneously on the original and on
the transformed problem. For that we developed the algorithm Projective For-
ward and Backward Propagation on DAGs (PFBPD), which is an advanced ver-
sion of FBPD from [33,34]. It is based on propagating enclosures of the form

(x, (%, r;t)) € UR" x IPR", of pairs of interval unions (not projectively trans-
formed) and projective intervals in parallel, in order to get the advantages of
both approaches. These pairs are interwoven since after each forward or back-
ward propagation step an internal intersection between the two enclosures is
performed for additional reduction.

For this algorithm let D(G) be a DAG with the ground G, C the set of active
constraints, and D the variable domains. Furthermore, for every node v of the
DAG we introduce the set A'(v) C UR x IPR, or N(v) C UZ x IPR for the
integer variables, containing the current enclosure of the range of v. Note that
we keep the integer information only in the untransformed problem since the
transformation destroys the integrality information.

Algorithm PFBPD(in : D(G),C, a;in/out : D)

00:
01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

Lg:=0; Ly :=0; Voo :=(0,...,0); Vo :=(0,...,0); to := [0, 1];
Set the node ranges N,, of every variable z to (D, (Zk, mr; to));
‘/lvl = (0, . ,0);
for each node C representing an active constraint in C do
NodeOccurrences(C, Vo.);
NodeLevel(C, Vj.;); /* this can be made optional */
end-for
Add a virtual node V with maximal node level (for constraint ||||3 = o?).
C:=CU{V};
for each node C representing an active constraint in C \ {V} do
FindVirtualEdges(C,V,));
ForwardEvaluation(C, Viu, Lp);
end-for
while £, #0V Ly # 0 do
N := getNextNode(Lsy, Ly);
if N was taken from £, then
for each child C of N do
BP(N, C);
if N(C) = () then return infeasible;
if A(C) changed enough for forward evaluation then
for each P € parents(C) \ {N,G} do
if V,.[P] > 0 then put P into Ly;
end-if
if N(C) changed enough for backward propagation then
Put C into Ly;
end-for
else /* N was taken from Ly */
FE(N, [f]); /* f is the operator at N */
if N(N) = () then return infeasible;
if M(IN) changed enough for forward evaluation then
for each P € parents(N) \ {G} do
if V,c[P] > 0 then put P into Ly;

32: end-if

33: if N(N) changed enough for backward propagation then
34: Put N into Lp;

35: end-if

36: if t # t, then

37: if t changed enough for forward propagation then

38: Put all nodes C' € V into Ly;

39: end-if

40: to = 1t;

41: end-if

42: end-while
43: Update D with the ranges of the nodes representing the variables;
end

procedure ForwardEvaluation(in : N; in/out : Vep, L)

01: if N is a leaf or V,,[N] = 1 then return;

02: for each child C of node N do ForwardEvaluation(C, Vep, Lp);

03: if N = G then return;

04: FE(N, [f]); /* f is the operator at N */

05: Ven[N] := 1; /* the range of this node is cached */

06: if N(N) = () then return infeasible;

07: if A'(N) changed enough for backward propagation then put C into Lp;
end

procedure FindVirtualEdges(in : N, V; in/out : V)

01: if N is a leaf and my # 0 then put N into the set of children of V;
02: if t is explicitly needed in the calculation of yx then add N to V;
03: for each child C of node N do FindVirtualEdges(C,V,V);

end

procedure NodeLevel(in : N; out : Vi)

01: for each child C of node N do

02: Viui[C] := max{Viu[C], Viu[N] + 1};
03: NodeLevel(C, Viy);

04: end-for

end

Apart from the virtual nodes and constraints the layout of the PFBPD algorithm
is analogous to the FBPD algorithm from [33,34]. The main difference lies in
the forward and backward propagation operators FE(N, [f]) and BP(IN, C). The
aim of forward evaluation FE is the reduction of N(N) of the node N based
on the known N(C) for all children C of N. It is performed by first calculat-
ing the UR and the IPR parts of N(N) = (x,(X,m;t)) separately by inter-
val extension functions of f. Immediately thereafter the internal intersection

N'(N) = (x/, (X', m;t')) is computed as follows:
x' =xNt ™%
X =xNt"x (16)
t' =tN(x/x)"Y™ N (x/x)Vm.

The backward propagation BP is concerned with reducing the sets N'(C;) of all
children C; of N using N (N) and all N(C;) for all other children C; with
j # 4. Again, first the UR and IPR parts are calculated separately by inclusion
extensions of the partial inverse functions, followed by an internal intersection
operation (16).

Like FBPD the PFBPD algorithm is contractive and complete in the following sense.

Proposition 1. We define a function P : (UR x IPR)" x 28" — (UR x IPR)"
to represent the PFBPD algorithm. This function takes as input the variable do-
mains B (in form of a combined interval-union enclosure and an enclosure of
the projective transformation) and the exact solution set S of the input problem.
The function P returns an enclosure, denoted by P(B,S), that represents the
variable domains of the output of the PFBPD algorithm, again for the original
and the projectively transformed problem. If the input problem is factorable, then
the PFBPD algorithm stops after a finite number of iterations and the following
properties hold:

(7)) P(B,S)CB (Contractiveness)
(i) P(B,S) 2 BN S (Completeness)

The proof is completely analogous to [34, Proposition 2].

3 Asymptotic Transformation

As mentioned in Section 2 for MICSPs involving transcendental functions, the
projective transformation does not necessarily lead to bounded internal vari-
ables 7, for all nodes v € V(I"). Therefore, we have developed a more general
transformation, based on asymptotic analysis.

Let ¥ C C(R% R) be a subset of functions 1 (z,t;) depending on the real
parameter vector a € R™.

For the asymptotic transformation we enclose each intermediate node y, for
v € V(I') in the form

1/J(§V,t;gl,) <y < w(gmt;au)' (17)

The new variable t and the parameters ,, and @, are defined such that ¢ € [0, 1]
and the 7, are well-bounded. Clearly, the projective transformation is a special
case of that scheme, by choosing ¥(x,t,«) ;== z/t* witha=a =« € Q.

The transformation is like in the projective case achieved by a recursive con-
struction, implemented in a forward walk through I'. For the original variables
xj, and all interval constants, we define a map f : IR — IR x R™ x R™ with the
property that for all ¢ € [0,1] there exists a Ty € f1(x) with

V(. t; fa(xk)) < 2 < (T, 6 f3(xn)), (18)
for all zp € xi.

The parameters ¢, and @, for an intermediate variable y, depend on the oper-
ation that creates it. If y = g(y,,,- - ., ¥,) then we must have y such that

V(@ ta) < g, tian), - bW tay,)) < by, 6a), (19)

for a,, = [, @], all §, € ¥,, and some ¥ € ¥, and the inequalities should be
as tight as possible, y should be bounded, and there should be a simple way to
calculate it for all elementary operations g.

If we have a constraint y € y we transform it to the two constraints

ensuring that the transformed problem is a relaxation of the original problem.

Ezample 3. A very useful set of functions is ¥ := {t(z,t;a) := at =12t ™ |
a € R3}. The corresponding transformation is then

~ —og
Yv = yut a,,,lea,,,gt)

where @ = a = «. For constructing the 7, we choose again a real number

0<s<1 and set
1/2

t:= (1 —s+ Z dm:i)i (20)

keK

with scaling factors di > 0, like in the projective case. This again leads to the
constraint (5).

The parameters o, for an intermediate variable y, depend on the operation that
creates it. If, e.g., y = 3 By, then y = gt~ et "* with

Q1 i=maxqy,, O3:=maxaq,s, o9 :=max{a,s|a,3=as},

- Q.2 jag—ay
ar—a —opt T3 (1= 22— auzy
E Bty wie o m

and we get the finite enclosure

U:

—a Ov2 oz —ay 3y
Jegi= Y o ovemant USROG (22)

Note that the lower bound of the exponential term is 0 by construction.
If y = [[y? with real 3, then y = 7t~ *1e®2* "* with
ap = Zﬂyawl, O3 1= Mmax oy, 3,
ap = max B0, 7= e e 117
and we get the finite enclosure
jey == W Iy (24)

This accounts for all elementary operations and powers with fixed exponent.

For other elementary functions, one can again derive similar formulas, which are
rather complex. E.g., if y = logy, then y = gt~ *1e®2! "* with

api=a,3+0, ap:=0

asz =0, 7=ttt

1Og /y\u - au,l lOgt + au,2)7
and § =0 for @1 > 0, and § = € — oy for some small ¢ > 0, if a; < 0, providing
a finite enclosure for 7.

For y = exp(By)) we find y = gt~ 12t ** with

a1 = 07 Qg = Sup(§3)7 Qa3 = Q17

—%v,3
~_ ot (@\’Ye"f‘lu,2t)
y=e ’

giving the enclosure

o1 (?’YE’YOtu,2t7a”v3 —a)

Z/J\ € ? =€ ;
which is finite for as < 0 or ag < 0.

This asymptotic transformation, therefore, can also cope with exponentials, as
long as they are not nested.

An analysis of the DAG I' can provide information about which asymptotic
transformation is most useful for transforming the MICSP to a bounded form.
Of course, a generalization of IPR to a more general set of asymptotic intervals
implementing the above operations provides an algorithm analogous to PFBPD.

4 Projective and asymptotic relaxations

A very useful tool for solving MICSPs are relaxations of all kind. There are
many different classes of relaxations utilized—linear, mixed-integer linear, con-
vex quadratic, semidefinite, general convex to name only the most important

#var #problems PFBPD PFBPD [PR only PFEPD UR only FBPD HC4
#solved Smsec|#solved Smsec|#solved Smsec|#solved Smsec|#solved Zmsec
1 4 4 1.30 4 1.70 2 0.70 1 0.20 0 20.20
2 112 112 40.90 102 26.00 22 21.20 5 8.00 7 545.60
3 104 57 75.80 28 38.50 20 33.10 7 14.90 8 1354.10
4 70 41 87.60 24 41.70 22 33.20 4 12.10 6 1212.60
5 68 42 89.30 17 43.80 14 34.20 7 16.20 8 1294.20
6 48 23 90.20 13 38.30 11 28.80 6 10.10 6 1404.40
7 18 6 34.90 2 12.90 1 12.00 1 3.90 1 444.50
8 43 20 178.70 5 43.60 5 38.90 2 22.70 3 1697.20
9 24 16 52.20 10 25.60 10 18.90 0 6.80 1 949.60
10 36 24 66.00 10 28.60 9 20.80 7 9.30 7 980.60
11-15 32 24 54.20 6 26.90 7 21.50 5 7.40 5 667.50
16-20 17 13 38.90 3 37.20 1 16.20 1 10.10 0 737.30
21-30 25 20 116.50 3 49.60 3 40.70 2 17.00 2 1421.70
31-46 15 12 80.10 2 174.00 3 32.90 3 40.50 3 2186.10

Table 1. Comparison of PFBPD, FBPD, and HC4, easy problems

ones, see [20]. Most of these relaxations come in two flavors: They can be of re-
formulation type, like reformulation linearization [14, 15, 22], and be much higher
dimensional than the original problem. They can also be dimension preserving,
like the ones in [21,27]. However, usually the computation of the relaxations
requires that all variables are bounded.

This problem can be overcome by computing a relaxation of a suitably trans-
formed problem, like the projectively transformed problem of Section 2 or the
asymptotically transformed problem of Section 3. Even for mixed-integer prob-
lems the relaxations have the additional advantage that they are continuous
problems. Hence, the transformations can be readily applied.

Reformulation type relaxations can be computed directly from the structure of
the operators separately for each node v € V(I"). Dimension preserving relax-
ations are usually computed by algorithmic differentiation techniques. Those can
be generalized to projective or asymptotic intervals by careful examination of
the differentiation rules and the properties of first and second order slopes [26].

5 Numerical Results

We tested all global optimization and constraint satisfaction problems of the
COCONUT test set [28] of dimensions up to 50. They are of general structure

min f(z)
st. F(z)eF, z ex.

Of those 865 test problems 15 failed for various reasons (e.g. missing operators,
local optimization failed, ...). Of the remaining 850 problems 663 contained at
least one unbounded variable. We used local optimization to find at least one
local minimum z with objective function value f. Then we added the constraint

Name/Lib. #var|PFBPD PFBPD IPR only [PFBPD UR only | FBPD HC4

Res. msec|Res. msec|Res. msec|Res. msec|Res. msec
esfl/3 2| 1 4909.60] I 1702.70 1610.00] 1 181.20] I 11.40
pt/2 2] 1 27.60| I 12.60 11.20 3.10 818.10
sipow1/2 2] 1 s514.20] 1 264.10 201.30 58.90 314635.00
sipowlm/2 2] 1 s17.60[I 259.70 206.70 56.80 300657.00
sipow?2/2 2] 1 253.60] 1 121.10 94.90 23.60 73982.50
sipow2m/2 2] 1 256.50[I 127.00 99.80 22.60 71689.80
gulf/2 3 55.10 21.90 18.20 2.70 222.20
oetl/2 3[1 83.20 40.20 31.00 92.80 3403.70
oet2/2 3] 1 80.30 34.50 28.60 28.70 3312.80
t£i2/2 3 849.70 402.90 358.80 84.20 288961.00
fourbar/3 4 20.20 6.90 7.00 1.90 101.00
oet3/2 4] 1 126.60 49.40 45.30 19.60 3848.10
sipow3/2 4] 1T 1037.30 391.30 317.90 263.50 318190.00
sipowd /2 4 1036.70 459.80 439.00 112.10 315615.00
cpdmb5/3 5 17.10 6.60 5.40 1.60 90.90
expfitb/2 5 29.10 11.30 9.10 2.10 333.30
expfitc/2 5 400.20 158.50 115.70 19.40 1959.40
rbpl/3 6| 1 22.50 7.80 7.00 4.30 90.90
oet7/2 7 173.30 83.90 67.90 17.10 6352.90
arglinb/2 10 14.60 1.60 1.40 1.50 90.90
fir_convex/3 11 181.10 60.10 52.90 17.60 1343.30
osborneb/2 11 13.40 7.70 5.80 1.30 464.60
watson/3 12| 1 35.20 4.00 3.60 7.50 272.70
ex2-1-10/1 20 T 23.40 8.20 6.70 0.70 70.70
ex2-1.7/1 20] I 18.30 6.60 5.40 1.60 60.60
ksip/2 20 2174.20 695.40 732.40 233.30 11392.80
antenna2/3 24 3552.70 1135.30 1040.90 365.60 14725.80
himmelbk/2 24] I 47.00 16.00 16.30 5.00 141.40
3pk/2 30[I 17.20 3.90 3.60 1.90 80.80
loadbal/2 31] 1 16.70 7.50 6.10 2.80 101.00
lowpass/3 31 2760.00 884.80 843.40 285.40 7908.30
watson /2 31| I 183.70 6.60 6.40 48.30 717.10
hs088/2 32] I 1358.10 408.30 443.80 253.60 323.20
hs089/2 33| I 1379.60 453.90 474.20 262.30 363.60
hs090/2 34| I 1373.10 427.40 420.60 243.10 484.80
hs091/2 35| I 1390.70 496.00 458.40 237.80 484.80
hs092/2 36| I 1275.40 436.80 437.00 238.80 676.70
chemeq/3 38] I 15.70 6.10 5.20 2.50 151.50
polygon2/3 38| 1 41.40 13.20 12.00 3.90 414.10
srcpm/1 38] 1 13.20 4.60 3.80 0.60] I 0.70
gridnetg/2 44| 1 49.60 15.20 13.60 4.60 141.40
chnrosnb/2 50| T 53.10 17.80 16.10 2.70 80.80
errinros/2 50| I 53.90 17.70 16.20 4.10 70.70
hilbertb/2 50 9529.80 2986.50 3034.10 898.80 818.10
qpl/1 50| I 9407.00 3139.90 2906.00 976.70 575.70
qp2/1 50| I 9589.70 3115.90 2910.20 993.30 606.00
tointqor/2 50| I 39.70 12.80 11.50 2.00 70.70

Table 2. Comparison of PFBPD, FBPD, and HC4, complex problems

flz) < f on the objective function for converting the global optimization prob-
lem to a CSP. Then we tried to exclude the region where all unbounded variables
are outside the box [—1000, 1000].

These 663 constructed CSPs constitute our test set. As can be deduced from
Table 3, for 446 of the problems PFBPD was able to prove infeasibility of the prob-
lem, effectively reducing the problem to the standard search box [—1000, 1000]™
of global optimization algorithms like BARON. Using only projective intervals
solved just 235 of the 675 problems, while pure interval union arithmetic proved
infeasibility of only 130 problems. Of those problems 122 are solved by both
methods, so they can be considered easy. It is thus indeed important to combine

case 1 2 3 4 5
URonly |+ + - — -
IPRonly | + — + — —

PFBPD + + + + -
#problems|122 8 113 203 217

Table 3. Result summary for PFBPD

interval unions and projective intervals performing internal intersection after
each operation, as described in Algorithm PFBPD. All calculations are performed
in a completely rigorous way with full rounding error control.

Overall performance of PFBPD is very strong; it is comparable to FBPD being just
a factor of 5-10 on average slower than the interval version and about half as fast
as the interval union version of FBPD. It is still orders of magnitude faster than
HC4 [2] and many other numerical CP algorithms, as they were tested in [34].
However, there are exceptions like srcpm where HC4 performs faster and can
still prove infeasibility. Detailed results can be found in Table 1, summarizing
all easy problems with solution times up to 12 ms, and Table 2, containing the
remaining problems. A result of I in Table 2 means that infeasibility was proved
by the corresponding propagator for the respective problem. The running times
were measured on an Intel Core i7 Q 720 running at 1.60GHz running Linux
3.6.11.

6 Conclusion

We provided several methods for solving MICSPs for which some variables have
unbounded domains. In a large numerical test we showed effectiveness of this
new approach.

References

1. Benhamou, F., Goualard, F.: Universally Quantified Interval Constraints. In: Pro-
ceedings of the 6th International Conference on Principles and Practice of Con-
straint Programming (CP’2000). (2000) 67-82

2. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising Hull and Box
Consistency. In: Proceedings of the International Conference on Logic Program-
ming (ICLP’99), Las Cruces, USA (1999) 230-244

3. Benhamou, F., Older, W.J.: Applying Interval Arithmetic to Real, Integer and
Boolean Constraints. Journal of Logic Programming (1997) 32-81

4. Berz, M., Makino, K.: Verified integration of odes and flows using differential
algebraic methods on high-order taylor models. Reliable Computing 4 (1998) 361—
369

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

. Berz, M.: COSY INFINITY version 8 reference manual. Technical report, National

Superconducting Cyclotron Lab., Michigan State University, East Lansing, Mich.
(1997) MSUCL-1008.

. Domes, F.: Gloptlab-a configurable framework for solving continuous, algebraic

csps. In: IntCP, int. WS on interval analysis, constraint propagation, applications,
at CP conference. (2009) 1-16

. Domes, F.: Gloptlab: a configurable framework for the rigorous global solution

of quadratic constraint satisfaction problems. Optimization Methods & Software
24(4-5) (2009) 727-747

. Domes, F., Neumaier, A.: Verified global optimization with gloptlab. PAMM 7(1)

(2008) 1020101-1020102

. Eiermann, M.C.: Adaptive Berechnung von Integraltransformationen mit Fehler-

schranken. PhD thesis, Institut fiir Angewandte Mathematik der Albert—Ludwigs—
Universitat Freiburg im Breisgau (October 1989)

Granvilliers, L., Goualard, F., Benhamou, F.: Box Consistency through Weak Box
Consistency. In: Proceedings of the 11th IEEE International Conference on Tools
with Artificial Intelligence (ICTAT’99). (November 1999) 373-380

Griewank, A., Corliss, G.F.: Automatic Differentiation of Algorithms. STAM Pub-
lications, Philadelphia (1991)

Hansen, E.: Global Optimization using Interval Analysis. Marcel Dekker, New
York (1992)

Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. First edn.
Springer (2001)

Kearfott, R.: Decomposition of arithmetic expressions to improve the behavior of
interval iteration for nonlinear systems. Computing 47(2) (1991) 169-191
McCormick, G.: Computability of global solutions to factorable nonconvex pro-
grams: Part iconvex underestimating problems. Mathematical programming 10(1)
(1976) 147-175

Moore, R.E.: Interval Arithmetic and Automatic Error Analysis in Digital Com-
puting. PhD thesis, Appl. Math. Statist. Lab. Rep. 25, Stanford University (1962)
Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ (1966)
Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University
Press, Cambridge (1990)

Neumaier, A.: Taylor forms - use and limits. Reliable Computing 9 (2002) 43-79
Neumaier, A.: Complete search in continuous global optimization and constraint
satisfaction. Acta Numerica 13(1) (2004) 271-369

Ninin, J., Messine, F., Hansen, P.: A reliable affine relaxation method for global
optimization (2010) Optimzation Online.

Ryoo, H., Sahinidis, N.: A branch-and-reduce approach to global optimization.
Journal of Global Optimization 8(2) (1996) 107-138

Schichl, H.: Global optimization in the coconut project. Numerical Software with
Result Verification (2004) 277-293

Schichl, H., Markét, M.C.e.a.: The COCONUT Environment. software.

Schichl, H., Markét, M.: Algorithmic differentiation techniques for global opti-
mization in the coconut environment. Optimization Methods and Software 27(2)
(2012) 359-372

Schichl, H., Neumaier, A.: Exclusion regions for systems of equations. SIAM
journal on numerical analysis 42(1) (2004) 383-408

Schichl, H., Neumaier, A.: Interval analysis on directed acyclic graphs for global
optimization. Journal of Global Optimization 33(4) (2005) 541-562

28.

29.

30.

31.

32.

33.

34.

Shcherbina, O., Neumaier, A., Sam-Haroud, D., Vu, X.H., Nguyen, T.V.: Bench-
marking global optimization and constraint satisfaction codes. In et al., C.B., ed.:
Global Optimization and Constraint Satisfaction. Springer, Berlin (2003) 211-222
Silaghi, M.C., Sam-Haroud, D., Faltings, B.: Search Techniques for Non-linear
CSPs with Inequalities. In: Proceedings of the 14th Canadian Conference on Ar-
tificial Intelligence. (2001)

Stolfi, J., Andrade, M., Comba, J., Van Iwaarden, R.: Affine arithmetic: a
correlation-sensitive variant of interval arithmetic (1994) Web document.

Van Hentenryck, P.: Numerica: A Modeling Language for Global Optimization.
In: Proceedings of IJCAT’97. (1997)

Vu, X.H., Sam-Haroud, D., Silaghi, M.C.: Numerical Constraint Satisfaction Prob-
lems with Non-isolated Solutions. In: Global Optimization and Constraint Satis-
faction. Volume LNCS 2861., Springer-Verlag (October 2003) 194-210

Vu, X., Schichl, H., Sam-Haroud, D.: Using directed acyclic graphs to coordinate
propagation and search for numerical constraint satisfaction problems. In: Tools
with Artificial Intelligence, 2004. ICTAI 2004. 16th IEEE International Conference
on, IEEE (2004) 72-81

Vu, X., Schichl, H., Sam-Haroud, D.: Interval propagation and search on directed
acyclic graphs for numerical constraint solving. Journal of Global Optimization
45(4) (2009) 499-531

