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Abstract
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1 Introduction

This paper can be considered as a continuation of our papers [5]-[8], [11] which concern the long
time convergence to equilibrium distribution for the linear wave, Klein-Gordon and Schrödinger
equations.

The convergence should clarify the distinguished role of the canonical Maxwell-Boltzmann-
Gibbs equilibrium distribution in statistical physics. One of fundamental examples is the
Kirchhoff-Planck black body radiation law which specify the equilibrium distribution for the
Maxwell equations, and served as a basis for creation of quantum mechanics. The law likely
should be correlation function of limiting equilibrium measure for coupled Maxwell-Schrödinger
or Maxwell-Dirac equations.

Our ultimate goal would be the proof of the convergence for nonlinear hyperbolic PDEs. At
the moment, a unique result in nonlinear case has been proved by Jaksic and Pillet for wave
equation coupled to a nonlinear finite dimensional Hamiltonian system [12].

The main peculiarity of the problem is the time-reversibility of dynamical equations. For
infinite particle systems this difficulty was discussed in Boltzmann-Zermelo debates (1896-1897).
Many attempts were made to deduce the convergence from an ergodicity for such systems by
H. Poincaré, G. Birkhoff, A. Hinchin, and many others. However, the ergodicity is not proved
until now.

In 1980 R. Dobrushin and Yu. Suhov have introduced a totally new idea for obtaining the
convergence to equilibrium measures imposing a mixing condition on initial distributions [4] in
the context of infinite particle systems.

We develop this approach for hyperbolic PDEs. In [5]-[8], [10]-[11] the convergence to
equilibrium distributions has been proved for the linear wave, Klein-Gordon and Schrödinger
equations with potentials, for the harmonic crystal, and for the free Dirac equation. The
initial distribution are translation invariant and satisfy the mixing condition of Rosenblatt or
Ibragimov-Linnik type.

Here we consider the linear Dirac equation with the Maxwell potentials in R3:

{
iψ̇(x, t) = Hψ(x, t) := [−iα · ∇+ βm+ V (x)]ψ(x, t)
ψ(x, 0) = ψ0(x)

∣∣∣∣ x ∈ R3 (1.1)

where ψ(x, t) ∈ C4, m > 0 and α = (α1, α2, α3). The hermitian matrices β = α0 and αk satisfy
the following relations:

{
α∗
k = αk,
αkαl + αlαk = 2δklI

∣∣∣∣ k, l = 0, 1, 2, 3, 4.

The standard form of the Dirac matrices αk and β (in 2× 2 blocks) is

β =

(
I 0
0 −I

)
, αk =

(
0 σk
σk 0

)
(k = 1, 2, 3), (1.2)

where I denotes the unit matrix, and

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.3)
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We assume the following conditions:

E1. The potential V ∈ C∞(R3) is a hermitian 4× 4 matrix function such that

|∂αV (x)| ≤ C(α)〈x〉−ρ−|α|, 〈x〉σ = (1 + |x|2)σ/2 (1.4)

with some ρ > 5.

E2. The operator H presents neither resonance nor eigenvalue at thresholds.

Under the condition E2 the operatorH has a finite set of eigenvalues ωj ∈ (−m,m), j = 1, ..., N

with the corresponding eigenfunctions ζ1j , ..., ζ
kj
j , where kj is the multiplicity of ωj. Denote by

Pj the Riesz projection onto the corresponding eigenspaces and by

Pc := 1− Pd, Pd =
∑

j

Pj (1.5)

the projections onto the continuous and discrete spectral spaces of H .
We fix an arbitrary δ > 0 such that 5 + δ < ρ and consider the solutions ψ(x, t) ∈ C4 with

initial data ψ0(x) which are supposed to be a random element of the weighted Sobolev space
H = L2

−5/2−δ, see Definition 2.1 below. The distribution of ψ0 is a Borel probability measure
µ0 on H with zero mean satisfying some additional assumptions, see Conditions S1-S3 below.
Denote by µt, t ∈ R, the measure on H, giving the distribution of the random solution ψ(t) to
problem (1.1). We identify the complex and real spaces C4 ≡ R8, and ⊗ stands for the tensor
product of real vectors. The correlation functions of the initial measure are supposed to be
translation-invariant:

Q0(x, y) := E
(
ψ0(x)⊗ ψ0(y)

)
= q0(x− y), x, y ∈ R3. (1.6)

We also assume that the initial mean charge density is finite:

e0 := E|ψ0(x)|
2 = tr q0(0) <∞, x ∈ R3. (1.7)

Finally, we assume that the measure µ0 satisfies a mixing condition of a Rosenblatt- or Ibragimov-
Linnik type, which means that

ψ0(x) and ψ0(y) are asymptotically independent as |x− y| → ∞. (1.8)

Let P ∗
c µt denote the projection of µt onto the space Hc := PcH. Our main result is the (weak)

convergence of P ∗
c µt to a limiting measure ν∞,

P ∗
c µt ⇁ ν∞, t→ ∞, (1.9)

which is an equilibrium Gaussian measure on Hc. A similar convergence holds for t → −∞
since our system is time-reversible.

The convergence (1.9) for the free Dirac equation with V (x) ≡ 0 has been proved in [8].
The case of the perturbed Dirac equation with V 6= 0 requires new constructions due to the
absence an explicit formula for the solution. To reduce the case of perturbed equation to the
case of free equation we formally need a scattering theory for the solutions of infinite global

2



charge. We manage a dual scattering theory for finite charge solutions to avoid the infinite
charge scattering theory:

PcU
′(t)φ = U ′

0(t)Wφ+ r(t)φ, t ≥ 0. (1.10)

Here U ′
0(t) and U

′(t) are a ’formal adjoint’ to the dynamical groups U0(t) and U(t) of the free
equation with V ≡ 0 and equation (1.1) with V 6= 0 respectively. The remainder r(t) is small
in the mean:

E|〈ψ0, r(t)φ〉|
2 → 0, t→ ∞. (1.11)

where 〈·, ·〉 is defined in (2.20). This version of scattering theory is based on the weighted
energy decay established in [2].

2 Main results

2.1 Well posedness

Definition 2.1. For s, σ ∈ R, let us denote by Hs
σ = Hs

σ(R
3,C4) the weighted Sobolev spaces

with the finite norms
‖ψ‖Hs

σ
= ‖〈x〉σ〈∇〉sψ‖L2 <∞.

We set L2
σ = H0

σ. Note, that the multiplication by V (x) is bounded operator L2
σ → L2

σ+ρ.
The finite speed of propagation for equation (1.1) implies

Proposition 2.2. i) For any ψ0 ∈ L2
−σ with 0 ≤ σ ≤ ρ there exists a unique solution ψ(·, t) ∈

C(R, L2
−σ) to the Cauchy problem (1.1).

ii) For any t ∈ R, the operator U(t) : ψ0 7→ ψ(·, t) is continuous in L2
−σ.

Proof. Fist, consider the free Dirac equation:

{
χ̇(x, t) = H0χ(x, t) = (−α · ∇ − iβm)χ(x, t) x ∈ R3,
χ(x, 0) = ψ0(x).

(2.12)

Let s ∈ R and ψ0 ∈ L2
s. In the Fourier space the solution to (2.12) reads

χ̂(k, t) = ei(α·k−βm)tψ̂0(k).

Since ψ̂0 ∈ Hs then χ̂(·, t) ∈ Hs and the bounds hold

‖χ(·, t)‖L2
s
= C‖χ̂(·, t)‖Hs ≤ Cs(t)‖ψ̂0‖Hs ≤ C ′

s(t)‖ψ0‖L2
s
. (2.13)

Now consider perturbed equation (1.1). Let 0 ≤ σ ≤ ρ and ψ0 ∈ L2
−σ. We seek the solution to

(1.1) in the form
ψ(x, t) = χ(x, t) + φ(x, t), (2.14)

where χ(t) = U0(t)ψ0 ∈ L2
−σ is the solution to free equation (2.12), and

φ̇(x, t) = Hφ(x, t) + V χ(x, t), φ(x, 0) = 0. (2.15)
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Since φ(0) = 0 and V χ ∈ L2 then there exists the unique solution φ(t) ∈ L2 to (2.15) which is
given by Duhamel representation:

φ(t) =

t∫

0

U(t− τ)V χ(τ)dτ.

Finally, by charge conservation for the Dirac equation we obtain

‖U(t− τ)V χ(τ)‖L2
−σ

≤ ‖U(t− τ)V χ(τ)‖L2 = ‖V χ(τ)‖L2 ≤ C‖χ(τ)‖L2
−ρ

≤ C‖χ(τ)‖L2
−σ
<∞ .

2.2 Random solution. Convergence to equilibrium

Let (Ω,Σ, P ) be a probability space with expectation E and B(H) denote the Borel σ-algebra
in H. We assume that ψ0 = ψ0(ω, ·) in (1.1) is a measurable random function with values
in (H, B(H)). In other words, (ω, x) 7→ ψ0(ω, x) is a measurable map Ω × R3 → C4 with
respect to the (completed) σ-algebras Σ × B(R3) and B(C4). Then, owing to Proposition 2.2,
ψ(t) = U(t)ψ0 is again a measurable random function with values in (H,B(H)). We denote
by µ0(dψ0) a Borel probability measure in H giving the distribution of the random function
ψ0. Without loss of generality, we assume (Ω,Σ, P ) = (H,B(H), µ′) and ψ0(ω, x) = ω(x) for
µ0(dω)× dx-almost all (ω, x) ∈ H × R3.

Definition 2.3. µt is a probability measure on H which gives the distribution of ψ(t):

µt(B) = µ0(U(−t)B), ∀B ∈ B(H), t ≥ 0. (2.16)

Denote by P ∗
c µt the projection of measure µt onto Hc = PcH:

P ∗
c µt(B) = µt(P

−1
c B), ∀B ∈ B(Hc), t ≥ 0. (2.17)

Our main goal is to derive the weak convergence of P ∗
c µt in the Hilbert space PcH

−ε
−σ for any

ε > 0, and σ > 5/2 + δ:

P ∗
c µt

PcH
−ε
−σ

−⇁ ν∞ as t→ ∞, (2.18)

where ν∞ is a Borel probability measure on PcH
−ε
−σ. By definition, this means the convergence

∫
f(ψ)P ∗

c µt(dψ) →

∫
f(ψ)ν∞(dψ) as t→ ∞. (2.19)

for any bounded and continuous functional f(ψ) in PcH
−ε
−σ.

Set Rψ ≡ (Reψ, Imψ) = {Reψ1, . . . ,Reψ4, Imψ1, . . . , Imψ4} for ψ = (ψ1, . . . ψ4) ∈ C4 and
denote by Rjψ the j-th component of the vector Rψ, j = 1, ..., 8. The brackets (·, ·) mean the
inner product in the real Hilbert spaces L2 ≡ L2(R3), in L2 ⊗ RN , or in some their different
extensions. For ψ(x), φ(x) ∈ L2(R3,C4), write

〈ψ, φ〉 := (Rψ,Rφ) =

8∑

j=1

(Rjψ,Rjφ). (2.20)
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Definition 2.4. The correlation functions of the measure µ0 are defined by

Qij
0 (x, y) ≡ E

(
Riψ0(x)R

jψ0(y)
)

for almost all x, y ∈ R3, i, j = 1, ..., 8, (2.21)

provided that the expectations in the right-hand side are finite.

Denote by D the space of complex- valued functions in C∞
0 (R3) and write D := [D]4. For a

Borel probability measure µ denote by µ̂ the characteristic functional (the Fourier transform)

µ̂(φ) ≡

∫
exp(i〈ψ, φ〉)µ(dψ), φ ∈ D.

A measure µ is said to be Gaussian (with zero expectation) if its characteristic functional is of
the form

µ̂(φ) = exp{−
1

2
Q(φ, φ)}, φ ∈ D,

where Q is a real nonnegative quadratic form on D. A measure µ on H is said to be translation-
invariant if

µ(ThB) = µ(B), B ∈ B(H), h ∈ R3,

where Thψ(x) = ψ(x− h), x ∈ R3.

2.3 Mixing condition

Let O(r) be the set of all pairs of open bounded subsets A,B ⊂ R3 at the distance not less
than r, dist(A, B) ≥ r, and let σ(A) be the σ-algebra in H generated by the linear functionals
ψ 7→ 〈ψ, φ〉, where φ ∈ D with suppφ ⊂ A. Define the Ibragimov-Linnik mixing coefficient of
a probability measure µ0 on H by the rule (cf. [9, Def. 17.2.2])

ϕ(r) ≡ sup
(A,B)∈O(r)

sup
A ∈ σ(A), B ∈ σ(B)

µ0(B) > 0

|µ0(A ∩ B)− µ0(A)µ0(B)|

µ0(B)
. (2.22)

Definition 2.5. We say that the measure µ0 satisfies the strong uniform Ibragimov-Linnik
mixing condition if

ϕ(r) → 0 as r → ∞. (2.23)

We specify the rate of decay of ϕ below (see Condition S3).

2.4 Main assumptions and results

We assume that the measure µ0 has the following properties S0–S3:

S0 µ0 has zero expectation value,

Eψ0(x) ≡ 0, x ∈ R3.
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S1 µ0 has translation invariant correlation functions,

Qij
0 (x, y) ≡ E

(
Riψ0(x)R

jψ0(y)
)
= qij0 (x− y), i, j = 1, ..., 8 (2.24)

for almost all x, y ∈ R3.
S2 µ0 has finite mean charge density, i.e. Eqn (1.7) holds.
S3 µ0 satisfies the strong uniform Ibragimov-Linnik mixing condition, with

∫ ∞

0

r2ϕ1/2(r)dr <∞. (2.25)

Remark 2.6. The examples of measures on L2
loc(R

3) satisfying properties S0-S3 have been
constructed in [5] (see §§2.6.1-2.6.2). The measures on L2

−σ with any σ > 3/2 can be construct
similarly.

Introduce the following 8× 8 real valued matrices (in 4× 4 blocks)

Λ1 =

(
α1 0
0 α1

)
, Λ2 =

(
0 iα2

−iα2 0

)
, Λ3 =

(
α3 0
0 α3

)
, Λ0 =

(
0 −β
β 0

)
. (2.26)

Note that ΛT
k = Λk, k = 1, 2, 3, ΛT

0 = −Λ0. Write

Λ = (Λ1,Λ2,Λ3), P = Λ · ∇ +mΛ0. (2.27)

For almost all x, y ∈ R3, introduce the matrix-valued function

Q∞(x, y) ≡
(
Qij

∞(x, y)
)
i,j=1,...,8

=
(
qij∞(x− y)

)
i,j=1,...,8

. (2.28)

Here

q̂∞(k) =
1

2
q̂0(k)−

1

2
P̂(k)P̂ (k)q̂0(k)P̂ (k), (2.29)

P̂ (k) = −iΛ ·k+mΛ0, P̂(k) = 1/(k2+m2), and q̂0(k) is the Fourier transform of the correlation
matrix of the measure µ0 (see 2.24). We formally have

q∞(z) =
1

2
q0(z) +

1

2
P ∗ Pq0(z)P (2.30)

where P(z) = e−m|z|/(4π|z|) is the fundamental solution for the operator −∆ + m2, and ∗
stands for the convolution of distributions.

Lemma 2.7. Let conditions S0, S2 and S3 hold. Then

q0 ∈ Lp(R3), p ≥ 1. (2.31)

Proof. Conditions S0, S2 and S3 imply (cf. [9, Lemma 17.2.3]) that

|qij0 (z)| ≤ Ce0ϕ
1/2(|z|), z ∈ R3, i, j = 1, ..., 8.

The mixing coefficient ϕ is bounded, hence
∫

|qij0 (z)|
pdz ≤ C

∫
ϕp/2(|z|)dz ≤ C1

∫ ∞

0

r2ϕ1/2(r)dr <∞

by (2.25).
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Lemma 2.7 with p = 2 imply that q̂0 ∈ L2. Hence, q̂∞ ∈ L2 by (2.29), and q∞ also belongs
to L2 by (2.30).

Denote by Q∞ a real quadratic form on L2 defined by

Q∞(φ, φ) ≡ (Q∞(x, y),Rφ(x)⊗Rφ(y)) =

8∑

i,j=1

∫

R3×R3

Qij
∞(x, y)Riφ(x)Rjφ(y)dxdy

Corollary 2.8. The form Q∞ is continuous on L2 because q̂0(k) and then q̂∞(k) are bounded
by Lemma 2.7 and formula (2.29).

Our main result is the following:

Theorem 2.9. Let m > 0, and let conditions E1–E2, S0–S3 hold. Then
i) the convergence in (2.18) holds for any ε > 0 and σ > 5/2 + δ.
ii) the limiting measure µ∞ is a Gaussian equilibrium measure on Hc.
iii) the characteristic functional of ν∞ is of the form

ν̂∞(φ) = exp{−
1

2
Q∞(Wφ,Wφ)}, φ ∈ D,

where W : D → L2 is a linear continuous operator.

2.5 Remark on various mixing conditions for initial measure

We use the strong uniform Ibragimov-Linnik mixing condition for the simplicity of our presen-
tation. The uniform Rosenblatt mixing condition [13] with a higher degree > 2 in the bound
(1.7) is also sufficient. In this case we assume that there exists an ǫ, ǫ > 0, such that

sup
x∈R3

E|ψ0(x)|
2+ǫ <∞.

Then condition (2.25) requires the following modification:

∫ ∞

0

rαp(r)dr <∞, p = min(ǫ/(2 + ǫ), 1/2),

where α(r) is the Rosenblatt mixing coefficient defined as in (2.22), but without the denominator
µ0(B). The statements of Theorem 2.9 and their proofs remain essentially unchanged.

3 Free Dirac equation

Here we consider the free Dirac equation (2.12) We have

(∂t − α · ∇ − iβm)(∂t + α · ∇ + iβm) = ∂2t −∆+m2

Then the fundamental solution G(x, t) of the free Dirac operator reads

Gt(x) = (∂t − α · ∇ − iβm)Et(x) (3.1)

7



where Et(x) is the fundamental solution of the Klein-Gordon operator ∂2t −∆+m2:

Et(x) = F−1
k→x

sinωt

ω
, ω = ω(k) =

√
|k|2 +m2. (3.2)

Using the notations (2.26) and (2.27), we obtain in real form

Rχ(t) = Gt ∗ Rψ0, Gt = (∂t − P )Et. (3.3)

The convolution exists since the distribution Et(x) is supported by the ball |x| ≤ t. Now we
derive an explicit formula for the correlation function

Qt(x, y) = qt(x− y) = E
(
Rχ(x, t)⊗Rχ(y, t)

)
(3.4)

Lemma 3.1. (cf. [8, Formula (4.6)]) The correlation function Qt(x, y) reads

Qt(x, y) = qt(x− y) = F−1
k→x−y

[1 + cos 2ωt

2
q̂0(k)−

sin 2ωt

2ω
(q̂0(k)P (k)− P (k)q̂0(k))

−
1− cos 2ωt

2ω2
P (k)q̂0(k)P (k)

]
(3.5)

Proof. Applying the Fourier transform to (3.3) we obtain

R̂χ(k, t) = Ĝt(k)R̂ψ0(k) =
(
cosωt− P̂ (k)

sinωt

ω

)
ψ̂0(k) (3.6)

By translation invariance condition (2.24) we have

E(R̂ψ0(k)⊗ R̂ψ0(k
′)) = Fx→k,y→k′q0(x− y) = (2π)3δ(k − k′)q̂0(k)

Then (3.6) implies that

E(R̂χ(k, t)⊗ R̂χ(k′, t)) = (2π)3δ(k − k′)Ĝt(k)q̂0(k)Ĝ
∗
t (k)

Therefore,

q̂t(k) = Ĝt(k)q̂0(k)Ĝ
∗
t (k) =

(
cosωt− P̂ (k)

sinωt

ω

)
q̂0(k)

(
cosωt+ P̂ (k)

sinωt

ω

)

since P̂ ∗(k) = −P̂ (k). Hence (3.5) follows.

Corollary 3.2. For any z ∈ R3 the convergence holds

qt(z) → q∞(z), t→ ∞

where q∞(z) is defined in (2.30).

Proof. The convergence follows from (3.5) since the integrals with the oscillatory functions
converge to zero.

Below we will need the following lemma:
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Lemma 3.3. Let Conditions S0–S3 hold. Then for any σ > 3/2 the bound holds

sup
t≥0

E‖χ(·, t)‖2L2
−σ
<∞ (3.7)

Proof. Denote
et(x) := E|χ(x, t)|2, x ∈ R3.

The mathematical expectation is finite for almost all x ∈ R3 by (2.13) with s = −σ and the
Fubini theorem. Moreover, et(x) = et for almost all x ∈ R3 by S1. Formula (3.5) implies

qt(0) =
1

(2π)3

∫ [
cos2(ωt)q̂0(k)−

sin 2ωt

2ω
(q̂0(k)P (k)− P (k)q̂0(k)) (3.8)

−
sin2 ωt

ω2
P (k)q̂0(k)P (k)

]
dk,

Then et = tr qt(0) ≤ Ce0. Hence for σ > 3/2 we obtain

E‖χ(·, t)‖2L2
−σ

= et

∫
(1 + |x|2)−σdx ≤ C(ν)e0

and then (3.7) follows.

We will use also the following result:

Proposition 3.4. (see [8, Proposition 2.8], [5, Proposition 3.3]). Let Conditions S0–S3 hold.
Then for any φ ∈ D,

E exp{i〈U0(t)ψ0, φ〉} → exp{−
1

2
Q∞(φ, φ)}, t→ ∞. (3.9)

Remark 3.5. In [8] the phase space L2
loc(R

3) ⊗ C4 has been considered. Nevertheless, all the
steps of proving the convergence (3.9) in [8] remain true if we change L2

loc(R
3) ⊗ C4 by L2

−σ

with σ > 3/2.

4 Perturbed Dirac equation.

4.1 Scattering Theory

To deduce Theorem 2.9 we construct the dual scattering theory (1.10) for finite energy solutions
using the Boussaid results, [2].

Lemma 4.1. (see [2, Theorem 1.1]) Let conditions E1-E2 hold and σ > 5/2. Then the bound
holds

‖PcU(t)ψ‖L2
−σ

≤ C(1 + |t|)−3/2‖ψ‖L2
σ
, t ∈ R. (4.1)

Note that for ψ0 ∈ L2 the solutions U0(t)ψ0 and U(t)ψ0 to problems (2.12) and (1.1),
respectively, also belong to L2 and the charge conservation holds:

‖U(t)ψ0‖ = ‖ψ0‖, ‖U0(t)ψ0‖ = ‖ψ0‖. (4.2)
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Here and below ‖ · ‖ is the norm in L2.
For t ∈ R, introduce the operators U ′

0(t) and U ′(t) which are conjugate to the operators
U0(t) and U(t) on L

2:

(ψ, U ′
0(t)φ) = (U0(t)ψ, φ), (ψ, U ′(t)φ) = (U(t)ψ, φ), ψ, φ ∈ L2. (4.3)

Here (·, ·) stands for the hermitian scalar product in L2(R3,C4). The adjoint groups admit a
convenient description:

Lemma 4.2. For φ ∈ L2 the function U ′
0(t)φ0 = φ(·, t) is the solution to

φ̇(x, t) = [α · ∇+ iβm]φ(x, t), φ(x, 0) = φ0(x). (4.4)

Proof. Differentiating the first equation of (4.3) with ψ, φ ∈ D, we obtain

(ψ, U̇ ′
0(t)φ) = (U̇0(t)ψ, φ). (4.5)

The group U0(t) has the generator

A0 = −α · ∇ − iβm. (4.6)

Therefore, the generator of U ′
0(t) is the conjugate operator

A′
0 = α · ∇+ iβm. (4.7)

Hence, (4.4) holds, where φ̇(t) = A′
0φ(t).

Similarly, we obtain

Lemma 4.3. For φ ∈ L2 the function U ′(t)φ = φ(x, t) is the solution to

φ̇(x, t) = [α · ∇+ iβm+ iV ]φ(x, t), φ(x, 0) = φ(x). (4.8)

Corollary 4.4. i) U ′
0(t) = U0(−t), U

′(t) = U(−t).
ii) For any φ ∈ L2 the uniform bounds hold:

‖U ′
0(t)φ‖ = ‖φ‖, ‖U ′(t)φ‖ = ‖φ‖, t ≥ 0. (4.9)

iii) Under assumptions E1-E2 for U ′(t) a bound of type (4.1) also holds:

‖PcU
′(t)ψ‖L2

−σ
≤ C(1 + |t|)−3/2‖ψ‖L2

σ
, t ∈ R (4.10)

with σ > 5/2.

Now we formulate the scattering theory in the dual representation.

Theorem 4.5. Let conditions E1–E2 and S0–S3 hold and σ > 5/2. Then there exist linear
operators W, r(t) : L2

σ → L2 such that for φ ∈ L2
σ

PcU
′(t)φ = U ′

0(t)Wφ+ r(t)φ, t ≥ 0. (4.11)

and the bounds hold

‖r(t)φ‖ ≤ C(1 + t)−1/2‖φ‖L2
σ
, (4.12)

E|〈ψ0, r(t)φ〉|
2 ≤ C(1 + t)−1‖φ‖2L2

σ
, t > 0. (4.13)
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Proof. We apply the Cook method, [14, Theorem XI.4]. Fix φ ∈ L2
σ and define Wφ, formally,

as

Wφ = lim
t→+∞

U ′
0(−t)PcU

′(t)φ = φ+

∫ +∞

0

d

dτ
U ′
0(−τ)PcU

′(τ)φ dτ. (4.14)

We have to prove the convergence of the last integral in the norm of L2. First, observe that

d

dτ
U ′
0(τ)φ = A′

0U
′
0(τ)φ,

d

dτ
U ′(τ)φ = A′U ′(τ)φ, τ ≥ 0

where A′
0 and A′ are the generators to the groups U ′

0(τ), U
′(τ), respectively. Therefore,

d

dτ
U ′
0(−τ)PcU

′(τ)φ = U ′
0(−τ)(A

′ −A′
0)PcU

′(τ)φ. (4.15)

We have A′ −A′
0 = iV . Furthermore, E2, (4.9), (4.10) imply that

‖U ′
0(−τ)(A−A0)PcU

′(τ)φ‖ ≤ C ‖(A−A0)PcU
′(τ)φ‖ = C ‖V U ′(τ)φ‖ (4.16)

≤ C1 ‖U ′(τ)φ‖L2
−ρ

≤ C2(1 + τ)−3/2‖φ‖L2
σ
, τ ≥ 0.

Hence, the convergence of the integral in the right hand side of (4.14) follows.

Further, (4.11) and (4.14) imply

r(t)φ = PcU
′(t)φ− U ′

0(t)Wφ = −U ′
0(t)

∫ ∞

t

d

dτ
U ′
0(−τ)PcU

′(τ)φ dτ.

Hence (4.12) follows by (4.9), (4.15) and (4.16).

It remains to prove (4.13). Applying the Shur lemma we obtain

E|〈ψ0, r(t)φ〉|
2 = 〈q0(x− y), r(t)φ(x)⊗ r(t)φ(y)〉

≤ ‖q0‖L1 ‖r(t)φ‖2. (4.17)

Hence, (4.13) follows by (2.31) with p = 1 and (4.12).

4.2 Convergence to equilibrium distribution

Theorem 2.9 can be derived from Propositions 4.6-4.7 below by using the same arguments as
in [15, Theorem XII.5.2].

Proposition 4.6. The family of the measures {P ∗
c µt, t ∈ R} is weakly compact in PcH

−ε
−σ for

any ε > 0 and σ > 5/2 + δ.

Proposition 4.7. For any φ ∈ D

P̂ ∗
c µt(φ) ≡

∫
exp(i〈ψ, φ〉)P ∗

c µt(dψ) → exp{−
1

2
Q∞(Wφ,Wφ)}, t→ ∞. (4.18)
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Proposition 4.6 provides the existence of the limiting measures of the family P ∗
c µt, and

Proposition 4.7 provides the uniqueness of the limiting measure, and hence the convergence
(2.19). We deduce these propositions with the help of Theorem 4.5.

Proof of Proposition 4.6. First, we prove the bound

sup
t≥0

E‖PcU(t)ψ0‖H <∞, (4.19)

Representation (2.14) implies

PcU(t)ψ0 = Pcχ(x, t) + Pcφ(x, t), (4.20)

where χ(x, t) = U0(t)ψ0, and φ(x, t) is the solution to (2.15). Therefore,

E‖PcU(t)ψ0‖H ≤ E‖Pcχ(t)‖H + E‖Pcφ(t)‖H. (4.21)

Bound (3.7) implies
sup
t≥0

E‖χ(t)‖H <∞. (4.22)

Further, we have by the Cauchy-Schwartz inequality

E‖(χ(t), ζj)ζj‖L2
−σ

≤ C‖ζj‖L2
−σ
‖ζj‖L2

σ
E‖χ(t)‖L2

−σ
≤ CjE‖χ(t)‖L2

−σ
, σ = 5/2 + δ

since the eigenfunctions ζj ∈ L2
s with any s, see Appendix. Therefore

sup
t≥0

E‖Pcχ(t)‖H <∞

since Pcχ(x, t) = χ(x, t)− Pdχ(x, t) by (1.5).
It remains to estimate the second term in the RHS of (4.21). Choose a δ1 > 0 such that

δ1 < ρ− 5− δ. It is possible due to E1. Then the Duhamel representation (2.15) and bounds
(4.1) and (4.22) imply

E‖Pcφ(t)‖H ≤

∫ t

0

E‖PcU(t− s)V χ(s)‖L2
−5/2−δ

ds ≤ C

∫ t

0

(1 + t− s)−3/2E‖V χ(t)‖L2
5/2+δ1

ds

≤ C1

∫ t

0

(1 + t− s)−3/2E‖χ(t)‖L2
5/2+δ1−ρ

ds ≤ C2, t > 0 (4.23)

since 5/2 + δ1 − ρ < −5/2− δ. Now (4.21)– (4.23) imply (4.19).

Now Proposition 4.6 follows from (4.19) by Prokhorov theorem [15, Lemma II.3.1] as in the
proof of [15, Theorem XII.5.2]. ✷

Proof of Proposition 4.7 We have
∫

exp(i〈ψ, φ〉)P ∗
c µt(dψ) =

∫
exp(i〈Pcψ, φ〉)µt(dψ) = E exp i〈PcU(t)ψ0, φ〉

Bound (4.13) and Cauchy-Schwartz inequality imply

|E exp i〈PcU(t)ψ0, φ〉 − E exp i〈U0(t)ψ0,Wφ〉| = |E exp i〈ψ0, PcU
′(t)φ〉 − E exp i〈ψ0, U

′
0(t)Wφ〉|

≤ E|〈ψ0, r(t)φ〉| ≤ (E〈ψ0, r(t)φ〉
2)1/2 → 0

12



as t→ ∞. It remains to prove that

E exp i〈ψ0, U
′
0(t)Wφ〉 → exp{−

1

2
Q∞(Wφ,Wφ)}, t→ ∞. (4.24)

The convergence does not follow directly from Proposition 3.4 since Wφ 6∈ D. We can approx-
imate Wφ ∈ L2 by functions from D since D is dense in L2. Hence, for any ε > 0 there exists
φε ∈ D such that

‖Wφ− φε‖ ≤ ε. (4.25)

By the triangle inequality

|E exp i〈ψ0, U
′
0(t)Wφ〉 − exp{−

1

2
Q∞(Wφ,Wφ)}|

≤ |E exp i〈ψ0, U
′
0(t)Wφ〉 − E exp i〈ψ0, U

′
0(t)φε〉|

+E| exp i〈U0(t)ψ0, φε〉 − exp{−
1

2
Q∞(φε, φε)}|

+| exp{−
1

2
Q∞(φε, φε)} − exp{−

1

2
Q∞(Wφ,Wφ)}|. (4.26)

Let us estimate each term in the RHS of (4.26). Theorem 4.5 implies that uniformly in t > 0

E|〈ψ0, U
′
0(t)(Wφ− φε)〉| ≤ (E|〈ψ0, U

′
0(t)(Wφ− φε)〉|

2)1/2 ≤ ‖q0‖
1/2

L1 ‖U
′
0(t)(Wφ− φε)‖

≤ C‖Wφ− φε‖ ≤ Cε.

Then the first term is O(ε) uniformly in t > 0. The second term converges to zero as t → ∞
by Proposition 3.4 since φε ∈ D. At last, the third term is O(ε) by (4.25) and the continuity
of the quadratic form Q∞(φ, φ) in L2 ⊗ C4. The continuity follows from Corollary 2.8. Now
convergence (4.24) follows since ε > 0 is arbitrary. ✷

5 Appendix: Decay of eigenfunctions

Here we prove the spatial decay of eigenfunctions.

Lemma 5.1. Let V satisfy E1, and ψ(x) ∈ L2(R3) be an eigenfunction of the Dirac operator
corresponding to a eigenvalue λ ∈ (−m,m), i.e.

Hψ(x) = λψ(x), x ∈ R3.

Then ψ ∈ L2
s for all s ∈ R.

Proof. Denote by R0(λ) = (H0 − λ)−1 the resolvent of the free Dirac equation. The equation
(H0 + V − λ)ψ = 0 implies

ψ = R0(λ)f, where f = −V ψ ∈ L2
2+ρ (5.1)

From the identity

(−iα · ∇+ βm− λ)(iα · ∇ − βm− λ) = ∆−m2 + λ2

13



it follows that

R0(λ) =
iα · ∇ − βm− λ

∆−m2 + λ2
(5.2)

Hence, in the Fourier transform, the first equation of (5.1) reads

ψ̂(k) =
(−α · k + βm+ λ)f̂(k)

k2 +m2 − λ2

Since |λ| < m, we have

‖ψ‖L2
2+ρ

= C‖ψ̂‖H2+ρ ≤ C1‖f̂‖H2+ρ = C2‖f‖L2
2+ρ

≤ C3‖ψ‖L2
2

Hence, ψ ∈ L2
s with any s ∈ R by induction.
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