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1 Introduction

We consider the 1D discrete version of the Dirac equation:

iẇ(t) := Dw(t) = (D0 + q)w(t), wn = (un, vn) ∈ C
2, n ∈ Z. (1.1)

The discrete Dirac self-adjoin operator D0 is defined by

D0 =

(

m d
d∗ −m

)

, m > 0,

where (du)n = un − un+1. We suppose that the matrix potential q satisfies

|qijn | ≤ C(1 + |n|)−ρ, n ∈ Z (1.2)

with some ρ > 1. We are going to use the weighted Hilbert spaces l2σ = l2σ(Z) with the norm

‖u‖l2σ = ‖(1 + |n|)σu‖l2 , σ ∈ R.

Let us denote l2σ = l2σ ⊕ l2σ, and let

B(σ, σ′) = L(l2σ, l2σ′), B(σ, σ′) = L(l2σ, l2σ′)

be the spaces of bounded linear operators from l2σ to l2σ′ and from l2σ to l2σ′ , respectively. The continuous
spectrum of operator D coincides with Γ, where

Γ = (−
√

m2 + 4,−m) ∪ (m,
√

m2 + 4).

Our main results are as follows. First, we prove that under condition (1.2) there are no embedded
eigenvalues into the continuous spectrum of D, developing the method of Naboko and Yakovlev [6],
where the similar result was obtained for the 1D discrete Schrödinger operator.

For our second result we suppose that the matrix potential q is Hermitian. Denote by

R(λ) = (D − λ)−1, λ ∈ C \ Γ
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the resolvent of operator D. We prove the existence and continuity of the resolvent in the continuous
spectrum. Namely, for λ ∈ Γ the convergence (limiting absorption principle) holds:

R(λ± iε) → R(λ± i0), ε → 0+ (1.3)

in B(σ,−σ) with σ > 1/2.

For continuous Schrödinger operator convergence of type (1.3) in the weighted Sobolev norms was
established by Agmon [1]. The proof relies on Kato’s theorem on the absence of embedded eigenvalues
and on the Agmon’s theorem on the decay of the eigenfunctions. For discrete Schrödinger equation
the limiting absorption principle has been obtained in [2, 4, 7, 8] under different decay conditions
on the potential and recently in [3] under weakest assumptions q ∈ l1. The methods [3] rely on
the representation of the resolvent via the Jost functions. Similar representation for discrete Dirac
equation is possible only in the case when q12 = q21 is real function. In present paper we consider
general Hermitian potential and develop the approach of [1].

2 Free Dirac equation

Denote by ∆ the difference Laplacian:

(∆u)n := un+1 + un−1 − 2un.

The resolvent R0(λ) = (D0 − λ)−1 of the free Dirac operator D0 can be expressed in terms of the
resolvent R∆(λ) = (−∆− λ)−1 of operator −∆. Namely, since

(D0 − λ)(D0 + λ) = −∆+m2 − λ2,

then we obtain

R0(λ) = (D0 + λ)R∆(λ
2 −m2), (2.1)

The kernel of the resolvent R∆(λ) reads (see [4])

[R∆(λ)]n,m = −i
e−iθ(λ)|n−m|

2 sin θ(λ)
, λ ∈ C \ [0, 4], n,m ∈ Z, (2.2)

where θ(λ) is the unique solution of the equation

2− 2 cos θ = λ, θ ∈ Σ := {−π ≤ Re θ ≤ π, Im θ < 0}. (2.3)

Properties of R∆ (see [4]) imply:
i) The resolvent R0(λ) is an analytic function with values in B(0, 0) for λ ∈ C \ Γ.
ii) For λ ∈ Γ the convergence (limiting absorption principle) holds

R0(λ± iε) → R0(λ± i0), ε → 0+ (2.4)

in B(σ,−σ) with σ > 1/2.
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3 Absence of embedded eigenvalues

Here we prove that there are not embedded eigenvalues into the continuous spectrum of D, For any
fixed λ ∈ Γ consider the equation

Dw = λw, wn = (un, vn), n ∈ Z. (3.1)

Theorem 3.1. Let condition ( 1.2) with ρ > 1 holds and let w ∈ l2 is the solution of ( 3.1). Then
w = 0.

Proof. We develop the method of S. Naboko and S. Yakovlev [6]. First we consider (3.1) on the
positive semiaxis i.e. for n ∈ Z+. In the matrix form (3.1) reads

(A+ Pn)wn+1 = (B +Qn)wn, n ∈ Z+, (3.2)

where we denoting

A =

(

0 −1
1 −(m+ λ)

)

, Pn =

(

0 0
q21n+1 q22n+1

)

, B =

(

λ−m −1
1 0

)

, Qn =

(

q11n q12n
0 0

)

.

Multiplying both sides of (3.2) by A−1 we obtain

(1 + P̃n)wn+1 = (B̃ + Q̃n)wn, (3.3)

where

P̃n =

(

q21n+1 q22n+1

0 0

)

, B̃ =

(

m2 − λ2 + 1 m+ λ
m− λ 1

)

, Q̃n =

(

−(m+ λ)q11n −(m+ λ)q12n
−q11n −q12n

)

.

Denote ν = m2 − λ2 + 2, |ν| < 2. It is easy to check that the matrix B̃ have two eigenvalues µ and µ,
where

µ = ν/2 + i
√

1− (ν/2)2, |µ| = 1.

Then the matrix B̃ can be represent as
B̃ = V DV −1 (3.4)

where

D =

(

µ 0
0 µ

)

, V =

(

1− µ 1− µ
λ−m λ−m

)

, V −1 =

(

λ−m µ− 1
m− λ 1− µ

)

1

(µ − µ)(λ−m)
.

Using representation (3.4) we get

B̃ + Q̃n = V DV −1 + Q̃n = V [D + V −1Q̃nV ]V −1.

Denote
Q̂n = V −1Q̃nV, w̃n = V −1wn

Then (3.3) becomes
w̃n+1 = V −1(1 + P̃n)

−1V (D + Q̂k)w̃n. (3.5)

Further, we represent (1 + P̃n)
−1 as

(1 + P̃n)
−1 =

1

δn
(1 +Rn), Rn =

(

0 −q22n+1

0 q21n+1

)

, δn = 1 + q12n+1. (3.6)
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Due to (3.5) -(3.6) the vector w̃n can be express via the vector w̃0 as follows

w̃n =
n
∏

k=1

1

δk
(D + Sk)w̃0, (3.7)

where

Sk = Q̂k + V −1RkV (D +Qk).

Note, that D is unitary matrix, while

‖Sk‖ ≤ C|||q̃k||| → 0, k → ∞,

where |||qk||| = max
i,j=1,2;l=k,k+1

|qijl |.

Lemma 3.1. For any vector e ∈ C
2 and sufficiently large K

‖(D + Sk)e‖2 ≥ (1− C|||qk|||)‖e‖2, k ≥ K. (3.8)

Proof. Denote Tk = I +D∗Sk. The unitarity of D implies

‖(D + Sk)e‖2 = ‖Tke‖2 = (T ∗
k Tke, e) ≥ λk‖e‖2,

where λk is the smallest eigenvalue of positive, selfajoint operator T ∗
k Tk with rank(T ∗

kTk) = 2. Further,

T ∗
kTk = (1 + S∗

kD)(1 +D∗Sk) = 1 + S∗
kD +D∗Sk + S∗

kSk

Hence, T ∗
kTk = 1 + Tk, where Tk is selfajoint and ‖Tk‖ ≤ C|||qk||| < 1 for sufficiently large k by (1.2).

Then eigenvalues τk of Tk satisfy |τk| ≤ C|||qk|||. Therefore, for the minimal eigenvalue of T ∗
kTk we obtain

λk = 1 + τk ≥ 1− C|||qk||| > 0, k ≥ K.

Corollary 3.1. wk = 0 for sufficiently large k ∈ N.

Proof. Bound 3.8 and formula (3.7) imply

‖w̃n‖2C2 ≥
n
∏

k=K

1

|δk|
(1− C|||qk|||)‖w̃K−1‖2C2 , n ≥ K.

Note, that

|δk| = |1 + q12k+1| ≤ 1 + |||qk|||
Then for w = V w̃ we obtain

‖w‖2
l2
≥ C1

∞
∑

n=K

n
∏

k=K

1− C|||qk|||
1 + |||qk|||

‖wK−1‖2C2 = ∞

if wK−1 6= 0. Hence, wk = 0 for k ≥ K − 1.

Similarly, we obtain that wk = 0 for k ≤ −(K − 1). However, recurrence relation (3.2) can not
have a nonzero solution with finite support. Therefore we get w ≡ 0. Theorem 3.1 is proved.
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4 Limiting absorption principle

Here we extend (2.4) to perturbed resolvent R(λ) = (D − λ)−1. We adopt general strategy from [1],
and start with the following proposition

Proposition 4.1. Let condition ( 1.2) with ρ > 1 holds, and let w ∈ l2−1/2−0 satisfies the equation

Dw = λw, λ ∈ Γ. (4.1)

Moreover, let w satisfies
w = R0(λ+ i0)f or w = R0(λ− i0)f , (4.2)

where f ∈ l2σ′ with some σ′ > 1/2. Then w ∈ l2s for all s ∈ R.

Proof. For concreteness we consider the “+” case and λ ∈ Γ+ = (m,
√
m2 + 4). Due to (2.1) we have

w = (D0 + λ)R0(λ
2 −m2 + i0)f .

In the Fourier transform, the equation reads

ŵ(θ) =
(D̂0 + λ)f̂ (θ)

4 sin2 θ/2− λ2 +m2 − i0
, θ ∈ R/2πZ, λ2 −m2 ∈ (0, 4), (4.3)

where

D̂0 =

(

m 1− e−iθ

1− eiθ −m

)

,

and f̂ is a function from the Sobolev space Hσ′

. As the first step, we prove that distribution (4.3) is
not singular at two points θ± ∈ T := R/2πZ satisfies 2| sin θ±

2 | =
√
λ2 −m2.

Lemma 4.1. The following identity holds

(D̂0 + λ)f̂(θ±) = 0 (4.4)

Proof. Note that f̂ is continuous by Sobolev embedding theorem. Define

ŵε(θ) =
(D̂0 + λ)f̂ (θ)

4 sin2 θ/2− λ2 +m2 − iε
, ε > 0.

Then both f̂ , ŵε ∈ L2(T ), hence the Parseval identity implies that

〈wε, f〉 = 〈ŵε, f̂〉 =
π
∫

−π

〈(D̂0 + λ)f̂(θ), f̂(θ)〉dθ
4 sin2 θ/2− λ2 +m2 − iε

−→ ±iπ
〈(D̂0 + λ)f̂(θ), f̂(θ)〉

2 sin θ±
+ P.V.

π
∫

−π

〈(D̂0 + λ)f̂(θ), f̂(θ)〉dθ
2 sin θ±

, ε → 0+ (4.5)

by the Sokhotsky-Plemelj formula since f̂ is the Hölder continuous with the Hölder exponent α ∈
(0,min[σ′ − 1/2, 1]). On the other hand,

〈wε, f〉 = 〈R0(λ+ iε)f , f〉 −→ 〈w, f〉 = −〈w, qw〉, ε → 0+ (4.6)

since R0(λ+ iε)f → w ∈ l2−σ′ by (2.4), while f ∈ L2
σ′ . The operators D̂0 + λ and q is selfajoint, hence

the scalar products 〈(D̂0 +λ)f̂(θ), f̂ (θ)〉 and 〈w, qw〉 are real. Comparing (4.5) and (4.6), we conclude
that (D̂0 + λ)f̂(θ±) = 0 i.e. (4.4) is proved.
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Corollary 4.1. Relation ( 4.4) and the Hölder continuity imply that

ŵ(θ) =
(D̂0 + λ)f̂(θ)

4 sin2 θ/2− λ2 +m2
∈ L1(T ). (4.7)

The next lemma is a typical “problem of division”.

Lemma 4.2. Let f̂ ∈ Hs(T ) with some s > 1/2 and ( 4.7) holds. Then

‖ŵ‖Hs−1(T ) ≤ C‖f̂‖Hs(T ). (4.8)

Proof. Take any ε ∈ (0,
√
λ2 −m2/2), and a cutoff functions

ζ±(θ) ∈ C∞
0 (R), ζ±(θ) =

{

1, |θ − θ±| < ε
0, |θ − θ±| > 2ε

By (4.7), we have

‖(1 − ζ±(θ))ŵ(θ)‖Hs(T ) = ‖ 1− ζ±(θ)

4 sin2 θ/2− λ2 +m2
(D̂0 + λ)f̂(θ)‖Hs(T ) ≤ C‖f̂‖Hs(T )

since the function (1 − ζ±(θ))/(4 sin
2 θ/2 − λ2 +m2) is a multiplier in any Sobolev space. Hence, it

remains to estimate the norm of the function ζ±(θ)ŵ(θ). For concreteness, consider the “+” case. We
may assume that in the supp ζ+, there exist the diffeomorhism η = 4 sin2 θ/2 − λ2 + m2. Then, the
problem reduces to the estimate

‖ϕ(η)‖Hs−1(T ) ≤ C‖ηϕ(η)‖Hs(T ) (4.9)

taking into account that ϕ(η) ∈ L1(T ) by (4.7). Since the function ϕ(η) supported near zero then
(4.9) is equivalent to

‖ϕ(η)‖Hs−1(R) ≤ C‖ηϕ(η)‖Hs(R) (4.10)

This estimate follows from the Hardy inequality (see [1]).

Now (4.8) can be rewritten as

‖w‖
l2s−1

≤ C‖f‖l2s , s > 1/2. (4.11)

Therefore,w ∈ l2σ′−1 since f ∈ l2σ′ with some σ′ > 1/2. Second, f = −qw, and hence (4.11) and
condition (1.2) imply

‖w‖
l
2

s−1

≤ C‖w‖
l
2

s−β
= C‖w‖

l
2

s−1−δ
, s > 1/2,

where δ := β − 1 > 0 since β > 1. Applying the last inequality to s = σ′ + δ > 1/2, we obtain that
w ∈ l2s−1 with s− 1 = σ′ − 1 + δ > σ′ − 1. Hence, by induction, w ∈ l2s−1 with any s ∈ R.

Now we prove the limiting absorption principle for perturbed resolvent.

Theorem 4.1. Let condition ( 1.2) with ρ > 1 hold. Then for λ ∈ Γ, the convergence holds

R(λ± iε) → R(λ± i0), ε → 0+ (4.12)

in B(σ,−σ) with σ > 1/2.
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Proof. For the proof we will use the Born splitting

R(λ) = [1 +R0(λ)q]
−1R0(λ), λ ∈ C \ Γ, (4.13)

where the operator function [1 +R0(λ)q]
−1 is meromorphic in C \ Γ by the Gohberg-Bleher theorem.

Theorem 4.1 will follow from (2.4) and the Born splitting (4.13) if

[1 +R0(λ± iε)q]−1 → [1 +R0(λ± i0)q]−1, ε → +0, λ ∈ Γ

in B(−σ,−σ) with σ > 1/2. The convergence holds if and only if the both limiting operators 1 +
R0(λ ± i0)q : l2−σ → l2−σ are invertible for λ ∈ Γ. The operators are invertible according to the
Fredholm theorem by the following two lemmas.

Lemma 4.3. i) Let condition ( 1.2) with ρ > 1 hold. Then for λ ∈ Γ, the operators

R0(λ± i0)q : l2−σ → l2−σ, qR0(λ± i0) : l2σ → l2σ

are compact for σ ∈ (1/2, β − 1/2).

Proof. Choose σ′ ∈ (1/2,min(σ, β − σ)). The operator q : l2−σ → l2σ′ is continuous by (1.2) since
σ + σ′ < ρ. Further, R0(λ ± i0) : l2σ′ → l2−σ′ is continuous by (2.4) and the embedding l2−σ′ → l2−σ is
compact. Hence, the operators R0(λ±i0)q : l2−σ → l2−σ are compact. The compactness of qR0(λ±i0) :
l2σ → l2σ follows by duality.

Lemma 4.4. Let condition ( 1.2) with ρ > 1 holds. Then for λ ∈ Γ the equations

[1 +R0(λ± i0)q]w = 0 (4.14)

admit only the zero solution in l2−1/2−0.

Proof. We consider the case λ+ i0 for concreteness. First, equality (4.14) implies that

(D0 + q − λ)w = (D0 − λ)(1 +R0(λ+ i0)q)w = 0. (4.15)

Second, from (4.14) it follows that

w = R0(λ+ i0)f , where f = −qw. (4.16)

If w ∈ l2−1/2−0 then f ∈ l2σ′ with σ′ := ρ − 1/2 > 1/2 by (1.2). This fact and (4.15), (4.16) imply

that w ∈ l2s with any s ∈ R by Proposition 4.1. As a corollary, we obtain w ∈ l2. It means that w

is the eigenfunction of D with eigenvalue λ ∈ Γ. However, the embedded eigenvalue is forbidden by
Theorem 3.1. Hence w = 0. Lemma 4.4 is proved.

Theorem 4.1 is also proved.
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