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1 Introduction

We consider complex linear Hamilton operators in a complex Hilbert space
X ,

A= JB, where B∗ = B, J∗ =−J, J2 =−1. (1.1)

In particular, the operatorJ : X →X is bounded. The selfadjoint operator
B is defined on a dense domainD(B)⊂ X . Our aim is to prove the well-
posedness of the Cauchy problem for the equation

Ẋ(t) = AX(t), (1.2)

and obtain a spectral representation for solutions and the corresponding
spectral resolution forA. For example, forJ = i the solutions are given
by X(t) = eiBtX(0). A more general ‘commutative case’, whenJB= BJ,
reduces toJ = i, sinceJB= iB1, whereB1 = −iJB is the selfadjoint op-
erator. However,JB 6= BJ for linearizations ofU(1)-invariant nonlinear
Schrödinger equations as shown in Appendix of [26].

We develop the theory in the case of nonnegative ‘energy operators’B
with spectral gap and finite ‘degeneracy of the vacuum’:

Condition I σ(B)⊂ {0}∪ [δ ,∞), δ > 0 (1.3)

Condition II dimKerB< ∞. (1.4)

These conditions hold, in particular, for all equations considered in [20]–
[23]. The motivation for the theory was discussed in [26], inwhich the
simplest caseσ(B)⊂ (δ ,∞) (i.e., dim KerB= 0) was studied.

We reduce the problem to a selfadjoint generator developinga special
version of M. Krein’s spectral theory ofJ-selfadjoint operators in Hilbert
spaces with indefinite metric [2], [27]. We apply this version for justifi-
cation of the eigenfunction expansions for the linearization of relativistic
nonlinear Ginzburg–Landau equation [22]. The generator ofthe lineariza-
tion reads

A=

(

0 1
−S 0

)

, (1.5)

whereS:=− d2

dx2 +m2+V0(x). Our results are concerned with the follow-
ing:

• The existence and uniqueness and formula for generalized solutions
to (1.2) under conditions (1.3), (1.4) for all initial states X with finite en-
ergy〈BX,X〉. Here,〈·, ·〉 stands for the scalar product inX .
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• The eigenfunction expansion
(

ψ(t)
ψ̇(t)

)

= tΦ0+Ψ0+∑e−iωktCkak+

∫

|ω|≥m
e−iωtC(ω)aω dω (1.6)

for solutions to (1.2) with generator (1.5). Here,Φ0 ∈ KerA, andak are
the eigenvectors ofA, Ψ0 is the associated eigenvector toΦ0, while aω are
generalized eigenfunctions ofA.

Such eigenfunction expansions were used in [4, 5, 22] for thecal-
culation of ‘Fermi Golden Rule’ (FGR) in the context of the nonlinear
Schrödinger and Klein–Gordon equations. This is a nondegeneracy con-
dition, which was introduced in [42] in the framework of nonlinear wave
and Schrödinger equations. This condition means a strong coupling of
discrete and continuous spectral components of solutions providing the ra-
diation of energy to infinity and which results in the asymptotic stability
of solitary waves. The calculation of FGR, as given in [4, 5, 26], relies
on eigenfunction expansions of type (1.6). Our main Theorem6.4 justifies
the eigenfunction expansion [22, (5.14)], for which no detailed proof was
given before. This justification was one of our main motivation for writing
the present paper.

The eigenfunction expansion (1.6) extends our previous result [26],
where the expansion was established only for odd solutions.In this frame-
work we have KerB= 0 andΦ0 = Ψ0 = 0. This framework was sufficient
for the proof of asymptotic stability of standing solitons for the nonlin-
ear relativistic Ginzburg–Landau equations under odd perturbations [22].
However, to establish the asymptotic stability under arbitrary perturbations
we need the expansion (1.6) for solutions without antisymmetry.

Let us comment on our approach. First, we reduce the abstractproblem
(1.2) under conditions (1.3), (1.4) to a selfadjoint generator justifying the
classical M. Krein transformation [10]. This reduction is aspecial version
of spectral theory ofJ-selfadjoint operators in Hilbert spaces with indefi-
nite metric [2, 27], extending our approach [26] to the case KerB 6= 0. This
extension required new robust ideas i) to analyze the structure of spectrum
of the reduced selfadjoint operator, and ii) to find the canonical form of the
Hamilton operator. We provide a broad range of examples satisfying all
the imposed conditions (1.3),(1.4), (2.12), and (3.1).

Second, we apply this abstract spectral theory to operator (1.5) and
construct the eigenfunction expansion for the reduced selfadjoint operator
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following the method of Section 5 from [26]. At last, we deduce (1.6) by
extending our approach from [26], which relies on the methods of PDO.

One of our novelties is a vector-valued treatment of the convergence of
the integral over the continuous spectrum in (1.6). Namely,we show that
the integral is the limit of the corresponding integrals over m≤ |ω| ≤ M
asM → ∞ in the Sobolev spaceH1(R). In its own turn, the integral over
m≤ |ω| ≤ M is absolutely converging in the weightedL2-space with the
weight(1+ |x|)−s, wheres> 1.

Finally, calculation of the symplectic normalization of the generalized
eigenfunctions requires extra arguments pertaining to thenondegenerate
case [26].

We now give some comments on the related works. Some spectral
properties of the Hamilton non-selfadjoint operators werestudied by V. Bus-
laev and G. Perelman [3, 4, 5], M. B. Erdogan and W. Schlag [8, 39],
S. Cuccagna, D. Pelinovsky and V. Vougalter [7]. It is worth noting that
the eigenfunction expansions ofJ-selfadjoint operators were not justified
previously.

Spectral resolution of boundedJ-selfadjoint nonnegative operators in
Krein spaces was constructed by M. Krein, H. Langer and Yu. Shmul’yan
[27, 28], and extended to unboundeddefinitizableoperators by M. Krein,
P. Jonas, H. Langer and others [13, 14, 16, 29, 30]. The corresponding
unitary operators were examined by P. Jonas [15]. However, the spectral
resolution alone is insufficient for justification of eigenfunction expansion.
Our version of the theory under conditions (1.3), (1.4) allows us to justify
the eigenfunction expansion (1.5).

The spectral theory of definitizable operators was applied to the Klein–
Gordon equations with non-positive energy by P. Jonas, H. Langer, B. Naj-
man and C. Tretter [17, 18, 31, 32, 33], where the existence and uniqueness
of classical solutions were proved, and the existence of unstable eigenval-
ues (imaginary frequencies) was studied. The instability is related to the
knownKlein paradoxin quantum mechanics [38].

The scattering theory for the Klein–Gordon equations with non-positive
energy was developed by C. Gérard and T. Kako using the theory of defini-
tizable operators in Krein spaces [9, 19].

The plan of our paper is as follows. In Section 2, we justify the M. Krein
transformation under conditions (1.3), (1.4), and find the structure of spec-
trum of the corresponding selfadjoint generator. In Section 3, we construct
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the spectral representation for solutions to (1.2) and deduce the canoni-
cal form of the Hamilton generator. In Section 4, we check allconditions
(1.3), (1.4), (2.12), and (3.1) for operator (1.5). In Sections 5 and 6, we jus-
tify the eigenfunction expansion (1.6) by applying the methods of Sections
3–4. In Section 7, we calculate symplectic normalization ofthe general-
ized eigenfunctions. Finally, in the Appendix we constructexamples of
Hamilton equations satisfying all the imposed conditions.

Acknowledgments.The authors take pleasure in thanking A. Kostenko
and G. Teschl for useful discussions on spectral theory ofJ-selfadjoint op-
erators.

A.K. was supported partly by Alexander von Humboldt Research Award,
Austrian Science Fund (FWF): P22198-N13, and the Russian Foundation
for Basic Research.

E.K. was supported partly by Austrian Science Fund (FWF): M1329-
N13, and the Russian Foundation for Basic Research.

2 Reduction to symmetric generator

In this section, we shall reduce (1.2) to an equation with selfadjoint gener-
ator.

2.1 Generalized solutions

Throughout the paper,D(B) is a dense domain of the selfadjoint operator
B. We setΛ := B1/2 ≥ 0 and denote byV ⊂X the Hilbert space which is
the domain ofΛ endowed with the norm

‖X‖V := ‖ΛX‖X +‖X‖X . (2.1)

We have the continuous injections of Hilbert spacesV ⊂ X , and the op-
erator

Λ : V → X (2.2)

is continuous. By definition (2.1),

K ⊂ V . (2.3)

For example,V becomes the Sobolev spaceH1(Rn) if X = L2(Rn) and
A=−i∆.

4



SinceΛ andB are selfadjoint operators, we have

X =K ⊕R, K :=KerΛ=KerB, R :=RanΛ=RanB=K
⊥. (2.4)

Further, we assume henceforth thatR is endowed with the norm ofX .
ThenΛ+ := Λ|R : R∩V → R is an invertible operator by (1.3); i.e.,

Λ−1
+ : R → V (2.5)

is the bounded operator. We will consider solutions

X(t)∈C(R,V ) (2.6)

to equation (1.2). The equation will be understood in the sense ofmild
solutions[6]

X(t)−X(0) = A
∫ t

0
X(s)ds, t ∈ R, (2.7)

where the Riemann integral converges inV by (2.6).

2.2 Krein substitution

Let us reduce equation (2.7) by the well-known substitution

Z(t) := ΛX(t) ∈C(R,R) (2.8)

used by M. Krein in the theory of parametric resonance: see formula (1.40)
of [10, Chapter VI]. ApplyingΛ to both sides of equation (2.7), we obtain

Z(t)−Z(0) = ΛJΛ
∫ t

0
Z(s)ds, t ∈ R. (2.9)

Formally, (2.9) reads

iŻ(t) = HZ(t), t ∈ R, (2.10)

whereH stands for the ‘Schrödinger operator’

H = ΛiJΛ, (2.11)

which is ’formally symmetric’.
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2.3 Equivalence of reduction

In order to prove the equivalence of equations (1.2) and (2.10) we introduce
the following new condition.

Condition III JK ⊂ V . (2.12)

We denote byΠK : X → K the orthogonal projection, and set

P := ΠK JΛ.

Lemma 2.1. Let conditions(1.4) and (2.12)hold. Then the operator P:
X → V is continuous.

Proof. It suffices to note that

ΠK JΛ =
N

∑
1
|Yk〉〈Yk|JΛ =−

N

∑
1
|Yk〉〈ΛJYk|, (2.13)

whereYk ∈ K ⊂ V , N = dimK , andΛJYk ∈ X by (2.12).

Equation (2.7) withX(t)∈C(R,V ) can be written as

X(t)−X(0) = JΛ
∫ t

0
Z(s)ds, t ∈ R. (2.14)

By Lemma 2.1 this equation implies the system

XR(t)−XR(0) = (1−ΠK )JΛ
∫ t

0
Z(s)ds

XK (t)−XK (0) = ΠK JΛ
∫ t

0
Z(s)ds,

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.15)

whereXK (t) = ΠK X(t) andXR(t) = (1−ΠK )X(t).

Lemma 2.2. i) Let X(t)∈C(R,V ) be a solution to(1.2) in the sense(2.7).
Then Z(t) = ΛX(t) ∈C(R,R) is the solution to(2.10)in the sense(2.9).

ii) Let Z(t) ∈C(R,R) be a fixed solution to(2.10)in the sense(2.9). Then
there exists a unique solution X(t) ∈ C(R,V ) to (1.2) in the sense(2.7)
satisfying(2.8).
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Proof. It suffices to prove ii). The uniqueness holds, because

XR(t) = Λ−1
+ Z(t), XK (t)−XK (0) = ΠK JΛ

∫ t

0
Z(s)ds, (2.16)

where the first equation follows from (2.8), and the second one, from the
second equation of (2.15).

To prove the existence we defineXR(t) andXK (t) by (2.16). Then
(2.8) holds, andX(t) = XR(t)+XK (t) ∈C(R,V ). Hence, the first equa-
tion (2.16) together with (2.9) and (2.8) imply that

XR(t)−XR(0) = Λ−1
+ [Z(t)−Z(0)] = Λ−1

+ ΛJΛ
∫ t

0
Z(s)ds

= (1−ΠK )JΛ2
∫ t

0
X(s)ds. (2.17)

Finally, the second equation (2.16) can be written as

XK (t)−XK (0) = ΠK JΛ2
∫ t

0
X(s)ds (2.18)

by (2.8). Summing up, we obtain (2.7).

2.4 Symmetry and spectrum

The domain ofH is equal to

D(H) = {Z ∈ V : JΛZ ∈ V }= Λ−1
R
(JV ∩R)+K . (2.19)

Obviously, the operatorH is symmetric onD(H), and hence,H is a clos-
able operator inX . However, we still do not know whether its domain is
dense inX . This is why we need our last condition

Condition IV H∗ = H. (2.21)

A broad range of examples is provided by Lemma A.2. A concreteexam-
ple is given by (4.11).

Theorem 2.3.Let conditions(1.3), (1.4), (2.12), and(2.21)hold. Then

σ(H)⊂ (−∞,−ε]∪0∪ [ε,∞) (2.22)

with someε > 0.
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Proof. OperatorΛ+ΠK : V → X is invertible by condition (1.3), since
(Λ+ΠK )|K = ΠK and(Λ+ΠK )|R = Λ+. Hence, the operator

H+ := (Λ+ΠK )iJ(Λ+ΠK ) (2.23)

is also invertible; i.e., its inverse

H−1
+ := (Λ+ΠK )−1iJ(Λ+ΠK )−1 (2.24)

is a bounded operator onX . On the other hand, this operator is symmetric
on X , and hence it is selfadjoint. Moreover,H+ is injective operator on
X . Hence, Theorem 13.11 (b) of [37] implies thatH+ is a selfadjoint
operator with a dense domainD(H+). Further,

H+ = H +ΠK iJ(Λ+ΠK )+(Λ+ΠK )iJΠK +ΠK iJΠK

= H +T. (2.25)

Here,ΠK iJ(Λ+ΠK ) andΠK iJΠK are finite-range operatorsV → V .
On the other hand, (2.12) implies that(Λ+ΠK )iJΠK is also a finite-range
operator fromV to V . Hence,T : V → V is the finite-range operator
which is symmetric inX . As the result, (2.25) implies thatH is defined
and symmetric onD(H+).

Further, the resolvent(H+−λ )−1 : X → X is bounded and analytic
in a small complex neighborhoodO of λ = 0, and

H −λ = H+−λ −T = [1−T(H+−λ )−1](H+−λ ), λ ∈ O . (2.26)

Here, the operatorH−λ is invertible for Imλ 6= 0 by (2.21), whileH+−λ
is invertible in a small complex neighborhoodO of λ = 0. Hence, Ker[1−
T(H+−λ )−1] = 0 for λ ∈ O with Imλ 6= 0. Therefore, 1−T(H+−λ )−1

is invertible for theseλ by Fredholm’s theorem, inasmuch asT is a finite-
rank operator. Hence, it is also invertible inO outside a discrete set. Now
(2.26) implies (2.22).

Remark 2.4. Let conditions(1.3), (1.4), and(2.12)hold. Then

i) The domain of H is dense inX , as is shown in the proof of Theorem2.3.

ii) H admits selfadjoint extensions, because

N+ = N−, N± := dim[Ran(H ∓ i)]⊥. (2.27)
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Indeed,Ran(H+−λ ) = X for λ from a small complex neighborhoodO
of λ = 0. On the other hand, the dimension of(Ran[1−T(H+−λ )−1])⊥

is constant inO outside a discrete set, because T is a finite-rank operator.
Therefore, (2.26) implies thatdim[Ran(H − λ )]⊥ is also constant inO
outside a discrete set, verifying (2.27).

3 Dynamical group and canonical form

We construct spectral representation for solutions to (1.2) and deduce the
canonical form of the Hamilton generator.

3.1 Spectral representation of solutions

We will construct solutions to (2.10), and afterwords, reconstruct the cor-
responding solutions to (1.2). The Spectral Theorem implies the following
lemma.

Lemma 3.1. Let conditions(1.3), (1.4), (2.12), (3.1)hold. Then, for any
Z(0) ∈ R, equation(2.10)admits a unique solution Z(t) ∈C(R,R) in the
sense(2.9). The solution is given by

Z(t) = e−iHt Z(0) ∈C(R,R). (3.1)

Now we can reconstruct solutions to (1.2) using formulas (2.16):

X(t) = Λ−1
+ e−iHt ΛX(0)+XK (0)+P

∫ t

0
e−iHsΛX(0)ds, (3.2)

where the operatorP : R → V is bounded by Lemma 2.1. To evaluate
the integral in (3.2), we denote byΠ0 andΠR, respectively, the spectral
projections ofX onto KerH ∩R andR := RanH ⊂ R. Obviously,

e−iHs = Π0+e−iHRsΠR,
∫ t

0
e−iHsds= tΠ0+ i(e−iHRt −1)H−1

R ΠR, (3.3)

whereHR := H|R∩D(H). Now (3.2) reads

X(t) = Λ−1
+ e−iHt ΛX(0)+XK (0)

+tPΠ0ΛX(0)+ iP(e−iHRt −1)H−1
R ΠRΛX(0). (3.4)

Lemmas 3.1 and 2.2 imply the following proposition.
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Proposition 3.2. Let conditions(1.3), (1.4), (2.12), (3.1)hold. Then, for
any X(0) ∈ V ,

i) Equation(1.2)admits a unique solution X(t) ∈C(R,V ).

ii) The solution admits the spectral representation(3.4).

3.2 Spectral resolution

Representation (3.4) can be written as

eAt = Λ−1
+

∫

R

e−iωtdE(ω)Λ+ΠK

+tPΠ0Λ+ iP
∫

|ω|≥ε

e−iωt −1
ω

dE(ω)Λ, (3.5)

wheredE(ω) denotes the spectral family ofH, andε > 0 is the number
from (2.22). Formally,

eAt =
∫

R

e−iωtdF(ω), (3.6)

where

dF(ω) =
[

Λ−1
+ +

iP
ω

]

χε(ω)dE(ω)Λ

+
[

ΠK − iP
∫

|ω|≥ε

dE(ω)

ω
Λ
]

δ (ω)dω

+Λ−1
+ Π0Λδ (ω)dω − iPΠ0Λδ ′(ω)dω, (3.7)

andχε is the indicator of the set|ω| ≥ ε. Settingt = 0 in both sides of
(3.6) and in their derivatives, we formally obtain

1=

∫

R

dF(ω), A=−i
∫

R

ω dF(ω). (3.8)

3.3 Canonical form

First we will identify the eigenvectors and the associated eigenvectors of
A formally relying on (3.8). Afterwords, we will prove the identifications
rigorously.
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The setW := {X ∈V : ΛX ∈D(H)} is dense inV under our conditions
(1.3) and (1.4). Let us apply the both sides of identities (3.8) to an arbitrary
X ∈ W . Using (3.7), we formally obtain

X =
∫

R

dF(ω)X = Xε +X0+Xa,

AX = −i
∫

R

ωdF(ω)X = AXε +AX0+AXa, (3.9)

where

Xε :=
∫

|ω|≥ε

[

Λ−1
+ +

iP
ω

]

dE(ω)ΛX

AXε = −i
∫

|ω|≥ε

[

ωΛ−1
+ + iP

]

dE(ω)ΛX (3.10)

X0 :=
[

ΠK − iP
∫

|ω|≥ε

dE(ω)

ω
Λ
]

X, AX0 = 0, (3.11)

Xa := Λ−1
+ Π0ΛX, AXa = PΠ0ΛX. (3.12)

Here, (3.10) means the expansion over the eigenvectors witheigenvalues
−iω, while (3.11), with the zero eigenvalue. Formula (3.12) means that
Xa is the associated eigenvector to the eigenvectorPΠ0ΛX, which corre-
sponds to the zero eigenvalue. We justify the formal calculations (3.9)–
(3.12) in the following lemma.

Lemma 3.3. Formulas(3.9)–(3.12)hold for X∈ W .

Proof. i) Formulas (3.9) and (3.11) are obvious.

ii) The last formula of (3.12) follows from the fact thatAXa = JΛΠ0ΛX =
ΠK JΛΠ0ΛX, sinceΛJΛΠ0ΛX =−iHΠ0ΛX = 0 by definition ofΠ0.

iii) Finally, let us prove (3.10). The representation (3.4)implies thatẊ(·)∈
C(R,V ) for X(0) ∈ W since

Ẋ(t) =−iΛ−1
+ e−iHt HΛX(0)+PΠ0ΛX(0)+Pe−iHRtΠRΛX(0) (3.13)

by Hille–Yosida’s theorem [37, Theorem 13.35 (c)]. On the other hand,
according to (2.7),

X(t+∆t)−X(t)
∆t

= A

∫ t+∆t

t
X(s)ds

∆t
. (3.14)
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Here the left hand side converges toẊ(t) in V as∆t → 0, sinceẊ(·) ∈
C(R,V ), and the quotient on the right converges toX(t) in V by (2.6).
Hence, making∆t → 0 we obtain

Ẋ(t) = AX(t), (3.15)

since the operatorA = JB is closed inX . Settingt = 0 in (3.13) and
(3.15), and writingX instead ofX(0), we obtain

AX= −iΛ−1
+ HΛX+PΠ0ΛX+PΠRΛX

= −i
∫

|ω|≥ε

[

ωΛ−1
+ + iP

]

dE(ω)ΛX+PΠ0ΛX, X ∈ W . (3.16)

On the other hand,AX= AXε +AX0+AXa = AXε +PΠ0ΛX by (3.11) and
(3.12). Hence, (3.16) implies (3.10).

Corollary 3.4. The nontrivial Jordan blocks occur only forλ = 0; they are
of size2×2 (in accordance with[29, Proposition 5.1]), and their number
is dimKerHR = dim[KerH ∩R] where HR := H|R∩D(H). This number is
finite by(1.4).

Further, we setΠR := 1−ΠK and introduce the ‘Green operator’

G := Λ−1
+ ΠR + iPH−1

R ΠR. (3.17)

It is continuous fromX to V by our conditions (1.3) and (2.12) according
to Lemma 2.1. Therefore, formulas (3.10) can be rewritten as

Xε =G
∫

|ω|≥ε
dE(ω)ΛX, AXε =−iG

∫

|ω|≥ε
ωdE(ω)ΛX, X ∈W ,

(3.18)
since the both integrals converge inX and belong toR⊂ R.

Corollary 3.5. Let hk ∈ X be an eigenfunction of H corresponding to an
eigenvalueωk 6= 0. Then

ak := Ghk ∈ V (3.19)

is the eigenfunction of A corresponding to the eigenvalue−iωk.
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4 Application to eigenfunction expansion

We are going to apply our results to justify the eigenfunction expansion
(1.6) in the context of the system considered in [22]. We haveused this
expansion for the calculation of the Fermi Golden Rule [22, (5.14)].

4.1 Linearization at the kink

In [22, 23] we studied the 1D relativistic Ginzburg–Landau equation

ψ̈(x, t) =
d2

dx2ψ(x, t)+F(ψ(x, t)), x∈ R (4.1)

for real solutionsψ(x, t). Here,F(ψ) =−U ′(ψ), whereU(ψ) is similar to
the Ginzburg–Landau potentialUGL(ψ)= (ψ2−1)2/4, which corresponds
to the cubic equation withF(ψ) =ψ−ψ3. Namely,U(ψ) is a real smooth
even function satisfying the following conditions:

U(ψ) > 0, ψ 6=±a

U(ψ) = m2

2 (ψ ∓a)2+O(|ψ ∓a|14), x→±a.

∣

∣

∣

∣

∣

∣

(4.2)

wherea,m> 0. The main goal of [22, 23] was to prove the asymptotic
stability of solitons (kinks)ψ(x, t) = sv(x− vt) that move with constant
velocity |v|< 1, and

sv(x)→±a, x→±∞. (4.3)

Substitutingψ(x, t) = sv(x− vt) into (4.1), we obtain the corresponding
stationary equation

v2s′′v(x) = s′′v(x)+F(sv(x)), x∈ R. (4.4)

The linearization of (4.1) at the kinksv(x−vt) in the moving frame reads
as (1.2) withX = (ψ, ψ̇) ∈ L2(R)⊗C

2 (for the corresponding complexifi-
cation) and with the generator [23, (4.6)]

Av =

(

v d
dx 1

d2

dx2 −m2−Vv(x) v d
dx

)

. (4.5)
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Here, the potential

Vv(x) =−F ′(sv(x))−m2 ∈C∞(R). (4.6)

The kink sv(x) is an odd monotone function in a suitable coordinatex,
while F ′(ψ) = −U ′′(ψ) is an even function ofψ. Hence, the potential
Vv(x) is an even function ofx. Moreover,

|Vv(x)| ≤Ce−κ|x|, x∈ R, (4.7)

whereκ > 0. The generator (4.5) has the formAv = JBv with

Bv =

(

Sv −v d
dx

v d
dx 1

)

, J :=

(

0 1
−1 0

)

, (4.8)

whereSv := − d2

dx2 +m2 +Vv(x). Obviously,JBv 6= BvJ. Differentiating
(4.4), we obtain

[

Sv+v2 d2

dx2

]

s′v(x) = 0. (4.9)

4.2 Spectral conditions

Conditions (1.4), (2.12) hold for operators (4.8) onX := L2(R)⊗C2 by
Lemma A.2. Condition (1.3) for all|v|< 1 follows from Lemmas A.1 and
A.2 of [26]. Here, we check (1.3) in the casev= 0 for the completeness
of the exposition. We will writeA, B andS, respectively, instead ofA0, B0
andS0:

A=

(

0 1
−S 0

)

, B=

(

S 0
0 1

)

, (4.10)

whereS:=− d2

dx2 +m2+V0(x). The operatorsB andSare essentially self-
adjoint inL2(R)⊗C2 andL2(R), respectively, by (4.7) and Theorems X.7
and X.8 of [35]. We will consider the closures ofB andS, which are both
selfadjoint. In this case,

Λ := B1/2 =

( √
S 0

0 1

)

, H := ΛiJΛ = i

(

0
√

S
−
√

S 0

)

= iJ
√

S.

(4.11)
Hence, the operatorH is also selfadjoint on the domainD(

√
S)⊕D(

√
S).

Thus, condition (2.21) holds in our case.
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Lemma 4.1.Condition(1.3)holds for the operator B onX = L2(R)⊗C2.

Proof. Equation (4.9) withv = 0 means thatλ = 0 ∈ σpp(S). Moreover,
λ = 0 is the minimal eigenvalue ofS, since the corresponding eigenfunc-
tion s′0(x) does not vanish [23, (1.9)]. Hence,

σ(S)⊂ [0,∞), KerS= (s′0(x)). (4.12)

Further, the continuous spectrum ofS lies in [m2,∞), and hence (4.12)
implies

σ(S) = {λ0, . . . ,λN}∪ [m2,∞), (4.13)

where 0= λ0 < .. . < λN < m2. Finally,σ(B) = σ(S)∪{1}, by (1.3).

We will assume below the following spectral condition (imposed in
[22])) at the edge point of the continuous spectrum ofS:

The point m2 is neither an eigenvalue nor a resonance of S.(4.14)

This condition provides a regularity of the eigenvalue expansion (1.6) at
the edge points±m of the continuous spectrum.

5 Orthogonal eigenfunction expansion

We are going to apply Proposition 3.2 to the case of operators(4.10). First,
(4.13) implies that

σ(H) = (−∞,−m]∪{ω−N, . . . ,ω−1,ω0,ω1, . . . ,ωN}∪ [m,∞), (5.1)

whereω2
±k = λk for k = 0, . . . ,N. We denote byσc = (−∞,−m]∪ [m,∞)

the continuous spectrum ofH, and

Ψ0 = Λ−1
+ Π0ΛX(0), Φ0 = PΠ0ΛX(0). (5.2)

ThenAΨ0=0 andAΨ0=Φ0 by (3.12), and hence,tΦ0+Ψ0 is the solution
to (1.2). Now formula (3.5) can be rewritten as

X(t) = eAtX(0) = tΦ0+Ψ0+
N

∑
−N

e−iωktCkak

+
∫

σc

[

Λ−1
R

+
iP
ω

]

e−iωtdE(ω)ΛX(0). (5.3)
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Here,a0 ∈ K and

ak =
[

Λ−1
R

+
iP
ωk

]

hk = Ghk ∈ X , k 6= 0, (5.4)

wherehk ∈R are the eigenfunctions ofH corresponding to the eigenvalues
ωk 6= 0. By Corollary 3.5,ak are the eigenfunctions ofA corresponding to
the eigenvalues−iωk.

Let us denote byXc(t) the integral in (5.3):

Xc(t) =
∫

σc

[

Λ−1
R

+
iP
ω

]

e−iωtdE(ω)ΛX(0). (5.5)

To prove (1.6), it remains to justify the eigenfunction expansion

Xc(t) =
∫

σc

e−iωtC(ω)aω dω, (5.6)

whereaω are the generalized eigenfunctions ofA corresponding to the
eigenvalues−iω, and the meaning of the convergence of the integral will
be specified later. Then (1.6) will follow from (5.3).

By (5.3), the functionXc(t) is the solution to (1.2), and hence

Zc(t) := ΛXc(t) =
∫

σc

e−iωtdE(ω)ΛX(0) (5.7)

is the solution to (2.10). We will deduce (5.6) from the corresponding
representation

Zc(t) =
∫

σc

e−iωtC(ω)hω dω, (5.8)

wherehω are generalized eigenfunctions ofH corresponding to the eigen-
valuesω normalized by

〈hω ,hω ′〉= 2π δ (ω −ω ′), ω,ω ′ ∈ σc. (5.9)

The normalization means by definition, that

〈Z1,Z2〉 = 2π
∫

m≤|ω|≤M
C1(ω)C2(ω)dω

for Zk =
∫

m≤|ω|≤M
Ck(ω)hωdω ∈ X

∣

∣

∣

∣

∣

∣

∣

∣

∣

(5.10)
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For ρ ∈ R we denote byL2
ρ = L2

ρ(R) the weighted Hilbert space with the
norm

‖ψ‖2
L2

ρ
:=
∫

〈x〉2ρ |ψ(x)|2dx, 〈x〉 := (1+x2)1/2 . (5.11)

Theorem 5.1.Let condition(4.14)hold and s> 1. Then, forω ∈ σc, there
exists hω ∈ L2

−s⊗C2 such that:

i) hω is a continuous function ofω ∈ σc with values in L2−s⊗C2.

ii) The normalization (5.9) holds.

iii) hω are the generalized eigenfunctions of H, i.e.,

HZ =
∫

σc

ω C(ω)hω dω if Z =
∫

σc

C(ω)hω dω ∈ D(H). (5.12)

iv) The eigenfunction expansion(5.8)holds in the following sense:
∥

∥

∥
Zc(t)−

∫

m≤|ω|≤M
e−iωtC(ω)hω dω

∥

∥

∥

L2⊗C2
→ 0, M → ∞. (5.13)

Proof. i) We construct the generalized eigenfunctions and the eigenfunc-
tion expansion (5.8) by solving equation (2.10) forZc(t) = (Zc

1(t),Z
c
2(t)).

By (4.11), the equation is equivalent to the system

Żc
1(t) =

√
SZc

2(t), Żc
2(t) =−

√
SZc

1(t). (5.14)

EliminatingZc
2(t), we obtain

Z̈c
1(t) =−SZc

1(t). (5.15)

Further we apply Theorem XI.41 of [36] and the arguments of [36, pp
114-115]. Namely, the rapid decay (4.7) and our spectral condition (4.14)
imply the following Limiting Absorption Principle (LAP) [1, 24, 36]:

R(λ ± iε)→ R±(λ ), ε →+0, λ ∈ [m2,∞), (5.16)

whereR(z) := (S−z)−1 and the convergence holds in the strong topology
of the space of continuous operatorsL2

s → L2
−s with s> 1. Moreover, the

traces of the resolventR±(λ ) are continuous functions ofλ ≥ m2 with val-
ues inL(L2

s,L
2
−s). The continuity atλ > 0 has been established by Agmon,

see [1, 24]. The continuity atλ = 0 under condition (4.14) is proved in
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[25, formulas (3.12)]. The LAP serves as the basis for the eigenfunction
expansion

Zc
1(t) =

∫

σc

dE (ω2)[Zc
1(0)cosωt +Zc

2(0)sinωt]

=

∫

σc

e−iωtC(ω)eω dω, (5.17)

wheredE (λ ) is the spectral resolution ofS, whileeω ∈ L2
−s are generalized

eigenfunctions ofS corresponding to the eigenvaluesω2 ≥ m2. Here the
first identity follows by Spectral Theorem, while the secondfollows by
Theorem XI.41 (e) of [36]. The eigenfunctions are defined by formulas of
[36, pp 114-115]:

eω =W∗(ω) fω , W(ω) := [1+VR0(ω2+ i0)]−1, ω ∈ σc. (5.18)

where fω(x) := sin|ω|x andR0(λ ) := (−∆+m2−λ )−1.
The operatorW(ω) is a continuous function ofω ∈ σc with values in

L(L2
s,L

2
s) by the formula

[1+VR0(λ )]−1 = 1−VR(λ ) (5.19)

and the decay (4.7). Respectively, the adjoint operatorW∗(ω) is a contin-
uous function ofω ∈ σc with values inL(L2

−s,L
2
−s). As the result,eω is a

continuous function ofω ∈ σc with values inL2
−s. The normalization of

eω coincides with the same of the ’free’ generalized eigenfunctions fω :

〈eω ,eω ′〉= π δ (|ω|− |ω ′|) , ω,ω ′ ∈ σc, (5.20)

which follows from the last formula on page 115 of [36]. Finally, Theorem
XI.41 (e) of [36] implies that the last integral (5.17) converges inL2 =
L2(R):

‖Zc
1(t)−

∫

m≤|ω|≤M
e−iωtC(ω)eω dω‖L2 → 0 , M → ∞. (5.21)

Now (5.8) for Zc
1(t) follows from (5.17). ForZc

2(t) we use the first
equation of (5.14), which implies

Zc
2(t) =−i

∫

σc

sgnω e−iωtC(ω)eω dω. (5.22)
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Combining (5.17) and (5.22), we obtain (5.8) with

hω :=

(

1
−i sgnω

)

eω , (5.23)

which is the continuous function ofω ∈ σc with values inL2
−s⊗C2.

ii) Normalization (5.9) follows from (5.20).

iii) Zc(t) ∈ D(H) means thatZc
1,2(t) ∈ D(

√
S). Furthermore,

HZc(t) = i
√

S

(

Zc
2(t)

−Zc
1(t)

)

. (5.24)

Now (5.12) follows from the expansions (5.17) and (5.22) forZc
1,2(t) by

[36, Theorem XI.41 (c)], sinceeω are the generalized eigenfunctions ofS
with the eigenvaluesω2, andformally,

i
√

S

(

−i sgnω
−1

)

eω =

(

sgnω
−i

)

|ω|eω = ωhω . (5.25)

iv) (5.13) follows from (5.21) and similar convergence forZc
2.

6 Nonorthogonal eigenfunction expansion

Let us denote byZc
M(t,x) the integral in (5.13). This integral is defined for

almost allx; i.e.,

Zc
M(t,x) :=

∫

m≤|ω|≤M
e−iωtC(ω)hω(x) dω, a.a. x∈ R. (6.1)

To justify (5.6) we should adjust the meaning of this integral relying on the
following lemma, which is proved in [26].

Lemma 6.1([26, Lemma 5.1]). Let condition(4.14)hold. Then

i) The integral(6.1)converges absolutely in L2
−s⊗C2 for every s> 1:

∫

m≤|ω|≤M
‖C(ω)hω‖L2

−s⊗C2 dω < ∞, M > m. (6.2)

ii) The integral of these L2−s⊗C2-valued functions over m≤ |ω| ≤ M co-
incides with(6.1)almost everywhere.

Further, we expressXc(t) in terms ofZc(t) and the Green operator
(3.17), and prove the appropriate continuity ofG, which allows us to de-
duce (5.6) from (5.13).
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6.1 Reconstruction via the Green operator

Similarly to (3.18), we use (5.7) to rewrite integral (5.5) as

Xc(t) = G
∫

σc

e−iωtdE(ω)ΛX(0) = GZc(t), (6.3)

taking into account thatZc(t) ∈ R⊂ R and that the Green operatorG :
X → V is continuous. Now (5.8) implies that

Xc(t) = G
∫

σc

e−iωtC(ω)hωdω. (6.4)

Similarly to (3.18),

AXc(t)=−iG
∫

σc

e−iωtω dE(ω)ΛX(0)

=−iGH
∫

σc

e−iωtdE(ω)ΛX(0) =−iGHZc(t), X(0) ∈ W . (6.5)

Therefore, (5.12) gives

AXc(t) =−iG
∫

σc

e−iωtω C(ω)hωdω. (6.6)

6.2 Continuity of the Green operator

Now we are going to establish the continuity of the Green operator G in
the weighted norms (5.11). We will simplify the form ofG in the concrete
case (4.11) by proving that

PH−1
R = ΠK JΛH−1

R = 0. (6.7)

First we note that

KerH = KerS⊕KerS, R= RanH = RanS⊕RanS

by (4.11). Further, we set

S+ := S|RanS : RanS∩D(S)→ RanS,
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and letP0 denote the orthogonal projection ofL2(R) onto KerS. Then
P+ := 1−P0 is the orthogonal projection ofL2(R) onto RanS, and now
(4.11) implies

ΠK =

(

P0 0
0 0

)

, ΠR =

(

P+ 0
0 1

)

,

Π0 =

(

P0 0
0 P0

)

, ΠR =

(

P+ 0
0 P+

)

.

Hence, finally,

H−1
R = i

(

0 S−1/2
+

−S−1/2
+ 0

)

(6.8)

by (4.11), and therefore,

JΛH−1
R = i

(

0 1
−1 0

)(

S1/2
+ 0
0 1

)

(

0 S−1/2
+

−S−1/2
+ 0

)

= −i

(

S−1/2
+ 0
0 P+

)

. (6.9)

Applying ΠK , we get (6.7).

Now definition (3.17) implies that

G= Λ−1
+ ΠR . (6.10)

The following lemma is a generalization of [26, Lemma 5.2].

Lemma 6.2. The operator G: L2
ρ ⊗C

2 → L2
ρ ⊗C

2 is continuous for every
ρ ∈ R.

Proof. Using the first formula of (4.11) and the formula forΠR , we get

Λ−1
R

ΠR =

(

S−1/2
+ P+ 0

0 1

)

=

(

QP+ 0
0 1

)

, (6.11)

whereQ := (SP++P0)
−1/2. Hence, it suffices to prove the continuity of

the operatorQ+P+ in L2
ρ , which means the continuity of operator

〈x〉ρQP+〈x〉−ρ : L2(R)→ L2(R). (6.12)
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To prove this continuity, we note thatQ is a PDO of the classHG−1,−1
1 ,

see Definition 25.2 in [40]. This fact follows from [12, Theorem 29.1.9]
and also by an extension of [40, Theorem 11.2] to PDOs with nonempty
continuous spectrum. It is important that operatorQ is a PDO with the
main symbolξ 2, and

ξ 2 6∈ (−∞,0], ξ 6= 0; σ(S+)∩ (−∞,0] = /0

by (4.12). Hence, conditions (10.1) and (10.2) of [40] hold.
Now the continuity (6.12) follows by the Theorem of Composition of

the PDO.

Lemma 6.2 withρ =−s and Lemma 5.1 imply (cf. (5.4)) that

aω := Ghω ∈ L2
−s⊗C

2, s> 1. (6.13)

Now we can prove the following lemma.

Lemma 6.3. aω are the generalized eigenfunctions of A corresponding to
the eigenvalues−iω.

Proof. Formulas (6.4) and (6.6) imply that

Xc(t) =
∫

σc

e−iωtC(ω)aωdω, AXc(t) =
∫

σc

e−iωtω C(ω)aωdω, (6.14)

for Xc(0) ∈ W by definition (6.13), Lemma 6.1 and the last corollary with
ρ = −s< −1. These identities mean thataω are the generalized eigen-
functions in the sense of [36, (80b)].

Finally, the main result of our paper is the following.

Theorem 6.4. Let condition(4.14)hold, X(0) ∈ V and s> 1. Then the
eigenfunction expansion(5.6)holds in the following sense(cf. (5.13)):

∥

∥

∥
Xc(t)−

∫

m≤|ω|≤M
e−iωtC(ω)aω dω

∥

∥

∥

V
→ 0, M → ∞, (6.15)

where the integral converges in L2
−s⊗C2, and hence a.e. as in(6.1).

Proof. Formulas (6.3) and (6.13) imply that

Xc(t)−
∫

m≤|ω|≤M
e−iωtC(ω)aω dω

= G
[

Zc(t)−
∫

m≤|ω|≤M
e−iωtC(ω)hω dω

]

. (6.16)

Therefore, (6.15) follows from (5.13), because the Green operator G :
X → V is continuous.
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7 Symplectic normalization

Now let us renormalizehω as follows:

〈hω ,hω ′〉= |ω|δ (ω −ω ′), ω,ω ′ ∈ σc. (7.1)

This means that

〈Z1,Z2〉 =

∫

m≤|ω|≤M
|ω|C1(ω)C2(ω)dω

for Zk =

∫

m≤|ω|≤M
Ck(ω)hωdω ∈ X

∣

∣

∣

∣

∣

∣

∣

∣

∣

(7.2)

similarly to (5.10). We will express these formulas in termsof Xk :=GZk ∈
V and the eigenfunctionsaω := Ghω . First,

Xk =
∫

m≤|ω|≤M
Ck(ω)aωdω (7.3)

by Lemma 6.2. Further,Zk ∈ R, and so (5.12), (7.2) imply that

〈H−1
R Z1,Z2〉=

∫

m≤|ω|≤M
sgnω C1(ω)C2(ω)dω. (7.4)

On the other hand, this scalar product can be expressed inXk.

Lemma 7.1. Let Z1,Z2 be defined as in(7.2). Then

〈H−1
R Z1,Z2〉=−i〈X1,JX2〉. (7.5)

Proof. First,Z1,Z2 ∈ R⊂ R, and hence,

ΠRZk = Zk.

Now (6.10) implies (7.5):

〈X1,JX2〉 = 〈GZ1,JGZ2〉= 〈Λ−1
R

ΠRZ1,JΛ−1
R

ΠRZ2〉

= −〈Λ−1
R

ΠRJΛ−1
R

Z1,Z2〉= i〈H−1
R Z1,Z2〉,
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since

Λ−1
R

ΠRJΛ−1
R

=

(

S−1/2
+ P+ 0

0 1

)(

0 1
−1 0

)(

S−1/2
+ 0
0 1

)

=

(

0 S−1/2
+

−S−1/2
+ 0

)

=−iH−1
R

by the first formula of (4.11) and by (6.11) and (6.8).

Using this lemma and (7.4), we get

− i〈X1,JX2〉=
∫

m≤|ω|≤M
sgnω C1(ω)C2(ω)dω. (7.6)

By definition, (7.3) and (7.6) mean that

〈aω , Jaω ′〉= i sgnω δ (ω −ω ′), ω,ω ′ ∈ σc. (7.7)

Now expansion (5.6) coincides with [5, (2.1.13)], thereby justifying our
calculation of the Fermi Golden Rule for all solutions without the anti-
symmetry condition imposed in [22].

A Examples

Let us show that conditions (1.4), (2.12) and (3.1) hold for elliptic PDO

Pψ(x) =
∫

e−ixξ P(x,ξ )ψ̂(ξ )dξ , (A.1)

which are the main objects of the theory. We will use the classesS
m of

PDO similar to the ones introduced in [11].

Definition A.1. i) P ∈ S m if, for any multiindicesα,β ,

sup
x∈Rn

|(1+ |x|)N∂ α
ξ ∂ β

x P(x,ξ )| ≤CαβN(1+ |ξ |)m−|α|, ξ ∈ R
n (A.2)

with N= 0 for β = 0 and any N> 0 for β 6= 0.

ii) P ∈ S m
0 if (A.2) holds for any multiindicesα,β and all N> 0.

iii) P ∈ S m is elliptic of order m if P= Pm+R, where Pm∈ S m and

|Pm(x,ξ )| ≥C(1+ |ξ |)m, x,ξ ∈ R
n, (A.3)

while R∈ S
µ

0 with µ < m.
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Let H s=H s(Rn) denote the Sobolev spaces, andX = L2(Rn). Any
operatorP∈ S m is continuousHs→ Hs−m for s∈ R, see Theorem 3.1 of
[11].

Lemma A.2. Let B∈ S
m be an elliptic PDO of order m which is sym-

metric on C∞
0 (R

n), and let J∈ S 0 be an elliptic PDO of order0 which is
antisymmetric on C∞0 (R

n). Then

i) B (respectively, J) is selfadjoint(respectively, skew selfadjoint) operator
with domain

D(B) = H
m, D(J) = X . (A.4)

ii) Condition (1.4)holds.

iii) Condition (2.12)holds.

iv) Condition(3.1)holds.

Proof. i) The Fredholm theory of elliptic PDO onRn [40, Section 25.4]
implies thatBψ ∈ X if and only if ψ ∈ H m, and the same is true forB∗.
Hence,D(B∗) = D(B), and therefore,B∗ = B. Similarly,J∗ =−J.

ii) The Fredholm theory of elliptic PDOs onRn implies that the space
K := KerB is finite dimensional andK ⊂ H s for any s∈ R. Hence,
(1.4) holds.

iii) The operatorB+ := B+ΠK and its main symbolBm
+(x,ξ ) satisfy

Bm
+(x,ξ ) 6∈ (−∞,0], ξ 6= 0; σ(B+)∩ (−∞,0] = /0

by (1.3). Therefore, conditions (10.1) and (10.2) of [40] hold for B+, and
hence,Λ+ :=

√
B+ ≥ 0 is also an elliptic PDO of classS m/2. This fol-

lows similarly to Theorem 29.1.9 of [12] and also by an extension of The-
orem 11.2 of [40] to PDO with nonempty continuous spectrum. Finally,
Λ+ = Λ+ΠK . Therefore,V = H m/2, and hence (2.12) holds, inasmuch
asJ ∈ S 0.

iv) The operatorH is elliptic PDO of classS m by the theorem of compo-
sition. It is obviously symmetric onC∞

0 (R
n), and henceH is selfadjoint on

the domainH m by the argument above. Thus (3.1) is established.

Remark A.3. i) An example of elliptic operators B∈ S 2 and J∈ S 0

satisfying all conditions(1.1), (1.3), (1.4), (2.12), (3.1) is provided in
Lemma4.1.
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ii) In the framework of LemmaA.2 we should take m≥ 0 to keep condi-
tion (1.3).

iii) The last condition of(1.1) implies that the order of J should be zero.
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