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Asymptotic stability of solitons
for non-linear hyperbolic equations
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Abstract. Fundamental results on asymptotic stability of solitons are sur-
veyed, methods for proving asymptotic stability are illustrated based on the
example of a non-linear relativistic wave equation with Ginzburg–Landau
potential. Asymptotic stability means that a solution of the equation with
initial data close to one of the solitons can be asymptotically represented
for large values of the time as a sum of a (possibly different) soliton and
a dispersive wave solving the corresponding linear equation. The proof
techniques depend on the spectral properties of the linearized equation
and may be regarded as a modern extension of the Lyapunov stability the-
ory. Examples of non-linear equations with prescribed spectral properties
of the linearized dynamics are constructed.
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1. Introduction

The theory of asymptotic stability of soliton solutions for non-relativistic non-
linear equations has been considerably advanced over the past ten years. Solitons
are known to be fundamentally important in the study of evolution equations,
mainly because they are often easily found numerically, and also because they gen-
erally emerge in the long-time asymptotics of solutions of these equations. The first
results in this direction were obtained by numerical simulation in 1965 by Zabusky
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and Kruskal [45] for the Korteweg-de Vries (KdV) equation. In 1967 Gardner,
Greene, Kruskal, and Miura [12] found that the inverse scattering transform can be
used to solve the KdV equation analytically. It was seen that any solution of that
equation with rapidly decaying, sufficiently smooth initial data converges to a finite
sum of soliton solutions moving to the right and a dispersive wave moving to the
left. See [10] for a complete survey of these studies. These results were extended to
other integrable equations by Its, Khruslov, Shabat, Zakharov, and others (see [11]).

The study of the asymptotic stability of soliton solutions was inspired by the
problem of the stability and effective dynamics of elementary particles, because the
latter may be identified with solitons of non-linear field equations. Such an identi-
fication is in the spirit of Heisenberg’s theory of elementary particles in the context
of non-linear hyperbolic partial differential equations [13], [14].

According to recent numerical experiments [22], solutions of general non-integra-
ble non-linear wave equations with finite-energy initial data can be decomposed,
for large values of time, into a finite number of weakly interacting solitons and
a decaying dispersive wave. The present paper is devoted to methods for proving
similar asymptotics with one soliton for non-integrable equations in the case where
the initial data is close to the solitary manifold.

1.1. Survey of the literature. Soffer and Weinstein [38], [39], [44] (see also [34])
were the first to prove the asymptotic stability of solitons for a non-linear U(1)-in-
variant Schrödinger equation with potential, for small initial data and small coeffi-
cient of the non-linear term.

Later, Buslaev and Perelman [5], [6] established this result in the more diffi-
cult instance of a translation-invariant one-dimensional non-linear U(1)-invariant
Schrödinger equation in the case when the dynamics linearized at the soliton has
no non-zero eigenvalues. Techniques similar to those of [5], [6] were developed by
Miller, Pego, and Weinstein for one-dimensional modified KdV- and regularized
long-wave(RLW)-equations [30], [32].

Buslaev and Sulem [7] (see also [43]) examined the one-dimensional non-linear
Schrödinger equation with a more complicated non-zero discrete spectrum of the
linearized dynamics. For other dimensions, see [8], [17], [37], [42].

For a three-dimensional non-linear Klein–Gordon equation with potential the
asymptotic stability of solitons was proved in [40], and for field-particle systems in
[15], [16].

Cuccagna [9] proved the asymptotic stability of the wavefront for a three-dimens-
ional relativistic wave equation. By definition, a wavefront is a solution that
depends only on one spatial variable. Since it has infinite energy, such a solution
is not a soliton.

The asymptotic stability of standing solitons for the Dirac equation with poten-
tial was established by Boussaid [2] in the three-dimensional case, and for the Dirac
equation without potential by Boussaid and Cuccagna [3]. The one-dimensional
case was examined by Pelinovsky and Stefanov [33].

The asymptotic stability of solitons was also investigated in our papers [4], [18],
[20], [21], [23], [25]. In their recent joint papers, the author and Komech [27], [28]
were the first to prove the asymptotic stability of solitons (kinks) for the relativis-
tic non-linear wave equation with Ginzburg–Landau potential. In all the papers
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mentioned above, the proof of the asymptotic stability rests primarily on the same
basic strategy. However, this approach faced serious implementation difficulties in
the relativistic case, and this has been an obstacle to the theoretical development
over the past 20 years.

In the present paper we outline the general strategy of the papers [5]–[7], [16]
and present new methods elaborated in [27], [28].

1.2. Statement of the problem. We shall be mostly concerned here with the
one-dimensional non-linear wave equation

ψ̈(x, t) = ψ′′(x, t) + F (ψ(x, t)), x ∈ R. (1.1)

We write F (ψ) = −U ′(ψ), where U(ψ) is a potential of the Ginzburg–Landau type,
that is, U(ψ) satisfies the following conditions (see Fig. 1).

Figure 1. Potential U(ψ)

U1. U(ψ) is a smooth even function such that

U(ψ) > 0 for ψ 6= a. (1.2)

U2. U(ψ) is a parabola near the points ±a,

U(ψ) =
m2

2
(ψ ∓ a)2, |ψ ∓ a| < δ, (1.3)

for some 0 < δ < a/2 and m > 0.

The corresponding stationary equation is

s′′(x)− U ′(s(x)) = 0, x ∈ R. (1.4)

It has constant solutions ψ(x) ≡ 0 and ψ(x) ≡ ±a. The non-constant solutions will
be obtained using the ‘energy integral’

(s′)2

2
− U(s) = C,
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Figure 2. Phase portrait

where C is an arbitrary constant. The phase portrait of this equation is depicted
in Fig. 2. It can be seen that for C = 0 there exists a so-called kink, namely,
a finite-energy non-constant solution s(x) of the stationary equation (1.4) such
that s(x) → ±a as x → ±∞ (see Fig. 3). In addition, condition U2 implies that
(s(x)∓ a)′ = m2(s(x)∓ a) as x→∞. Hence,

|s(x)∓ a| = Ce−m|x|, x→ ±∞; (1.5)

that is, the kink exponentially approaches its asymptotes ±a. Equation (1.1) is
relativistically invariant, so the solitons (or kinks) sq,v(x, t) = s(γ(x − vt − q)),
q ∈ R, moving with velocity |v| < 1 are also solutions of equation (1.1). Here
γ = 1/

√
1− v2 is the Lorentz contraction. We linearize equation (1.1) at the

kink s(x). Substituting ψ(x, t) = s(x) + φ(x, t) into this equation, we formally
obtain

φ̈(x, t) = −Hφ(x, t) + O(|φ(x, t)|2),
where H := −d2/dx2 + m2 + V (x) is the Schrödinger operator with potential
V (x) = −F ′(s(x))−m2 = U ′′(s(x))−m2. It is easily verified that the operator H
has the following properties.
H1. The continuous spectrum of H coincides with the interval [m2,∞).
H2. The point λ0 = 0 belongs to the discrete spectrum, and s′(x) is the corre-

sponding eigenfunction.
H3. Since s′(x) > 0, λ0 is the ground state, while the remaining points of the

discrete spectrum (if there are any) lie in the interval (0,m2].

We additionally assume that the following condition holds.

U3. The edge point λ = m2 of the continuous spectrum of H is neither an eigen-
value nor a resonance.

Remark 1.1. The precise definition of a resonance in the one-dimensional case may
be found in [31] (see also [19] and [24]). Condition U3 is equivalent to the bound-
edness of the resolvent of H at λ = m2 (see [31], Theorem 7.2).
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Figure 3. Kink

1.3. Results. Let ψv = s(γx), πv = −vψ′v(x). The main result for equation (1.1)
is the soliton asymptotics

(ψ(x, t), ψ̇(x, t)) ∼ (ψv±(x−v±t−q±), πv±(x−v±t−q±))+W0(t)Φ±, t→ ±∞,
(1.6)

for solutions with initial data close to some kink, where W0(t) is the dynamical
group of the free Klein–Gordon equation, and Φ± are the asymptotic scattering
states. The terms W0(t)Φ± correspond to dispersive waves that transfer energy to
infinity. The asymptotics (1.6) hold in the global energy norm of the Sobolev space
H1(R) ⊕ L2(R).

Remark 1.2. The asymptotics (1.6) can be interpreted as the interaction between
the incoming soliton with trajectory v−t + q− and the incoming dispersive wave
W0(t)Φ−, the result being the emergence of an outgoing soliton with new trajectory
v+t+q+ and a new outgoing dispersive wave W0(t)Φ+. This interaction determines
the (non-linear) scattering operator S : (v−, q−,Φ−) 7→ (v+, q+,Φ+). However, the
description of the domain (and the range) of this operator is still a matter for the
future.

We shall prove the asymptotics (1.6) under two different forms of conditions on
the discrete spectrum.

D1. The discrete spectrum of the operator H is the single point λ0 = 0.

D2. The discrete spectrum of H consists of two points λ0 = 0 and λ1 ∈ (0,m2),
where

4λ1 > m2. (1.7)

In the second case we shall also assume the non-degeneracy condition also called
the Fermi golden rule, which means an effective interaction between the non-linear
term and the continuous spectrum. This interaction is responsible for the scattering
of energy to infinity (see condition (10.0.11) in [7] or condition (1.11) in [28]). For
equation (1.1), the Fermi golden rule is

F.
∫
ϕ4λ1(x)F

′′(s(x))ϕ2
λ1

(x) dx 6= 0, (1.8)
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where ϕλ1 is the eigenfunction corresponding to the eigenvalue λ1, and ϕ4λ1 is the
odd continuous-spectrum eigenfunction corresponding to the point 4λ1 ∈ (m2,∞).

The first case is addressed in Chapter I, and the second case in Chapter II.
For simplicity of exposition, in the second case we examine only odd solutions of
equation (1.1), establishing the asymptotic stability of a standing kink (that is, for
v = 0 and q = 0). The asymptotic stability of moving kinks under condition D2
can be obtained by combining the approaches of the two chapters.

In Chapter III we construct examples of non-linearities that satisfy our spec-
tral conditions. We note that most works on the asymptotic stability of solitons
also impose a number of conditions on the spectral properties of the correspond-
ing linearized dynamics. However, almost everywhere these properties are only
postulated, and in most cases no examples are known of non-linearities for which
these properties are satisfied. We construct examples of potentials for which all the
required spectral conditions hold: the properties of the discrete spectrum of the
linearized equation, the absence of resonance, and the Fermi golden rule.

1.4. Methods. The proof of the asymptotic stability of solitons, as given in
[5]–[9], [16], and [40], depends upon the characteristic general strategy of most
studies in this direction. This approach is based on the methods of symplectic
geometry for Hamiltonian systems in Hilbert space and methods of spectral theory
for non-self-adjoint operators. Use is made, in particular, of symplectic projection
onto the solitary manifold and onto symplectically orthogonal directions, separation
of the dynamics along the solitary manifold and in the transversal direction, decay
of the linearized transversal dynamics, modulation equations for soliton parameters,
Poincaré normal forms, the method of majorants, and so on. Symplectic projec-
tion allows one to eliminate unstable directions corresponding to the zero discrete
spectrum of the linearized dynamics. These methods may be regarded as a modern
development of the Lyapunov theory of stability.

A similar strategy also applies to relativistic equations. However, the asymptotic
stability of kinks for these equations was not established for a long time. One
reason is that solutions of the one-dimensional linear Klein–Gordon equation with
potential were not shown to decay sufficiently quickly, while the well-known decay
of order ∼ t−1/2 which holds for the solutions of the free equation is not enough for
the technique involved (see the discussion in the introduction to [9]). Accordingly,
our first result in this direction was a proof of the rapid decay of order ∼ t−3/2 in
weighted energy norms of the projection of the solution on the continuous spectrum,
provided that there are no eigenvalues and resonances at the edge points of the
continuous spectrum [19], [24], [26].

Furthermore, despite the availability of the general approach, a number of asser-
tions and their proofs are significantly different due to the special nature of the
relativistic equations, and some assertions are completely new, among which we
mention the following estimates.

I. Estimates describing the growth rate of moments of solutions of the non-linear
Klein–Gordon equation (see [27], Appendix A); these are the relativistic versions
of the estimates (1.2.5) in [7] that were used there for the non-linear Schrödinger
equation.

II. The relativistic version (4.27) of estimates of solutions in L1-L∞-norms.
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Decay in weighted energy norms and the estimates I–II play a key role in obtain-
ing the corresponding inequalities for majorants. The above properties can also be
used to obtain the decay for the transversal component of the equation linearized
at a soliton; this, in turn, guarantees the radiation of energy to infinity, providing
for the asymptotic stability of the solitary manifold.

We remark that our papers [27], [28] were concerned with a slightly more general
setting. Namely, instead of condition U2 it was assumed there that

U(ψ) =
m2

2
(ψ ∓ a)2 + O(|ψ ∓ a|K), ψ → ±a, (1.9)

with K > 13. The proof of the asymptotic stability of kinks runs along similar lines
with minor technical modifications.

1.5. Open problems. It is easily verified that the well-known Ginzburg–Landau
potential UGL(ψ) = (ψ2 − a2)2/(4a2) satisfies condition (1.9) with m2 = 2 and
K = 3; it also satisfies the conditions D2 and F. However, the edge point λ = 2 of
the spectrum is a resonance for the corresponding linearized operator. This fact is
the main reason why the asymptotic stability of kinks for an equation with potential
UGL has not been proved as yet.

For general non-linear hyperbolic equations and arbitrary finite-energy initial
states, asymptotics of the form (1.6) and even more general ones

(ψ(x, t), ψ̇(x, t)) ∼
N∑

k=1

(ψvk
±
(x−vk

±t−qk
±), πvk

±
(x−vk

±t−qk
±))+W0(t)Φ±, t→ ±∞,

have been observed in numerical simulations (Vinnichenko and coauthors [22]).
However, the proof of these asymptotics is still a matter for the future. Such asymp-
totics are closely related to the problem of stability of elementary particles and the
wave-particle duality in the context of Heisenberg’s non-linear theory [13], [14].

1.6. Structure of the paper. This paper is organized as follows. Chapter I is
concerned with methods for proving the asymptotic stability of moving kinks under
condition D1, that is, in the case where there is no additional discrete spectrum.
In § 2 we give the necessary definitions and formulate the main result. Section 3
is devoted to the symplectic structure of the solitary manifold, and § 4 to the lin-
earization of the solution at a kink and to properties of the linearized equation. In
§ 5 we separate the dynamics into two components: along the solitary manifold and
in the transversal direction. Section 6 is concerned with modulation equations for
soliton parameters. The scheme of the proof of long-time decay of the transversal
component is outlined in § 7. The soliton asymptotics (1.6) is established in § 8.

In Chapter II we examine the case when the operator H has an additional
discrete spectrum satisfying condition D2. We shall be concerned only with odd
solutions, and we prove the asymptotic stability of the standing kink corresponding
to v = q = 0. Properties of the linearized equation are given in § 10. In § 11
we obtain the dynamical equations for the discrete and continuous components of
the solution, and in § 12 we find the Poincaré normal forms for these equations.
Section 13 is devoted to majorants and their estimates. The soliton asymptotics is
derived in § 14.
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In Chapter III we give examples of non-linear potentials that satisfy the spectral
conditions of the first and second chapters.

Chapter I

Moving solitons

In this chapter we shall be concerned with the asymptotic stability of moving
solitons in the case where there is no non-zero discrete spectrum of the linearized
dynamics.

2. Main result

We write equation (1.1) as the system of two first-order equations{
ψ̇(x, t) = π(x, t),
π̇(x, t) = ψ′′(x, t) + F (ψ(x, t)), x ∈ R,

(2.1)

where F (ψ) = −U ′(ψ), and all derivatives are understood in the sense of distribu-
tions. This is a Hamiltonian system, and the corresponding Hamiltonian is

H (ψ, π) =
∫ [

|π(x)|2

2
+
|ψ′(x)|2

2
+ U(ψ(x))

]
dx. (2.2)

In vector form, the Cauchy problem for the system (2.1) is written as

Ẏ (t) = F (Y (t)), t ∈ R, Y (0) = Y0, (2.3)

where Y (t) = (ψ(t), π(t)), Y0 = (ψ0, π0). We also use the vector form of the soliton
solutions:

Yq,v(t) = (ψv(x− vt− q), πv(x− vt− q)), q ∈ R, v ∈ (−1, 1), (2.4)

where
ψv(x) = s(γx), πv(x) = −vψ′v(x). (2.5)

Consider the soliton state S(σ) := (ψv(x−b), πv(x−b)) with arbitrary parameters
σ := (b, v), where b ∈ R and v ∈ (−1, 1). Clearly, the soliton (2.4) can be written
in the form S(σ(t)), where

σ(t) = (b(t), v(t)) = (vt+ q, v). (2.6)

The solitary manifold consists of all soliton states:

S := {S(σ) : σ ∈ Σ := R× (−1, 1)}. (2.7)

We also define the phase space for the Cauchy problem (2.3). Given any α ∈ R,
p > 1, and k = 0, 1, 2, . . . , we let W p,k

α denote the weighted Sobolev space of
functions with finite norms

‖ψ‖W p,k
α

=
k∑

i=0

‖(1 + |x|)αψ(i)‖Lp .
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We set Hk
α := W 2,k

α , L2
α := H0

α and introduce the spaces Eα := H1
α ⊕ L2

α and
W := W 1,2

0 ⊕W 1,1
0 of vector functions Y = (ψ, π) with finite norms

‖Y ‖Eα
= ‖ψ‖H1

α
+ ‖π‖L2

α
and ‖Y ‖W = ‖ψ‖W 2,1

0
+ ‖π‖W 1,1

0
.

We shall work in the phase space E := E + S , where E = E0, and S is given
by (2.7). The metric in E is defined as follows:

ρE (Y1, Y2) = ‖Y1 − Y2‖E , Y1, Y2 ∈ E .

Clearly, the Hamiltonian (2.2) is continuous on the phase space E . By adapting
the techniques of [29], [35], [41] one can readily show that:

(i) for any initial data Y0 ∈ E there exists a unique solution Y (t) ∈ C(R,E ) of
problem (2.3);

(ii) the map U(t) : Y0 7→ Y (t) is continuous in E for any t ∈ R;
(iii) the energy conservation law holds,

H (Y (t)) = H (Y0), t ∈ R.

The main result of the first chapter is the following.

Theorem 2.1. Assume that conditions U1–U3 and D1 are satisfied and assume
that Y (t) is the solution of the Cauchy problem (2.3) with initial data Y0 ∈ E close
to some kink S(σ0) = Sq0,v0 ,

Y0 = S(σ0) +X0, d0 := ‖X0‖Eβ∩W � 1, (2.8)

where β > 5/2. Then, for sufficiently small d0, the following asymptotics holds :

Y (x, t) =
(
ψv±(x−v±t−q±), πv±(x−v±t−q±)

)
+W0(t)Φ±+r±(x, t), t→ ±∞

(2.9)
with some constants v± and q±. Here W0(t) is the dynamical group of the free
Klein–Gordon equation and Φ± ∈ E are the asymptotic scattering states. Moreover,

‖r±(t)‖E = O(|t|−1/2), t→ ±∞. (2.10)

We note that it suffices to verify the asymptotics (2.9) as t→ +∞, because the
system (2.1) is time reversible.

3. Symplectic projection

3.1. Symplectic structure and the Hamiltonian form. The system (2.3) is
a Hamiltonian system, that is, it can be written as

Ẏ = JDH (Y ), J :=
(

0 1
−1 0

)
, (3.1)

where DH is the Fréchet derivative of the Hamiltonian (2.2). At an arbitrary point
we identify the tangent space to E with the space E and consider the symplectic
form Ω given on E by

Ω(Y1, Y2) = 〈Y1, JY2〉, Y1, Y2 ∈ E, (3.2)
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where 〈Y1, Y2〉 := 〈ψ1, ψ2〉 + 〈π1, π2〉 and 〈ψ1, ψ2〉 =
∫
ψ1(x)ψ2(x) dx. Clearly, the

form Ω is non-degenerate: Y1 = 0 if Ω(Y1, Y2) = 0 for any Y2 ∈ E.
The expression Y1 - Y2 means that the vectors Y1 ∈ E and Y2 ∈ E are symplecti-

cally orthogonal, that is, Ω(Y1, Y2) = 0. A projection operator P : E → E is called
a symplectic orthogonal projection if Y1 - Y2 for Y1 ∈ KerP and Y2 ∈ RangeP.

3.2. Symplectic projection onto the solitary manifold. The tangent space
TS(σ)S to the manifold S at a point S(σ) is generated by the vectors

τ1 = τ1(v) := ∂bS(σ) = (−ψ′v(y),−π′v(y)),
τ2 = τ2(v) := ∂vS(σ) = (∂vψv(y), ∂vπv(y)),

(3.3)

which form a basis for the space TS(σ)S in the ‘moving coordinate system’ y :=
x− b. It is worth pointing out that the functions τj depend on y, rather than on x.
From (2.5) it follows that, for any α ∈ R and v ∈ (−1, 1),

τj(v) ∈ Eα, j = 1, 2. (3.4)

We claim that the symplectic form Ω is non-degenerate on the tangent space
TS(σ)S . To prove this we find explicit expressions for the vectors τ1 and τ2. By
the definition (2.5) of the functions ψv(y) and πv(y),

τ1 =
(
−γs′(γy), vγ2s′′(γy)

)
, τ2 =

(
vyγ3s′(γy),−γ3s′(γy)− v2yγ4s′′(γy)

)
.

Hence,
Ω(τ1, τ2) = 〈τ1

1 , τ
2
2 〉 − 〈τ2

1 , τ
1
2 〉 = γ4〈s′(γy), s′(γy)〉 > 0. (3.5)

This means that TS(σ)S is a symplectic subspace. The ‘symplectic orthogonal
projection’ onto S is defined in a small neighbourhood of the solitary manifold S .
For a detailed proof of this rather simple result we refer the reader to [16], [27],
and [28]. The precise formulation is as follows.

Lemma 3.1. The following assertions hold for any α ∈ R.
(i) There exist a neighbourhood Oα(S ) of the manifold S in the space Eα and

a map Π : Oα(S ) → S such that Π is uniformly continuous on Oα(S ) in the
metric of Eα. Moreover,

ΠY = Y for Y ∈ S , Y − S - TSS , where S = ΠY. (3.6)

(ii) For any q ∈ R, the neighbourhood Oα(S ) is invariant under the translations

Tq : (ψ(x), π(x)) 7→ (ψ(x+ q), π(x+ q)), (3.7)

and moreover, ΠTqY = TqΠ if Y ∈ Oα(S ).
(iii) For any v < 1, there exists an rα(v) > 0 such that S(σ) +X ∈ Oα(S ) for

all b ∈ R if |v| 6 v and ‖X‖Eα < rα(v).

The map Π is called the symplectic orthogonal projection onto S .
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4. Linearization on the solitary manifold

We shall seek a solution of the system (2.1) in the form of a sum

Y (t) = S(σ(t)) +X(t), (4.1)

where S(σ(t)) is the soliton with parameters σ(t) = (b(t), v(t)), with b(t) ∈ R
and v(t) ∈ (−1, 1) some smooth functions of the variable t ∈ R. In terms of the
components of the vector functions Y = (ψ, π) and X = (Ψ,Π), equation (4.1) can
be written as {

ψ(x, t) = ψv(t)(x− b(t)) + Ψ(x− b(t), t),
π(x, t) = πv(t)(x− b(t)) + Π(x− b(t), t).

(4.2)

Substituting these equations into the system (2.1), we obtain the following equations
in the ‘moving coordinate system’ y = x− b(t):

ψ̇ = v̇∂vψv(y)− ḃψ′v(y) + Ψ̇(y, t)− ḃΨ′(y, t) = πv(y) + Π(y, t),

π̇ = v̇∂vπv(y)− ḃπ′v(y) + Π̇(y, t)− ḃΠ′(y, t)
= ψ′′v (y) + Ψ′′(y, t) + F (ψv(y) + Ψ(y, t)).

(4.3)

The soliton equation with respect to the variable y = x− b(t) assumes the form

− vψ′v(y) = πv(y), −vπ′v(y) = ψ′′v (y) + F (ψv(y)), (4.4)

and hence by (4.3) this immediately yields the equations for the functions Ψ(t)
and Π(t):

Ψ̇(y, t) = Π(y, t) + ḃΨ′(y, t) + (ḃ− v)ψ′v(y)− v̇∂vψv(y),

Π̇(y, t) = Ψ′′(y, t) + ḃΠ′(y, t) + (ḃ− v)π′v(y)− v̇∂vπv(y)
+ F (ψv(y) + Ψ(y, t))− F (ψv(y)).

(4.5)

We can rewrite equations (4.5) as

Ẋ(t) = A(t)X(t) + T (t) + N (t), t ∈ R, (4.6)

where the term T (t) is independent of X and the term N (t) is at least quadratic
in X. The linear operator A(t) = Av,w(t) depends on two parameters v = v(t) and
w = ḃ(t), and can be written in the form

Av,w

(
Ψ
Π

)
:=

(
w∇ 1

∆ + F ′(ψv) w∇

) (
Ψ
Π

)
=

(
w∇ 1

∆−m2 − Vv(y) w∇

) (
Ψ
Π

)
, (4.7)

where ∇ = d/dx, ∆ = d2/dx2, and the potential Vv(y) is defined by

Vv(y) = −F ′(ψv)−m2. (4.8)

Further, T (t) and N (t) = N (σ,X) are given by

T =
(

(w − v)ψ′v − v̇∂vψv

(w − v)π′v − v̇∂vπv

)
, N (σ,X) =

(
0

N(v,Ψ)

)
, (4.9)
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where v = v(t), w = w(t), σ = σ(t) = (b(t), v(t)), X = X(t) = (Ψ(t),Π(t)), and

N(v,Ψ) = F (ψv + Ψ)− F (ψv)− F ′(ψv)Ψ. (4.10)

Note that the term A(t)X(t) on the right-hand side of (4.6) is linear in X(t), and
N (t) is a term of higher order in X(t). On the other hand, T (t) is a zero-order
term and does not vanish at X(t) = 0 since S(σ(t)) is not in general a kink if (2.6)
does not hold. Also, by (3.3) and (4.9),

T (t) = −(w − v)τ1 − v̇τ2. (4.11)

Hence, T (t) ∈ TS(σ(t))S for all t ∈ R. This implies the unstable nature of the
non-linear dynamics along the solitary manifold.

4.1. Hamiltonian structure and spectrum. Our aim here is to study the
spectral properties of the operator Av,w. Let us examine in more detail the linear
equation

Ẋ(t) = Av,wX(t), t ∈ R, (4.12)

for some fixed v ∈ (−1, 1) and w ∈ R. Consider the space E+ := H2(R)⊕H1(R).
The Hamiltonian properties of equation (4.12) are established in the following
lemma.

Lemma 4.1. (i) For any v ∈ (−1, 1) and w ∈ R, equation (4.12) can be represented
in the Hamiltonian form

Ẋ(t) = JDHv,w(X(t)), t ∈ R,

where DHv,w is the Fréchet derivative of the Hamiltonian

Hv,w(X) =
1
2

∫ [
|Π|2 + |Ψ′|2 + (m2 + Vv)|Ψ|2

]
dy +

∫
ΠwΨ′ dy.

(ii) The energy conservation law holds for the solutions X(t) ∈ C1(R, E+):

Hv,w(X(t)) = const, t ∈ R.

(iii) The skew-symmetry relation holds :

Ω(Av,wX1, X2) = −Ω(X1, Av,wX2), X1, X2 ∈ E. (4.13)

For the proof of Lemma 4.1, see [27].
Consider the action of the operator Av,w on tangent vectors τ = τj(v) to the

solitary manifold. Differentiation of (4.4) with respect to b and v gives

−vψ′′v = π′v, −vπ′′v = ψ′′′v + F ′(ψv)ψ′v,
−ψ′v − v∂vψ

′
v = ∂vπv, −π′v − v∂vπ

′
v = ∂vψ

′′
v + F ′(ψv)∂vψv.

Hence,

Av,w

(
−ψ′v
−π′v

)
=

(
(v − w)ψ′′v
(v − w)π′′v

)
, Av,w

(
∂vψv

∂vπv

)
=

(
(w − v)∂vψ

′
v

(w − v)∂vπ
′
v

)
+

(
−ψ′v
−π′v

)
.
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As a result,

Av,w[τ1] = (w − v)τ ′1, Av,w[τ2] = (w − v)τ ′2 + τ1. (4.14)

Now we examine the spectral properties of the operator Av = Av,v corresponding
to w = v:

Av :=
(

v∇ 1
∆−m2 − Vv(y) v∇

)
. (4.15)

The continuous spectrum of Av coincides with the interval Γ := (−i∞,−im/γ] ∪
[im/γ, i∞). From (4.14) it follows that the tangent vector τ1(v) is the eigenvec-
tor of Av corresponding to the zero eigenvalue, and the tangent vector τ2(v) is
a generalized eigenvector (root vector), that is,

Av[τ1(v)] = 0, Av[τ2(v)] = τ1(v). (4.16)

We claim that the root space of the operator Av corresponding to the zero eigenvalue
is two-dimensional. For this it suffices to check that the equation Av[u] = τ2 has
no non-zero solutions in the space L2 ⊕ L2. Let us consider this equation in more
detail: (

v∇ 1
∆−m2 − Vv(y) v∇

) (
u1

u2

)
=

(
vγ3ys′(γy)

−γ3s′(γy)− v2γ4ys′′(γy)

)
.

Using the first equation, we obtain u2 = vγ3ys′(γy) − v∇u1. Substitution of u2

into the second equation gives

Hvu1 = −γ3(1 + v2)s′(γy)− 2v2γ4ys′′(γy), (4.17)

whereHv = −(1/γ2)d2/dy2+m2+Vv(y) is a modified Schrödinger operator. Setting
u1 = −(1/2)v2γ5y2s′(γy) + ũ1, we transform the last equation into

Hvũ1 = −γ2ψ′v. (4.18)

Remark 4.2. The spectral properties of the operators Hv are identical for all v ∈
(−1, 1), since the equality Vv(x) = V0(γx) implies that

Hv = I −1
v H0Iv, where Iv : ψ(x) 7→ ψ

(
x

γ

)
. (4.19)

This similarity of operators is related to the relativistic invariance of the initial
equation (1.1). In particular, Hv has the properties H1–H3 (with the eigenfunction
ψ′v instead of s′), as well as the properties U3 and D1.

The point λ0 = 0 lies in the discrete spectrum of Hv, and ψ′v is the corresponding
eigenfunction, so it follows from (4.18) that ũ1 is a root function of Hv. But this is
impossible because this operator is self-adjoint. Thus, we have shown that the root
space of Av corresponding to the zero eigenvalue is a two-dimensional
Jordan block.

We claim that Av has no eigenvalues other than λ = 0. To this end we consider
the spectral equation(

v∇ 1
∆−m2 − Vv(y) v∇

) (
u1

u2

)
= λ

(
u1

u2

)
.
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From the first equation, we find that u2 = −(v∇ − λ)u1 and substitute this into
the second equation. This gives

(Hv + λ2 − 2vλ∇)u1 = 0. (4.20)

Since in view of condition D1 the operator H0 = H corresponding to v = 0 has
only the zero eigenvalue, A0 also has only the zero eigenvalue. If v 6= 0, then scalar
multiplication of both sides of (4.20) by u1 gives

〈Hvu1, u1〉+ λ2〈u1, u1〉 = 0.

The operator Hv is self-adjoint, so λ2 is a real number. A non-zero eigenvalue of Av

might occur as a bifurcation either from the point λ = 0 or from the edge points
±im/γ of the continuous spectrum as the parameter v varies continuously. We
consider these cases separately.

(i) No bifurcation from λ = 0 is possible, since this is an isolated point of the
discrete spectrum, and we already know that the corresponding root subspace is
two-dimensional for any v ∈ (−1, 1).

(ii) Bifurcation from an edge point is also impossible. Indeed, the eigenvalues λ
generated by edge points must necessarily be purely imaginary because λ2 is real.
Let λ ∈ (−im/γ, im/γ) be an eigenvalue of Av. Then Av[u] = λu, where u =
(u1, u2) ∈ L2 ⊕ L2 is the corresponding eigenfunction. Consider the new function
p(x) = eγ2vλxu(x). Clearly, p = (p1, p2) also lies in the space L2 ⊕ L2. Equation
(4.20) for p1 can be rewritten as (Hv + γ2λ2)p1 = 0, where −γ2λ2 ∈ (0,m2). In
view of condition D1, this equation has no non-zero solutions in L2.

This being so, the operator Av has only the one eigenvalue λ = 0.

4.2. Decay of the transversal linearized dynamics. We consider the linear-
ized equation

Ẋ(t) = AvX(t), t ∈ R. (4.21)

Let Pd
v denote the symplectic orthogonal projection from E onto the tangent space

TS(σ)S . By the linearity,

Pd
vX =

∑
pjl(v)τj(v)Ω(τl(v), X), X ∈ E, (4.22)

where the pjl(v) are smooth coefficients. Note that in the variables y = x − b the
projection Pd

v is independent of b. We set Pc
v := I − Pd

v . One of the key steps in
the proof of the asymptotic stability of solitons is to establish the long-time decay
of solutions of the transversal linearized equation. For v = 0, the following result
is contained in [19], [24], and for v 6= 0 in [26].

Proposition 4.3. Assume that conditions U1–U3 are satisfied. Let β > 5/2.
Then for any X ∈ Eβ the following long-time decay estimate in weighted norms
holds :

‖eAvtPc
vX‖E−β

6 C(v)(1 + |t|)−3/2‖X‖Eβ
, t ∈ R. (4.23)

Here and in what follows, eAvt denotes the dynamical group of equation (4.21).
The decay estimate (4.23) readily implies uniform decay with respect to x, that is,
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decay in the norm of L∞ holding for any X ∈ Eβ ∩W . In order to prove this, we
apply the projection Pc

v to both sides of (4.21):

Pc
vẊ = AvPc

vX = A0
vP

c
vX + VvPc

vX, (4.24)

where

A0
v =

(
v∇ 1

∆−m2 v∇

)
, Vv =

(
0 0

−Vv 0

)
. (4.25)

We set Y = Pc
vX and invoke the Duhamel representation for the solution of (4.24):

eAvtY = eA0
vtY +

∫ t

0

eA0
v(t−τ)Vve

AvτY dτ, t ∈ R.

Note that eA0
vtZ = eA0

0tTvtZ, where the translation operator Tvt is defined in (3.7).
This gives

eAvtY = eA0
0tTvtY +

∫ t

0

eA0
0(t−τ)Tvt[Vve

AvτY ] dτ, t ∈ R. (4.26)

The potential Vv is compactly supported, and hence by using the inequality (265)
in [36], the Hölder inequality, and the inequality (4.23) we arrive at the following
estimate for the first component of the vector function eAvtY :

‖(eAvtY )1‖L∞ 6 C(1 + |t|)−1/2‖Y ‖W + C

∫ t

0

(1 + |t− τ |)−1/2‖Vv(eAvτY )1‖W 1,1
0
dτ

6 C(1 + |t|)−1/2‖X‖W + C

∫ t

0

(1 + |t− τ |)−1/2‖eAvτPc
vX‖E−β

dτ

6 C(1 + |t|)−1/2‖X‖W + C

∫ t

0

(1 + |t− τ |)−1/2(1 + |τ |)−3/2‖X‖Eβ
dτ

6 C(1 + |t|)−1/2(‖X‖W + ‖X‖Eβ
).

Thus, for any β > 5/2 and X ∈ Eβ ∩W ,

‖(eAvtPc
vX)1‖L∞ 6 C(v)(1 + |t|)−1/2(‖X‖W + ‖X‖Eβ

), t ∈ R. (4.27)

4.3. Estimates for the non-linear term. We derive estimates for the non-lin-
ear term N(v,Ψ) defined by (4.10). Let R(a) denote a positive function that is
bounded for sufficiently small a. Using Cauchy’s formula for the remainder gives

N =
Ψ2

2

∫ 1

0

(1− ρ)F ′′(ψv + ρΨ) dρ. (4.28)

By condition U2, the function F ′′(ψ) vanishes in some neighbourhood of the
points ±a. Applying the Cauchy–Schwarz inequality, we get that

‖N‖L1 = R(‖Ψ‖L∞)‖Ψ‖L∞‖Ψ‖L2
−β

= R(‖Ψ‖L∞)‖Ψ‖L∞‖X‖E−β
.

Further, differentiating (4.28) with respect to y, we have

N ′ =
Ψ2

2

∫ 1

0

(1− ρ)(ψ′v + ρΨ′)F ′′′(ψv + ρΨ) dρ+ ΨΨ′
∫ 1

0

(1− ρ)F ′′(ψv + ρΨ) dρ.
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Hence,

‖N ′‖L1 = R(‖Ψ‖L∞)
[
‖Ψ‖L∞‖Ψ‖L2

−β
+ ‖Ψ‖L∞‖Ψ′‖L2

−β

]
= R(‖Ψ‖L∞)‖Ψ‖L∞‖X‖E−β

.

Thus, the non-linear term N(v,Ψ) is estimated in the W 1,1
0 -norm as follows:

‖N‖W 1,1
0

= R(‖Ψ‖L∞)‖Ψ‖L∞‖X‖E−β
.

Moreover, (4.28) yields a similar estimate forN(v,Ψ) in the norm of L2
β . As a result,

we have the estimate

‖N‖L2
β∩W 1,1

0
= R(‖Ψ‖L∞)‖Ψ‖L∞‖X‖E−β

. (4.29)

5. Symplectic decomposition of the dynamics

Equation (4.6) was obtained without any additional assumptions on the para-
meters σ(t) = (v(t), b(t)) in (4.1). Now we assume that S(σ(t)) := ΠY (t). This
can be done provided that, for all t > 0,

Y (t) ∈ Oα(S ), (5.1)

where Oα(S ) is the neighbourhood defined in Lemma 3.1. Condition (5.1) is
satisfied for t = 0 in view of the assumption (2.8). Consequently, the quantities
S(σ(0)) = ΠY (0) and X(0) = Y (0) − S(σ(0)) are defined. Below we shall show
that condition (5.1) with α = −β is satisfied for all t > 0 if d0 in (2.8) is sufficiently
small. We choose any v < 1 such that

|v(0)| < v, (5.2)

and we let r−β(v) denote the positive number defined in Lemma 3.1, (iii) corre-
sponding to α = −β. Then S(σ) +X ∈ O−β(S ) if |v| < v and ‖X‖E−β

< r−β(v).
Hence, S(σ(t)) = ΠY (t) and the function X(t) = Y (t)− S(σ(t)) is defined for any
t > 0 such that

|v(t)| < v and ‖X(t)‖E−β
< r−β(v). (5.3)

That condition (5.3) holds for all t > 0 is proved using the standard concept of the
‘exit time’. We define the majorants

m1(t) := sup
s∈[0,t]

(1+ s)3/2‖X(s)‖E−β
, m2(t) := sup

s∈[0,t]

(1+ s)1/2‖Ψ(s)‖L∞ , (5.4)

where X = (Ψ,Π). We set ν = v − |v(0)| and consider some fixed ε ∈ (0, r−β(v))
to be specified below.

Definition 5.1. The exit time t∗ is defined as follows:

t∗ = sup{t : |v(t)− v(0)| < ν, mj(t) < ε, j = 1, 2}. (5.5)

Note that mj(0) < ε if d0 � 1. Our purpose here is to show that t∗ = ∞ if d0

is sufficiently small. To do so it suffices to show that, for small d0,

|v(t)− v(0)| < ν

2
, mj(t) <

ε

2
, 0 6 t < t∗. (5.6)
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6. Modulation equations

In this section we derive equations for the soliton parameters σ(t) = (b(t), v(t)) of
the symplectic projection S(σ(t)) of the solution Y (t) of (2.3). Namely, we shall seek
the solution of (2.3) in the form Y (t) = S(σ(t))+X(t), where S(σ(t)) = ΠY (t). In
other words, we shall assume that the following symplectic orthogonality condition
holds:

X(t) - TS(σ(t))S , t < t∗. (6.1)

In view of Lemma 3.1, (iii), the projection ΠY (t) is defined for t < t∗. We can
rewrite condition (6.1) in the form

Ω(X(t), τj(t)) = 0, j = 1, 2, (6.2)

where the vectors τj(t) = τj(σ(t)) defined in (3.3) generate the tangent space
TS(σ(t))S to the manifold S at the point S(σ(t)). For convenience, instead of
the parameters (b, v) we shall use the parameters (c, v), where

c(t) = b(t)−
∫ t

0

v(τ) dτ, ċ(t) = ḃ(t)− v(t) = w(t)− v(t). (6.3)

We show how to obtain the modulation equations for the parameters c(t) and v(t)
from the orthogonality conditions (6.2). To do this we differentiate (6.2) with
respect to t:

0 = Ω(Ẋ, τj) + Ω(X, τ̇j) = Ω(Av,wX + T + N , τj) + Ω(X, τ̇j), j = 1, 2. (6.4)

From the skew-symmetry relation (4.13) and the equalities (4.14) it follows that

Ω(Av,wX, τ1) = −Ω(X,Av,w[τ1]) = −ċΩ(X, τ ′1), (6.5)
Ω(Av,wX, τ2) = −Ω(X,Av,w[τ2]) = −Ω(X, ċ τ ′2 − τ1)

= −ċΩ(X, τ ′2)− Ω(X, τ1) = −ċΩ(X, τ ′2), (6.6)

because Ω(X, τ1) = 0. Further, by (4.11),

Ω(T, τ1) = −v̇Ω(τ2, τ1) = v̇Ω(τ1, τ2), Ω(T, τ2) = −ċΩ(τ1, τ2). (6.7)

Using the equalities (6.5)–(6.7), we rewrite (6.4) as follows:{
0 = −ċΩ(X, τ ′1) + v̇

(
Ω(τ1, τ2) + Ω(X, ∂vτ1)

)
+ Ω(N , τ1),

0 = −ċ
(
Ω(X, τ ′2) + Ω(τ1, τ2)

)
+ v̇Ω(X, ∂vτ2) + Ω(N , τ2).

(6.8)

Since τ ′2 = −∂vτ1, the determinant of this system equals

D = Ω2(τ1, τ2)− Ω(X, τ ′1)Ω(X, ∂vτ2) = Ω2(τ1, τ2) + O(‖X‖2E−β
).

Recall that Ω(τ1, τ2) 6= 0 by (3.5). Hence, the determinant D is not zero for small
‖X‖E−β

. Solving the system (6.8) gives the required modulation equations:

ċ =
Ω(τ1, τ2)Ω(N , τ2) + Ω(X, ∂vτ1)Ω(N , τ2)− Ω(X, ∂vτ2)Ω(N , τ1)

D
, (6.9)

v̇ =
−Ω(τ1, τ2)Ω(N , τ1)− Ω(X, τ ′2)Ω(N , τ1) + Ω(X, τ ′1)Ω(N , τ2)

D
. (6.10)
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Using these equations, we readily obtain estimates for ċ and v̇:

|v̇(t)|, |ċ(t)| 6 C0(v)‖X(t)‖2E−β
, 0 6 t < t∗, (6.11)

where C0(v) is some constant.

7. Decay of the transversal dynamics

Here we prove the main result characterizing the decay rate of the transversal
component X(t).

Proposition 7.1. Under the hypotheses of Theorem 2.1, t∗ = ∞ and

‖X(t)‖E−β
6

ε

(1 + |t|)3/2
, ‖Ψ(t)‖L∞ 6

ε

(1 + |t|)1/2
, t > 0, (7.1)

where ε is defined in Definition 5.1.

To derive these estimates we shall employ equation (4.6) for the transversal
component X(t), with consideration of the orthogonality condition (6.1).

Establishing the decay estimate (7.1) encounters two main difficulties common
to all problems of this kind (see, for example, [7]). First, the linear part of equation
(4.6) is non-autonomous, and hence methods of scattering theory cannot be applied
directly. Following the approach of [7], we first examine the frozen linear equation

Ẋ(t) = Av1X(t), 0 6 t 6 t1, v1 = v(t1), (7.2)

where the operator Av is defined in (4.15) and t1 is some fixed number in the
interval [0, t∗). The resulting errors are then estimated. Second, even for the frozen
equation (7.2) a decay of type (7.1) for an arbitrary solution is impossible without
the orthogonality condition (6.1). Indeed, in view of the equalities (4.16), equation
(7.2) has secular solutions

X(t) = C1τ1(v) + C2[τ1(v)t+ τ2(v)], (7.3)

which arise when the soliton (2.4) is differentiated with respect to the parameters
q and v in the moving coordinate system y = x − v1t. The solutions (7.3) lie in
the tangent space TS(σ1)S , where σ1 = (b1, v1) (with arbitrary b1 ∈ R), imply-
ing the unstable nature of the non-linear dynamics along the solitary manifold. In
order to exclude the secular solutions, we assume that the symplectic orthogonal-
ity condition (6.1) is fulfilled. It is this condition that eliminates the increasing
solutions (7.3).

We let Xv = Pc
vE denote the space that is symplectically orthogonal to the space

TS(σ)S . Now we have at our disposal the symplectically orthogonal decomposition

TS(σ)E = TS(σ)S + Xv, σ = (b, v), (7.4)

so the symplectic orthogonality condition (6.1) can be written in the following
equivalent form:

Pd
v(t)X(t) = 0, Pc

v(t)X(t) = X(t), 0 6 t < t∗. (7.5)

Since in view of (4.16) the tangent space TS(σ)S is invariant under the operator
Av, it follows from (4.13) that the space Xv is also invariant, that is, AvX ∈ Xv

for a dense set of X ∈ Xv.
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7.1. Frozen transversal dynamics. We fix an arbitrary t1 ∈ [0, t∗) and rewrite
equation (4.6) in the ‘frozen’ form

Ẋ(t) = A1X(t) + (A(t)−A1)X(t) + T (t) + N (t), 0 6 t 6 t1, (7.6)

where A1 = Av1 and v1 = v(t1). Using the inequalities (6.11), we have

‖T (t)‖Eβ∩W 6 C(v)‖X‖2E−β
, 0 6 t 6 t1, (7.7)

since w − v = ċ. Further, it follows from the estimate (4.29) that

‖N (t)‖Eβ∩W 6 C(v)‖Ψ‖L∞‖X‖E−β
, 0 6 t 6 t1. (7.8)

The elimination of the ‘bad’ term (w(t)−v1)∇ in the operator A(t)−A1 is achieved
by the following trick. We make the change of variables (y, t) 7→ (y1, t) = (y +
d1(t), t), where

d1(t) :=
∫ t

t1

(w(s)− v1) ds, 0 6 t 6 t1. (7.9)

In the new variables (y1, t) equation (7.6) for the transversal component takes the
form

˙̃
X(t) = A1X̃(t) + Ṽ (t)X̃(t) + T̃ (t) + Ñ (t), 0 6 t 6 t1, (7.10)

where

X̃(y1, t) = (Ψ(y1 − d1(t), t),Π(y1 − d1(t), t)), Ṽ (t) = Vv(y1 − d1)− Vv1(y1)
(7.11)

and T̃ (t) and Ñ (t) denote, respectively, the functions T (t) and N (t) expressed in
the variables (y1, t). Recall that the matrix potential Vv is defined in (4.25).

Now we proceed to estimate the ‘remainders’ in equation (7.10). To this end we
first show that the translation d1(t) is uniformly small for 0 6 t 6 t1.

Lemma 7.2. For all t1 < t∗,

|d1(t)| 6 C0(v)ε2, 0 6 t 6 t1, (7.12)

where ε is defined in Definition 5.1.

Proof. In view of (6.3),

w(s)− v1 = w(s)− v(s) + v(s)− v1 = ċ(s) +
∫ t1

s

v̇(τ) dτ. (7.13)

Hence, using definitions (5.4) and (7.9), as well as the estimates (6.11), we get that

|d1(t)| =
∣∣∣∣∫ t

t1

(w(s)− v1) ds
∣∣∣∣ 6

∫ t1

t

(
|ċ(s)|+

∫ t1

s

|v̇(τ)| dτ
)
ds

6 C0(v)m2
1(t1)

∫ t1

t

(
1

(1 + s)3
+

∫ t1

s

dτ

(1 + τ)3

)
ds 6 C0(v)m2

1(t1) 6 C0(v)ε2

(7.14)

for all 0 6 t 6 t1. �
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We shall assume henceforth that

ε2 <
ν

2C0(v)
, (7.15)

where ν is defined in § 5. Then, in particular,

|d1(t)| <
ν

2
< 1. (7.16)

Let us estimate the weighted norms of the ‘translated’ functions T̃ (t) and Ñ (t) in
terms of the weighted norms of the functions T (t) and N (t). From the inequality

(1 + |y1 − d1|)α 6 (1 + |y1|)α(1 + |d1|)|α| 6 C(α)(1 + |y1|)α, (7.17)

which holds for all α ∈ R, it follows that

‖T̃ (t)‖Eβ
6 C(β)‖T (t)‖Eβ

, ‖Ñ (t)‖Eβ
6 C(β)‖N (t)‖Eβ

.

Hence, using the estimates (7.7) and (7.8) for T (t) and N (t), we obtain similar
estimates for T̃ (t) and Ñ (t):

‖T̃ (t)‖Eβ∩W 6 C(v)‖X‖2E−β
,

‖Ñ (t)‖Eβ∩W 6 C(v)‖Ψ‖L∞‖X‖E−β
,

0 6 t 6 t1. (7.18)

Finally, we estimate the term Ṽ (t)X̃(t) on the right-hand side of (7.10). We can
write Ṽ (t) in the form

Ṽ (t) = Vv(y1−d1)−Vv1(y1) = (Vv(y1−d1)−Vv1(y1−d1))+(Vv1(y1−d1)−Vv1(y1)).
(7.19)

As in the case of (7.14), one shows that |v(t)−v1| 6 C0(v)ε2 for 0 6 t 6 t1. Hence,

|Vv(y)− Vv1(y)| 6 |v(t)− v1| max
v∈[v(t),v1]

|∂vVv(y)|

6 C(v)ε2 max
v∈[v(t),v1]

|F ′′(ψv(y))∂vψv(y)|. (7.20)

Further, the inequality (7.12) implies that

|Vv1(y)− Vv1(y1)| 6 |d1(t)| max
z∈[y,y1]

|F ′′(ψv1(z))ψ
′
v1

(z)|

6 C(v)ε2 max
z∈[y,y1]

|F ′′(ψv1(z))ψ
′
v1

(z)|. (7.21)

Using condition U1, the definition (4.25), and the estimates (7.19)–(7.21), we finally
obtain

‖Ṽ (t)X̃(t)‖Eβ∩W 6 C(v)ε2‖X‖E−β
, 0 6 t 6 t1. (7.22)
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7.2. Integral inequalities. We write equation (7.10) in the integral form

X̃(t) = eA1tX̃(0) +
∫ t

0

eA1(t−s)
[
Ṽ (s)X̃(s) + T̃ (s) + Ñ (s)

]
ds, 0 6 t 6 t1,

(7.23)
and apply the symplectic orthogonal projection Pc

1 := Pc
v1

:

Pc
1X̃(t) = eA1tPc

1X̃(0)+
∫ t

0

eA1(t−s)Pc
1

[
Ṽ (s)X̃(s)+ T̃ (s)+ Ñ (s)

]
ds, 0 6 t 6 t1.

Here we have used the fact that the operator Pc
1 commutes with the group eA1t.

Applying the inequality (4.23), we get that

‖Pc
1X̃(t)‖E−β

6
C‖X̃(0)‖Eβ

(1 + t)3/2
+ C

∫ t

0

‖Ṽ (s)X̃(s) + T̃ (s) + Ñ (s)‖Eβ

(1 + |t− s|)3/2
ds

for all β > 5/2 and 0 6 t 6 t1. By (7.16), (7.18), and (7.22),

‖Pc
1X̃(t)‖E−β

6
C‖X(0)‖Eβ

(1 + t)3/2

+ C

∫ t

0

ε2‖X(s)‖E−β
+ ‖X(s)‖2E−β

+ ‖Ψ(s)‖L∞‖X(s)‖E−β

(1 + |t− s|)3/2
ds (7.24)

for all β > 5/2 and 0 6 t 6 t1. Similarly, by (4.27), (7.16), (7.18), and (7.22),

‖(Pc
1X̃(t))1‖L∞ 6 C

[‖X(0)‖Eβ∩W

(1 + t)1/2

+
∫ t

0

ε2‖X(s)‖E−β
+ ‖X(s)‖2E−β

+ ‖Ψ(s)‖L∞‖X(s)‖E−β

(1 + |t− s|)1/2
ds

]
(7.25)

for all β > 5/2 and 0 6 t 6 t1.

Figure 4. Symplectic orthogonality

7.3. Symplectic orthogonality. Our next objective is to replace Pc
1X̃(t) by

X(t) on the left-hand side of the inequalities (7.24) and (7.25). This can be done
for sufficiently small ε by using the symplectic orthogonality (7.5) and the fact that
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the spaces X (t) := Pc
v(t)E are almost parallel for t ∈ [0, t1] (see Fig. 4). Consider

the difference of projections Pd
1 − P̃d

v(t), where

P̃d
v(t)X =

∑
pjl(v(t))τ̃j(v(t))Ω(τ̃l(v(t)), X), X ∈ E, (7.26)

and the projection Pd
1 = Pd

v(t1)
is defined in (4.22). Here τ̃j(v(t)) denotes the

vectors τj(v(t)) from (3.3) expressed in terms of y1. We claim that this difference
is uniformly small with respect to t for sufficiently small ε > 0. Since the τ ′j
are smooth functions that decay sufficiently rapidly at infinity, it follows from the
inequality (7.12) that

‖τ̃j(v(t))− τj(v(t))‖Eβ
6 C(v)ε2, 0 6 t 6 t1, j = 1, 2. (7.27)

Furthermore, for all 0 6 t 6 t1,

‖τj(v(t))− τj(v(t1))‖Eβ
=

∥∥∥∥∫ t1

t

v̇(s)∂vτj(v(s)) ds
∥∥∥∥

Eβ

6 C

∫ t1

t

|v̇(s)| ds 6 C(v)ε2,

|pjl(v(t))− pjl(v(t1))| =
∣∣∣∣∫ t1

t

v̇(s)∂vpjl(v(s)) ds
∣∣∣∣ 6 C

∫ t1

t

|v̇(s)| ds 6 C(v)ε2,

(7.28)
since by (5.2) the quantities |∂vpjl(v(s))| are uniformly bounded. By (7.27) and
(7.28),

‖Pd
1 − P̃d

v(t)‖ <
1
2
, 0 6 t 6 t1, (7.29)

for sufficiently small ε > 0. We have P̃d
v(t)X̃(t) = 0, so from the last inequality it

immediately follows that

‖Pd
1X̃(t)‖E−β

6
1
2
‖X̃(t)‖E−β

, 0 6 t 6 t1.

As a result, we infer from the equality Pc
1X̃(t) = X̃(t) − Pd

1X̃(t) and the esti-
mate (7.16) that

‖X(t)‖E−β
6 C‖X̃(t)‖E−β

6 2C‖Pc
1X̃(t)‖E−β

, 0 6 t 6 t1, (7.30)

for sufficiently small ε > 0, t∗ = t∗(ε), and all t1 < t∗, where the constant C is inde-
pendent of t1. Moreover, it follows from the inequality (7.29) that for sufficiently
small ε > 0

‖(Pd
1X̃(t))1‖L∞ 6

1
2
‖X̃(t)‖E−β

, 0 6 t 6 t1.

Hence, taking into account the inequality (7.30), we get that

‖Ψ(t)‖L∞ = ‖Ψ̃(t)‖L∞ 6 ‖(Pc
1X̃(t))1‖L∞ + ‖(Pd

1X̃(t))1‖L∞

6 ‖(Pc
1X̃(t))1‖L∞ +

1
2
‖X̃(t)‖E−β

6 ‖(Pc
1X̃(t))1‖L∞ + ‖Pc

1X̃(t)‖E−β
, 0 6 t 6 t1. (7.31)
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7.4. Decay of the transversal component. We can now complete the proof
of Proposition 7.1. As noted above, it suffices to verify the inequality (5.6). We
fix ε > 0 and t∗ = t∗(ε) to satisfy the estimates (7.15), (7.30), and (7.31). Now
it is possible to replace the functions ‖Pc

1X̃(t)‖E−β
and ‖(Pc

1X̃(t))1‖L∞ on the
left-hand sides of the inequalities (7.24) and (7.25) by the functions ‖X(t)‖E−β

and
‖Ψ(t)‖L∞ :

‖X(t)‖E−β
6 C

[‖X(0)‖Eβ

(1 + t)3/2

+
∫ t

0

ε2‖X(s)‖E−β
+ ‖X(s)‖2E−β

+ ‖Ψ(s)‖L∞‖X(s)‖E−β

(1 + |t− s|)3/2
ds

]
, (7.32)

‖Ψ(t)‖L∞ 6 C

[‖X(0)‖Eβ∩W

(1 + t)1/2

+
∫ t

0

ε2‖X(s)‖E−β
+ ‖X(s)‖2E−β

+ ‖Ψ(s)‖L∞‖X(s)‖E−β

(1 + |t− s|)1/2
ds

]
, (7.33)

where 0 6 t 6 t1 < t∗. We shall use these estimates to derive integral inequalities
for the majorants m1 and m2. Multiplying both sides of (7.32) by (1 + t)3/2 and
taking the supremum over t ∈ [0, t1], we get that

m1(t1) 6 C‖X(0)‖Eβ
+ C sup

t∈[0,t1]

∫ t

0

(1 + t)3/2 ds

(1 + |t− s|)3/2

×
[
ε2m1(s)

(1 + s)3/2
+

m2
1(s)

(1 + s)3
+
m1(s)m2(s)

(1 + s)2

]
.

Since m(t) is a monotonically increasing function, it follows from the last inequality
that

m1(t1) 6 Cd0 + C[ε2m1(t1) +m2
1(t1) +m1(t1)m2(t1)]I1(t1), t1 < t∗, (7.34)

where d0 is defined in (2.8) and

I1(t1) = sup
t∈[0,t1]

∫ t

0

(1 + t)3/2

(1 + |t− s|)3/2

ds

(1 + s)3/2
.

Splitting the last integral into the two integrals over the intervals 0 6 s 6 t/2 and
t/2 6 s 6 t, we easily check that this integral is bounded by a constant independent
of t. Therefore, by (7.34) there exists a constant C independent of t1 such that

m1(t1) 6 Cd0 + C
[
ε2m1(t1) +m2

1(t1) +m1(t1)m2(t1)
]
, t1 < t∗. (7.35)

Similarly, multiplying both sides of (7.33) by (1 + t)1/2, we obtain

m2(t1) 6 Cd0 + C
[
ε2m1(t1) +m2

1(t1) +m1(t1)m2(t1)
]
, t1 < t∗, (7.36)

where the constant C is independent of t1. Let M(t) be the vector with components
m1(t) and m2(t). Using the inequalities (7.35) and (7.36), we find that

|M(t1)| 6 Cd0 + C
[
ε2|M(t1)|+ |M(t1)|2

]
, t1 < t∗.
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Since mi(t1) < ε by (5.5), the function M(t1) is bounded for sufficiently small d0

and ε:
|M(t1)| 6 Cd0, t1 < t∗, (7.37)

where the constant C = C(v) is independent of t∗. We choose d0 in (2.8) to be
small enough that d0 < ε/(2C). Now the inequalities (5.6) for the majorants mj

are immediate from (7.37). Further, using the inequalities (6.11), (7.1), and (7.15),
we get that

|v(t)− v(0)| 6
∫ t

0

|v̇(s)| ds 6 C0(v)ε2 <
ν

2
, 0 6 t < t∗,

that is, the first inequality in (5.6) also holds. Hence, t∗ = ∞ and the estimate
(7.37) holds for all t1 > 0.

8. Soliton asymptotics

We proceed to derive the main Theorem 2.1 from the inequality (7.1). From
(6.11) and (7.1) it follows that for all t > 0

|ċ(t)|+ |v̇(t)| 6 C(v, d0)(1 + t)−3. (8.1)

Hence, c(t) = c+ + O(t−2) and v(t) = v+ + O(t−2) as t→∞, and therefore

b(t) = c(t) +
∫ t

0

v(s) ds = v+t+ q+ + O(t−1), t→∞, (8.2)

where c+, v+, and q+ are some constants. We can write the solution Y (x, t) of
equation (2.1) in the form

Y (x, t) = Yv(t)(x− b(t), t) +X(x− b(t), t). (8.3)

Since ‖Yv(t)(x − b(t), t) − Yv+(x − v+t − q+, t)‖E = O(t−1), to prove the asymp-
totics (2.9) with remainder term (2.10) of order t−1/2 it suffices to extract the
dispersive wave W0(t)Φ+ from the term X(x− b(t), t). Substituting (8.3) into (2.1)
and using (4.4), we arrive at the following inhomogeneous equation for the vector
function X(x− b(t), t) = (Ψ(x− b(t), t),Π(x− b(t), t)):

Ẋ(y, t) = A0
vX(y, t) +R(y, t), y = x− b(t), (8.4)

where

A0
v =

(
v∇ 1

∆−m2 v∇

)
, R(t) =

(
−v̇∂vψv

−v̇∂vπv − VvΨ(t) +N(v,Ψ(t))

)
.

Equation (8.4) in the variable x = y + b(t) has the form

˙̃
X(t) = A0

0X̃(t) + R̃(t), t > 0,
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where X̃(x, t) = X(x− b(t), t), R̃(x, t) = R(x− b(t), t), and A0
0 is the operator A0

v

corresponding to v = 0. Hence,

X̃(t) = W0(t)X̃(0) +
∫ t

0

W0(t− s)R̃(s) ds

= W0(t)
(
X̃(0) +

∫ ∞

0

W0(−s)R̃(s) ds
)
−

∫ ∞

t

W0(t− s)R̃(s) ds

= W0(t)Φ+ + r+(t),

where W0(t) is the dynamical group of the free Klein–Gordon equation. To prove
the asymptotics (2.9), it suffices to verify that

Φ+ = X̃(0) +
∫ ∞

0

W0(−s)R̃(s) ds ∈ E,

‖r+(t)‖E =
∥∥∥∥∫ ∞

t

W0(t− s)R̃(s) ds
∥∥∥∥

E

= O(t−1/2).
(8.5)

Condition (2.8) implies that X̃(0) ∈ E. We can represent R̃(s) as the sum

R̃(s) =
(
−v̇∂vψ̃v

−v̇∂vπ̃v

)
+

(
0

−ṼvΨ̃(s) + Ñ(v, Ψ̃(s))

)
= R̃′(s) + R̃′′(s).

By virtue of the inequality (8.1),

‖R̃′(s)‖E = ‖R′(s)‖E = O(s−3). (8.6)

Furthermore, from the estimates (7.1)

‖ṼvΨ̃(s)‖L2 = ‖VvΨ(s)‖L2 6 C‖Ψ(s)‖L2
−β

6 C(v, d0)(1 + |s|)−3/2,

because the potential Vv is compactly supported. Similarly, by (7.1) and (7.8),

‖Ñ(v, Ψ̃(s))‖L2 = ‖N(v,Ψ(s))‖L2 6 C(v, d0)(1 + |s|)−3/2.

The last two inequalities imply that ‖R̃′′(s)‖E = O(s−3/2). Together with (8.6) this
means that ‖R̃(s)‖E = O(s−3/2), and hence the integrals in (8.5) converge due to
the ‘unitarity’ of the group W0(t) in the space E. The asymptotic behaviour (8.5)
for r+(t) is proved similarly.

Chapter II

Standing soliton

In this chapter we prove the asymptotic stability of kinks in the more complicated
spectral situation when there is an additional discrete spectrum of the linearized
dynamics. For simplicity we examine a ‘standing kink’ (a kink with zero velocity
v = 0) and its odd perturbations.



Asymptotic stability of solitons 27

9. Statement of the main result

Thus, we shall be concerned only with odd solutions Y (−x, t) = −Y (x, t). The
space of odd states is invariant under the dynamical group of equation (2.3), because
in view of condition U1 the potential U(ψ) is an even function, and hence the
function F (ψ) is odd. The main result here is the following theorem.

Theorem 9.1. Assume that conditions U1–U3, D2, and F are satisfied. Let Y (t)
be the solution of the Cauchy problem (2.3) with odd initial data Y0 ∈ E that is
sufficiently close to the kink,

Y0 = (s(x), 0) +X0, d0 := ‖X0‖Eβ∩W � 1, (9.1)

where β > 5/2. Then the following asymptotics holds :

Y (x, t) = (s(x), 0) +W0(t)Φ± + r±(x, t), t→ ±∞, (9.2)

where Φ± ∈ E are the asymptotic scattering states, and W0(t) is the dynamical
group of the free Klein–Gordon equation. Moreover,

‖r±(t)‖E = O(|t|−1/3), t→ ±∞. (9.3)

10. Linearization at the soliton

Decomposing the solution of equation (2.3) into a sum Y (t) = S + X(t) with
S = (s, 0), we obtain the equation for X(t):

Ẋ(t) = AX(t) + N (X(t)), t ∈ R, (10.1)

where

A =
(

0 1
−∆ +m2 + V (x) 0

)
and V (x) = −F ′(s(x))−m2 = U ′′(s(x))−m2.

(10.2)
The non-linear part N (X) is

N (X) =
(

0
N(Ψ)

)
, N(Ψ) = F (s+ Ψ)− F (s)− F ′(s)Ψ. (10.3)

The continuous spectrum of A coincides with the interval Γ := (−i∞,−im] ∪
[im, i∞). The edge points ±im of the continuous spectrum are neither eigenvalues
nor resonances of the operator A by condition U3. We proceed to find the discrete
spectrum of A. To do so we examine the spectral equation

A

(
u1

u2

)
=

(
0 1
−H 0

) (
u1

u2

)
= Λ

(
u1

u2

)
,

where u = (u1, u2) ∈ L2 ⊕ L2. The first equation gives u2 = Λu1. Substituting
into the second equation, we obtain (H + Λ2)u1 = 0. From condition D2 it follows
that Λ2 can assume only one value: Λ2 = −λ1. Hence, on the subspace of odd
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functions the operator A has two purely imaginary eigenvalues Λ = ±iµ, µ =
√
λ1.

The corresponding eigenfunctions are as follows:

u =
(
u1

u2

)
=

(
ϕλ1

iµϕλ1

)
, u =

(
ϕλ1

−iµϕλ1

)
, (10.4)

where ϕλ1 is the eigenfunction of H corresponding to the eigenvalue λ1. Note that
the function ϕλ1 can be assumed to be real, because the differential operator H has
real coefficients.

Decay of the linearized dynamics. We consider the linearized equation

Ẋ(t) = AX(t), t ∈ R.

Let 〈 · , · 〉 denote the inner product in L2(R,C2). We also define the symplectic
projection P d onto the eigenspace X d generated by the eigenfunctions u and u:

P dX =
〈X, ju〉
〈u, ju〉

u+
〈X, ju〉
〈u, ju〉

u, j =
(

0 −1
1 0

)
. (10.5)

Note that if a function X is real, then its projection P dX is also real. Let X c

be the continuous-spectrum subspace of the operator A and let P c = 1 − P d be
the projection onto this subspace. The operator A satisfies estimates analogous to
(4.23) and (4.27) in the first chapter. Namely,

‖eAtP cX‖E−β
6 C(1 + t)−3/2‖X‖Eβ

, t ∈ R, (10.6)

‖(eAtP cX)1‖L∞ 6 C(1 + t)−1/2(‖X‖W + ‖X‖Eβ
), t ∈ R, (10.7)

for any β > 5/2. We shall also require the following estimate, whose proof may be
found in [28]:

‖eAt(A∓ 2iµ− 0)−1P cX‖E−β
6 C(1 + t)−3/2‖X‖Eβ

, β >
5
2
, t ∈ R. (10.8)

11. Asymptotic decomposition of the dynamics

We shall seek the solution of equation (10.1) as the sum X(t) := w(t) + f(t),
where the function w(t) = z(t)u+z(t)u lies in the space X d, and the function f(t)
lies in X c. Let us derive the dynamical equations for z(t) and f(t).

Applying the projection P d to both sides of (10.1), we get that

żu+ ż u = Aw + P dN . (11.1)

Since 〈u, ju〉 = 0, Aw = iµ(zu − z u), and (P d)∗j = jP d, scalar multiplication of
equation (11.1) by ju gives us

(ż − iµz)〈u, ju〉 = 〈N , ju〉. (11.2)

Applying the projection P c to both sides of (10.1), we get an equation for f(t):

ḟ = Af + P cN . (11.3)
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Remark 11.1. Below we shall prove the following asymptotics for the functions z(t)
and f(t):

‖f(t)‖E−β
∼ t−1, z(t) ∼ t−1/2, ‖f1(t)‖L∞ ∼ t−1/2, t→∞. (11.4)

Using these asymptotics, we expand the right-hand side of equation (11.2) up to
terms of order O(t−3/2) and the right-hand side of (11.3) up to terms of order
O(t−1), and then we prove the asymptotics (11.4) by the method of majorants.

To begin with, we expand the non-linear term N(x,Ψ) defined in (10.3) in a Tay-
lor series,

N(x,Ψ) = N2(x,Ψ) +NR(x,Ψ), (11.5)

where

N2(x,Ψ) =
F ′′(s(x))

2
Ψ2(x), NR(x,Ψ) =

Ψ3(x)
3!

∫ 1

0

(1− ρ)2F ′′′(s(x) + ρΨ(x)) dρ.

By condition U2, the function F ′′′(ψ) vanishes in some neighbourhood of the
points ±a. Hence NR(x,Ψ) = 0 for large x, giving the following estimate:

‖NR‖L2
β∩W 1,1

0
= R(|z|+ ‖f1‖L∞)

(
|z|3 + |z|2‖f‖E−β

+ |z|‖f1‖L∞‖f‖E−β
+ ‖f1‖2L∞‖f‖E−β

)
. (11.6)

We also define the symmetric bilinear form N2[X1, X2] = (0, N2[Ψ1,Ψ2]) and the
symmetric trilinear form N3[X1, X2, X3] = (0, N3[Ψ1,Ψ2,Ψ3]), where

N2[Ψ1,Ψ2] =
F ′′(s)

2
Ψ1Ψ2, N3[Ψ1,Ψ2,Ψ3] =

F ′′′(s)
6

Ψ1Ψ2Ψ3. (11.7)

11.1. Asymptotic decomposition of ż. We rewrite equation (11.2) as follows:

ż − iµz =
〈N , ju〉
〈u, ju〉

=
〈N2[w,w] + 2N2[w, f ] + N3[w,w,w], ju〉

〈u, ju〉
+ ZR, (11.8)

where
|ZR| = R(|z|+ ‖f1‖L∞)(|z|2 + ‖f‖E−β

)2. (11.9)

We have

N2[w,w] = (z2+2zz+z2)N2[u, u], N3[w,w,w] = (z3+3z2z+3zz2+z3)N3[u, u, u],
(11.10)

and thus (11.8) gives us that

ż = iµz+Z2(z2+2zz+z2)+Z3(z3+3z2z+3zz2+z3)+(z+z)〈f, jZ ′1〉+ZR, (11.11)

where

Z2 =
〈N2[u, u], ju〉

〈u, ju〉
, Z3 =

〈N3[u, u, u], ju〉
〈u, ju〉

, Z ′1 = 2
N2[u, u]
〈u, ju〉

(11.12)

in view of (11.7). Note that (10.4) implies that 〈u, ju〉 is purely imaginary:

〈u, ju〉 = 2iµ|ϕλ1 |2 = iδ, where δ = 2µ|ϕλ1 |2 > 0. (11.13)

Hence, the coefficients Z2, Z3, and Z ′1 are also purely imaginary.
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11.2. Asymptotic decomposition of ḟ . We rewrite equation (11.3) as follows:

ḟ = Af + P cN = Af + P cN2[w,w] + FR. (11.14)

For the remainder FR = FR(x, t) we have

FR = P c(NR−2N2[f, w]−N2[f, f ]) = (1−P d)(NR−2N2[f, w]−N2[f, f ]), (11.15)

where NR = (0, NR) and NR is defined in (11.5). Using the estimate (11.6), we
obtain

‖FR‖Eβ∩W = R(|z|+ ‖f1‖L∞)(|z|3 + |z| ‖f‖E−β
+ ‖f1‖L∞‖f‖E−β

). (11.16)

12. Poincaré normal forms

In this section we shall get rid of the ‘non-resonance’ terms in (11.8) and (11.14)
and obtain the so-called Poincaré ‘normal forms’ for these equations.

12.1. Normal form for ḟ . Writing equation (11.14) in more detail, we obtain

ḟ = Af + (z2 + 2zz + z2)F2 + FR, F2 = P cN2[u, u]. (12.1)

To single out the terms of order z2 ∼ t−1 in (12.1), we represent f as the sum

f = h+ k + g, (12.2)

where
k = a20z

2 + 2a11zz + a02z
2 (12.3)

with coefficients aij(x) such that aji(x) = aij(x), and

g(t) = −eAtk(0). (12.4)

Note that h(0) = f(0).

Lemma 12.1. There exist functions aij in the space E−β such that the function
h = f − k − g obeys the equation

ḣ = Ah+HR, (12.5)

where

HR = FR +HI , HI =
∑

aij(x)R(|z|+ ‖f1‖L∞)|z|(|z|+ ‖f‖E−β
)2.

Proof. Substituting the equalities (12.3), (12.4) into equation (12.1), we get that

ḣ = ḟ − (2a20z + 2a11z)ż − (2a11z + 2a02z)ż − ġ

= Af + (z2 + 2zz + z2)F2 + FR

− (2a20z + 2a11z)
(
iµz + R(|z|+ ‖f‖L∞)(|z|+ ‖f‖E−β

)2
)

− (2a11z + 2a02z)
(
−iµz + R(|z|+ ‖f1‖L∞)(|z|+ ‖f‖E−β

)2
)
−Ag. (12.6)
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On the other hand, (12.5) implies that

ḣ = A(f − a20z
2 − 2a11zz − a02z

2 − g) +HR. (12.7)

If we compare the coefficients of z2, zz, and z2 on the right-hand sides of (12.6)
and (12.7), we find that

F2 − 2iµa20 = −Aa20, F2 = −Aa11, F2 + 2iµa02 = −Aa02. (12.8)

Since A : Hs1+2 ⊕ Hs2 → Hs2 ⊕ Hs1 is an elliptic operator with no kernel in the
space of odd functions, there exists a continuous inverse operator A−1 : Hs2⊕Hs1 →
Hs1+2 ⊕Hs2 , and from the second equation in (12.8) we obtain

a11 = −A−1F2, (12.9)

where F2 = P cN2[u, u] ∈ Hs2 ⊕ Hs1 for any s1, s2 > 0. Further, the coefficients
a20 and a02 are obtained from the first and third equations in (12.8):

a20 = −(A+ 2iµ− 0)−1F2, a02 = a20 = −(A− 2iµ− 0)−1F2. (12.10)

As we shall show below, the estimates (10.8) are guaranteed by such a choice of
inverse operators. The points ±2iµ lie in the continuous spectrum, and hence by
the limiting absorption principle (see [1], [19]), these inverse operators do exist and
act continuously from the space Eσ into the space E−σ with any σ > 1/2. �

The term HI in the remainder HR can be written as

HI =
∑

n

(A− 2iµn− 0)−1Cn, n ∈ {−1, 0, 1}, (12.11)

where the functions Cn ∈ Ec satisfy the estimate

‖Cn‖Eβ
= R(|z|+ ‖f‖E−β

)|z|(|z|+ ‖f‖E−β
)2. (12.12)

12.2. Normal form for ż. Substituting the decomposition (12.2) into (11.11)
for z, we see that

ż = iµz + Z2(z2 + 2zz + z2) + Z3(z3 + 3z2z + 3zz2 + z3)

+ Z ′30z
3 + Z ′21z

2z + Z ′12zz
2 + Z ′03z

3 + Z̃R, (12.13)

where
Z ′30 = 〈a20, jZ

′
1〉, Z ′21 = 〈a11 + a20, jZ

′
1〉,

Z ′03 = 〈a02, jZ
′
1〉, Z ′12 = 〈a02 + a11, jZ

′
1〉.

(12.14)

The new remainder Z̃R is of the form ZR + (z + z)〈f − k, jZ ′1〉, where ZR satisfies
the estimate (11.9). Since f − k = g + h, we have

|〈f − k, Z ′1〉| 6 C(‖g‖E−β
+ ‖h‖E−β

).

This, together with (11.9), gives

|Z̃R| = R1(|z|+ ‖f‖L∞)
[
(|z|2 + ‖f‖E−β

)2 + |z| ‖g‖E−β
+ |z| ‖h‖E−β

]
. (12.15)
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It is worth pointing out that the resonance terms involving z2z = |z|2z are of special
importance in equation (12.13). Namely, Poincaré’s method of normal forms lets
us eliminate all the polynomial terms on the right-hand side of (12.13) except for
the first term and the resonance terms.

We claim that the real part of the coefficient Z ′21 is strictly negative if the
non-degeneracy condition F is fulfilled. By (11.12), (12.9), and (12.10) it follows
that

Z ′21 =−
〈
A−1P cN2[u, u], 2j

N2[u, u]
〈u, ju〉

〉
−

〈
(A− 2iµ− 0)−1P cN2[u, u], 2j

N2[u, u]
〈u, ju〉

〉
. (12.16)

The operator A−1P cj is self-adjoint, and hence 〈A−1P cjN2[u, u], 2 N2[u, u]〉 is
a real number. Consequently, the first term on the right-hand side of (12.16) is
purely imaginary. Therefore,

ReZ ′21 = 2 Re
〈(A− 2iµ− 0)−1P cN2[u, u], jN2[u, u]〉

iδ

=
2
δ

Im〈R(2iµ+ 0)P cN2[u, u], jN2[u, u]〉,

where R(λ) = (A − λ)−1, Reλ > 0, is the resolvent of the operator A. Since the
projection P c commutes with the resolvent, we have

R(2iµ+ 0)P c = P cR(2iµ+ 0)P c.

Furthermore, (P c)∗j = jP c, and therefore

ReZ ′21 =
2
δ

Im〈R(2iµ+ 0)α, jα〉, α = P cN2[u, u]. (12.17)

Now we employ the following spectral representation (see [7], formula (2.1.9)):

〈R(2iµ+ 0)α, jα〉

=
1
i

∫ ∞

m

θ(λ) dλ
(
〈α, ju(iλ)〉〈u(iλ), jα〉

iλ− 2iµ− 0
+
〈α, ju(iλ)〉〈u(iλ), jα〉

−iλ− 2iµ− 0

)
=

∫ ∞

m

θ(λ) dλ
(
〈u(iλ), jα〉〈u(iλ), jα〉

λ− 2µ+ i0
+
〈u(iλ), jα〉〈u(iλ), jα〉

λ+ 2µ− i0

)
,

where θ(λ) = 1/(2πN2(λ)
√
λ−m ) and N(λ) is a certain real normalizing factor.

Taking into account the equality 1/(ν+i0) = p.v.(1/ν)−iπδ(ν), where p.v. denotes
the Cauchy principal value, we have

〈R(2iµ+ 0)α, jα〉 =
∫ ∞

m

θ(λ) dλ
(
|〈u(iλ), jα〉|2

λ− 2µ
+
|〈u(iλ), jα〉|2

λ+ 2µ

)
− iπθ(2µ)|〈u(2iµ), jα〉|2.
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The integrand is real, hence

Im〈R(2iµ+ 0)α, jα〉 = −πθ(2µ)|〈u(2iµ), jα〉|2 < 0, (12.18)

because θ(2µ) > 0 and

〈u(2iµ), jα〉 = 〈u(2iµ), jP cN2[u, u]〉 = 〈u(2iµ), jN2[u, u]〉

= −
∫
u1(2iµ)(x)N2[u, u](x) dx

= −1
2

∫
ϕ4λ1(x)F

′′(s(x))ϕ2
λ1

(x) dx 6= 0

in view of condition F. As a result it follows from (12.17) and (12.18) that

ReZ ′21 < 0. (12.19)

Now we apply Poincaré’s method of normal forms to equation (12.13).

Lemma 12.2. There exist coefficients such that the new function

z1 = z + c20z
2 + c11zz + c02z

2 + c30z
3 + c12zz

2 + c03z
3 (12.20)

satisfies the equation
ż1 = iµz1 + iK|z1|2z1 + ẐR, (12.21)

where
Re(iK) = ReZ ′21 < 0. (12.22)

The same estimate as for Z̃R holds for the remainder ẐR:

|ẐR| = R1(|z|+ ‖f‖L∞)
[
(|z|2 + ‖f‖E−β

)2 + |z| ‖g‖E−β
+ |z| ‖h‖E−β

]
. (12.23)

Proof. Substituting the expression (12.20) for the function z1 into equation (12.13)
gives

ż1 = (1 + 2c20z + c11z + 3c30z2 + c12z
2)ż + (c11z + 2c02z + 2c12zz + 3c03z2)ż

= iµz + Z2(z2 + 2zz + z2) + Z3(z3 + 3z2z + 3zz2 + z3)

+ Z ′30z
3 + Z ′21z

2z + Z ′12zz
2 + Z ′03z

3 + Z̃R

+ (2c20z + c11z)
(
iµz + Z2(z2 + 2zz + z2) + O(|z|3) + Z̃R

)
+ (3c30z2 + c12z

2)
(
iµz + O(|z|2) + Z̃R

)
+ (c11z + 2c02z)

(
−iµz + Z2(z2 + 2zz + z2) + O(|z|3) + Z̃R

)
+ (2c12zz + 3c03z2)

(
−iµz + O(|z|2) + Z̃R

)
. (12.24)

On the other hand, putting (12.20) into (12.21) gives

ż1 = iµ(z+ c20z
2 + c11zz+ c02z

2 + c30z
3 + c12zz

2 + c03z
3) + iKz2z+ O(|z|4) + ẐR.

(12.25)
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Comparing the coefficients of z2, zz, and z2 on the right-hand sides of (12.24)
and (12.25), we find that

c20 =
iZ2

µ
, c11 = −2iZ2

µ
, c02 = −3iZ2

µ
. (12.26)

Further, comparing the coefficients of z2z, we get that

iK = 3Z3 + Z ′21 + (4c20 − c11 − 2c20)Z2. (12.27)

Since the coefficients Z2 and Z3 defined in (11.12) are purely imaginary, the inequal-
ity (12.22) follows from the last equality. The estimate (12.23) for the remainder
ẐR is easily verified. �

Multiplying (12.21) by z1 and taking the real part, we obtain for y = |z1|2 the
equation

ẏ = 2Re(iK) y2 + YR, (12.28)

where

|YR| = R1(|z|+ ‖f1‖L∞)|z|
[
(|z|2 + ‖f‖E−β

)2 + |z| ‖g‖E−β
+ |z| ‖h‖E−β

]
. (12.29)

13. Majorants

In this section we define majorants and obtain uniform estimates for them.

13.1. Initial conditions and estimate for g. To start with we formulate our
assumptions about the smallness of the initial data for the functions z, f , and h.
According to condition (9.1) the initial conditions can be assumed to satisfy the
following inequalities:

|z(0)| 6 ε1/2, (13.1)

‖f(0)‖Eβ
= ‖h(0)‖Eβ

6 ε3/2h0, (13.2)

‖f(0)‖Eβ∩W 6 ε1/2f0, (13.3)

where h0 and f0 are fixed constants and ε > 0 is a small number. We have |z1|2 6
|z|2 + R(|z|)|z|3 by (12.20). Hence,

y0 = y(0) = |z1(0)|2 6 ε+ C(|z(0)|)ε3/2. (13.4)

Let us also estimate g(t) = −eAtk(0), where k(0) = a20z
2(0) + a11z(0)z(0) +

a02z
2(0) and the coefficients aij ∈ E−β are defined in (12.9) and (12.10). Since the

coefficients aij also lie in Ec, it follows from (10.6) and (13.1) that

‖g(t)‖E−β
6

C|z(0)|2

(1 + t)3/2
6

Cε

(1 + t)3/2
, β >

5
2
. (13.5)
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13.2. System of majorants. We define the following functions of T > 0:

M1(T ) = max
06t6T

|z(t)|
(

ε

1 + εt

)−1/2

, (13.6)

M2(T ) = max
06t6T

‖f1(t)‖L∞

(
ε

1 + εt

)−1/2

log−1(2 + εt), (13.7)

M3(T ) = max
06t6T

‖h(t)‖E−β

(
ε

1 + εt

)−3/2

log−1(2 + εt). (13.8)

We also set M = (M1,M2,M3). The main purpose of this subsection is to prove
the uniform boundedness of M (T ) for sufficiently small ε > 0.

13.3. Estimates of the remainders. We first estimate the remainders in terms
of the corresponding majorants.

I. Consider the remainder YR defined in (12.28). Using the equality f = k+g+h
and the estimate (12.29), we get that

|YR| = R2(|z|+ ‖f1‖L∞)|z|
[
(|z|2 + ‖g‖E−β

+ ‖h‖E−β
)2 + |z|(‖g‖E−β

+ ‖h‖E−β
)
]

= R(M )
(

ε

1 + εt

)1/2

M1

[(
ε

1 + εt
M 2

1 +
ε

(1 + t)3/2

+
(

ε

1 + εt

)3/2

log(2 + εt)M3

)2

+
(

ε

1 + εt

)1/2

M1

(
ε

(1 + t)3/2
+

(
ε

1 + εt

)3/2

log(2 + εt)M3

)]
= R(M )

ε5/2

(1 + εt)2
√
ε+ εt

log(2 + εt)(1 + |M |)5.

Hence,

|YR| = R(M )
ε5/2

(1 + εt)2
√
εt

log(2 + εt)(1 + |M |)5. (13.9)

II. To estimate the remainder FR we employ (11.14). From (12.2) and (11.16),

‖FR‖Eβ∩W = R(|z|+ ‖f1‖L∞)
[
|z|3 +

(
|z|+ ‖f1‖L∞

)(
|z|2 + ‖g‖E−β

+ ‖h‖E−β

)]
= R(M )

(
ε

1 + εt

)3/2[
M 3

1 +
(
M1 + log(2 + εt)M2

)
×

(
M 2

1 +
1

(1 + t)1/2
+

(
ε

1 + εt

)1/2

log(2 + εt)M3

)]
, β >

5
2
.

Hence, the remainder FR satisfies the estimate

‖FR‖Eβ∩W = R(M )
(

ε

1 + εt

)3/2

log(2+εt)
(
(M 2

1 +1)(M1+M2)+ε1/2(1+|M |)2
)
.

(13.10)
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III. Next, we estimate the remainder F̃R = P cN2[w,w] + FR. By (11.10),

‖P cN2[w,w]‖Eβ∩W = R(M )
ε

1 + εt
M 2

1 .

This, together with the estimate (13.10), implies that

‖F̃R‖Eβ∩W = R(M )
ε

1 + εt

(
M 2

1 + ε1/2(1 + |M |)3
)
. (13.11)

IV. Finally, we examine the remainder HR = FR + HI , where HI is defined in
(12.11) and the coefficients Cn satisfy the estimate (12.12). We estimate Cn in
terms of the majorants. From (12.12),

‖Cn‖Eβ
= R(|z|+ ‖f‖E−β

)|z|(|z|+ ‖g‖E−β
+ ‖h‖E−β

)2

= R(M )
(

ε

1 + εt

)1/2

M1

[(
ε

1 + εt

)1/2

M1 +
ε

(1 + t)3/2

+
(

ε

1 + εt

)3/2

log(2 + εt)M2

]2

.

Hence,

‖Cn‖Eβ
= R(M )

(
ε

1 + εt

)3/2(
M 3

1 + ε1/2(1 + |M |)3
)
, n = 0,±1. (13.12)

13.4. Estimates via the majorants. Here we shall use the majorants to esti-
mate solutions of dynamical equations, thereby obtaining relations between the
majorants themselves.

I. We first estimate the solution y(t) of equation (12.28), which is the Riccati
equation. As in Proposition 5.6 of [7], the solution of this equation with initial
function satisfying the inequality (13.4) and the remainder satisfying the estimate
(13.9) has the estimate∣∣∣∣y − y0

1 + 2y0 ImKt

∣∣∣∣ 6 R(M )
ε5/2

(1 + εt)2
√
εt

log(2 + εt)(1 + |M |)5. (13.13)

Furthermore, by the estimates (13.4) and (13.13),

y 6 R(M )
[

ε

1 + εt
+

(
ε

1 + εt

)3/2

log(2 + εt)(1 + |M |)5
]
.

We have |z|2 6 y + R(|z|)|z|3, hence

|z|2 6 R(M )
[

ε

1 + εt
+

(
ε

1 + εt

)3/2

log(2 + εt)(1 + |M |)5 +
(

ε

1 + εt

)3/2

M 3
1

]
.

Taking into account the definition (13.6) of the first majorant M1, we have

M 2
1 = R(M )

(
1 + ε1/2(1 + |M |)5

)
. (13.14)
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II. Further, let us examine equation (11.14) for f . The solution of this equation
can be represented as

f(t) = eAtf(0) +
∫ t

0

eA(t−τ)F̃R(τ) dτ.

Using the estimates (10.7), (13.3), and (13.11), we find that

‖f1‖L∞ 6
C

(1 + t)1/2
‖f(0)‖Eβ∩W +

∫ t

0

C

(1 + (t− τ))1/2
‖F̃R(τ)‖Eβ∩W dτ

6 C

[
f0

(
ε

1 + t

)1/2

+ R(M )
(
M 2

1 + ε1/2(1 + |M |)3
) ∫ t

0

dτ

(t− τ)1/2

ε

1 + ετ

]
6 C

(
ε

1 + εt

)1/2

log(2 + εt)
[
f0 + R(M )

(
M 2

1 + ε1/2(1 + |M |)3
)]
.

This, together with the definition (13.7) of the second majorant M2, implies that

M2 = R(M )
(
M 2

1 + ε1/2(1 + |M |)3
)
. (13.15)

III. Finally, let us examine equation (12.5) for h. The solution h(t) of this
equation is given by

h(t) = eAth(0) +
∫ t

0

eA(t−τ)HR(τ) dτ.

Using the estimates (10.6), (10.8), (13.2), (13.10), and (13.12), we see that

‖h‖E−β
6

C

(1 + t)3/2
‖h(0)‖Eβ

+
∫ t

0

C

(1 + (t− τ))3/2

×
(
‖FR(τ)‖Eβ

+
∑
m

‖Cm(τ)‖Eβ

)
dτ

6 C

[
h0

(
ε

1 + t

)3/2

+ R(M )
(
(M 2

1 + 1)(M1 + M2) + ε1/2(1 + |M |)2
)

×
∫ t

0

log(2 + ετ) dτ
(1 + (t− τ))3/2

(
ε

1 + ετ

)3/2

+
∑
m

R(M )
(
M 3

1 + ε1/2(1 + |M |)3
)∫ t

0

dτ

(1 + (t− τ))3/2

(
ε

1 + ετ

)3/2]
.

Therefore,

‖h‖E−β
6 C

(
ε

1 + εt

)3/2

log(2 + εt)
[
h0 + R(M )

(
(M 2

1 + 1)(M1 + M2)

+ ε1/2(1 + |M |)3
)]
. (13.16)

Consequently, using definition (13.8), we get that

M3 = R(M )
[
(M 2

1 + 1)(M1 + M2) + ε1/2(1 + |M |)3
]
. (13.17)
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13.5. Uniform estimates of the majorants. We claim that the majorants Mi

are uniformly bounded with respect to T and ε for sufficiently small ε.
Putting together the estimates (13.14), (13.15), and (13.17) for the majorants,

we obtain the following inequality:

M 2 = R(M )
[
1 + (M 4

1 + 1)(M 2
1 + M 2

2 ) + ε1/2(1 + |M |)6
]
.

Replacing M 2
1 and M2 on the right-hand side by their estimates (13.14) and (13.15),

we see that
M 2 = R(M )(1 + ε1/2F (M ))

for some continuous function F (M ). This proves the uniform boundedness of the
function M (T ), since M (0) is small and the function M (T ) is continuous. Thus,
we have shown that for sufficiently small ε there exists a constant M independent
of T and ε such that |M (T )| 6 M . The following estimates are direct consequences
of this inequality and the definitions (13.6)–(13.8) of the majorants Mi:

|z(t)| 6 M

(
ε

1 + εt

)1/2

, ‖f1(t)‖L∞ 6 M

(
ε

1 + εt

)1/2

log(1 + εt),

‖f(t)‖E−β
6 M

(
ε

1 + εt

)
, ‖h(t)‖E−β

6 M

(
ε

1 + εt

)3/2

log(1 + εt),

(13.18)
where β > 5/2. We have proved the following result.

Theorem 13.1. Assume that the hypotheses of Theorem 9.1 are satisfied. Then for
a sufficiently small ε > 0 there exist functions z(t) ∈ C1(R) and f(x, t) ∈ C(R, E)
and a constant M > 0 such that for all t > 0 the solution of equation (2.3) can be
written in the form

Y (x, t) = S(x) + (z(t) + z(t))u+ f(x, t). (13.19)

Moreover, the functions z(t) and f(x, t) satisfy the estimates

|z(t)| 6 M

(
ε

1 + εt

)1/2

, ‖f(t)‖E−β
6 M

(
ε

1 + εt

)
, β >

5
2
, t > 0.

(13.20)

14. Long-time asymptotic behaviour

14.1. Long-time behaviour of z(t). Note that the estimate (12.23) for ẐR

differs from the estimate for YR only by the factor |z|, and so

|ẐR(t)| 6 Cε2(1 + εt)−3/2(εt)−1/2 log(2 + εt), (14.1)

by (13.9) and the boundedness of the majorants.
On the other hand, since |z1|2 = y it follows from the inequality (13.13) that∣∣∣∣ |z1(t)|2 − y0

1 + 2 ImKy0t

∣∣∣∣ 6
Cε5/2 log(2 + εt)

(1 + εt)2
√
εt

.
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Hence we may rewrite equation (12.21) as

ż1 = iµz1 + iK
y0

1 + 2 ImKy0t
z1 + Z1, (14.2)

where the remainder Z1 satisfies the estimate

|Z1(t)| 6 Cε2(1 + εt)−3/2(εt)−1/2 log(2 + εt) (14.3)

in view of (13.18) and (14.1). We have y0 = ε + O(ε3/2) by (13.4), and hence
we can replace the constant 2 ImKy0 in (14.2) by the constant kε. Next, let ρ =
ReK/ ImK. Then the solution z1 of equation (14.2) can be written as

z1(t) =
eiµt

(1 + kεt)1/2−iρ

[
z1(0) +

∫ t

0

e−iµs(1 + kεs)1/2−iρZ1(s) ds
]

= z∞
eiµt

(1 + kεt)1/2−iρ
+ zR(t),

where

z∞ = z1(0) +
∫ ∞

0

e−iµs(1 + kεs)1/2−iρZ1(s) ds,

zR(t) = −
∫ ∞

t

eiµt

(
1 + kεs

1 + kεt

)1/2−iρ

Z1(s) ds.

Further, |zR(t)| 6 Cε(1 + εt)−1 log(2 + εt) in view of the estimate (14.3) for the
remainder Z1. Thus, the function z1(t) has the following asymptotic behaviour:

z1(t) = z∞
eiµt

(1 + kεt)1/2−iρ
+ O(t−1 log t), t→ +∞. (14.4)

Since z = z1 + O(t−1) by (12.20) and (13.18), it is immediately seen from (14.4)
that z(t) has the asymptotic behaviour

z(t) = z∞
eiµt

(1 + kεt)1/2−iρ
+ O(t−1 log t), t→ +∞. (14.5)

14.2. Soliton asymptotics. We proceed to prove the main Theorem 9.1. Ac-
cording to Theorem 13.1, the solution Y (x, y) of equation (2.3) can be written
as

Y (t) = S + w(t) + f(t), where w(t) = z(t)u+ z(t)u, (14.6)

and the functions z(t) and f(t) satisfy the estimates (13.20). We can incorporate the
function w(t) into the remainder r+(t) of the asymptotics (9.2), because z(t) ∼ t−1/2

by (14.5). Therefore, to find the asymptotic behaviour it suffices to single out the
dispersive wave W0(t)Φ+ from the function f(t). We write equation (11.14) in the
form

ḟ = A0f + V f + P cN , (14.7)

where

A0 =
(

0 1
−∆ +m2 0

)
, V =

(
0 0
V 0

)
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and N is given in (10.3). For the solution f(t) of equation (14.7), we use the
integral representation:

f(t) = W0(t)f(0) +
∫ t

0

W0(t− τ)Q(τ) dτ

= W0(t)
(
f(0) +

∫ ∞

0

W0(−τ)Q(τ) dτ
)
−

∫ ∞

t

W0(t− τ)Q(τ) dτ

= W0(t)φ+ + r+(t), (14.8)

where Q(t) is the vector function with coordinates

Q1 = (P cN )1 = −(P dN )1, Q2 = (P cN )2−V f1 = (P cN2[w,w])2+(FR)2−V f1.
(14.9)

In order to derive the asymptotic behaviour (9.2), it suffices to check that all the
integrals in (14.8) converge in the norm of the space E, and also that

‖r+(t)‖E = O(t−1/3), t→∞. (14.10)

Since the function ϕλ1 is real, it follows from the definition (10.5) and the equality
(11.13) that

Q1 = −(P dN )1 =
i

δ
ϕλ1

(
〈N , ju〉 − 〈N , ju〉

)
= 0.

Consider the function Q2(t). Using (10.5), (11.10), and (11.12), we get that

(P cN2[w,w])2 = N2[w,w]− (P dN2[w,w])2 = (z2 + 2zz + z2)(N2[u, u]− 2iµu1Z2).

Hence, taking into account the equalities (12.2), (12.3), we represent the function
Q2(t) as

Q2 = q20z
2 + 2q11zz + q02z

2 +QR, (14.11)

where qij = N2[u1, u1]− 2iZ2µu1 − V (aij)1, QR = (FR)2 − V (f1 − k1), and (aij)1
and k1 are the first components of the vector functions aij and k, respectively. In
view of (11.15) and (13.18),

‖(FR)2‖L2 = O(t−3/2 log t), t→∞.

Using the equality (12.2) and the estimates (13.5) and (13.18), we find that

‖V (f1 − k1)‖L2 = ‖V (g1 + h1)‖L2 = O(t−3/2 log t), t→∞.

Hence the remainder QR in (14.11) has the asymptotic behaviour

‖QR‖L2 = O(t−3/2 log t), t→∞. (14.12)

Therefore, the integrals in (14.8) with the function QR converge in E, and the
contribution of this function to the remainder r+(t) is of order O(t−1/2 log t).

It remains to evaluate the contributions to r+(t) from the quadratic terms on the
right-hand side of (14.11). Clearly, the functions qij(x) lie in L2, but the functions
z2(t), z2(t), and z(t)z(t) decrease slowly, like O(t−1). Thus, we cannot assert that
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the integrals converge absolutely. Nevertheless, we can define these integrals as
limits. For example,∫ ∞

t

W0(t− τ)
(

0
q11(τ)

)
zz dτ := lim

T→∞

∫ T

t

W0(t− τ)
(

0
q11(τ)

)
zz dτ. (14.13)

We prove that these limits exist in the space E.
Let us first examine the integral (14.13). From the asymptotics (14.5) it follows

that zz ∼ (1 + kεt)−1. We show that the contribution of the integral (14.13) to
r+(t) is of order O(t−1).

Lemma 14.1. Assume that q(x) ∈ L2(R). Then

I(t) :=
∥∥∥∥∫ ∞

t

W0(−τ)
(

0
q

)
dτ

1 + τ

∥∥∥∥
E

= O(t−1), t→∞. (14.14)

Proof. We set ω = ω(ξ) =
√
ξ2 +m2 . Then

I(t) ∼
∥∥∥∥∫ ∞

t

(
− sin(ωτ) q̂(ξ)
− cos(ωτ) q̂(ξ)

)
dτ

1 + τ

∥∥∥∥
L2⊕L2

6
C

1 + t

∥∥∥∥ q̂(ξ)ω(ξ)

∥∥∥∥
L2

6
C1

1 + t
, (14.15)

because the formula for integration by parts gives us that∣∣∣∣∫ ∞

t

eiωτ

1 + τ
dτ

∣∣∣∣ =
∣∣∣∣∫ ∞

t

deiωτ

iω(1 + τ)
dτ

∣∣∣∣ 6

∣∣∣∣ eiωτ

ω(1 + t)

∣∣∣∣ +
∣∣∣∣∫ ∞

t

eiωτ

ω(1 + τ)2
dτ

∣∣∣∣
6

C

ω(1 + t)
. (14.16)

The proof is complete.

Now let us examine the integrals (14.13) with the functions q20(x)z2 and q02(x)z2

instead of the function q11(x)zz and show that the contribution of these integrals
to the remainder r+(t) is of order O(t−1/3). From the asymptotics (14.5),

z2 ∼ e2iµτ

(1 + kεt)1−2iρ
, z2 ∼ e−2iµτ

(1 + kεt)1+2iρ
.

In addition, it is readily checked that q02, q20 ∈ L1(R). Therefore, it remains to
prove the following result.

Lemma 14.2. Let q(x) ∈ L2(R) ∩ L1(R). Then

I±(t) :=
∥∥∥∥∫ ∞

t

W0(−τ)
(

0
q

)
e±2iµτ dτ

(1 + τ)1∓2iρ

∥∥∥∥
E

= O(t−1/3), t→∞. (14.17)

Proof. We consider only the integral I−(t) involving the exponential e−2iµτ (the
integral with e+2iµτ is dealt with similarly). For simplicity we shall drop the factor
(1 + t)2iρ. As in the case of (14.15), we have

I−(t) ∼
∥∥∥∥∫ ∞

t

(
− sin(ωτ) q̂(ξ)
− cos(ωτ) q̂(ξ)

)
e−2iµτ dτ

1 + τ

∥∥∥∥
L2⊕L2

. (14.18)
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Writing sinωτ and cosωτ as linear combinations of the exponentials eiωτ and e−iωτ ,
we obtain two integrals involving the exponentials e−i(ω+2µ)τ and ei(ω−2µ)τ , respec-
tively. The integral involving the ‘non-resonance’ factor e−i(ω+2µ)τ is estimated as
in (14.15)–(14.16), and its contribution to r+(t) is of order O(t−1). It remains to
show that

J(t) =
∥∥∥∥∫ ∞

t

ei(ω−2µ)τ q̂(ξ) dτ
1 + τ

∥∥∥∥
L2

= O(t−1/3). (14.19)

Given a fixed 0 < α < 1, we define the function

χτ (ξ) =

{
1, |ω(ξ)− 2µ| 6 (1 + τ)−α,

0, |ω(ξ)− 2µ| > (1 + τ)−α.

Then

J(t) 6

∥∥∥∥∫ ∞

t

ei(2ω−µ)τχτ (ξ)q̂(ξ) dτ
1 + τ

∥∥∥∥
L2

+
∥∥∥∥∫ ∞

t

ei(2ω−µ)τ (1− χτ (ξ))q̂(ξ) dτ
1 + τ

∥∥∥∥
L2

= J1(t) + J2(t).

Since the function q̂(ξ) is bounded and since ‖χτ‖L2 6 (1+τ)−α/2, we have J1(t) 6
‖q̂‖L∞(1 + t)−α/2. On the other hand, integrating by parts, we get that

J2(t) =
∥∥∥∥∫ ∞

t

(1− χτ (ξ))q̂(ξ) dei(2ω−µ)τ

(2ω − µ)(1 + τ)

∥∥∥∥
L2

6
C(1 + t)α

1 + t
‖q̂‖L2 + C

∫ ∞

t

(1 + τ)α dτ

(1 + τ)2
‖q̂‖L2 6

C‖q̂‖L2

(1 + t)1−α
.

Equating degrees, α/2 = 1− α, we have α = 2/3. �

Chapter III

Examples of non-linear potentials

In this chapter we shall construct examples of non-linear potentials satisfying
the spectral conditions of the first and second chapters. We first consider piecewise
parabolic potentials glued at two points, and then approximate them by smooth
functions.

15. Piecewise parabolic potentials

Consider equation (1.1)

ψ̈(x, t) = ψ′′(x, t)− U ′0(ψ(x, t)), x ∈ R, (15.1)

with a piecewise parabolic potential

U0(ψ) =

{
(1− bψ2)/2, |ψ| 6 γ,

d(ψ ∓ 1)2/2, ±ψ > γ,
(15.2)
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where b, d > 0 and 0 < γ < 1 are constants. We want to determine conditions on b
and d under which U0(ψ) ∈ C1(R). Equating the values of the function U0 and its
derivative at γ gives

b =
1
γ
, d =

1
1− γ

, 0 < γ < 1. (15.3)

We note that the second derivative U ′′0 (ψ) is a piecewise constant function with
discontinuities at the points ψ = ±γ. Consider the stationary equation

s′′0(x) = U ′0(s0(x)) =

{
−bs0(x), 0 < s0(x) 6 γ,

d(s0(x)− 1), s0(x) > γ.
(15.4)

We find a non-zero odd solution (kink) of this equation:

s0(x) =

{
C sin

√
b x, 0 < x 6 q,

Ae−
√

d x + 1, x > q,
(15.5)

where C > γ, A < 0, and q = (1/
√
b ) arcsin(γ/C). Equating the values of the

function s0(x) and its derivative at x = q and using (15.3) for b and d, we see that

C =
√
γ , A = (γ − 1)e

√
γ/(1−γ) arcsin

√
γ , q =

√
γ arcsin

√
γ . (15.6)

15.1. The linearized equation. We linearize equation (15.1) near the kink s0(x)
by representing the solution ψ(t) of this equation as the sum ψ(t) = s0 + φ(t).
Substituting this into (15.1), we get that

φ̈(x, t) = φ′′(x, t)− U ′0(s0(x) + φ(x, t)) + U ′0(s0(x)).

Taking into account (15.2), we write the last equation as

φ̈(t) = −H0φ(t) + N (φ(t)), t ∈ R,

where

H0 = − d2

dx2
+W0(x), W0(x) = U ′′0 (s0(x)) =

{
−b, |x| 6 q,

d, |x| > q.
(15.7)

The continuous spectrum of the operator H0 coincides with [d,∞), and the discrete
spectrum lies in the interval [0, d]. The eigenfunction ϕ(x) corresponding to the
eigenvalue λ satisfies the equation{

−ϕ′′(x)− bϕ(x) = λϕ(x), |x| 6 q,

−ϕ′′(x) + dϕ(x) = λϕ(x), |x| > q.
(15.8)

The eigenvalue λ0 = 0 is the ground state, and the positive even function ϕ0(x) =
s′0(x) is the corresponding eigenfunction. Hence, the eigenfunction ϕ1(x) corre-
sponding to the next eigenvalue λ1 > 0 (if it exists) must be odd.
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15.2. Odd eigenfunctions. From equation (15.8) it is seen that the odd eigen-
functions have the form

ϕ(x) =

{
B sinβx, |x| 6 q,

A(sgnx)e−α|x|, |x| > q,
(15.9)

where α =
√
d− λ > 0 and β =

√
b+ λ > 0. Equating the values of the function

ϕ(x) and its left and right derivatives at the point x = q, we have

Ae−αq = B sinβq, −Aαe−αq = Bβ cosβq, (15.10)

where
α2 + β2 = b+ d. (15.11)

The system (15.10) has a non-zero solution only if its determinant is zero, that is,

− α = β cotβq. (15.12)

We multiply both sides of equation (15.12) by q and let ξ = βq, η = αq. Taking
into account (15.11), we obtain the system of equations

− η = ξ cot ξ, ξ2 + η2 = R2, (15.13)

where R = q
√
b+ d denotes the radius of the circle on the (ξ, η)-plane. Substituting

the expressions for b, d, and q in terms of the parameter γ from (15.3) and (15.6),
we see that

R =
q√

γ(1− γ)
=

arcsin
√
γ

√
1− γ

. (15.14)

The solution of the system (15.13) can be found graphically (see Fig. 5). Consid-
ering that η > 0, we get the following result:

R ∈ (0, π/2] : the system (15.13) has no solutions,
R ∈ (π/2, 3π/2] : the system (15.13) has a unique solution,
R ∈ (3π/2, 5π/2] : the system (15.13) has two solutions,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(15.15)

Let γk, k ∈ N, denote the solution of the equation

arcsin
√
γk√

1− γk
=
kπ

2
, k ∈ N. (15.16)

Solving this equation numerically, we find that

γ1 ∼ 0.64643, γ2 ∼ 0.8579, γ3 ∼ 0.92472, γ4 ∼ 0.95359, γ5 ∼ 0.96856, . . . .
(15.17)

By (15.15),

γ ∈ (0, γ1] : there are no non-zero odd eigenfunctions,
γ ∈ (γ1, γ3] : there exists one linearly independent odd

eigenfunction,
γ ∈ (γ3, γ5] : there are two linearly independent odd

eigenfunctions,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 5. Graphical solution of the system (15.13)

In particular, for γ ∈ (γ1, γ3] we have one odd eigenfunction with the corresponding
eigenvalue

λ1 = λ1(γ) = β2 − b =
ξ2

q2
− b =

1
γ

(
ξ2

arcsin2√γ
− 1

)
=

1
γ

(
sin2 ξ

1− γ
− 1

)
, (15.18)

where ξ is the solution of the equation

ξ2

sin2 ξ
=

arcsin2√γ
1− γ

. (15.19)

15.3. Even eigenfunctions. From equation (15.8) it follows that even eigenfunc-
tions have the form

ϕ(x) =

{
B cosβx, |x| 6 q,

Ae−α|x|, |x| > q.
(15.20)

Proceeding as in the case of (15.13), we obtain the following equations for the
parameters ξ = βq and η = αq:

η = ξ tan ξ, ξ2 + η2 = R2. (15.21)

The solution of this system can also be found graphically (see Fig. 6). The result
is:

R ∈ (0, π] : the system (15.21) has one solution,
R ∈ (π, 2π] : the system (15.21) has two solutions,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(15.22)

We note that, for any γ ∈ (0, 1), the function ξ = arcsin
√
γ ∈ (0, π/2) is a solution

of equation (15.21). This solution corresponds to the eigenvalue λ = 0 and the first
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Figure 6. Graphical solution of the system (15.21)

even eigenfunction. Thus:

for γ ∈ (0, γ2] : there exists one linearly independent even
eigenfunction,

for γ ∈ (γ2, γ4] : there exist two linearly independent even
eigenfunctions,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Conclusions: for γ ∈ (0, γ1] there exists one eigenvalue λ0 = 0; for γ ∈ (γ1, γ2]
there exist two eigenvalues λ0 = 0 and 0 < λ1 < d, and so on (see Fig. 7).

Figure 7. Discrete spectrum

15.4. Spectral conditions. It is readily checked that conditions U1 and U2
(except for the smoothness at ψ = ±γ) hold for the potential U0. From (15.9)
and (15.20) it follows that resonance can then occur only for α = 0, hence for
γ = γk, k ∈ N. Thus, condition U3 is satisfied for γ ∈ (0, 1) \ {γk}. Also,
condition D1 holds for γ ∈ (0, γ1]. Therefore, for γ ∈ (0, γ1) all the spectral
conditions of the first chapter are satisfied except for the smoothness
condition at the points ±γ.

In order to satisfy the conditions of the second chapter, it suffices to find the
values γ ∈ (γ1, γ2) satisfying conditions (1.7) and F, because we have already
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proved that the operator H0 has exactly two eigenvalues (λ0 = 0 and λ1 ∈ (0, d))
for these γ.

Lemma 15.1. Condition (1.7) holds for all γ ∈ (γ1, γ2). Condition F holds for all
γ ∈ (γ1, γ2) except for a unique point γ∗.

Proof. 1) In view of (15.18) and (15.19) the inequality (1.7) with m2 = d is equiv-
alent to the inequality

4
γ

(
sin2 ξ(γ)

1− γ
− 1

)
>

1
1− γ

,

where ξ(γ) ∈ (π/2, π) is the solution of equation (15.19). After some simple trans-
formations, we get that 4 cos2 ξ(γ) < 3γ. Hence, it suffices to verify that

π

2
< ξ(γ) < π − arccos

√
3γ
2

(15.23)

for all γ ∈ (γ1, γ2). The function ξ/ sin ξ is monotonically increasing on the interval
(π/2, π), and thus the inequalities (15.23) are equivalent to

π

2
<

arcsin
√
γ

√
1− γ

<
2(π − arccos(

√
3γ/2))√

4− 3γ
.

As a result, it follows that (1.7) is satisfied for γ1 < γ < α, where α is the solution
of the equation

arcsin
√
α√

1− α
=

2(π − arccos(
√

3α/2))√
4− 3α

.

Approximate calculations show that α ∼ 0.921485 > γ2, and hence the inequal-
ity (1.7) holds for all γ ∈ (γ1, γ2).

2) We write condition F as∫
U ′′′0 (s0(x))ϕ4λ1(x)ϕ

2
λ1

(x) dx =
∫

d

dx
U ′′0 (s0(x))

ϕ4λ1(x)ϕ
2
λ1

(x)
s′0(x)

dx 6= 0. (15.24)

By (15.7)
d

dx
U ′′0 (s0(x)) = (b+ d)δ(x− q)− (b+ d)δ(x+ q),

so (15.24) means that ϕ4λ1(q)ϕ
2
λ1

(q) 6= 0. From formula (15.9) it follows that
ϕλ1(q) = Ae−αq 6= 0. We show that the equality ϕ4λ1(q) = 0 holds for only one
value γ ∈ (γ1, γ2). The function ϕ4λ1 is an odd solution of the equation{

−ϕ′′4λ1
(x)− bϕ4λ1(x) = 4λ1ϕ4λ1(x), |x| 6 q,

−ϕ′′4λ1
(x) + dϕ4λ1(x) = 4λ1ϕ4λ1(x), |x| > q.

Hence, ϕ4λ1(q) = sinβq, where β =
√
b+ 4λ1 > 0. As a result, the equality

ϕ4λ1(q) = 0 is satisfied only if βq = kπ, k ∈ N, which is equivalent to the condition√
1 + 4γλ1(γ) arcsin

√
γ = kπ, k ∈ N.
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Substituting here the expression for λ1(γ) from (15.18)–(15.19), we see that

arcsin
√
γ

√
1− γ

√
4 sin2 ξ − 3(1− γ) = kπ,

ξ2

sin2 ξ
=

arcsin2√γ
1− γ

. (15.25)

Since

0 <
arcsin

√
γ

√
1− γ

√
4 sin2 ξ − 3(1− γ) < 2π for γ ∈ (γ1, γ2),

it follows that k = 1. Let θ = arcsin
√
γ. Then the system (15.25) is equivalent to

the system

4ξ2 − 3θ2 = π2,
sin ξ
ξ

=
cos θ
θ

. (15.26)

We find the solution graphically. Let us express θ in terms of ξ from the first and
second equation and consider the corresponding functions θ1(ξ) and θ2(ξ). The
function θ1(ξ) :=

√
(4ξ2 − π2)/3 is increasing on the interval (ξ(γ1), ξ(γ2)). In

addition,

θ′1(ξ) =
1√
3

4ξ√
4ξ2 − π2

>
1√
3

4(π/2)√
4(3π/4)2 − π2

=
4√
15

> 1, ξ(γ1) < ξ < ξ(γ2),

(15.27)
because ξ(γ1) = π/2 and ξ(γ2) ∼ 2.3137 < 3π/4. The second function θ2(ξ) is
implicitly given by the equation (sin ξ)/ξ = (cos θ)/θ. Its derivative is

θ′2(ξ) =
sin ξ − ξ cos ξ

ξ2
θ2

cos θ + θ sin θ
> 0,

π

2
< ξ < ξ(γ2). (15.28)

Moreover, from (15.26),

θ′2(ξ) =
θ

ξ

(sin ξ)/ξ − cos ξ
(cos θ)/θ + sin θ

<
(sin ξ)/ξ − cos ξ
(sin ξ)/ξ + sin θ

< 1,
π

2
< ξ < ξ(γ2), (15.29)

since | cos ξ| < | cos ξ(γ2)| <
√

2/2 and sin θ =
√
γ >

√
γ

1
>
√

2/2 by (15.17).
Furthermore,

θ2

(
π

2

)
> θ1

(
π

2

)
= 0, θ2(ξ(γ2)) ∼ 1.1843 < θ1(ξ(γ2)) ∼ 1.9616. (15.30)

From (15.27)–(15.30) it follows that θ1(ξ) = θ2(ξ) for only one value ξ(γ∗) ∈
(π/2, ξ(γ2)) (see Fig. 8). Solving the system (15.26) numerically, we get γ∗ ∼ 0.7925.
Thus, condition F holds for all γ ∈ (γ1, γ2) except for the one point γ∗. �

Thus: for γ ∈ (γ1, γ∗) ∪ (γ∗, γ2) all the conditions of the second chapter
are satisfied except for the smoothness condition for the potential at the
points ±γ.

16. Smooth approximations

Let us approximate the potential U0 by smooth potentials. We consider an even
function h(ψ) ∈ C∞0 (R) such that h(ψ) > 0, supph ⊂ [−1, 1], and

∫
h(ψ) dψ = 1.

Given any ε ∈ (0, γ), we set

Ũε(ψ) :=
1
ε

∫
h

(
ψ − ψ′

ε

)
U0(ψ′) dψ′. (16.1)
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Figure 8. The functions θ1 and θ2

The function Ũε(ψ) > 0 is a smooth even function symmetric with respect to the
points ψ = ±1 in some neighbourhood of these points. In addition,

Ũε(ψ)− U0(ψ) =

{
µε > 0, |ψ| > γ + ε,

−νε < 0, |ψ| 6 γ − ε,

where µε, νε = O(ε2). Setting Uε(ψ) = Ũε(ψ)− µε, we have

Uε(ψ) =

{
U0(ψ), |ψ| > γ + ε,

U0(ψ)− µε − νε, |ψ| 6 γ − ε.
(16.2)

Clearly, sup |Uε(ψ) − U0(ψ)| 6 Cε with some constant C > 0. Also, U ′′′ε (ψ) 6 0
for ψ 6 0. The corresponding kink is an odd solution of the equation s′′ε (x) −
U ′ε(sε(x)) = 0. Integrating, we get that∫ sε(x)

0

ds√
2Uε(sε)

= x, x ∈ R. (16.3)

Hence, sε(x) is a monotonically increasing function, and sε(x) → ±1 as x→ ±∞.
We have |sε(x)−s0(x)| 6 C1ε by (16.2). Therefore, | |sε(x)|−γ| > ε for | |x|−q| > δ,
where

δ → 0, ε→ 0. (16.4)

Consequently, Wε(x) := U ′′ε (sε(x)) = W0(x) for ||x| − q| > δ, and

|Wε(x)−W0(x)| 6 b+ d, x ∈ R. (16.5)

Let wε(x) = Wε(x)−W0(x). Using (16.4) and (16.5), we find that

‖wε‖L2(R) → 0, ε→ 0. (16.6)

It is readily seen that conditions U1 and U2 hold for the potentials Uε. We claim
that condition U3 is fulfilled. According to Theorem 7.2 of [31], the no-resonance
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condition at an edge point of the continuous spectrum is equivalent to the require-
ment that the resolvent be bounded at this point. The resolvents R0(ω) and Rε(ω)
of the operators H0 and Hε := −d2/dx2 +Wε(x) are related by the equation

Rε(ω) = R0(ω)(1 + wεR0(ω))−1, (16.7)

from which it follows by (16.6) that the potentials Uε(ψ) satisfy condition U3 for
sufficiently small ε > 0 and all γ ∈ (0, 1) \ {γk}.

From (16.6) and (16.7) it also follows that the eigenvalues of the operator Hε

converge to eigenvalues of the operator H0 as ε→ 0. As a result:
i) for all γ ∈ (0, γ1) and sufficiently small ε, the operator Hε has only the one

eigenvalue zero, that is, the potentials Uε satisfy the spectral condition D1;
ii) for γ ∈ (γ1, γ2) and sufficiently small ε, the operator Hε has two eigenvalues

λ0 = 0 and 0 < λ1(ε) < d, with 4λ1(ε) > d, that is, the potentials Uε satisfy the
spectral condition D2.

It is easily checked that condition F is also satisfied for small ε and all γ ∈
(γ1, γ2) \ {γ∗}.
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