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1 Introduction

In this paper, we establish a dispersive long time decay for the solutions to 1D wave equation

ψ̈(x, t) = −Hψ(x, t) :=
( d2

dx2
+ V (x)

)

ψ(x, t), x ∈ R (1.1)

in weighted energy norms. In vectorial form, equation (1.1) reads

iΨ̇(t) = HΨ(t), (1.2)

where

Ψ(t) =

(

ψ(t)

ψ̇(t)

)

, H =





0 i

i(
d2

dx2
+ V ) 0



 . (1.3)

For s, σ ∈ R, let us denote by Hs
σ = Hs

σ(R
3) the weighted Sobolev spaces introduced by Agmon,

[1], with the finite norms

‖ψ‖Hs
σ

= ‖(1 + |x|2)σ/2(1 + | d
dx

|2)s/2ψ‖L2 <∞.

We assume that V (x) is a real function, and

|V (x)| + |V ′(x)| ≤ C(1 + |x|)−β, x ∈ R (1.4)

for some β > 4. Then the multiplication by V (x) is bounded operator H1
s → H1

s+β for any
s ∈ R.

We restrict ourselves to the following“regular case” in the terminology of [10] (or “nonsin-
gular case” in [13])

The point λ = 0 is neither eigenvalue nor resonance for the operator H (1.5)

Then the truncated resolvent of the Schrödinger operator H = − d2

dx2
−V (x) is bounded at the

end point λ = 0 of the continuous spectrum. It is known that the spectral condition holds for
generic potentials [10], [13].

Definition 1.1. i) F is the complex Hilbert space Ḣ1 ⊕L2 of vector-functions Ψ = (ψ, π) with
the norm

‖Ψ‖F = ‖∇ψ‖L2 + ‖π‖L2 <∞.

ii) Fσ is the complex Hilbert space H1
σ ⊕H0

σ of vector-functions Ψ = (ψ, π) with the norm

‖Ψ‖Fσ = ‖ψ‖H1
σ

+ ‖π‖H0
σ
<∞.

Definition 1.2. For real α > 1 denote by 〈α〉 the number from N such that

〈α〉 < α ≤ 1 + 〈α〉
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Our main result is the following long time decay of the solutions to (1.2): in the “regular
case” for initial data Ψ0 = Ψ(0) ∈ Fσ with σ > 2 we have

‖PcΨ(t)‖F
−σ = O(|t|−γ), γ = min{〈σ − 1/2〉, σ − 1, 〈β/2− 1/2〉, β/2− 1}, t→ ±∞ (1.6)

Here Pc is a Riesz projector onto the continuous spectrum of the operator H. The decay is
desirable for the study of asymptotic stability and scattering for the solutions to nonlinear
hyperbolic equations.

Let us comment on previous results in this direction. Local energy decay has been es-
tablished first in the scattering theory for linear Schrödinger equation developed since 50’ by
Birman, Kato, Simon, and others. For wave equations with compactly supported potentials,
and similar hyperbolic PDEs, Vainberg [21] established the decay in local energy norms for
solutions with compactly supported initial data.

However, applications to asymptotic stability of solutions to the nonlinear equations also
require an exact characterization of the decay for the corresponding linearized equations in
weighted norms (see e.g. [3, 4, 5, 19]).

The decay of type (1.6) in weighted norms has been established first by Jensen and Kato
[10] for the Schrödinger equation in the dimension n = 3. The result has been extended to all
other dimensions by Jensen and Nenciu [8, 9, 11], and to more general PDEs of the Schrödinger
type by Murata [13]. The survey of the results can be found in [16].

For the “free” wave equations with V (x) = 0 some estimates in weighted Lp-norms have
been established in [2, 6].

In [12] the decay of type (1.6) in the weighted energy norms has been proved for the wave
equation in the dimension n = 3. The approach develops the Jensen-Kato techniques to make
it applicable to the reativistic equations. Namely, the decay of the low energy component of the
solution follows by the Jensen-Kato techniques while the decay for the high energy component
requires novel robust ideas. This problem has been resolved with a modified approach based
on the Born series and convolution. Let us note that the decay rate in (1.6) corresponds to
the spatial decay of the initial function Ψ(0) and potential V (x) in contrast to the Schrödinger
case [10], where the decay rate is t−3/2. This difference is related to the presence of the lacuna
for the free 3D wave equation.

Here we extend our approach [12] to the dimension n = 1. The extension is not straightfor-
ward since the decay (1.6) violates for the free 1D wave equation corresponding to V (x) = 0
when the solutions does not decay. Hence, the decay (1.6) cannot be deduced by pertrubation
arguments from the corresponding estimate for the free equation. This difficulty is well known,
and it is caused by the “zero resonance function” ψ(x) = const corresponding to the end point
λ = 0 of the continuous spectrum of the free 1D Schrödinger operator −d2/dx2.

Main idea of our approach to n = 1 is a spectral analysis of the “bad” term, without
decay. Namely, we show that the bad term does not contribute to the high energy component.
Therefore, the decay ∼ t−γ for the high energy component follows. On the other hand, for the
low energy component, the decay ∼ t−γ holds for the “generic” potentials by methods [10, 13].
This decay implies the asymptotic completeness since γ > 1.

Our paper is organized as follows. In Section 2 we obtain the time decay for the solution to
the free wave equation and state the spectral properties of the free resolvent. In Section 3 we
obtain spectral properties of the perturbed resolvent and prove the decay (1.6).
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2 Free wave equation

First, we consider the free wave equation:

ψ̈(x, t) = ψ′′(x, t), x ∈ R, t ∈ R (2.1)

In vectorial form equation (2.1) reads

iΨ̇(t) = H0Ψ(t), (2.2)

where

Ψ(t) =

(

ψ(t)

ψ̇(t)

)

, H0 =

(

0 i

i d2

dx2 0

)

(2.3)

2.1 Spectral properties

We state spectral properties of the free wave dynamical group G(t). For t > 0 and Ψ0 = Ψ(0) ∈
F , there exist a unique solution Ψ(t) ∈ Cb(R,F) to the free wave equation (2.2). Hence, Ψ(t)
admits the spectral Fourier-Laplace representation

θ(t)Ψ(t) =
1

2πi

∫

R

e−i(ω+iε)tR0(ω + iε)Ψ0 dω, t ∈ R (2.4)

with any ε > 0 where θ(t) is the Heavyside function, R0(ω) = (H0−ω)−1 for ω ∈ C+ := {Imω >
0} is the resolvent of the operator H0. The representation follows from the stationary equation

ωΨ̃+(ω) = H0Ψ̃
+(ω) + iΨ0 for the Fourier-Laplace transform Ψ̃+(ω) :=

∫

R

θ(t)eiωtΨ(t)dt, ω ∈
C+. The solution Ψ(t) is continuous bounded function of t ∈ R with the values in F by the
energy conservation for the free wave equation (2.2). Hence, Ψ̃+(ω) = −iR0(ω)Ψ0 is analytic
function of ω ∈ C+ with the values in F , and bounded for ω ∈ R + iε. Therefore, the integral
(2.4) converges in the sense of distributions of t ∈ R with the values in F . Similarly to (2.4),

θ(−t)Ψ(t) = − 1

2πi

∫

R

e−i(ω−iε)tR0(ω − iε)Ψ0 dω, t ∈ R (2.5)

For the resolvent R0(ω) the following matrix representation holds

R0(ω) =

(

ωR0(ω
2) iR0(ω

2)
−i(1 + ω2R0(ω

2)) ωR0(ω
2)

)

(2.6)

where R0(ζ) stands for the free Schrödinger resolvent

R0(ζ, x− y) = (− d2

dx2
− ζ)−1 = −exp(i

√
ζ|x− y|)

2i
√
ζ

, ζ ∈ C
+, Imζ1/2 > 0 (2.7)

Definition 2.1. Denote by L(B1, B2) the Banach space of bounded linear operators from a
Banach space B1 to a Banach space B2.
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The explicit formula (2.7) implies the properties of R0(ζ) which are obtained in [1, 13]:

i) R0(ζ) is strongly analytic function of ζ ∈ C \ [0,∞) with the values in L(H−1
0 , H1

0);
ii) For ζ > 0, the convergence holds R0(ζ ± iε) → R0(ζ ± i0) as ε → 0+ in L(H−1

σ , H1
−σ) with

σ > 1/2, uniformly in ζ ≥ r for any r > 0.
iii) For any M ≥ 0 the following asymptotic expansion holds

R0(ζ) =
M

∑

k=−1

Akζ
k/2 + O(ζ (M+1)/2), ζ → 0, ζ ∈ C \ [0,∞) (2.8)

in the norm of L(H−1
σ ;H1

−σ) with σ > 3/2 +M + 1. Here

A−1 = Op
[ i

2

]

, A0 = Op
[

− 1

2
|x− y|

]

, (2.9)

and Ak ∈ L(H−1
σ ;H1

−σ) with σ > 3/2 + k for k = −1, 0, 1, ....
iv) The asymptotics (2.8) can be differentiated M + 2 times: for 1 ≤ r ≤M + 2,

∂r
ζR0(ζ) = ∂r

ζ

(

M
∑

k=−1

Akζ
k/2

)

+ O(ζ
M+1

2
−r), ζ → 0, ζ ∈ C \ [0,∞) (2.10)

in the norm of L(H−1
σ ;H1

−σ) with σ > 3/2 +M + 1.

Let A−1 be the operator with the integral kernel

A−1(x− y) =

(

0 0
−iδ(x− y) 0

)

+

(

0 −1/2
0 0

)

. (2.11)

Then the properties i) – iv) and (2.6) imply the following lemma.

Lemma 2.2. i) The resolvent R0(ω) is strongly analytic function of ω ∈ C \R with the values
in L(F0,F0).
ii) For ω 6= 0, the convergence holds R0(ω ± iε) → R0(ω ± i0) as ε → 0+ in L(Fσ,F−σ) with
σ > 1/2, uniformly in |ω| ≥ r for any r > 0.
iii) For any M ≥ 0, the following asymptotics hold

R0(ω) =
M

∑

k=−1

ωkAk + O(|ω|M+1), ω → 0 (2.12)

in the norm of L(Fσ;F−σ) with σ > 3/2 + M + 1. Here Ak ∈ L(Fσ;F−σ) for k = −1, 0, 1, ...
and σ > 3/2 + k;
iv) The asymptotics (2.12) can be differentiated M + 1 times: for 1 ≤ r ≤M + 1,

∂r
ωR0(ω) = ∂r

ω

(

M
∑

k=−1

ωkAk

)

+ O(|ω|M+1−r), ω → 0 (2.13)

in the norm of L(Fσ,F−σ) with σ > 3/2 +M + 1.
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Finally, we state the asymptotics of R0(ω) for large ω which follow from known Agmon-
Jensen-Kato decay [1, (A.2’)] and [10, Theorem 8.1] of the resolvent R0

Proposition 2.3. For any r > 0 the following bounds hold for m = 0, 1 and l = −1, 0, 1,

‖R(k)
0 (ζ)‖L(Hm

σ ,Hm+l
−σ ) ≤ C(r, k)|ζ |− 1−l+k

2 , ζ ∈ C \ (0,∞), |ζ | ≥ r (2.14)

with σ > 1/2 + k for any k = 0, 1, 2, ....

Then for R0(ω) we obtain

Corollary 2.4. For any r > 0 the bounds hold

‖R(k)
0 (ω)‖L(Fσ,F

−σ) ≤ C(r, k) <∞, ω ∈ C \ R, |ω| ≥ r (2.15)

with σ > 1/2 + k for k = 0, 1, 2, ....

Proof. The bounds follow from representation (2.6) for R0(ω) and asymptotics (2.14) for R0(ζ)
with ζ = ω2.

Corollary 2.5. For t ∈ R and Ψ0 ∈ Fσ with σ > 1/2, the group G(t) admits the integral
representation

G(t)Ψ0 =
1

2πi

∫

Γ

e−iωt
[

R0(ω + i0) −R0(ω − i0)
]

Ψ0 dω (2.16)

where the integral converges in the sense of distributions of t ∈ R with the values in F−σ.

Proof. Summing up the representations (2.4) and (2.5), and sending ε→ 0+, we obtain (2.16)
by the Cauchy theorem, Lemma 2.2 and Corollary 2.4.

2.2 Time decay

The estimates (2.15) do not allow obtain the decay of G(t) by partial integration in (2.16). We
deduce the decay from explicit formulas. The matrix kernel of the dynamical group G(t) can
be written as G(t, x− y), where

G(t, z) =

(

Ġ(t, z) G(t, z)

G̈(t, z) Ġ(t, z)

)

, z ∈ R (2.17)

and

G(t, z) =
1

2
θ(t− |z|) (2.18)

Let us represent G(t, z) as G(t, z) = G0 + Gr(t, z), where

G0 =
1

2

(

0 1
0 0

)

(2.19)

Evidently, the free wave group G(t) does not decays which not correspond to (1.6). On the
other hand, G0 is only nondecreasing term. More exactly, in the next section we will prove the
following basic proposition
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Proposition 2.6. For the operator Gr(t) with the kernel Gr(t, x− y), the following asymptotics
holds

Gr(t) = O(t−σ+1), t→ ∞ (2.20)

in the norm of L(Fσ;F−σ) with σ > 1.

The following key observation is that the “bad term” G0 does not contribute to the high
energy component of the total group G(t) since (2.19) contains just one zero frequency This
suggests that the high energy component of the group G(t) decays like t−σ+1.

More precisely, let us introduce the following low energy and high energy components of
G(t):

Gl(t) =
1

2πi

∫

R

e−iωtl(ω)
[

R0(ω + i0) −R0(ω − i0)
]

dω (2.21)

Gh(t) =
1

2πi

∫

R

e−iωth(ω)
[

R0(ω + i0) −R0(ω − i0)
]

dω (2.22)

where l(ω) ∈ C∞
0 (R) is an even function, supp l ∈ [−2, 2], l(ω) = 1 if |ω| ≤ 1, and h(ω) =

1 − l(ω).

Theorem 2.7. Let σ > 1. Then the following asymptotics hold

Gh(t) = O(t−σ+1), t→ ∞ (2.23)

in the norm of L(Fσ;F−σ).

Proof. We deduce asymptotics (2.23) from Proposition 2.6.
Step i) Let Ψ(0) ∈ Fσ. Denote

Ψ+(t) = θ(t)G(t)Ψ(0), Ψ+
0 (t) = θ(t)G0(t)Ψ(0), Ψ+

h (t) = θ(t)Gh(t)Ψ(0), Ψ+
r (t) = θ(t)Gr(t)Ψ(0)

Then

Ψ+
h (t) =

1

2πi

∫

R

e−iωth(ω)R0(ω + i0)Ψ(0)dω

=
1

2πi

∫

R

e−iωth(ω)Ψ̃+(ω)dω =
1

2πi

∫

R

e−iωth(ω)
[

Ψ̃+
0 (ω) + Ψ̃+

r (ω)
]

dω

= Ψ+
r (t) +

1

2πi

∫

R

e−iωth(ω)Ψ̃+
0 (ω)dω − 1

2πi

∫

R

e−iωtl(ω)Ψ̃+
r (ω)dω (2.24)

where the first term Ψ+
r (t) decays like (2.23) by (2.20).

Step ii) Let us consider the second summand in the RHS of (2.24). By (2.19) the matrix
function Ψ̃+

0 (ω) is a smooth function for |ω| > 1, and ∂k
ωΨ̃+

0 (ω) = O(ω−1−k), k = 0, 1, 2...,
ω → ∞. Hence partial integration implies that

∥

∥

∥

∫

R

e−iωth(ω)Ψ̃+
0 (ω)dω

∥

∥

∥

F
−σ

= O(t−N ), ∀N ∈ N (2.25)
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Step iii) Finally, let us consider the third summand in the RHS of (2.24).

1

2πi

∫

R

e−iωtl(ω)Ψ̃+
r (ω)dω = [L ⋆Ψ+

r ](t) = O(t−σ+1), L̃ = l (2.26)

in the norm of Fσ, since L(t) = O(t−N), t → ∞ for any N ∈ N, and ‖Ψr(t)‖F
−σ = O(t−σ+1)

by (2.20). Finally, (2.24)- (2.26) imply (2.23).

2.3 Proof of Proposition 2.6

Proof. We consider an arbitrary t ≥ 1. Let us split the initial function Ψ0 in two terms,
Ψ0 = Ψ′

0,t + Ψ′′
0,t such that

Ψ′
0,t(x) = 0 for |x| > t/2, and Ψ′′

0,t(x) = 0 for |x| < t/3 (2.27)

and
‖Ψ′

0,t‖Fσ + ‖Ψ′′
0,t‖Fσ ≤ C‖Ψ0‖Fσ , t ≥ 1 (2.28)

We estimate Gr(t)Ψ
′
0,t and Gr(t)Ψ

′′
0,t separately.

Step i) Let us consider Gr(t)Ψ
′′
0,t = G(t)Ψ′′

0,t−G0Ψ
′′
0,t. First we estimate G(t)Ψ′′

0,t = (g1(·, t), g2(·, t)).
Using energy conservation for the wave equation and properties (2.27) and (2.28) we obtain

‖g′1(·, t)‖H0
−σ

+ ‖g2(·, t)‖H0
−σ

≤ ‖G(t)Ψ′′
0,t‖F = ‖Ψ′′

0,t‖F ≤ Ct−σ‖Ψ′′
0,t‖Fσ ≤ Ct−σ‖Ψ0‖Fσ , t ≥ 1

(2.29)
Further, the Hölder inequality, energy conservation and properties (2.28)-(2.27) imply

‖g1(·, t)‖2
H0

−σ
=

∫

(1 + x2)−σg2
1(x, t)dx =

∫

(1 + x2)−σ
(

t
∫

0

ġ1(x, s)ds− g1(x, 0)
)2

dx

≤ 2

∫

(1 + x2)−σg2
1(x, 0)dx+ 2t

∫

(1 + x2)−σ
(

t
∫

0

ġ2
1(x, s)ds

)

dx (2.30)

= 2‖(Ψ′′
0,t)1‖2

H0
−σ

+ 2t

t
∫

0

‖(G(s)Ψ′′
0,t)2‖2

H0
−σ
ds ≤ C

(

t−4σ‖(Ψ′′
0,t)1‖2

H0
σ

+ t

t
∫

0

‖G(s)Ψ′′
0,t‖2

Fds
)

≤ C
(

t−4σ‖Ψ0‖2
Fσ

+ t

t
∫

0

‖Ψ′′
0,t‖2

Fds
)

≤ C
(

t−4σ‖Ψ0‖2
Fσ

+ t2−2σ‖Ψ0‖2
Fσ

)

≤ Ct2−2σ‖Ψ0‖2
Fσ

Hence, (2.29) and (2.30) imply

‖G(t)Ψ′′
0,t‖F−σ ≤ Ct−σ+1‖Ψ0‖Fσ , t ≥ 1 (2.31)

Second we estimate G0Ψ
′′
0,t. By Cauchy inequality

|G12
0 π

′′
0,t| =

∣

∣

∣

1

2

∫

π′′
0,t(x)dx

∣

∣

∣
≤ C

(

∫

|π′′
0,t(x)|2(1 + x2)σdx

)1/2(
∞

∫

t/3

dx

(1 + x2)σ

)1/2

≤ Ct−σ+1/2‖π′′
0,t‖H0

σ
≤ Ct−σ+1/2‖Ψ0‖Fσ
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where π′′
0,t is the second component of Ψ′′

0,t. Therefore,

‖G0Ψ
′′
0,t‖F−σ = ‖G12

0 π
′′
0,t‖H0

−σ
≤ Ct−σ+1/2‖Ψ0‖Fσ , t ≥ 1 (2.32)

Finally, (2.31)- (2.32) imply that

‖Gr(t)Ψ
′′
0,t‖F−σ ≤ Ct−σ+1‖Ψ0‖Fσ , t ≥ 1 (2.33)

Step ii) Now we consider Gr(t)Ψ
′
0,t = G(t)Ψ′

0,t−G0Ψ
′
0,t. Formulas (2.17)-(2.19), and (2.27) imply

that
[Gr(t)Ψ

′
0,t](x) = 0, |x| < t/2.

Denote by χ(x) the characteristic function of the domain |x| > t/2. Then

‖Gr(t)Ψ
′
0,t‖F−σ = ‖χ(x)(G(t)Ψ′

0,t − G0(t)Ψ
′
0,t)‖F−σ ≤ ‖G(t)Ψ′

0,t‖F−σ + ‖χ(x)G0(t)Ψ
′
0,t‖F−σ

≤ Ct−σ
(

‖G(t)Ψ′
0,t‖F + ‖(G(t)Ψ′

0,t)1‖L2

)

+ ‖χ(x)G0(t)Ψ
′
0,t‖F−σ (2.34)

By energy conservation and (2.28), we obtain

‖G(t)Ψ′
0,t‖F = ‖Ψ′

0,t‖F ≤ ‖Ψ′
0,t‖Fσ ≤ C‖Ψ0‖Fσ , t ≥ 1 (2.35)

Further, similarly (2.30), using energy conservation we obtain

‖(G(t)Ψ′
0,t)1‖2

L2 ≤ 2‖(Ψ′
0,t)1‖2

L2 + 2t

t
∫

0

‖(G(s)Ψ′
0,t)2‖2

L2ds ≤ C
(

‖Ψ′
0,t‖2

Fσ
+ t

t
∫

0

‖Ψ′
0,t‖2

Fds
)

≤ C
(

‖Ψ0‖2
Fσ

+ t2‖Ψ′
0,t‖2

F

)

≤ Ct2‖Ψ0‖2
Fσ

(2.36)

Finaly, we estimate the last summand in the RHS of (2.34). Denote π′
0,t the second component

of Ψ′
0,t. By Cauchy inequality

|G12
0 π

′
0,t| =

∣

∣

∣

1

2

∫

π′
0,t(x)dx

∣

∣

∣
≤ C‖π′

0,t‖H0
σ
≤ C‖Ψ′

0,t‖Fσ

since σ > 1. Hence

‖χ(x)G0(t)Ψ
′
0,t‖2

F
−σ

=

∫

|x|>t/2

(1 + x2)−σ|G12
0 π

′
0,t|2dx ≤ Ct−2σ+1‖Ψ′

0,t‖2
Fσ

Finally, the last estimate and (2.34)-(2.36)

‖Gr(t)Ψ
′
0,t‖F−σ ≤ Ct−σ+1‖Ψ′

0,t‖Fσ , t ≥ 1

3 Perturbed wave equation

To prove the long time decay for the perturbed wave equation, we first establish the spectral
properties of the generator.
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3.1 Spectral properties

Let us collect the properties of the perturbed Schrödinger resolvent R(ζ) = (H− ζ)−1 obtained
in [1, 10, 13] under conditions (1.4) and (1.5). Note, that in [10] is considered 3D case, but
corresponding properties can be proved in 1D case similarly.

R1. R(ζ) is strongly meromorphic function of ζ ∈ C \ [0,∞) with the values in L(H−1
0 , H1

0);
the poles of R(ζ) are located at a finite set of eigenvalues ζj < 0, j = 1, ..., N , of the operator
H with the corresponding eigenfunctions ψj(x) ∈ H2

s with any s ∈ R.
R2. For ζ > 0, the convergence holds R(ζ ± iε) → R(ζ ± i0) as ε → 0+ in L(H−1

σ , H1
−σ) with

σ > 1/2, uniformly in ζ ≥ r for any r > 0.
R3. Assume β > 3 + 2M , M = 0, 1, 2.... The expansion holds:

R(ζ) =
M

∑

j=0

Bjζ
j/2 + O(ζ (M+1)/2), ζ → 0, ζ ∈ C \ (0,∞) (3.1)

in the norm of L(H−1
σ , H1

−σ) with σ > 3/2 + M . The expansion (3.1) can be differentiated
M + 1 times.
R4. Assume β > k + 1, k = 0, 1, 2, .... For any r, δ > 0, the bounds hold for m = 0, 1 and
l = −1, 0, 1

‖R(k)(ζ)‖L(Hm
σ ;Hm+l

−σ ) ≤ C(r, δ, k)|ζ |−(1−l+k)/2, ζ ∈ C\ (0,∞), |ζ | > r, | arg ζ | ≤ π− δ (3.2)

with σ > 1/2 + k. The resolvent R(ω) = (H− ω)−1 can be expressed similarly to (2.6):

R(ω) =

(

ωR(ω2) iR(ω2)
−i(1 + ω2R(ω2)) ωR(ω2)

)

. (3.3)

Hence, the properties R1 – R4 imply the corresponding properties of R(ω):

Lemma 3.1. Let the potential V satisfy conditions ( 1.4) and ( 1.5). Then
i) R(ω) is strongly meromorphic function of ω ∈ C \ R with the values in L(F0,F0);
ii) The poles of R(ω) are located at a finite set of imaginary axe

Σ = {ω±
j = ±

√

ζj , j = 1, ..., N}

of eigenvalues of the operator H with the corresponding eigenfunctions

(

ψj(x)
ω±

j ψj(x)

)

;

iii) For ω ∈ R, the convergence holds R(ω ± iε) → R(ω ± i0) as ε → 0+ in L(Fσ,F−σ) with
σ > 3/2;
iv) Assume β > 1 + 2k, k = 1, 2, ..., and r < dist(Σ, 0).
Then the bounds hold

‖R(k)(ω)‖L(Fσ,F
−σ) ≤ C(r, k) <∞, 0 < |Imω| ≤ r, |Reω| ≤ 2 (3.4)

with σ > 1/2 + k;
v) Assume β > k + 1, k = 0, 1, 2, ... Then the bounds hold

‖R(k)(ω)‖L(Fσ,F
−σ) ≤ C(k) <∞, |Reω| ≥ 1 (3.5)

with σ > 1/2 + k.
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Finally, let us denote by V the matrix

V =

(

0 0
iV 0

)

(3.6)

Then the vectorial equation (1.2) reads

iΨ̇(t) = (H0 + V)Ψ(t)

The resolvents R(ω) and R0(ω) are related by the Born perturbation series

R(ω) = R0(ω) −R0(ω)VR0(ω) + R0(ω)VR0(ω)VR(ω), ω ∈ C \ [R ∪ Σ] (3.7)

which follows by iteration of R(ω) = R0(ω) −R0(ω)VR(ω). An important role in (3.7) plays
the product W(ω) := VR0(ω)V. We obtain the asymptotics of W(ω) for large ω.

Lemma 3.2. Let the potential V satisfy ( 1.4) with β > 1/2 + k + σ for k = 0, 1, 2, ..., with
some σ > 0. Then bounds hold

‖W(k)(ω)‖L(F
−σ,Fσ) ≤ C(k)|ω|−2, ω ∈ C \ R, |ω| > 1 (3.8)

Proof. Bounds (3.8) follow from the algebraic structure of the matrix

W(k)(ω) = VR(k)
0 (ω)V =

(

0 0

−iV R(k)
0 (ω2)V 0

)

, (3.9)

since (2.14) implies that for ω ∈ C \ R, |ω| > 1

‖V R(k)
0 (ω2)V f‖H0

σ
≤ C‖R(k)

0 (ω2)V f‖H0
σ−β

≤ C(k)|ω|−2‖V f‖H1
β−σ

≤ C(k)|ω|−2‖f‖H1
−σ

(3.10)

with 1/2 + k < β − σ for k = 0, 1, 2, ....

3.2 Time decay

In this section we combine the spectral properties of the perturbed resolvent and time decay
for the unperturbed dynamics using the (finite) Born perturbation series. Our main result is
the following.

Theorem 3.3. Let conditions ( 1.4) and ( 1.5) hold. Then for σ > 2

‖e−itH −
∑

ωJ∈Σ

e−iωjtPj‖L(Fσ,F
−σ) = O(|t|−γ), γ = min{〈σ − 1/2〉, σ − 1, 〈β/2− 1/2〉, β/2− 1}

(3.11)
as t→ ±∞. Here Pj are the Riesz projectors onto the corresponding eigenspaces.

Proof. Lemma 3.1 and bounds (3.5) with k = 0 imply similarly to (2.16), that

Ψ(t) −
∑

ωj∈Σ

e−iωjtPjΨ0 =
1

2πi

∫

e−iωt
[

R(ω + i0) −R(ω − i0)
]

Ψ0 dω = Ψl(t) + Ψh(t) (3.12)
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where Pj stands for the corresponding Riesz projector

PjΨ0 := − 1

2πi

∫

|ω−ωj |=δ

R(ω)Ψ0dω

with a small δ > 0, and

Ψl(t) =
1

2πi

∫

R

l(ω)e−iωt
[

R(ω + i0) −R(ω − i0)
]

Ψ0 dω (3.13)

Ψh(t) =
1

2πi

∫

R

h(ω)e−iωt
[

R(ω + i0) −R(ω − i0)
]

Ψ0 dω (3.14)

where l(ω) and h(ω) are defined in Section 2.2. Further we analyze Ψl(t) and Ψh(t) separately.

3.2.1 Time decay of Ψl(t)

Let σ > 3/2 and β > 3. By Lemma 3.1 iv)-v) we apply integration by parts γ times, with
γ = min{〈σ − 1/2〉, 〈β/2− 1/2〉} and obtain

‖Ψl(t)‖F
−σ ≤ C(1 + |t|)−γ‖Ψ0‖Fσ , t ∈ R. (3.15)

3.2.2 Time decay of Ψh

Let us substitute the series (3.7) into the spectral representation (3.14) for Ψh(t):

Ψh(t) =
1

2πi

∫

R

e−iωth(ω)
[

R0(ω + i0) −R0(ω − i0)
]

Ψ0 dω (3.16)

+
1

2πi

∫

R

e−iωth(ω)
[

R0(ω + i0)VR0(ω + i0) −R0(ω − i0)VR0(ω − i0)
]

Ψ0 dω

+
1

2πi

∫

R

e−iωth(ω)
[

R0VR0VR(ω + i0) −R0VR0VR(ω − i0)
]

Ψ0 dω

= Ψh1(t) + Ψh2(t) + Ψh3(t), t ∈ R

Further we analyze each term Ψhk, k = 1, 2, 3 separately.
Step i) The first term Ψh1(t) = Gh(t)Ψ0 by (2.22). Hence, Theorem 2.7 implies that

‖Ψh1(t)‖F
−σ ≤ C(1 + |t|)−σ+1‖Ψ0‖Fσ , t ∈ R (3.17)

Step ii) Now we consider the second term Ψh2(t). Denote h1(ω) =
√

h(ω) and let

Φh1 =
1

2πi

∫

R

e−iωth1(ω)
[

R0(ω + i0) −R0(ω − i0)
]

Ψ0 dω

It is obvious that for Φh1 the inequality (3.17) also holds. Namely,

‖Φh1(t)‖F
−σ ≤ C(1 + |t|)−σ+1‖Ψ0‖Fσ , t ∈ R (3.18)

Now the second term Ψh2(t) can be rewritten as a convolution.
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Lemma 3.4. The convolution representation holds

Ψh2(t) = i

t
∫

0

Gh1(t− τ)VΦh1(τ) dτ, t ∈ R (3.19)

where the integral converges in F−σ with σ > 2.

Proof. Then the term Ψh2(t) can be rewritten as

Ψh2(t) =
1

2πi

∫

R

e−iωth2
1(ω)

[

R0(ω + i0)VR0(ω + i0) −R0(ω − i0)VR0(ω − i0)
]

Ψ0 dω (3.20)

Let us integrate the first term in the right hand side of (3.20), denoting

G±
h1(t) := θ(±t)Gh1(t), Φ±

h1(t) := θ(±t)Φh1(t), t ∈ R

We know that h1(ω)R0(ω+ i0)Ψ0 = iΦ̃+
h1(ω), hence integrating the first term in the right hand

side of (3.20), we obtain that

Ψ+
h2(t) =

1

2π

∫

R

e−iωth1(ω)R0(ω + i0)VΦ̃+
h1(ω) dω

=
1

2π

∫

R

e−iωth1(ω)R0(ω + i0)V
[

∫

R

eiωτΦ+
h1(τ)dτ

]

dω

=
1

2π
(i∂t + i)2

∫

R

e−iωt

(ω + i)2
h1(ω)R0(ω + i0)V

[

∫

R

eiωτΦ+
h1(τ)dτ

]

dω (3.21)

The last double integral converges in F−σ with σ > 2 by (3.18), Lemma 2.2 ii), and (2.15) with
k = 0. Hence, we can change the order of integration by the Fubini theorem. Then we obtain
that

Ψ+
h2(t) = i

∫

R

G+
h1(t− τ)VΦ+

h1(τ)dτ =







i

∫ t

0

Gh1(t− τ)VΦh1(τ)dτ , t > 0

0 , t < 0
(3.22)

since

G+
h1(t− τ) =

1

2πi

∫

R

e−iω(t−τ)h1(ω)R0(ω + i0) dω

=
1

2πi
(i∂t + i)2

∫

R

e−iω(t−τ)

(ω + i)2
h1(ω)R0(ω + i0) dω

by (2.4). Similarly, integrating the second term in the right hand side of (3.20), we obtain

Ψ−
h2(t) = i

∫

R

G−
h1(t− τ)VΦ−

h1(τ)dτ =







0 , t > 0

i

∫ t

0

Gh1(t− τ)VΦh1(τ)dτ , t < 0
(3.23)

Now (3.19) follows since Ψh2(t) is the sum of two expressions (3.22) and (3.23).
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Lemma 3.5.

‖Ψh2(t)‖F
−σ ≤ C(1 + |t|)−γ‖Ψ0‖Fσ , γ = min{σ − 1,

β

2
− 1}, t ∈ R. (3.24)

Proof. We apply Theorem 2.7 with h1 instead h to the integrand in (3.19). For 2 < σ < β/2
we obtain

‖Gh1(t− τ)VΦh1(τ)‖F
−σ ≤ C‖VΦh1(τ)‖Fσ

(1 + |t− τ |)σ−1
≤ C‖Φh1(τ)‖F

−σ

(1 + |t− τ |)σ−1
≤ C‖Ψ0‖Fσ

(1 + |t− τ |)σ−1(1 + |τ |)σ−1
,

and for σ > β/2

‖Gh1(t− τ)VΦh1(τ)‖F
−σ ≤ ‖Gh1(t− τ)VΦh1(τ)‖F

−β/2
≤
C‖VΦh1(τ)‖Fβ/2

(1 + |t− τ |)β
2
−1

≤
C‖Φh1(τ)‖F

−β/2

(1 + |t− τ |)β
2
−1

≤
C‖Ψ0‖Fβ/2

(1 + |t− τ |)β
2
−1(1 + |τ |)β

2
−1

≤ C‖Ψ0‖Fσ

(1 + |t− τ |)β
2
−1(1 + |τ |)β

2
−1

Hence (3.19) implies (3.24).

Step iii) Finally, let us rewrite the last term Ψh3 as

Ψh3(t) =
1

2πi

∫

R

e−iωth(ω)N (ω)Ψ0 dω, (3.25)

where N (ω) := M(ω + i0) −M(ω − i0) for ω ∈ R, and

M(ω) := R0(ω)VR0(ω)VR(ω) = R0(ω)W(ω)R(ω), ω ∈ C \ R. (3.26)

Now we obtain the asymptotics of N and its derivatives for large ω.

Lemma 3.6. For 0 ≤ k < min{β − 3/2, σ − 1/2} the bounds hold

‖N (k)(ω)‖L(Fσ,F
−σ) ≤ C(k)|ω|−2, ω ∈ R, |ω| ≥ 1 (3.27)

Proof. We have

M(k) =
∑

k1+k2+k3=k

k!

k1!k2!k3!
R(k1)

0 W(k2)R(k3) (3.28)

Lemma 3.2 and bounds (2.15), (3.5) imply

‖R(k1)
0 W(k2)R(k3)(ω)f‖F

−σ ≤ ‖R(k1)
0 W(k2)R(k3)(ω)f‖F

−σ1
≤ C(k1)‖W(k2)R(k3)(ω)f‖Fσ1

≤ C(k1, k2)

|ω|2 ‖R(k3)(ω)f‖F
−σ1

≤ C(r, k1, k2, k3)

|ω|2 ‖f‖Fσ1
≤ C(r, k1, k2, k3)

|ω|2 ‖f‖Fσ , |ω| ≥ 1

under the conditions

σ > σ1 > 1/2 + max{k1, k3}, β > 1/2 + k2 + σ1, β > 1 + k3

All these inequalities hold if σ > 1/2 + k, β > 1 + k, and

1/2 + max{k1, k3} < σ1 < min{σ, β − 1/2 − k2}
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Now we prove the desired decay of Ψh3(t) from (3.25).

Lemma 3.7.

‖Ψh3(t)‖F
−σ ≤ C(1 + |t|)−γ‖Ψ0‖Fσ , γ = min{〈σ− 1/2〉, σ− 1, 〈β/2− 1/2〉, β/2− 1}, t ∈ R.

(3.29)

Proof. First, in the case 2 < σ < β/2 there exists k ≥ 1 such that 1/2+k < σ ≤ 3/2+k. Then
β > 1 + 2k > 1 + k, and by Lemma 3.6

N (k)(ω)) ∈ L1([1,∞];L(Fσ,F−σ)). (3.30)

Then we can apply k times integration by parts in (3.25) to obtain

‖Ψh3(t)‖F
−σ ≤ C(1 + |t|)−k‖Ψ0‖Fσ = C(1 + |t|)〈σ−1/2〉‖Ψ0‖Fσ , t ∈ R.

Since k = 〈σ − 1/2〉 by definition 1.2.
Second, in the case 4 < β < 2σ there exists k ≥ 1 such that k + 1/2 < β/2 ≤ k + 3/2. Then
σ > 1/2 + k and β > 2k + 1 > 1 + k. Hence (3.30) holds by Lemma 3.6 and using k times
integration by parts we obtain

‖Ψ3(t)‖F
−σ ≤ C(1 + |t|)〈β/2−1/2〉‖Ψ0‖Fσ , t ∈ R.

This completes the proof of the lemma and Theorem 3.3.

Corollary 3.8. The asymptotics ( 3.11) imply ( 1.6) with the projector

Pc = 1 −
∑

ωj∈Σ

Pj (3.31)
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