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Abstract

The global attraction is proved for the nonlinear 3D Klein-Gordon equation with a nonlinearity concentrated at one

point. Our main result is the convergence of each ”finite energy solution” to the manifold of all solitary waves as t →±∞.

This global attraction is caused by the nonlinear energy transfer from lower harmonics to the continuous spectrum and

subsequent dispersion radiation.

We justify this mechanism by the following strategy based on inflation of spectrum by the nonlinearity. We show that

any omega-limit trajectory has the time-spectrum in the spectral gap [−m,m] and satisfies the original equation. Then

the application of the Titchmarsh Convolution Theorem reduces the spectrum of each omega-limit trajectory to a single

frequency ω ∈ [−m,m].

1 Introduction

The paper concerns a nonlinear interaction of the Klein-Gordon field with a point oscillator. The point interaction are

widely used in physical works. One of the well-known application in dimension one is the Kronig-Penney model [25]. I n

3D case a rigorous mathematical definition of point interactions was given by Berezin and Faddeev [6]. For the numerous

literature concerning the models with a point interactions we refer to [5].

In the case of the Schrödinger equations the nonlinear point interaction was justified in [9, 10] as a scaling limit of a

regularized nonlinear Schrödinger dynamics. We suppose that for the Klein-Gordon equations a justification can be done

by suitable modification of methods [9, 10], but it still remains an open question.

We consider the system governed by the following equations











ψ̈(x, t) = (∆−m2)ψ(x, t)+ ζ (t)δ (x)

lim
x→0

(ψ(x, t)− ζ (t)G(x)) = F(ζ (t))

∣

∣

∣

∣

∣

∣

∣

x ∈ R3, t ∈ R, m > 0, (1.1)

where G(x) is the Green’s function of operator −∆+m2 in R3, i.e.

G(x) =
e−m|x|

4π |x| . (1.2)

The nonlinearity F(ζ ) admits a real-valued potential

F(ζ ) = ∂ζU(ζ ), ζ ∈ C, U ∈C2(C), (1.3)

where ∂
ζ

:= 1
2
(∂1 + i∂2) with ζ1 := Reζ and ζ2 := Imζ . We assume that the potential U(ζ ) is U(1)-invariant, where

U(1) stands for the unitary group eiθ , θ ∈ R mod 2π . Namely, we assume that there exists u ∈C2(R) such that

U(ζ ) = u(|ζ |2), ζ ∈ C. (1.4)

Conditions (1.3) and (1.4) imply that

F(ζ ) = b(|ζ |2)ζ , ζ ∈C. (1.5)
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where b(·) = u′(·) ∈C1(R) is real valued. Therefore

F(eiθ ζ ) = eiθ F(ζ ), θ ∈ R, ζ ∈ C. (1.6)

This symmetry implies that eiθ ψ(x, t) is a solution to the system (1.1) if ψ(x, t) is. The system (1.1) admits soliton

solutions ψω(x)e
−iωt with some ω ∈ (−m,m) and ψω ∈ L2(R3). Our main goal is the global attraction

ψ(x, t)∼ ψω±(x)e
−iω±t , t →±∞,

for all solutions from the Hilbert space DF (see Definition 2.1), where the asymptotics hold in local L2-seminorms.

Similar global attraction was established for the first time i) in [13]–[17] for 1D wave and 1D Klein-Gordon equations

coupled to a nonlinear oscillator, ii) in [18, 19] for t nD Klein-Gordon and Dirac equations with mean field interaction,

and iii) in [8] for discrete in space and in time nD Klein-Gordon equation equations interacting with a nonlinear oscillator.

In the context of the Schrödinger and wave equations the point interaction of type (1.1) was introduced in [1, 2, 5, 26,

27, 28], where the well-posedness of the Cauchy problem and the blow up solutions were studied. In our recent paper

[23] we proved the well-posedness for system (1.1).

The asymptotic stability of solitary waves have been obtained in [7, 21, 20] for 1D Schrödinger equation coupled to

nonlinear oscillator, in [22] for 1D discrete Klein-Gordon equation coupled to nonlinear oscillator, and in [3, 4] for 3D

Schrödinger equation with concentrated nonlinearity.

Global attraction to stationary state for 3D wave equation with the point interaction has been proved for the first time

in our recent paper [24]. However, the global attraction for 3D Klein-Gordon equation equations with the point interaction

has not been studied up to now.

Let us comment on our methods. First, we represent the solution as a sum of dispersive and singular components.

The dispersive component is a solution to the free Klein-Gordon equation, and the singular component is a solution to the

coupled system of the Klein-Gordon equation with delta-like sources and of the first-order nonlinear integro-differential

equation which control the dynamics of the coefficients ζ (t) (see equation (3.3)). The right hand side of this equation is

the value of the dispersive component at the singular point x = 0.

The dispersive component vanishes asymptotically in the local seminorms and one remains with the contribution of

the singular part only. We show that the singular component converges in the chosen topology to a solitary wave which is

a standing wave with a single frequency.

Further, we extract the omega-limit trajectories of the singular component via the compactness argument. Here the

key role is played by the absolute continuity of the spectral density ζ̃ (ω) outside the spectral gap. The absolute continuity

is a nonlinear version of Kato’s theorem on the absence of the embedded eigenvalues and provides the dispersion decay

for the high energy component. Any omega-limit trajectory is the solution to (1.1) with a function η(t) instead of ζ (t),
which is a solution to a homogeneous nonlinear integro-differential equation (5.2). The Fourier transform of η(t) is a

quasimeasure. The theory of quasimeasures helps to prove the spectral inclusion (6.5).

Finally, we apply the Titchmarsh convolution theorem (see [11, Theorem 4.3.3]) to conclude that the support of the

distributional Fourier transform of each omega-limit trajectory is a singleton, i.e. the spectrum of each omega-limit tra-

jectory has a single frequency. The Titchmarsh theorem controls the inflation of spectrum by the nonlinearity. Physically,

these arguments justify the following binary mechanism of the energy radiation, which is responsible for the attraction to

the solitary waves: (i) the nonlinear energy transfer from the lower to higher harmonics, and (ii) the subsequent dispersion

decay caused by the energy radiation to infinity.

The general scheme of the proof bring to mind the approach of [16, 17]. Nevertheless the Klein-Gordon equation

with the point interaction requires new ideas due to a more singular character. As a consequence, the formulation of the

problem and the techniques used are not a straightforward generalization of the one-dimensional result [16] and the result

[17] for 3D equation with mean field interaction.

Our paper is organized as follows. In Section 2 we formulate the main theorem. In Section 3 we separate the first

dispersive component and study its decay properties. In Section 4 we construct spectral representation for the remaining

singular component, and prove absolute continuity of its spectrum outside the spectral gap. In section 5 we establish

compactness for the singular component. In Section 6 we study omega-limit trajectories of the solution. In Section 7 we

prove the main theorem and in Appendix we calculate some Fourier transforms.
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2 Main results

Model

We fix a nonlinear function F : C→ C and define the domain

DF = {ψ ∈ L2(R3) : ψ(x) = ψreg(x)+ ζG(x), ψreg ∈ H2(R3), ζ ∈ C, ψreg(0) = F(ζ )} (2.1)

which generally is not a linear space. Let HF be a nonlinear operator on the domain DF defined by

HF ψ = (∆−m2)ψreg, ψ ∈ DF . (2.2)

The system (1.1) for ψ(t) ∈ DF reads

ψ̈(x, t) = HF ψ(x, t), x ∈ R3, t ∈ R. (2.3)

Let us introduce the phase space for equation (2.3). Denote the space

Ḋ = {π ∈ L2(R3) : π(x) = πreg(x)+ηG(x), πreg ∈ H1(R3), η ∈C} (2.4)

Obviously, DF ⊂ Ḋ.

Definition 2.1. (i) DF is the space of the states Ψ = (ψ(x),π(x)) ∈ DF ⊕ Ḋ equipped with the finite norm

‖Ψ‖2
DF

:= ‖ψreg‖2
H2(R3)+ ‖πreg‖2

H1(R3)+ |ζ |2 + |η |2. (2.5)

(ii) X is the Hilbert space of the states Ψ = (ψ(x),π(x)) ∈ H2(R3)⊕H1(R3) equipped with the finite norm

‖Ψ‖2
X := ‖ψ‖2

H2(R3)+ ‖π‖2
H1(R3). (2.6)

Definition 2.2. Hs
loc = Hs

loc(R
3), s = 0,1,2, ..., denotes the Fréchet space with finite seminorms

‖ψ‖Hs
R

:= ‖ψ‖Hs(BR), R > 0, (2.7)

where BR is the ball of radius R.

Denote L2
loc = H0

loc, L 2
loc = L2

loc ⊕L2
loc and Xloc = H2

loc ⊕H1
loc. We set for Ψ = (ψ ,π)

‖Ψ‖2
L 2

R
= ‖ψ‖2

L2
R
+ ‖π‖2

L2
R
, ‖Ψ‖2

XR
= ‖ψ‖2

H2
R
+ ‖π‖2

H1
R
, R > 0.

Remark 2.3. The spaces L 2
loc are metrisable. The metrics can be defined by

dist
L 2

loc
(Ψ1,Ψ2) =

∞

∑
R=1

2−R
‖Ψ1 −Ψ2‖L 2

R

1+ ‖Ψ1−Ψ2‖L 2
R

. (2.8)

Global well-posedness

For the global well-posedness, we assume that

U(ζ )→ ∞, |ζ | → ∞. (2.9)

Denote ‖ · ‖= ‖ · ‖L2(R3). The next theorem is proved in [23].

Theorem 2.4. Let conditions (1.3), (1.4) and (2.9) hold. Then

(i) For every initial data Ψ(0) = Ψ0 = (ψ0,π0) ∈D the Cauchy problem for (2.3) has a unique solution ψ(t) such that

Ψ(t) = (ψ(t), ψ̇(t)) ∈C(R,DF ).

(ii) The energy is conserved:

H (Ψ(t)) :=
1

2

(

‖ψ̇(t)‖2 + ‖∇ψreg(t)‖2 +m2‖ψreg(t)‖2
)

+U(ζ (t)) = const, t ∈ R. (2.10)

(iii) The following a priori bound holds

|ζ (t)| ≤C(Ψ0) t ∈R. (2.11)
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Solitary waves and the main theorem

Definition 2.5. (i) The solitary waves of equation (2.3) are solutions of the form

ψ(x, t) = e−iωtψω(x), ω ∈ R, ψω ∈ L2(R3). (2.12)

(ii) The solitary manifold is the set S = {Ψω = (ψω ,−iωψω): ω ∈R}, where ψω are the amplitudes of solitary waves.

The identity (1.6) implies that the set S is invariant under multiplication by eiθ , θ ∈R. Let us note that since F(0) = 0

by (1.5), then for any ω ∈ R there is a zero solitary wave with ψω (x)≡ 0.

Lemma 2.6. (Existence of solitary waves). Assume that F(ζ ) satisfies (1.5). Then nonzero solitary waves may exist only

for ω ∈ (−m,m). The amplitudes of solitary waves are given by

ψω(x) = qω
e−

√
m2−ω2|x|

4π |x| ∈ L2(R3), ω ∈ (−m,m), (2.13)

where qω is the solution to

m−
√

m2 −ω2 = 4πb(|qω |2). (2.14)

Proof. We can split ψ(x, t) = ψreg(x, t)+ ζ (t)G(x), where

ψreg(x, t) = qωe−iωt e−
√

m2−ω2|x|− e−m|x|

4π |x| , ζ (t) = qωe−iωt .

Evidently, ψreg(·, t) ∈ H2(R3), ζ (·) ∈Cb(R). Finally, the second equation of (1.1) together with (1.5) give

qωe−iωt m−
√

m2 −ω2

4π
= qωe−iωtb(|qω |2).

At last, we assume that the nonlinearity is polynomial. This assumption is crucial in our argument since it will allow

us to apply the Titchmarsh convolution theorem. Now all our assumptions on F can be summarized as follows.

Assumption A F(ζ ) = ∂
ζ
U(ζ ), U(ζ ) =

N

∑
n=0

un|ζ |2n, un ∈ R, uN > 0, N ≥ 2. (2.15)

In particular, this assumption guarantees that the nonlinearity F satisfies the bound (2.9) from Theorem 2.4. Our main

result is the following theorem.

Theorem 2.7 (Main Theorem). Let Assumption (2.15) be satisfied. Then for any (ψ0,π0) ∈ DF the solution Ψ(t) =
(ψ(t), ψ̇(t)) to (2.3) with (ψ , ψ̇)|

t=0
= (ψ0,π0) converges to solitary manifold S in the space L 2

loc:

lim
t→±∞

dist
L 2

loc
(Ψ(t),S) = 0, (2.16)

where dist
L 2

loc
(·, ·) defined in (2.8).

It suffices to prove Theorem 2.7 for t →+∞. We will only consider the solution ψ(x, t) restricted to t ≥ 0.

3 Dispersive component

Let J1 be the Bessel function of order 1, and θ be the Heaviside function. In [23] we proved that the solution ψ(x, t) to

(2.3) with initial data ψ0 = ψ0,reg + ζ0G ∈ DF , π0 = π0,reg + ζ̇0G ∈ D is given by

ψ(x, t) := ψ f (x, t)+
θ (t −|x|)

4π |x| ζ (t −|x|)− m

4π

∫ t

0

θ (s−|x|)J1(m
√

s2 −|x|2)
√

s2 −|x|2
ζ (t − s)ds, t ≥ 0. (3.1)
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Here ψ f (x, t) ∈C([0,∞),L2(R3)) is a unique solution to the Cauchy problem for the free Klein-Gordon equation.

ψ̈ f (x, t) = (∆−m2)ψ f (x, t), ψ f (x,0) = ψ0(x), ψ̇ f (x,0) = π0(x), (3.2)

and ζ (t)∈C1([0,∞)) is a unique solution to the Cauchy problem for the following first-order nonlinear integro-differential

equation with delay

ζ̇ (t)

4π
− m

4π
ζ (t)+

m

4π

∫ t

0

J1(ms)

s
ζ (t − s)ds+F(ζ (t)) = λ (t), t ≥ 0, ζ (0) = ζ0, (3.3)

where λ (t) := lim
x→0

ψ f (x, t) ∈ C([0,∞)). Note that the limit is well defined, λ (t) is continuous for t > 0, and it admits

a limit as t → +0 (see [23]). The integral in (3.3) is bounded for all t ≥ 0 due to well known properties of the Bessel

function J1: J1(r) ∼ r−1/2 for r → ∞, and J1(r) ∼ r as r → 0 (see for example [29]). Now we study the decay properties

of the dispersive component ψ f (x, t) for t → ∞.

Proposition 3.1. ψ f (x, t) decays in Xloc seminorms. That is, ∀R > 0

∥

∥(ψ f (t), ψ̇ f (t)
∥

∥

XR
→ 0, t → ∞. (3.4)

Proof. We split ψ f (x, t) as

ψ f (x, t) = ψ f ,reg(x, t)+ψ f ,G(x, t), t ≥ 0,

where ψ f ,reg and ψ f ,G are defined as solutions to the following Cauchy problems:

ψ̈ f ,reg(x, t) = (∆−m2)ψ f ,reg(x, t), (ψ f ,reg, ψ̇ f ,reg)|t=0
= (ψ0,reg,π0,reg), (3.5)

ψ̈ f ,G(x, t) = (∆−m2)ψ f ,G(x, t), (ψ f ,G, ψ̇ f ,G)|t=0
= (ζ0G, ζ̇0G), (3.6)

Since (ψ0,reg,π0,reg) ∈ X , then evidently,

(ψ f ,reg, ψ̇ f ,reg) ∈Cb([0,∞),X ). (3.7)

The following lemma states well known decay in local seminorms for the free Klein-Gordon equation.

Lemma 3.2. cf. [16, Lemma 3.1]) Let (u0,v0) ∈ X . Then ∀R > 0

‖U (t)(u0,v0)‖XR
→ 0, t → ∞, (3.8)

where U (t) is the dynamical group of the free Klein-Gordon equation.

Therefore, the first dispersive component ψ f ,reg(x, t) decays in Xloc seminorms. That is, ∀R > 0

∥

∥(ψ f ,reg(·, t), ψ̇ f ,reg(·, t))
∥

∥

XR
→ 0, t → ∞. (3.9)

Now we consider the second dispersive component ψ f ,G.

Lemma 3.3. ψ f ,G(x, t) decays in Xloc seminorms. That is, ∀R > 0

∥

∥(ψ f ,G(t), ψ̇ f ,G(t)
∥

∥

XR
→ 0, t → ∞. (3.10)

Proof. Let η(x) be a smooth function with a support in B1, such that η(x) = 1 for x ∈ B1/2. We split G as

G = ηG+(1−η)G.

Lemma 3.2 implies that

‖U (t)
(

ζ0(1−η)G, ζ̇0(1−η)G
)

‖XR
→ 0, t → ∞, ∀R > 0,

since
(

ζ0(1−η)G, ζ̇0(1−η)G
)

∈ X . Hence it suffices to prove that

‖(u(t), u̇(t))‖XR
→ 0, t → ∞, (3.11)
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where (u(t), u̇(t)) := U (t)
(

ζ0ηG, ζ̇0ηG
)

. The matrix kernel U (x− y, t) of the dynamical group U (t) can be written as

U (x− y, t) =

(

U̇(x− y, t) U(x− y, t)
Ü(x− y, t) U̇(x− y, t)

)

, x,y ∈ R3, t > 0, (3.12)

where

U(z, t) =
δ (t −|z|)

4πt
− m

4π

θ (t −|z|)J1(m
√

t2 −|z|2)
√

t2 −|z|2
, z ∈R, t > 0. (3.13)

Well known asymptotics of the Bessel function imply that

∣

∣

∣
∂ k

t ∂ β
z

J1(m
√

t2 −|z|2)
√

t2 −|z|2
∣

∣

∣
≤C(1+ t)−3/2, t ≥ 2|z|, k = 0,1,2, |β | ≤ 2. (3.14)

Hence, for |x| ≤ R and t > 2(R+ 1), we obtain

|u(x, t)|+ |∆u(x, t)|+ |u̇(x, t)|+ |∇u̇(x, t)| ≤Ct−3/2.

Then (3.11) follows.

Finally, (3.8) and (3.10) imply (3.4).

Corollary 3.4. From (3.4) immediately follows that

λ (t) = ψ f (0, t)→ 0, t → ∞. (3.15)

In conclusion, let us show that

ψ f ,G(t) ∈Cb([0,∞),L2(R3)). (3.16)

Indeed, the energy conservation for the free Klein-Gordon equation implies that

U (t)(0,G) = (U(t)G,U̇(t)G) ∈Cb([0,∞),H1(R3)⊕L2(R3)).

Then

ψ f ,G(t) = ζ0U̇(t)G+ ζ̇0U(t)G ∈Cb([0,∞),L2(R3)).

4 Singular component

Complex Fourier-Laplace transform

In notation (3.1) define the functions

ψS(x, t) :=
θ (t −|x|)

4π |x| ζ (t −|x|)− m

4π

∫ t

0

θ (s−|x|)J1(m
√

s2 −|x|2)
√

s2 −|x|2
ζ (t − s)ds ∈C([0,∞),L2(R3)), t ≥ 0. (4.1)

It is easy to verify that ψS(x, t) is the solution to the Cauchy problem

ψ̈S(x, t) = (∆−m2)ψS(x, t)+ ζ (t)δ (x), ψS(x,0) = 0, ψ̇S(x,0) = 0. (4.2)

The energy conservation (2.10) and a priory bound (2.11) imply that ψ(t) ∈ Cb([0,∞),L2(R3)). Hence (3.1), (3.7) and

(3.16) give that

ψS(t) ∈Cb([0,∞),L2(R3)). (4.3)

Let us analyze the Fourier-Laplace transform of ψS(x, t):

ψ̃S(x,ω) = Ft→ω [θ (t)ψS(x, t)] :=

∫ ∞

0
eiωtψS(x, t)dt, ω ∈ C+, x ∈ R3, (4.4)

where C+ := {z ∈ C : Imz > 0}. Note that ψ̃S(·,ω) is an L2-valued analytic function of ω ∈ C+ due to (4.3). Equation

(4.2) implies that

−ω2ψ̃S(x,ω) = (∆−m2)ψ̃S(x,ω)+ ζ̃(ω)δ (x), ω ∈ C+, x ∈ R3, (4.5)
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where ζ̃ (ω) is the Fourier-Laplace transform of ζ (t):

ζ̃ (ω) = Ft→ω [θ (t)ζ (t)] =

∫ ∞

0
eiωtζ (t)dt. (4.6)

Applying the Fourier transform to (4.5), we get

ˆ̃ψS(ξ ,ω) =
ζ̃ (ω)

ξ 2 +m2 −ω2
, ξ ∈ R3, ω ∈ C+. (4.7)

Denote

κ(ω) =
√

ω2 −m2, Imκ(ω)> 0, ω ∈ C+. (4.8)

Then κ(ω) is the analytic function on C+, and ψ̃S(x,ω) is given by

ψ̃S(x,ω) = ζ̃ (ω)V (x,ω), V (x,ω) =
eiκ(ω)|x|

4π |x| , ω ∈ C+. (4.9)

We then have, formally, for any ε > 0:

ψS(x, t) =
1

2π

∫

Imω=ε
e−iωt ζ̃ (ω)V (x,ω)dω =

1

2π

∫

R

e−iωt ζ̃ (ω + i0)V(x,ω + i0)dω = F
−1
ω→t

[

ζ̃ (ω)V (x,ω)
]

. (4.10)

Traces on the real line

By (4.3) the Fourier transform ψ̃S(·,ω) = Ft→ω [θ (t)ψS(·, t)] is a tempered L2-valued distribution of ω ∈ R. It is the

boundary value of the analytic function (4.4) in the following sense:

ψ̃S(·,ω) = lim
ε→0+

ψ̃S(·,ω + iε), ω ∈ R, (4.11)

where the convergence holds in S ′(R,L2(R3)). Indeed,

ψ̃S(·,ω + iε) = Ft→ω [θ (t)ψS(·, t)e−εt ],

while θ (t)ψS(·, t)e−εt −→
ε→0+

θ (t)ψS(·, t) in S ′(R,L2(R3)). Therefore, (4.11) holds by the continuity of the Fourier trans-

form Ft→ω in S ′(R).
Similarly to (4.11), the distribution ζ̃ (ω), ω ∈R, is the boundary values of the analytic in C+ function ζ̃ (ω), ω ∈C+:

ζ̃ (ω) = lim
ε→0+

ζ̃ (ω + iε), ω ∈ R, (4.12)

since the function θ (t)ζ (t) is bounded. The convergence holds in the space of tempered distributions S ′(R).
Let us justify that the representation (4.9) for ψ̃S(x,ω) is also valid when ω ∈ R \ {−m;m}, if the multiplication in

(4.9) is understood in the sense of distribution. Namely,

Lemma 4.1. V (x,ω) is a smooth function of ω ∈ R\ {−m;m} for any fixed x ∈ R3 \ {0}, and the identity

ψ̃S(x,ω) = ζ̃ (ω)V (x,ω), ω ∈R\ {−m;m} (4.13)

holds in the sense of distributions.

Proof. This lemma follows from (4.11) and (4.12) by the smoothness of V (x,ω) for ω 6=±m.

Absolutely continuous spectrum

Note that R\(−m,m) coincides with the continuous spectrum of the free Klein-Gordon equation, and the function ωκ(ω)
is positive for ω ∈ R\ [−m,m].

Proposition 4.2. (cf. [18, Proposition 2.3] The distribution ζ̃ (ω + i0) is absolutely continuous for |ω |> m and satisfies

∫

|ω|>m
|ζ̃ (ω)|2M (ω)dω < ∞, where M (ω) =

κ(ω)

ω
. (4.14)
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Remark 4.3. Recall that ζ̃ (ω), ω ∈ R, is defined by (4.12) as the trace distribution: ζ̃ (ω) = ζ̃ (ω + i0).

Proof. For any δ > 0 denote Iδ = (−∞,−m− δ ]∪ [m+ δ ,∞). It suffices to prove that

∫

Iδ

|ζ̃ (ω)|2M (ω)dω ≤C, (4.15)

with some constant C > 0 which does not depend on δ . First, the Parseval identity applied to

ψ̃S(x,ω + iε) =

∫ ∞

0
ψS(x, t)e

iωt−εt dt, ε > 0,

gives
∫

R

‖ψ̃S(·,ω + iε)‖2
L2(R3) dω = 2π

∫ ∞

0
‖ψS(·, t)‖2

L2(R3) e−2εt dt.

Since supt≥0 ‖ψS(·, t)‖L2(R) < ∞ by (4.3), we may bound the right-hand side by C1/ε , with some C1 > 0. Taking into

account (4.9), we arrive at the key inequality

∫

R

|ζ̃ (ω + iε)|2‖V (·,ω + iε)‖2
L2(R3) dω ≤ C1

ε
. (4.16)

Lemma 4.4. There exists n ∈ N such that for any δ > 0 and 0 < ε ≤ δ/n

‖V (·,ω + iε)‖2
L2(R3) ≥

M (ω)

16πε
, ω ∈ Iδ . (4.17)

Proof. The explicit formula (4.9) for V (x,ω + iε) implies

‖V (·,ω + iε)‖2
L2(R3) =

1

4π

∫ ∞

0
|eiκ(ω+iε)r|2dr =

1

8π Imκ(ω + iε)
. (4.18)

Further, for ω ∈ Iδ and 0 < ε ≤ δ/n with sufficiently large n ∈ N, we have

Imκ(ω + iε) = Im

√

(ω + iε)2 −m2 = κ(ω)Im
√

1+(2iεω − ε2)/κ2(ω)≤ 2εω

κ(ω)
. (4.19)

Finally, (4.18) and (4.19) imply (4.17).

Substituting (4.17) into (4.16), we obtain the bound

∫

Iδ

|ζ̃ (ω + iε)|2M (ω)dω ≤ 16πC1, 0 < ε ≤ δ/n. (4.20)

We conclude that the set of functions gδ ,ε(ω) = ζ̃ (ω + iε)
√

M (ω), 0 < ε ≤ ε(δ ) defined for ω ∈ Iδ , is bounded in the

Hilbert space L2(Iδ ), and, by the Banach Theorem, is weakly compact. The convergence of the distributions (4.12) implies

the weak convergence gδ ,ε −−⇀
ε→0+

gδ in the Hilbert space L2(Iδ ). The limit function gδ (ω) coincides with the distribution

ζ̃ (ω)
√

M (ω) restricted onto Iδ . This proves the bound (4.15) and finishes the proof of the proposition.

5 Compactness

We are going to prove compactness of the set of translations of {ψS(x, t + s) : s ≥ 0}. We start from the following lemma

Lemma 5.1. For any sequence s j → ∞ there exists an infinite subsequence (which we also denote by s j) such that

ζ (t + s j)→ η(t), j → ∞, t ∈R (5.1)

for some η ∈Cb(R). The convergence is uniform on [−T,T ] for any T > 0. Moreover, η(t) is the solution to

1

4π
η̇(t)− m

4π
η(t)+

m

4π

∫ ∞

0

J1(ms)

s
η(t − s)ds+F(η(t)) = 0, t ∈ R. (5.2)
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Proof. Theorem 2.4-iv), Corollary 3.4 and equation (3.3) imply that ζ ∈ C1
b(R). Then (5.1) follows from the Arzelá-

Ascoli theorem. Further, for any t ∈ R we get

∫ t+s j

0

J1(ms)

s
ζ (t + s j − s)ds →

∫ ∞

0

J1(ms)

s
η(t − s)ds, j → ∞ (5.3)

by the Lebesgue dominated convergence theorem. Then equation (3.3) for ζ (t) together with (3.15) and (5.3) imply

(5.2).

Lemma 5.1 imply

Lemma 5.2. The convergences hold

ψS(·, t + s j)→ βS(·, t) :=
η(t −|x|)

4π |x| − m

4π

∫ ∞

0

θ (s−|x|)J1(m
√

s2 −|x|2)
√

s2 −|x|2
η(t − s)ds, j → ∞, t ∈ R, (5.4)

ψ̇S(·, t + s j)→ β̇S(·, t) =
η̇(t −|x|)

4π |x| − m

4π

∫ ∞

0

θ (s−|x|)J1(m
√

s2 −|x|2)
√

s2 −|x|2
η̇(t − s)ds, j → ∞, t ∈ R, (5.5)

in the topology of Cb([−T,T ],L2
loc) for any T > 0.

Proof. The convergence (5.4) follows immediately from (4.1), (5.1) and the Lebesgue dominated convergence theorem.

Let us prove the convergence of ψ̇S(·, t + s j). Equations (3.3) and (5.2) imply that

ζ̇ (t + s j)→ η̇(t), j → ∞, (5.6)

uniformly on [−T,T ] for any T > 0. Further, differentiating (4.1) for t > |x| gives

ψ̇S(x, t) =
ζ̇ (t −|x|)

4π |x| − m

4π

J1(m
√

t2 −|x|2)
√

t2 −|x|2
ζ (0)− m

4π

∫ t

0

θ (s−|x|)J1(m
√

s2 −|x|2)
√

s2 −|x|2
ζ̇ (t − s)ds,

which imply (5.7) by (5.6).

Remark 5.3. From (4.3) it follows that

βS(·, t) ∈ L∞(R,L2(R3)). (5.7)

6 Nonlinear spectral analysis

We call an omega-limit trajectory any function βS(x, t) that can appear as a limit in (5.4). Proposition 3.1 demonstrates

that the long-time asymptotics of the solution ψ(x, t) in L2
loc depends only on the singular component ψS(x, t). Namely,

the convergences (5.4), and system (1.1) together with (3.1), (3.4) and (3.15) imply that any βS(x, t) is a solution to (1.1)

with η(t) instead ζ (t):










β̈S(x, t) = (∆−m2)βS(x, t)+η(t)δ (x)

lim
x→0

(βS(x, t)−η(t)G(x)) = F(η(t))

∣

∣

∣

∣

∣

∣

∣

t ∈R.

In this section we prove the following proposition.

Proposition 6.1. Every omega-limit trajectory is a solitary wave, that is,

βS(x, t) = ψω+(x)e
−iω+t , x ∈ R3, t ∈ R, (6.1)

with some ω+ ∈R.
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6.1 Reduction of spectrum

Lemma 6.2. supp η̃ ⊂ [−m,m].

Proof. Due to (5.1) and the continuity of the Fourier transform in S ′(R), we have

α(ω)ζ̃ (ω)e−iωsl
S

′
−→α(ω)η̃(ω), j → ∞.

for any α ∈ C∞
0 (R) such that suppα ∩ [−m,m] = /0. The products α(ω)ζ̃ (ω) are absolutely continuous measures since

ζ̃ (ω) is locally L2 for ω ∈ R \ [−m,m] by Proposition 4.2. Then η̃(ω) = 0 for ω /∈ [−m,m] by the Riemann-Lebesgue

Theorem.

Using (4.13) and taking into account that V (x,ω) is smooth for ω 6= ±m and x 6= 0, we obtain the following relation,

which holds in the sense of distributions:

β̃S(x,ω) = η̃(ω)V (x,ω), ω ∈ R\ {±m}. (6.2)

Since V (x,ω) 6= 0 for ω ∈R it follows from Lemma 6.2 that

supp β̃S(x, ·)⊂ [−m,m]. (6.3)

6.2 Spectral inclusion and the Titchmarsh theorem

We will derive (6.1) from the following identity

η(t) =Ce−iω+t , t ∈ R, ω+ ∈ [−m,m], (6.4)

which will be proven in three steps. We start with an investigation of supp η̃ .

Lemma 6.3. The following spectral inclusion holds:

supp F̃(η)⊂ supp η̃ . (6.5)

Proof. Applying the Fourier transform to (5.2), we get by the theory of quasimeasures (see [16]) that

F̃(η)(ω) =
1

4π
(iω +m−mK̃(ω))η̃(ω) =

1

4π
(m−

√

m2 −ω2)η̃(ω), |ω | ≤ m, (6.6)

where K̃(ω) = 1
m

(
√

m2 −ω2+ iω
)

is the Fourier transform of the function K(t) = θ (t)J1(mt)/t ∈ L1(R) (see Appendix),

and η̃(ω) is a quasimeasure. Then (6.5) follows.

The second step is the following lemma

Lemma 6.4. For any omega-limit trajectory

|η(t)|= const, t ∈ R. (6.7)

Proof. Our main assumption (2.15) implies that the function F(η(t)) admits the representation

F(η(t)) = aη(t)η(t), (6.8)

where, according to (2.15)

aη(t) =
N

∑
n=1

2nun|η(t)|2n−2. (6.9)

Both function η(t) and aη(t) are bounded continuous functions in R by Lemma 5.1. Hence, η(t) and aη(t) are tempered

distributions. According to (6.3) supp η̃ ⊂ [−m,m], supp η̃ ⊂ [−m,m], and then ãη also has a bounded support. Denote

F = supp F̃(η), A = supp ãη , Z = supp η̃ . Then the spectral inclusion (6.5) gives

F ⊂ Z. (6.10)
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On the other hand, applying the Titchmarsh convolution theorem (see [11, Theorem 4.3.3]) to (6.8), we obtain

infF = infA+ infZ, supF = supA+ supZ. (6.11)

From (6.10) and (6.11) it follows that infA = supA = 0, and hence A ⊂ {0}. Thus, we conclude that supp ãη = A ⊂ {0},

and therefore the distribution ãη(ω) is a finite linear combination of δ (ω) and its derivatives. Then aη(t) is a polynomial

in t; since aη(t) is bounded by Lemma 5.1, we conclude that aη(t) = const. Finally, (6.7) follows since aη(t) is a

polynomial in |η(t)|, and its degree 2N − 2 ≥ 2 by (2.15) and (6.9).

Now (6.7) means that η(t)η(t) ≡ C = const, and then η̃ ∗ η̃ = 2πCδ (ω). Hence, if η is not identically zero, the

Titchmarsh theorem implies that Z = ω+ ∈ [−m,m]. Indeed,

0 = supZ+ sup(−Z) = supZ− infZ,

and hence infZ = supZ. Therefore, η̃ is a finite linear combination of δ (ω −ω+) and its derivatives. But the derivatives

could not be present because of the boundedness of η(t). Thus η̃ ∼ δ (ω −ω+), which implies (6.4).

Proof of Proposition 6.1. Substituting (6.4) in the RHS of (5.4), we obtain

βS(x, t) =
Ce−iω+(t−|x|)

4π |x| − mC

4π

∫ ∞

0

θ (s−|x|)J1(m
√

s2 −|x|2)
√

s2 −|x|2
e−iω+(t−s)ds

=
Ce−iω+t

4π

(eiω+|x|

|x| −mL̃(x,ω+)
)

=
Ce−

√
m2−ω2

+|x|

4π |x| e−iω+t . (6.12)

Here L̃(x,ω+) =
1

|x|m
(

ei|x|ω+ − ei|x|
√

ω2
+−m2)

is the Fourier transform of the function L(x, t) =
θ(t−|x|)J1(m

√
t2−|x|2)√

t2−|x|2
(see

Appendix). Hence, (6.1) holds and βS(x, t) is a solitary wave. ✷

Remark 6.5. If (6.4) holds with some |ω+|< m, then (6.1) follows immediately from (6.2).

7 Proof of Theorem 2.7

Due to Proposition 3.1 it suffices to prove that

lim
t→∞

dist
L 2

loc
(ΨS(t),S) = 0, (7.1)

where ΨS(t) = (ψS(t), ψ̇S(t)). Assume by contradiction that there exists a sequence s j → ∞ such that

dist
L 2

loc
(ΨS(s j),S)≥ δ , ∀ j (7.2)

for some δ > 0. According to Lemmas 5.1 and 5.2, and formula (6.1) there exist a subsequence s jk of the sequence s j and

an amplitude ψω+ such that the following convergences hold

ΨS(t + s jk)→ (ψω+e−iω+t ,−iω+ψω+e−iω+t), jk → ∞, t ∈ R.

This implies that ΨS(s jk )→ (ψω+ ,−iωψω+), which contradict (7.2). This completes the proof of Theorem 2.7. ✷

A Appendix. Fourier transforms

Here we calculate the Fourier transforms of L(x, t) = θ (t − |x|)J1(m
√

t2 −|x|2)/
√

t2 −|x|2 and K(t) = θ (t)J1(mt)/t =
L(0, t), which we have used in (6.6) and (6.12). Recall, that the function

U(x, t) =
δ (t −|x|)

4π |x| − m

4π
L(x, t), x ∈ R3, t ∈ R (A.1)

is the fundamental solution to the Klein-Gordon equation:

Ü(x, t) = (∆−m2)U(x, t)+ δ (x)δ (t), x ∈ R3, t ∈ R.
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Applying the Fourier transforms in t, we obtain

(∆−m2 +ω2)Ũ(x,ω) =−δ (x), x ∈ R3, ω ∈ R.

Note that Ũ(·,ω) is an analytic and bounded function of ω ∈ C+ with values in tempered distributions on R3. Moreover,

Ũ(·,ω) is a radial distribution, and hence, it coincides with V (·,ω) by (4.8)–(4.9):

Ũ(x,ω) =V (x,ω) =
eiκ(ω)|x|

4π |x| , ω ∈C
+
.

Therefore,

L̃(x,ω) =
4π

m

( eiω|x|

4π |x| −V(x,ω)
)

=
1

m|x|
(

eiω|x|− e−
√

m2−ω2|x|), |ω | ≤ m. (A.2)

Passing to the limit, we obtain

K̃(ω) = lim
x→0

L̃(x,m) =
1

m

(

√

m2 −ω2 + iω), |ω | ≤ m, (A.3)

Remark A.1. Formula (A.3) agrees with [12, Sections 1.12(4) and 2.12 (5)], which are cosine and sine transforms of

K(t).
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