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Abstract. We derive dispersion estimates for solutions of the one-dimensional
discrete wave equations. In particular, we weaken the conditions on the po-
tentials of previous works.

1. Introduction

We are concerned with the one-dimensional discrete wave equation

ü(t) = −Hu, H := −∆L + q, t ∈ R (1.1)

with a real potential q. Here ∆L is the discrete Laplacian given by

(∆Lu)n = un+1 − 2un + un−1, n ∈ Z.

In matrix form (1.1) reads

iu̇(t) = Hu(t), t ∈ R, (1.2)

where

un(t) =
(
un(t), u̇n(t)

)
, H =

(
0 i

−iH 0

)

We suppose that the potential q satisfies

|qn| ≤ C(1 + |n|)−β , n ∈ Z (1.3)

with some β > 3. We will use the weighted spaces l2σ = l2σ(Z) with the norm

‖u‖l2
σ

= ‖(1 + |n|)σu‖l2 , σ ∈ R.

Denote
B(σ, σ′) = L(l2σ , l2σ′), B(σ, σ′) = L(l2σ ⊕ l2σ, l

2
σ′ ⊕ l2σ′)

the spaces of bounded linear operators from l2σ to l2σ′ and from l2σ ⊕ l2σ to l2σ′ ⊕ l2σ′ ,
respectively. We restrict ourselves to the non-singular case, when the boundary
points λ = 0, 4 of the spectrum are not resonances for the operator H = −∆L + q.

Our main results are as follows. In the non-singular case the following asymp-
totics hold

e−itHPc = O(t−3/2), t → ∞ (1.4)

in B(σ,−σ) with σ > 5/2. Here Pc is the Riesz projection in l2 ⊕ l2 onto the
(absolutely) continuous spectrum of H.

In this respect we recall that under the condition (1.3) it is well-known that
the spectrum of H consists of a purely absolutely continuous part covering [0, 4]
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plus a finite number of eigenvalues located in R \ [0, 4]. In addition, there could be
resonances at the boundary of the continuous spectrum.

The dispersion decay of type (1.4) has been obtained for the first time in [6] for
discrete Schrödinger, wave and Klein–Gordon equations with compactly supported
potentials (the discrete Klein–Gordon equation corresponds to H = −∆L +m2 + q
with m > 0 in (1.1)). The result has been generalized in [8] to discrete Schrödinger
equation with non-compactly supported potentials under the decay condition (1.3)
with β > 5. Recently in [2] the dispersion decay was obtained under condition∑

Z
|n|2|qn| < ∞ for discrete Schrödinger and Klein–Gordon equations and under

condition ∑

n∈Z

|n|3|qn| < ∞ (1.5)

for discrete wave equation. The result of [2] is based on generalization of the van
der Corput lemma together with the novel fact that the scattering data associated
with H are in the Wiener algebra.

Here we improve the result [2] for the wave equation by reducing the decay rate
(1.5) to (1.3) with β = 3. We adapt to the discrete casethe approach of [7], which
relies on the Puiseux expansions of the resolvent at the edge points of the continuous
spectrum.

2. Free equation

Here we consider the free equation (1.2) with q = 0:

iu̇(t) = H0u(t), t ∈ R, (2.1)

where

H0 =

(
0 i

−iH0 0

)
, H0 = −∆L.

It is well-known that H0 is self-adjoint and the discrete Fourier transform

û(θ) =
∑

n∈Z

une
iθn, θ ∈ T := R/2πZ.

maps H0 to the operator of multiplication by φ(θ) = 2− 2 cos θ:

−∆̂Lu(θ) = φ(θ)û(θ).

In particular, the spectrum Spec(H0) = [0, 4] is purely absolutely continuous.
We will use the notation [K]n,k for the kernel of an operator K, that is,

(Ku)n =
∑

k∈Z

[K]n,kuk, n ∈ Z,

The kernel of the resolvent R0(ω) = (H0 − ω)−1 is given by

[R0(ω)]n,k =
1

2π

∫

T

e−iθ(n−k)

φ(θ)− ω
dθ =

e−iθ(ω)|n−k|

2i sin θ(ω)
, ω ∈ Ξ := C \ [0, 4], (2.2)

n, k ∈ Z. Here θ(ω) is the unique solution of the equation

2− 2 cos θ = ω, θ ∈ Σ := {−π ≤ Re θ ≤ π, Im θ < 0}/2πZ. (2.3)

Observe that θ 7→ ω = 2− 2 cosω is a biholomorphic map from Σ → Ξ.
Next we collect some properties obtained in [6].
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Lemma 2.1. For R0(ω) the following properties hold:

P1 The resolvent R0(ω) is an analytic function with values in B(0, 0) for ω ∈ Ξ.

P2 For ω ∈ (0, 4) the limiting absorption principle holds, which is the convergence

R0(ω ± iε) → R0(ω ± i0), ε → 0+ (2.4)

in B(σ,−σ) with σ > 1/2.

P3 At the edge points µ− = 0 and µ+ = 4 the following asymptotics hold

R0(ω) = A±(ω − µ±)
−1/2 +B± +O(|ω − µ±|1/2), ω → µ±, ω ∈ Ξ (2.5)

in B(σ, −σ) with σ > 5/2. Here A±, B± are the operators associated with the
kernels

[A±]n,k =
i

2
(∓1)n−k+1, [B±]n,k = −1

2
|n− k|(∓1)n−k+1, (2.6)

respectively.

P4 The asymptotics (2.5) can be differentiated twice with respect to ω:

R′
0(ω) = − 1

2A± (ω − µ±)
−3/2 +O(|ω − µ±|−1/2),

R′′
0(ω) =

3
4A± (ω − µ±)

−5/2 +O(|ω − µ±|−3/2),
ω → µ±, ω ∈ Ξ, (2.7)

in B(σ, −σ) with σ > 5/2.

Now we turn to the free wave equation. The resolvent R0(λ) = (H0 − λ)−1 can
be expressed in terms of R0 (see [6]):

R0(λ) =

(
λR0(λ

2) iR0(λ
2)

−i(1 + λ2R0(λ
2)) λR0(λ

2)

)
, λ ∈ C \ [−2, 2]. (2.8)

Then properties P1–P4 imply the corresponding properties of R0. In particular,

[R0]
12(λ) = iA−λ

−1 + iB− +O(λ), λ → 0, λ ∈ C \ [−2, 2]. (2.9)

where [·]ij denotes the ij entry of the corresponding matrix operator.
The continuous spectrum of H0 coincides with [−2, 2]. For the kernel of the free

propagator the following spectral representation holds

[e−itH0 ]n,k =
1

2πi

∫

(−2,0)∪(0,2)

e−itλ[R0(λ + i0)−R0(λ− i0)]n,k dλ. (2.10)

Due to (2.9) [R0]
12(λ + i0) − [R0]

12(λ − i0) ∼ λ−1 and then the first component
un(t) of the solution of the free wave equation (2.1) does not decay as t → ±∞.

Remark 2.2. (see [2]). Note that the first component of the solution is given by

un(t) =
∑

m∈Z

cn−m(t)um(0) + sn−m(t)u̇m(0), (2.11)

where

cn(t) =
1

2π

∫ π

−π

cos(
√
1− cos θ

√
2t)eiθndθ = J2|n|(2t), (2.12)

sn(t) =
1

2π

∫ π

−π

sin(
√
1− cos θ

√
2t)√

1− cos θ
eiθndθ =

∫ t

0

cn(s)ds

=
t2|n|+1

2|n|(|n|+ 1)!
1F2

(2|n|+ 1

2
; (
2|n|+ 3

2
, 2|n|+ 1);−t2

)
. (2.13)
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Here Jn(x), pFq(u; v;x) denote the Bessel and generalized hypergeometric functions,

respectively. In particular, while cn(t) = O(t−1/2) for fixed n, we have sn(t) =
1
2 +O(t−1/2) for fixed n.

3. Limiting absorption principle

First we recall a few facts from scattering theory. Under the assumption q ∈ ℓ11
there exists Jost solutions f±(θ) to

Hf = ωf, ω ∈ Ξ

normalized as

f±
n (θ) ∼ e∓inθ, n → ±∞,

where θ = θ(ω) ∈ Σ is the solution to 2− 2 cos θ = ω. For q ∈ ℓ1 the Jost solutions
exist outside of the edges of continuous spectrum. In this case one can show as in
[1] that

|f±
n (θ)| ≤ C(θ)e± Im(θ)n, θ ∈ Σ \ {0;±π}, n ∈ Z, (3.1)

where C(θ) can be chosen uniformly in compact subsets of Σ avoiding the band
edges. If additionally q ∈ ℓ11 then

|f±
n (θ)| ≤ Cmax(1,∓n)e± Im(θ)n, θ ∈ Σ. (3.2)

Denote by W (θ) the Wronskian of Jost solutions:

W (θ) := W (f+(θ), f−(θ)) = f+
0 (θ)f−

1 (θ) − f+
1 (θ)f−

0 (θ) (3.3)

Then the kernel of the resolvent R(ω) = (H− ω)−1 : ℓ2 → ℓ2 reads (cf. [9, (1.99)])

[R(ω)]n,k =
1

W (θ(ω))

{
f+
n (θ(ω)f−

k (θ(ω)) for n ≥ k,

f+
k (θ(ω))f−

n (θ(ω)) for n ≤ k.
, ω ∈ Ξ. (3.4)

The representation (3.4), the fact that W (θ) does not vanish for ω ∈ (0, 4), and
the bound (3.1) imply the limiting absorption principle for the perturbed one-
dimensional Schrödinger equation.

Lemma 3.1. (see [2, Lemma 3.3]). Let q ∈ ℓ1. Then the convergence

R(ω ± iε) → R(ω ± i0), ε → 0+, ω ∈ (0, 4) (3.5)

holds in B(σ,−σ) with σ > 1/2.

Proof. For any ω ∈ (0, 4) and any n, k ∈ Z, there exist the pointwise limit

[R(ω ± iε)]n,k → [R(ω ± i0)]n,k, ε → 0.

Moreover, the bound (3.1) implies that |[R(ω± iε)]n,k| ≤ C(ω). Hence, the Hilbert–
Schmidt norm of the difference R(ω± iε)−R(ω± i0) converges to zero in B(σ,−σ)
with σ > 1/2 by the Lebesgue dominated convergence theorem. �

Corollary 3.2. For any ω ∈ (0, 4) and any fixed σ > 1/2, the operators R±(ω) :=
R(ω ± i0) : ℓ2σ → ℓ2−σ have integral kernels given by

[R±(ω)]n,k =
1

W (θ±)





f+
n (θ±)f

−
k (θ±) for n ≥ k

f+
k (θ±)f

−
n (θ±) for n ≤ k

(3.6)

where θ+(ω), and θ−(ω) = −θ+(ω) are the solution to 2− 2 cos θ = ω from [−π, 0]
and [0, π], respectively.
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The resolvent R(ω) = (H−ω)−1 can be expressed in terms of R(ω) = (H−ω)−1

(see [6]):

R(ω) =

(
ωR(ω2) iR(ω2)

−i(1 + ω2R(ω2)) ωR(ω2)

)
. (3.7)

Representation (3.7) and Lemma 3.1 imply the limiting absorption principle for the
perturbed resolvent:

Lemma 3.3. Suppose q ∈ ℓ1. Then for λ ∈ (−2, 0) ∪ (0, 2) the convergence

R(λ± iε) → R(λ± i0), ε → 0+,

holds in B(σ,−σ) with σ > 1/2.

4. Ruiseux expansion of resolvent

Now we consider R(ω) near the edge points µ− = 0 and µ+ = 4

Definition 4.1. Any nonzero function u ∈ ℓ∞(Z) satisfying the equation orHu =
µ−u (Hu = µ+u) is called a resonance function, and in this case the point µ− (or
µ+) is called a resonance.

Lemma 4.2. (see [2, Lemma 3.6]) Let q ∈ ℓ11. Then µ− = 0 (or µ+ = 4) is a
resonance if and only if W (0) = 0 (or W (π) = 0).

Below we assume that

Spectral condition: The points µ± are no resonances. (4.1)

The condition is equivalent to the boundedness of the resolvent R(ω) at the edge
points of the continuous spectrum (see Corollary 4.4 below). This boundedness
provides the asymptotics (1.4).

Lemma 4.3. Let q ∈ ℓ11 and σ > 3
2 . If µ− = 0 is no resonance then R(ω)

is continuous in B(σ,−σ) for ω in a neighborhood of [0, 4] away from µ+ = 4

with R(0) 6= 0. If µ− = 0 is a resonance then R̃(ω) =
√
ωR(ω) is continuous in

B(σ,−σ) for ω in a neighborhood of [0, 4] away from µ+ with R̃(0) 6= 0. Similarly
near µ+ = 4.

Proof. By (3.4), if W (0) 6= 0 the claim follows directly from the estimate (3.2) since
the kernel (1+|n|)−σ[R(ω)]n,k(1+|k|)−σ is continuous in the Hilbert–Schmidt norm
by dominated convergence. Otherwise we use additionally that W (θ) = W0θ+ o(θ)
with W0 6= 0 and the claim again follows. �

Corollary 4.4. Let q ∈ ℓ11. Then condition (4.1) is equivalent to the boundedness
of the families

{R(ω), |ω − µ±| ≤ ε, ω ∈ Ξ} (4.2)

in B(σ,−σ) with σ > 3/2 for sufficiently small ε > 0.

The Born decomposition formulas

R(ω) = (1 + R0(ω)q)
−1R0(ω), R(ω) = R0(ω)(1 + qR0(ω))

−1 (4.3)

imply

(1 + R0(ω)q)
−1 = 1− R(ω)q, (1 + qR0(ω))

−1 = 1− qR(ω). (4.4)

Hence, since q ∈ B(σ, σ + β), we obtain from the previous lemma that for any
σ ∈ (3/2, β − 3/2) the operators (1 + R0(ω)q)

−1 and (1 + qR0(ω))
−1 are bounded
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in B(−σ,−σ) and B(σ, σ), respectively. In particular, using the following formulas
for the derivatives of R (cf. [4, 5]):

R′ = (1+R0q)
−1R′

0(1+qR0)
−1, R′′ =

[
(1+R0q)

−1R′′
0−2R′qR′

0

]
(1+qR0)

−1. (4.5)

for β > 3 we obtain

R′(ω± iε) → R′(ω± i0), R′′(ω± iε) → R′′(ω± i0), ε → 0+, ω ∈ (0, 4), (4.6)

in B(σ,−σ) with σ > 5
2 . Our next task will be to obtain asymptotics of the resolvent

R(ω) at the edge points µ±. We start with the following lemma:

Lemma 4.5. Assume (4.1), suppose (1.3) holds for some β > 3, and let σ ∈
(3/2, β − 3/2). Then

‖(1 + R0(ω)q)
−1α±‖ℓ2

−σ

= O(|ω − µ±|1/2), ω → µ±, ω ∈ Ξ, (4.7)

and ∑

n

α±
n [(1 + qR0(ω))

−1f ]n = O(|ω − µ±|1/2), ω → µ±, ω ∈ Ξ, (4.8)

for any f ∈ ℓ2σ, where α±
n = (∓1)n.

In particular,

(1 + R0(ω)q)
−1A±(1 + qR0(ω))

−1 = O(|ω − µ±|), ω → µ±, ω ∈ Ξ, (4.9)

in B(σ,−σ), where A± is given in (2.6).

Proof. The asymptotics (2.5) imply

R(ω) = (1 + R0(ω)q)
−1R0(ω) = (1 + R0(ω)q)

−1[A±(ω − µ±)
−1/2 +O(1)],

R(ω) = R0(ω)(1 + qR0(ω))
−1 = [A±(ω − µ±)

−1/2 +O(1)](1 + qR0(ω))
−1.

and the claim follows from the continuity of R(ω), (1 + R0(ω)q)
−1, and (1 +

qR0(ω))
−1 in B(−σ,−σ) and B(σ, σ), respectively. The last claim follows since

A± = 1
2iα

± ⊗ α±. �

Lemma 4.6. Suppose (1.3) holds for some β > 3 and (4.1) holds. Then we have
the following asymptotics in B(σ,−σ) with σ > 5/2

R(ω) = R± +O(|ω − µ±|1/2),
R′(ω) = O(|ω − µ±|−1/2),

R′′(ω) = O(|ω − µ±|−3/2),

ω → µ±, ω ∈ Ξ. (4.10)

Proof. Asymptotics (2.5), (4.7)–(4.9), and formulas (4.5) imply

R′(ω) = O(|ω − µ±|−1/2), R′′(ω) = O(|ω − µ±|−3/2), ω → µ±, ω ∈ Ξ (4.11)

in B(σ,−σ) with σ > 5/2. The asymptotics (4.11) coincide with the asymptotics
(4.10) for the derivatives. Asymptotics (4.10) for R(ω) can be obtained by integra-
tion of asymptotics (4.10) for the first derivative. �

Then representation (3.7) and Lemma 4.6 imply
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Corollary 4.7. Let conditions (1.3) and (4.1) hold. Then the following asymptotics
hold

R(λ) = R± +O(|λ∓ 2|1/2),
R′(λ) = O(|λ∓ 2|−1/2),

R′′(λ) = O(|λ ∓ 2|−3/2),

λ → ±2, λ ∈ C \ [−2, 2] (4.12)

in B(σ, −σ) with σ > 5/2.

Corollary 4.8. The resolvent R(ω) is analytic function of ω in {|ω| ≤ δ,±Imω ≥
0} for some small δ > 0.

5. Dispersion decay

Theorem 5.1. Let conditions (1.3) with β > 3 and (4.1) hold. Then asymptotics
(1.4) hold, i.e.

e−itHPc = O(t−3/2), t → ∞. (5.1)

in B(σ,−σ) with σ > 5/2.

Proof. For the dynamical group associated with the perturbed wave equation (1.2)
the spectral representation holds (cf. [6]):

e−itHPc =
1

2πi

∫

[−2,2]

e−itλ(R(λ+ i0)−R(λ− i0)) dλ =

∫

[−2,2]

e−itλF (λ)dλ, (5.2)

where F (λ) =
1

π
ImR(λ+ i0). The asymptotic expansion of F (λ) at the points ±2

can be deduced from (4.12). Thus we obtain

F (λ) = O(|λ∓ 2|1/2),
F ′(λ) = O(|λ ∓ 2|−1/2),

F ′′(λ) = O(|λ ∓ 2|−3/2),

λ → ±2, λ ∈ (−2, 2).

Hence the desired decay for large t follows from Lemma 5.2 below. �

The following lemma is a special case of [4, Lemma 10.2].

Lemma 5.2 ([4]). Assume B is a Banach space, a > 0, and F ∈ C(0, a;B) satisfies
F (0) = F (a) = 0, F ′′ ∈ L1

loc(0, a;B), as well as F ′′(λ) = O(λ−3/2) and F ′′(a−λ) =

O(λ−3/2) as λ → 0+. Then

a∫

0

e−itλF (λ)dλ = O(t−3/2), t → ∞.
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