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Abstract

We consider the Schrodinger—Poisson—Newton equatiagrgystals with a cubic lattice and one ion per cell.
We linearize this dynamics at the ground state and intro@urevel class of the ion charge densities which
provide the stability of the linearized dynamics. This is flist result on linear stability for crystals.

Our key result is thenergy positivityfor the Bloch generators of the linearized dynamics undeiiendy-
type condition on the ion charge density. We also assume @iticaathl condition which cancels the negative
contribution caused by electrostatic instability.

The proof of the energy positivity relies on a novel factatian of the corresponding Hamilton functional.
We show that the energy positivity can fail if the additionahdition breaks down while the Wiener condition
holds.

The Bloch generators are nonselfadjoint (and even nonsynanélamilton operators. We diagonalize
these generators using our theory of spectral resolutidgheoHamilton operatoraith positive definite energy
[15,[1€]. Using this spectral resolution, we establish tabitty of the linearized crystal dynamics.
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1 Introduction

First mathematical results on stability of matter were wied by Dyson and Lenard iql[B} 9] where the energy
bound from below has been established. The thermodynamitfbr the Coulomb systems was studied first
by Lebowitz and Lieb[[18, 19], see the survey and further Wpraent in [20]. These results were extended
by Catto, L. Lions, Le Bris and others to Thomas-Fermie andrele-Fock models [4,/5] 6]. All these results
concern either the convergence of the ground state of fiaitécfe systems in the thermodynamic limit or the
existence of the ground state for infinite particle systeiise dynamical stability of infinite particle ground
states was never considered previously.

We establish for the first time the dynamical stability ofstat ground state in linear approximation for the
simplest Schrodinger-Poisson model. The ground statdhismodel was constructed in [14].

We consider crystals with the cubic lattiEe= Z2 and with one ion per cell. The electron cloud is described
by one-particle Schrodinger equation. The ions are desdras classical particles that corresponds to the Born
and Oppenheimer approximation. The ions interact with teetmn cloud via the scalar potential, which is a
solution to the corresponding Poisson equation.

This model does not respect the Pauli exclusion principlelectrons. However, it provides a convenient
framework to introduce suitable functional tools, whichgiti be useful for physically more realistic models
(Thomas—Fermie, Hartree—Fock, and second quantized s)odel particular, we find a novel Wiener-type
stability criterion [(1.2B),[(1.24).

This investigation is motivated by the lack of a suitable meatatical model for a rigorous analysis of funda-
mental quantum phenomena in the solid state physics: hedtictivity, electric conductivity, thermoelectronic
emission, photoelectric effect, Compton effect, etc.,[dke

We denote by (x) the charge density of one ion:
/ o(x)dx=eZ> 0, (1.1)
R3
wheree > 0 is the elementary charge. Lgix,t) be the wave function of the electron field, afx) be the

electrostatic potential generated by the ions and elestrdfe assumé = ¢ = m = 1, wherec is the speed of
light and m is the electron mass. Then the coupled equateats r

XY = AP - eI,  XER 1.2)
—ACD(X,t) = p(X,t) = Z G(X_ n-— q(n,t)) - e|l’U(X7t)|27 Xe R3> (13)
Mg(nt) = —(0d(xt),0(x—n—q(n,t))), neZs (1.4)

Here the brackets stand for the Hermitian scalar produdterHilbert space.?(R3) and for its different ex-
tensions, and the serids (11.3) converges in a suitable .s@tisgerivatives here and below are understood in
the sense of distributions. These equations can be wriggheaHamilton system with a formal Hamilton
functional

2
#w.ap) =3 [ 10000 +p09sp0ojdcr 3 . 15)

whereG:= —A~tandq:= (q(n): n€ Z3), p:= (p(n) : n€ Z%), andp(x) is defined similarly to(113). Namely,
the system[{1]2)-(114) can be formally written as

Q(x,t) = Oy, QNt) = Opm) 0, P(N,t) = Oy, (1.6)



whereg; ;= %(dzl +1i0d;,) with zz = Rezandz = Imz A ground state of a crystal islaperiodic stationary
solution -
Pe(x)e '@t dO(x), q(n)=q° for nez3 (1.7)

with a realw® (andg® € R3 can be chosen arbitrary). A ground state was constructédiin $ubstituting[(1]7)
into (I.2)-[1.4), we obtain the system

W’Yo(x) = —%Awo(x) —ed(x)Y°(x), xeT*:=R3T, (1.8)
—APO(x) = pPO(x):=0%(x)—ewl(x)?, xeT? (1.9)
0 = —(0%x),0(x—n-¢°)), neZ (1.10)
where we denote
0°(x) = o(x—n—-¢°). (1.12)

In present paper we prove the stability for leemal linearizationof the nonlinear systeni (1.2)-(1.4) at the
ground state[(1]7). Namely, substituting

Wixt) = [PO(x) + Wx)]e @, g(nt) =+ Q(n,t) (1.12)

into the nonlinear equations (1.2, (1.4) witi(x,t) = Gp(x,t), we formally obtain the linearized equations
(see Appendix A)

[id + wO]W(x,t) = —3AW(x,t) — ePO(X)W(x,t) — ey®(x)Gp1 (X,t)

QnY =P(nH/M <R
P(n,t) = —(0Gpy(t), 0 (x—n—g°)) + (0%, Do (x— n—°)Q(n,t))
Herepi(xt) is the linearized charge density
pr(xt) = =y Do (x—n—)Q(n,t) — 2eRe[y(x)P(x,1)], (1.14)

The system[(1.13) is linear ové but it is not complex linear. This is due to the last term[idl ), which
appears from the linearization of the tefg? = ¢ in (L.3). However, we need the complex linearity for the
application of the spectral theory. This why we will consitelow the complexification of the system (1.13)
writing it in the variablesW;(x,t) := ReW(x,t), W2(x,t) := ImW(x,t). We will consider the case when the
ground statay®(x) can be taken to be a real function. In this case

Re[yP(x)W(x,t)] = PP (x)W1(x,t). (1.15)
Further we denote
Y(t) = (qu('vt)>qJ2('>t)aQ('>t)vP('>t))' (116)
Then [1.18) can be written as
0 HO
Yit)=AY(t), A=| —H°- 2824'064’0 g —3 &71 , (1.17)
— 28 0 -T O



whereH? := — A — e®0(x) — wP, the operatorSandT correspond to matrices (4.4) ard {4.5) respectively,
and ¢/° denotes the operators of multiplication by the real fumctjd(x). The Hamilton representation (1.6)
implies that

2HO+4e2y°Gy® 0 25 0

0
A=JB, B= D22 (y° q°,0) = 0 H7 00 , (1.18)
25+ 0 T O
0 0 0 M1

wherelJ is the skew-symmetric matrix(3.2). Our basic result is ttabitity for the linearized systen (1.17):
for any finite energy initial state there exists a unique glawlution, and it is bounded in the energy norm.

We show that the generatdris densely defined in the Hilbert spack := L?(R%) @ L2(R%) @ R® @ R3
and commutes with translations by vectors frbimHence, the equatiof (1.J17) can be reduced by the Fourier—
Bloch-Gelfand—Zak transform to equations with the comesiing Bloch generatora(6) = JB(8), which
depend on the paramet@ifrom the Brillouin zond1* := [0, 2r13. The Bloch energy operat@(6) is given by

2H0(0) + 42y°G(B)y® 0  256) O

- 70
B(6) = ~O 247(6) AO 0 . fen\re (1.19)
25(0) o T(o o
0 0 0 M

wherel™ := 2nz%, andH®(0) := —1(0+i6)% — e®°(x) — wP. Further,G() is the inverse to the operator
(i0—0)2: H3(T3) — L3(T®). Finally, 5(6) andT (8) = T»(8) + T1(6) are defined respectively by (7122) and
(@.10), [4.18).

However, the operatoA is not selfadjoint and even not symmetric, which is a typg#hation for the
linearization ofU (1)-invariant nonlinear equations [15, Appendix B]. Respesyi, the Bloch generaton%(e)
are not selfadjoint in the Hilbert space

2 (T =4THolATHoC}aC®, T3=R3T. (1.20)

The main crux here is that we cannot apply the von Neumanrrgp#teorem to the nonselfadjoint generators
A andA(e). We solve this problem by applying our spectral theory of litgmilton operators with positive
energy [15[ 16], which is an infinite-dimensional versiorsofme Gohberg and Krein ideas from the theory of
parametric resonance [12, Chap. VI]. This is why we need disitipity of the energy operatds(6):

£(0,Y) = (Y,B(6)Y)13 > (0)[Y|3 13), a.e. cn \r (1.21)
wheres<(8) > 0, the brackets stand for the scalar produc®iifT*), and we denote
V(T3 =HYT3eH T3 aC3aC. (1.22)

This positivity allows us to construct the spectral resiohubfA(e) which implies the stability for the linearized
dynamics[(1.117).
The key result of the present paper is the proof of the patsit{.21) for the ions’s charge densities

satisfying the following conditions on the correspondirmufter transformg (). The first one is the Wiener-
type condition

~ 2 * *
HE |G(&)] E:2nm79>0, ae N \r*~ (1.23)

Wiener Condition: 2(0) =%
m



This condition is an analog of Fermi Golden Rule for crystalse second condition reads
g(2m) =0, me z3\0. (1.24)

The proof of the positivity[(1.21) relies on a novel factatibn of the Hamilton functional. This positivity
necessarily breaks down @te I'*. Example$ 8]1 anld 8.2 demonstrate that the positivity caakbdown at
some other points and submanifoldsT6f.

Our main novelties are the following:

I. The factorization of energy (8.4), (6.6) and (8.8), (§.10
Il. The energy bound from beloW (6.1) for general densitigs).

1. The energy positivity[(1.21) under conditioris (11.28)d91.24) ono (x): we show that the Wiener condition
(I.23) is necessary and sufficient for the positivity (1.@ddler assumptioh (1.P4) (Theorém]8.3).

IV. An asymptotics of the ground state @s~ 0.

V. An example of negative energy when the condition (I1.24pks down while the Wiener condition_(1123)
holds (Lemm&Z0l1).

VI. Spectral resolution of nonselfadjoint Hamilton gertera and stability of the linearized dynamics.

Remark 1.1. The condition[(1.24) cancels a negative contribution toghergy, which is due to the electrostatic
instability ("TEarnshaw Theorem”[[217], see Remdrk1D.2).

Let us comment on previous results in these directions.

The crystal ground state for the Hartree-Fock equationsosastructed by Catto, Le Bris, and Lions [5, 6].
For the Thomas-Fermie model similar results were obtaindd]i

The corresponding ground state in the Schrodinger-Poissadel was constructed in [14]. The stability for
the linearized dynamics was not established previousiyymaodel.

In [3], Cancés and Stoltz have established the well-passifor local perturbations of the ground state density
matrix in an infinite crystal for the reduced Hartree-Fockdwloof crystal in theandom phase approximation
with the Coulomb potentialk(x—y) = 1/|x—y|. However, the space-periodic nuclear potential in the Boua
[3l (3)] does not depend on time that corresponds to the fixesls positions. Thus the back reaction of the
electrons onto the nuclei is neglected.

The nonlinear Hartree-Fock dynamics for compact pertiohatof the ground state without the random phase
approximation is not studied yet, see the discussion ingbd]in the introductions of 2] 3].

The paper[[R] deals with random reduced HF model of crystamthe ions charge density and the electron
density matrix are random processes, and the action of tteel@aranslations on the probability space is er-
godic. The authors obtain suitable generalizations of thérann-Ostenhof and Lieb-Thirring inequalities

for ergodic density matrices, and construt random potlewtigch is a solution to the Poisson equation with the
corresponding stationary stochastic charge density. Tdia nesult is the coincidence of this model with the
thermodynamic limit in the case of the short range Yukawerattion.

In [21], Lewin and Sabin established the well-posednesshimreduced von Neumann equation with density
matrices of infinite trace for pair-wise interaction potalstw € L*(R3). The authors also proved the asymp-
totic stability of the ground state for 2D crystals [22]. Metheless, the case of the Coulomb potential in 3D
remains open.

The spectral theory of the Schrodinger operators withesperiodic potentials is well developed, seel [24] and



the references therein. The scattering theory for shogeand long-range perturbations of such operators was
constructed in[10, 11].

The plan of our paper is the following. In Section 2 we recalt esult [14] on the existence of a ground
state, and in Section 3 we establish small charge asymptotithe ground state. In Sections 4—6 we study
the Hamilton structure of the linearized dynamics and distathe energy bound from below. In Section 7 we
calculate the generator of the linearized dynamics in th&iEp-Bloch representation. In Section 8 we prove
the positivity of energy. In Section 9 we apply this postinio the stability of the linearized dynamics. Finally,
in Section 10 we construct examples of negative energy. Aglipes concern some technical calculations.

AcknowledgmentsThe authors are grateful to Herbert Spohn for discussiodsemarks.

2 Space-periodic ground state

Let us recall the results of [14] on the existence of the gdostate [(1.I7). The Poisson equatién [1.9) for the
[ -periodic potentiakb® implies the neutrality of the periodic cdll® = R3/T:

/ p°(x)dx =0, (2.1)
T3
which is equivalent to the normalization condition
W) 2dx=Z (2.2)
T

by (.1). We assume th@t> 0, since otherwise the theory is trivial. The existence efghound statd (1.7) is
proved in [14] under the condition

Oper(X) i= Y a(x—n) € LA(T?). (2.3)
n
The ion positiorg® € T2 can be chosen arbitrary, and we will sft= 0.

2.1 Minimization of energy per cell

The wave function)? is constructed as a minimal point of the energy per cell

VW) =3 [ 100K +p(x)Gpep (¥ .4
where
P(X) 1= Tper(X) — P (x)[?, (2.5)
while the operatoGpe; := —Ag; is defined by
_ —i2rmmx (b(m) _ i2rmmx
Gt ()= 3 & e 9= |, &™ 0 00 2.6)
More precisely,
U (y°) = minu (), (2.7)

where.# denotes the manifold

M= e HYTY) : As w(x)|%dx=Z}. 2.8)



2.2 Smoothness of the ground state

The results[[14] imply that there exists a ground state withd®® ¢ H2(T3). Hencey®®° € H?(T?), and the
equation[(I.B) implies that

PP e H4(T®) c C¥(T?). (2.9)
In other words,
P =3 @O (m)e? ™, S (MPPOmMP <o, (m) = (14 |m%)"2. (2.10)
meZ3 meZ3

3 Small-charge asymptotics of the ground state

We will need below the asymptotics as+ 0 of the ground staté (1.7) corresponding to a one-paranrfatriily
of ion densities

o(x) = ep(x) (3.1)
with some fixed functionu € L?(R3). We assume that
Hper(X) := z p(x—n) € LA(T?) (3.2)
nez3

in accordance witH (213). Now the enerfy (2.4) reads
VW)= 5 [ IOWO0P+ Ev(Gm (e V(X = b — (W92 (3.9

Denote byy?, w? the family of ground states with the parametee (0,1]. The energy[(313) is obviously
bounded uniformly ire € (0,1] for any fixedy € .#. Hence, the energy of the minimizers is also bounded
uniformly in e € (0,1]. In particular, the familyyQ is bounded irH(T3),

1Wellners) <C. ee(0,1]. (34)
On the other hand,
[ VRGN <C, V() 1= HperX) — [$EX)2 35
This estimate is due to the uniform bound
Ivellizrs) <C, e (0,1 (3.6)
which holds by[(3.R) and(3.4). Further, the equatfon] (1e8ps
— ADY(x) = evi(x). (3.7)

We will choose the solutio®? = eGyev2, where the operatdBper is defined by[(216). The definitiof (2.6)
implies the bound

D2 Hzie) < €llVellizre) < Ce e€ (0,1 (3.8)
by (3.6).
Lemma 3.1. Let condition [(3.R) hold. Then for sufficiently smali-0,
HY = 20— e0d(x) >0, (3.9)
and the ground state admits the following asymptotics -as@
o = O0(&), (3.10)
wg(x) = Ye+ Xe(X), |Ve|2 =Z+0(e, ||XeHH2(T3) = ﬁ(ez) (3.11)



Proof i) Equation [(1.8) reads

WQUR0X) = —2BY() — DN YL(X). (3.12)
Hence,
Q2. )7 = B2 = 2 {09, 0y} s — e(0Rul. ¥l e (3.13)
which implies the uniform bound
] <C<w, ec(0,] (3.14)
by (2.2), [3.4) and(3]8). Moreovel, (3]12) ahd {3.8) sugteat . is close to an eigenvalue ef%A:
Wl ~ |2ik|? (3.15)

with somek € Z3. Indeed, [[3.12) can be rewritten as

(31272~ G)BI(m) = re(m), 1= e0Uyf (316)
and hence,
S (Gl - ) gm) = o(e), (3.17)
meZ3

since||re|| 2(s) = 0(€?) by (38). Denote by the value ofi2rm|? corresponding to the minimal magnitude
of |3|2rm|? — w?|. Then [3:1F) implies that

Z Pe(m)|? = o(e?), (3.18)
222

since the set of possible values%ﬂan]2 — o is discrete and possible values@f are bounded by (3.14).
Moreover, [[3.1l7) can be rewritten as

1 1 1
(Ghe—a)?Z+ [(Sl2mm2 = )2 = (SAe— )2 |BE(M) 2 = 0/(ef) (3.19)
2 2 2
|2rm[25£ e
since
S wmPF=2 (3.20)
meZ3
due to the normalizatio (2.2). Hence,
1
[5Ae— 2| = 0(€%), (3.21)
since the sum if (3.19) is nonnegative. Let us show that &8 implies that
> (12 =20 die(m)* = o(e). (3:22)
[2rm]“£Ae

First, (3.19) gives that

1 1
Z (|2rm|? —/\e)(§|2ﬂm|2+ She— 2aQ)| (M) |* = o(e*)
24 Ae

However, 200 = Ae+ 0(€?) by (3.21). Hence,

Z (|12mf? — Ae)(|2rm|? — Ae+ 0(€9))| P2 (M) * = (7).
2P £ Ae

7



Now (3.22) follows from[(3.IB) sincé. is bounded for smak > 0 by (3.21) and[(3.14).

i) Now let us prove thai. = O for smalle > 0. Indeed, the energy of the ground state reads

U =5 3 2P IgmP + o€ (329)

meZ3

by (3.3) and[(3.5). On the other hanld, (3.22) implies

Y [2mf?| @ (m) P = AeZ + (|12mm)? = Ae) [P (M) [ = AeZ + O (). (3.24)
m 24 e

Substituting[(3.24) intd (3.23), we obtain

U(yd) = %/\ez+ O0(€%), Ae>0. (3.25)

On the other hand, takingj(x) = v/Z, we ensure that the energy minimuUm {2.7) does not exé&edl). Hence,
(3:28) implies thad, = O for smalle > 0, since the set of all possible values\eZ is discrete. Thereford, (3110)

holds by [3.211).
iif) Now we can prove the asymptotids (3111). Namely, the fatentity holds if we set

ye = P2(0), Xe(X) = ; e 2MX g0 (m). (3.26)
0

Then the second asymptotics bf (3.11) holds[by (3.20) ladd)3vith Ac = 0. The last asymptotics df (3.11)
holds since
> 2rm*|gg(m)|? = o(e") (3.27)
mZ0
due to [[3.2R) withhe = 0. Finally, [3:8) and[(3.10) with smadl > 0 imply that the lowest eigenvalue of the
Schrodinger operatdd? in L2(T3) is close to zero. Hence, its zero eigenvalue is exactly tivesoeigenvalue,
since the spectrum of this operator is discrete. Theretbeenonnegativity[(319) is proved for smal-0. B

4 Linearized dynamics

Let us consider the linearized systdm (1.13). We recall@at —A~1. The meaning of the terms witB will
be adjusted below, see Leminal5.3. We assume furthefthiih@ds, and additionally,

x?%0 e L?(R%), (A-1)oclY(R3). (4.1)
For f(x) € Cg(IR®) the Fourier transform is defined by

1 N - .
f(X)z(zmngse"fo(E)df, xeR?; f(f)z/Rse'Exf(x)dx, £ eRS. (4.2)

The conditions[{4]1) imply that
(A—-1)F € LAR®),  (£)%6(&) < const (4.3)

We consider the case when the ground st#tex) can be taken to be a real function. Then (1. 13)=(1.15) imply
that the operator-matriR is given by [1.117) wher& denotes the operator with the “matrix”

S(x,n) := ey’ (x)GOo(x—n): neZ3 xeR3 (4.4)

8



Finally, T is the real matrix with entries
T(n,n) = —(GO® 0o (x—1),0(x—n)) +(®° 0@ 00) &y = To(n—n') + To(n—1). (4.5)

The operator&y? : L2(R3) — L2(R3) andS: 12 :=13(Z3) @ C* — L?(R3) are not bounded due to the “infrared
divergence”, see Remdrk 5.4. In the next section, we wilstmict a dense domain for all these operators.
On the other hand, the corresponding operafgmndT, are bounded by the following lemma. Denote by
I the primitive cell
M= {(Xg,X,%3) : 0<x <1 k=1,23}. (4.6)

Let us define the Fourier transform thas

1

=T e "Q(6)d6, neZ8, 4.7)
n*

Q6) =Y €vQ(n), ae 6eM*;  Q(n

nez3

wherel* = 271 denotes the primitive cell of the lattide’ and the series convergesLlif(*).
Lemma 4.1. The operators Tand T, are bounded in§ under condition[(4]1).
Proof The first operatoil; reads as the convolutio;Q(n) = ¥ Ti(n—n")Q(n’), where
Ti(n) = —(0®GOo(x),0(x—n)). (4.8)
In the Fourier transforni_(41.7), the convolution operapbecomes the multiplication,
T.Q(6) = T1(6)0(6), ae Qe \re (4.9)

By the Parseval identity, it suffices to check that the “syi‘hﬁ'q(e) is a bounded function. This follows by
direct calculation from[{4]5). First, we apply the Parsegahtity:

14(6) =~y (05 GR00.01 1) = (o 3 & 5160

- aatte@amy e -y [Fodie

2 * *
L:me, B e\l (4.10)

since the sum overequals|/1*| Z 0(6 + & — 2rm) by the Poisson summation formula[13]. Finallg(&)| <
m
C(&)~? by (&.3). Hence,

T1(68)] <C1 Y |6(2mm—6)F(2mm—6)[ <Cp Y (m)~* < oo, (4.11)
m m
i) Finally, - o
T2Q(0) =T2Q(8), 6, (4.12)
where A
T, = (@°(x), 0@ Oo(x)) (4.13)
by (I.9). The expression is finite dy (#.1), sirb& € H2(T?3) is a bounded periodic function. [



5 The Hamilton structure and the domain

To construct solutions of the system (1.17), we need to dialige its generatoA. The main problem is
that this generator is neither selfadjoint and even not sgtrio) so we cannot apply the von Neumann spectral
theorem. We will solve this problem by applying our spedinalory of Hamilton operators with positive energy
[15,[1€] to the Bloch representation Af

In this section we study the domain of the gener@&tobenote

7 =HR}oHIRY) @013, 13:=1%Z%aC3 (5.1)
It is easy to check that the Hamilton representation {1.a8nélly holds with the symplectic matrix
0 3 0O
-1 0 0 o0
— 2
J= 0O 0 0 1 (5-2)
0O 0 -10

Definition 5.1. i) .7, := Ug-0.%, Where.7; is the space of functiong € .7 (R%), whose Fourier transforms
@ (&) vanish in thes-neighborhood of the latticE*,

ii) | ¢ = Urenlc(R), where k(R) := {Q €12:Q(n) =0 for |n| > R}.
i) 2:={Y=(W1,¥2,Q,P) e Z:W,W .., Qel., Pelc}.
Obviously, 7 is dense inZ".
Theorem 5.2. Let conditions[(4]1) hold. Then B is a symmetric operatortendomain? C 2.
Proof Formally the matrix[(1.18) is symmetric. The following leranmplies thaB is defined onz.
Lemma 5.3. 1) ¢°Gy ¢ < L2(R3) and S¢ € I3 for ¢ € .7,.
i) SQe L2(R3) for Qe I°.
Proof i) First, note that

Gyl¢ = Fl[’l’();#. (5.3)
Further,J°(&) = (2m)3 S meze PO(m)S(& — 2mmm). Respectively,
[@°+](§) = (2m°> Y Po(m)§(§ —2m) =0,  [¢|<e (5.4)

meZ3

if ¢ €.~ with somee > 0. Moreover,Ji°+ § € L2(R?), sincey®¢ < L?(R3). Hence¢ belongs to the domain
of Gy and of y°Gy°.

Now considerS‘¢. Applying (4.4), the Parseval identity arid (5.4) we getdos .;
S9In) = e 9 )9 (x)GH0(x~n)dx—e(y ()9 (x),GLa(x )

P . = —iné
- oo [t e 5:5)

Hered (%« §](&)(&)* € L2(R3) for all a by (Z.10), sincep € .7 (R3). Moreover,d® & € L2(R3) for |a| < 2
by (4.3). Hence, integrating by parts twice, and taking axtoount[(5.4), we obtain

[S"¢)(n)| < C(n)~2, (5.6)
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which implies thatS*¢ € 13.
i) Let us check thaBQec L?(R?) for Q € I.. The Fourier transform cdQreads as

SQE) = eRe Y WNGHa(x—nQ(n) =ey P°+F,¢[GOa(x—n)]Q(n)
— 2 [ 5 §°(ms(n —2m)Glo( —n) Y "€ Q(ndn
= e2m*y §°(m)GUo (& — 2m)Q(€ — 2rm). (5.7)

Hence, the Parseval identity gives that

I5Qlc2(re) = CISQ2ee) < Co ¥ 1PO(m)|IGOT(8)B(E) 2 (5.8)

m

It remains to note that the sum owmris finite by [2.10) because

~ArAA|12 (1 s Rioe2 6()?
6T0QIzxs) = [ 70O dE <C(Q) [ =5 de (5.9)
since the functior@(f) is bounded foQ € I.. Finally, the last integral is finite by (4.3). [ |
This lemma implies thaBY € 2" for Y € 2. The symmetry oB on Z is evident from[(1.18). Theorem .2 is
proved. [ |

Remark 5.4. The infrared singularity a€ = 0 of the integrands[{5]3)[(5.5) and (5.9) demonstrates tliat a
operators @9 : L2(R3) — L2(R?), S: 12 — L?(R%) and S : L2(R®) — 12 are unbounded.

Corollary 5.5. The proof of Theoreiin 5.2 shows that the operator A is define@,oms well as the "formal
adjoint” A*, which is defined by the identity

<AY1,Y2> = (Y]_,A*Y2>, Y1,Y2 € 9. (5.10)

6 Factorization of energy and bound from below

The equation(1.17) is formally a Hamiltonian system withntiléon functional%(Y, BY). Next theorem means
the stability property of the linearized crystal.

Theorem 6.1. Let conditions[(4]1) hold. Then the operator B on the dontaiis bounded from below:
Y,BY) > —C|Y|%, Ye2. (6.1)
Proof ForY = (W1,W¥,,Q,P) € 2 the quadratic form reads (with the notations{44)4(4.5))

(Y,BY) = 25 (W), HOW)) +46(4°W1, GYW1) +2[(¥1,SQ + (Q,S*W1)]+(Q, Q)
J

+(Q,T2Q)+(P.M'P). (6.2)

Here the first sum is bounded from below, the operdsas bounded in2 by LemmdZ.lL, while the operator
M~1is positive. Our basic observation is that

B(W1,Q) :=4€* (W1, Gy W1) + 2[(W1,SQ + (Q,S*W1)] + (Q, T1Q) > 0. (6.3)

11



Indeed, the operators factorize as follows:
fYGyl=f"f, S=f'g  Ti=g'g (6.4)

where

f:=e/Gy°  g(x,n) =0VGao(x—n). (6.5)
Then the quadratic forni (6.3) becomes the "perfect square”

B(¥.Q) = (2f¥1+9Q.2f¥1+9Q) > 0. m (6.6

Corollary 6.2. The operator B admits selfadjoint extensions by the FradriTheorem [23].
7 Generator in the Fourier—Bloch transform
We reduce the operatofs= JB andK by the Fourier-Bloch—Gelfand-Zak transforml[[7} 26].

7.1 The discrete Fourier transform

Let us consider a vectof = (W1, W2, Q,P) € 27, and denote

Y(n) = (Wi(n, ), W2(n,),Q(n),P(n) ,  neZ, (7.1)
where ( )
_ _J Wi(n+y), ae yell,
Obviously,Y (n) with differentn € Z2 are orthogonal vectors i#2", and
Y=%Y(n), (7.3)
2
where the sum converges #. The norms inZ” and”? can be represented as
V%= 5 YOS @, IV = 5 IV ). (7.4)
nezs3 nezs3
where
2(M:=LMaoLl2Mac?ac®  »M):=HMaoH (M aeC}aC3 (7.5)

Further, the ground state (1.7) is invariant with respettaoslations of the latticE, and hence the operatér
commutes with these translations. Namély,l(4.4) implies th

S(Xv n) = S(X_n>0)a (76)

sincey(x) is al -periodic function. Similarly,[(Z]5) implies that commutes with translations 6f Hence A
can be reduced by the discrete Fourier transform. Namghyyimg the Fourier transforrf,_. g to the function
Y(-) from (Z1), we obtain

V(6) =FuoY ()= 5 €¥(n) = (W1(6,),¥5(6,-),Q(0),P(8)), ae BeR?  (7.7)
nez3
where A _
Pi6,y) = Y €Wj(n+y), ae 6cR’ ae yeR® (7.8)
nez3
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The functionY (0) is I*-periodic in 6. The series[{7]7) converges liR(M*,.2°(MN)), since the serie§ (7.3)
converges inZ . The inversion formula is given by

Y(n) = \n*\-lf e M%7 (6)d6 (7.9)

(cf. (42)). The Parseval-Plancherel identity gives
IV = I ey I = 1Y 1 e - (7.10)
The functionsLiJj(Q,y) arel -quasiperiodic iry; i.e.,
Q;(0,y+m =e™d;(0y), mezd (7.11)

7.2 Generator in the discrete Fourier transform

Let us considelt € 2 and calculate the Fourier transform(7.7) f¥. Using [4.5), [(5.5),[(716), and taking
into account the -periodicity of ®°(x) and°(x), we obtain that

AY(6) = A(B)Y(6), ae 0eR3\I, (7.12)

whereA(8) is al *-periodic operator function,

0 HO 0 0
A6) —HO—2e2¢°G(B)y°® 0 §6) 0 (7.13)
AO 0 AO M1
—25%(6) 0 -T(6) O
by (I1.17) and[{1.18). Here
G(6)d(8,y) = ;%éﬂwew, ae BeR3\I". (7.14)
This expression is well-defined fgr(x) = w°(x)W1(x) with W1 € .7 since
#(6,m =¢(2m—-6)=0 for |2mMm—B| < ¢ (7.15)
according to[(514).
Lemma 7.1. The operatorS(8) acts as follows:
S(6)Q(8) = S6)Q(8), where §(8) = ey G(6)T6(8,y). (7.16)
Proof. Forx = y+ n equations[(1.11) an@{4.4) imply
SQy+n) = ey’(y+n)y GOa(my-+n)Q(m)
m
= ey(y) % GO (y+n—m)Q(m)
due to thd -periodicity of ¢/°. Applying the Fourier transforni(7.7), we obtain (7.16). O

FurthermoreS*(B) in (]E.'_B) is the corresponding adjoint operator, a‘ﬁ(c&)) is the operator matrix ex-
pressed by[(4.10). Note thg{0), S*(0) andT (6) are finite dimensional operators.
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7.3 Generator in the Bloch transform

Definition 7.2. The Bloch transform of Y is defined as
Y () = [ZY](8) :=.#(0)Y(8) := (¥1(8,y),P2(8,y),Q(6),P(8)), ae BcR® (7.17)
where@;(8,y) = M(8)¥; := d%W;(8,y) are-periodic functions in y R3,
Now the Parseval-Plancherel identities (7.10) read
VIS = I e reys YIS = I I 2 sy - (7.18)
Hence,.Z : 2" — L?(M*, 27 (T3)) is the isomorphism. The inversion is given by
Y(n) = |n*|*1/n* e 4 (—6)Y(6)d6, neZd (7.19)

Finally, the above calculations can be summarised as fell§@12) implies that fo¥ € 2

AY(0) =AB)Y(0), ae BN \I* (7.20)
Here 5
0 HO@G) 0 O
AO)=.(0)A0).#(—0)—=| —HO)—2¢2Y°G(O)y° 0  §6) 0 | (701
0 0 o M
—25%(0) 0 -T(O) O
where
§6) = M(68)S68) =ey’G(8)05°(6), (7.22)
HO(B) = M(B)H'M(—6) = —%(D +i6)2 —ed’(x) — (7.23)
G(B) = M(8)G(O)M(—8) = (i0—6)2 (7.24)
Remark 7.3. The operators5(6) : L?(T3) — H2(T?) are bounded foB € M*\ I'*.
Lemma 7.4. Let the condition[(1.21) hold. Then the operaﬁ(re) admits the representation
A(8) = JB(6), 6 cn \rx, (7.25)
whereB(0) is the selfadjoint operatof {1.19) it (T?) with the domain
D:=HAT3]aH}(THaC3pC3 (7.26)

Proof The representatiofi (Z.25) follows from (11 18) and (IL. 18)e SperatoB( ) is symmetric on the domain
D. Moreover, operators in(1.119) are all bounded, excepHE%(rQ), which is selfadjoint inL?(T3) with the
domainH?(T3). HenceB(8) is also selfadjoint on the domaib. u
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8 The positivity of energy

Here we prove the positivity (1.21) for the linearized dymes{1.1T) under condition§ (1.23) and (1.24). Itis
easy to construct the corresponding examples of densifies

Example 8.1. (I.23) holds foro(x) € L1(R?) if

G(&) #0, a.e. £ cR3 (8.1)
. 25iné
Example 8.2. Let us define the function(X) by its Fourier transformf (§) := 26¢ and set
o(x):=eZf(x)f(x)f(xg), XxecR3 (8.2)

Theno(x) is the smooth function satisfying the Wiener condition3}.ds well as[(1.24) and(1.1), and
lo(x)| <C(a)e @, xeR® (8.3)
for any a> 0 by the Paley—Wiener theorem.
The matrix [1.2B) is a continuous function &fc M*\ I'*. Let us denote
M ={0en*\I:%(6) >0}. (8.4)

Then the Wiener conditiof (1.P3) means t{iat | = |[*|. In the rest of this paper we assume conditlon ([1.24)
and consider the linearized dynamics (1.17) corresponirggreal minimizer of energy per cell. In Appendix
B we show that the real minimizer exists and is unique.

Theorem 8.3. Let conditions[(4]1), and{1.24) hold. Then the Wiener diowli(T.Z3) is necessary and suffi-
cient for the positivity[(1.21) of the generator correspimgpto the real minimizer of energy per cell.

Proof i) First, let us check that the Wiener conditidn_(1.23) ises=ary. Namely, let us consider the inequality

(@.23) forYy = (0,0,Q,P) € ¥ (T3): I9) and[(1.21) imply that
£(0,Y0) = QT (6)Q+PM P> 5(6)[|QP +|P|?], ae. 8N\ (8.5)
Formula [4.IB) implies thak, = 0 by (B.B). Hence,
T(0)=T(0)=2%(F), Oen*\I* (8.6)
by (4.10). Therefore[(8l5) becomes
&(0,Yo) = QZ(6)Q+PM 1P > 5(6)|Q* +|P|?. (8.7)

Hence, the conditioi (1.23) is necessary for the positifdtZ1).

i) It remains to show that the Wiener conditidn (1.23) tdgpetwith [1.24) is sufficient for the positivity (1.P1).
Let us translate the calculatioris_(6.2)—{6.5) into the FEouBloch transform. The operatofs_(6.5) commute
with theT -translations, and therefore

YOG(0)y° = fN*(B)fN(B)’ é(e) = %(0)§(6), Tu(6) =g (6)§(6), (8.8)
wheref(0) := e\/G(6)y° andd(8) = 1/G(6)15(-, ). Hence, [ZT.29) implies that

@@(e,Y):=<Y,é(9>Y>Ts=b(e,wl,Q)+2<wz,H~°(e>wz>Ta+PM*1P, Y=(W1,¥,,Q,P) € 7(T3), (8.9)
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where N N
b(6,W1,Q) := 2(W1,HO(6)W1)7s+ (2f(0)W1+G(6)Q, 2f(8)W1+G(6)Q)7s.

(8.10)

Let us note thaki®(6) = —%(D +i0)? by (B.8). Hence, the eigenvaluestsf(8) equal to%\an— 6|? where

m € Z3. Therefore H%(0) is positive definite:
I 1 * *
(W1, HO(O)Wy) > EdZ(GJ)HLIJluﬁl(Ta) ., @en\ry
whered(0) :=dist(6,I*). Hence, it remains to prove the following proposition.
Proposition 8.4. Under conditions of Theorein 8.3
b(6,W1,Q) > &(O)[|Wilfuqrs) +1QP), 6N,

whereg(6) > 0.

Proof Let us denotex := (W1,H%(8)W;)1s, and

Bi1:= (2f(8)W1,2f(0)W1)1s, Prz:=(2f(8)W1,G(6)Q)7s, B2z:=(G(6)Q,§(6)Q)7s.

Then we can write the quadratic form (8.10) as

b=2a +, B := Bi1+2RePi2+ Bzo.

The positivity [8.11) implies that
a > 5(9)B11, PRS I'I*\F*,

whered(6) > 0. Hence,

b>a+(1+06(8))B11+2Refr2+ B22, B cn*\r.
On the other hand, the Cauchy-Schwarz inequality implias th

Bia| < Bi12Ba)° < %[Vﬁlﬁ- %/Bzz]

for anyy > 0. Hence,

D> @+ (1+8(6) V)Pt (L- ) BT\
Therefore, choosing £ y < 1+ (60), we obtain[(8.1R) fron{(8.11) since

B2 = QT1(6)Q = 2(6)|Q

by (8.8) and[(8.6).

9 Weak solutions and linear stability

Weak solutions are introduced and the linear stability &ved.
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9.1 Weak solutions

We will consider solutions td (1.17) in the sense of distiitns. Let us recall thad*V € 2" for V € 2 by
Corollary[5.5.

Definition 9.1. Y(t) € C(R, Z) is a weak solution td (1.17) if

—/(Y(t),¢(t)v>dt:/(Y(t),¢(t)A*V>dt, ¢ cC2(R), V€ 2. 9.1)

Let us translate this definition into the Fourier—Bloch #fmnm: by the Parseval-Plancherel identity

~[[ [ F@0.807@)rd6]dt= [ [ [ ¥(6.0.00A @) (O)r:d0]dt  (02)
Respectively,[31) is equivalent to the identity
—/o?(e,t),¢(t)\7>T3dt:/<\?(e,t),¢(t)A*( Wqsdt, ¢ €C2(R), Ve (T3, ae 8 \I*, (9.3)
where2(T3) :=C>(T3) @ C*(T3) @ C3@ C3. In other words,
Y(0,0)=AB)Y(6,1), ae e \r* (9.4)

in the sense of vector-valued distributions.

9.2 Linear stability
The equation[{9]4) is equivalent to

Y(6,t) =JBOV(6,1), teR, ae BeM \I (9.5)

We reduce it, using(1.21), to an equation with a selfadjgenerator by our methods [15,]16] which is an
infinite-dimensional version of some Gohberg and Krein sdfeam the theory of parametric resonancel [12,
Chap. VI]. We reproduce some details [of [15] for the convecgeof the reader. Namely, let us denote

A(G)=BY2(8)>0, Bel. (9.6)

This is a selfadjoint operator with the doma#f(T3), that follows by the interpolation arguments, and the range
RanA(0) = 2°(T3). Its inverse is bounded i (T?) by (I.21), and

. 1 »
INHO)Z|ly13) € ——=IIZl| 913, Z€2Z(T?), OeM. (9.7)

2(6)
Let us seZ(6,t) := A(8)Y(6,t), and now equatio {9.5) implies that

Z(0,t) = —iR(0)Z(6,t), teR, ae. el (9.8)
in the sense of vector-valued distributions, whé(@) = iA(8)JA(6).

Lemma 9.2. (Lemma 2.1 of[[I5]K () is a selfadjoint operator in2"(T?3) with a dense domain (X (8)) C
¥ (T3) for every@ € M*,..
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Proof The operatoK (8) is injective. On the other hand, RA6) = .27 (T3), andJ: 2°(T3) — 2 (T3)is a
bounded invertible operator. Hence, R&(0) = 2" (T3). Consider the inverse operator

R(6) :=K~1(0) =iA1(6)IAL(H). (9.9)

It is selfadjoint sinceD(R(8)) = RanK (8) = 27(T?) andR(6) is bounded and symmetric. FinallR(6) is
injective, and hence (8) = R1(0) is a densely defined selfadjoint operator by Theorem 13.)1Laf(25]:

K*(8)=K(6), D(K(6))=RanR(8) c RanA~1(8) c ¥(T?)
by (9.1). |
This lemma implies that each weak solution[fa]9.8) is given b
7(0,t) = e K(0117(9,0) € Cy(R, 27(T3)), ae 0en (9.10)
for Z(6,0) € 2" (T?). Hence, we obtain the well posedness of the Cauchy probleegfmtion [9.5).

Theorem 9.3. Let all conditions of TheoreM 8.3 hold afid= M* . Then for every initial stat¥(6,0) € ¥ (T3)
there exists a unique weak soluti®nd, t) € Cp(R, 7 (T3)) to equation[[3.5), and

(N(B)Y(8,1),A(B)Y(6,t))r: =const  teR. (9.11)
Proof Z(6,0) := A(8)Y(8,0) € 2 (T3) sinceY(8,0) e #(T3). Hence,[[3.10) and(9.7) imply that

Y(6,t) = A"1(0)e91Z(0,0) € Cy(R, ¥ (T3)). (9.12)
Finally, (3.12) holds since (9}t is the unitary group in2"(T2), and hence

(AR(B)Y(8,1),A(0)Y(8,1))1s = (Z(0,1),2(8,1))1s = const  teR. m

Now we apply this theory to equation (1117). Let us note fh@)Y () e L2(M%, 2°(T3)) forY € 2, see
Definition[5.].

Definition 9.4. The Hilbert space/” is the completion o in the norm
¥l = [AB)Y (8)lo(rs (7o) (9.13)
Formally,||Y||» = (Y,BY)¥2. The Fourier-Bloch transforni (Z.117) extends to the isorhism
FW = = () € Lo, 27 (T%) 2 |AB)Y (8) iy (7)) < 0} (9.14)

Finally, let us extend definition of weak solutions Y¢t) € Cy(R,#") by the identity [9.5) in the sense of
vector-valued distribution$ (3.3). Then Theorlen 9.3 ieplhe following corollary.

Corollary 9.5. Let all conditions of Theorein 8.3 hold. Then for every ihigate Y(0) € # there exists a
unique weak solution {t) € Cy(R, #") to equation[(1.1]7), and the energy norm is conserved

IIY (t)|l» = const teR. (9.15)
The solution is given by the formul@a{9112):
Y(t) =.Z'A71(0)e KO1Z(0,0) € Co(R, 7 (T3)). (9.16)

This means that the linearized dynamics (1.17) is stabtsbajlsolutions exist for all initial states of finite
energy, and the norm is constant in time.
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10 Examples of negative energy

We show that the positivity (1.21) can fail if the conditi@Z4) breaks down even when the Wiener condition
(I.23) holds. Namely, fory = (0,0,Q,0) € #(T3) we have

£(6,Y0) =QT(8)Q (10.1)

by (8.5).

Lemma 10.1. There exist functiongi(x) such that the positivity (1.21) fails far(x) from (3.1) with small
e > 0 while (4.1) and the Wiener condition (1]123) hold.

Proof It suffices to construct an example @fx) which provides
QT(60)Q<0 (10.2)
for some6y € M*\ I'* andQ < C3. The representatiof (4110) can be written as

E®E~ PR
ezz[ o E L. BemnT (10.3)

Similarly, (4.13) can be written in the Fourier represdntags

1 0. E®E .

T2 = & g (0e(&) g (&) (10.4)
with v2 := pper(X) — |@2(x)|? according to[(315). The asymptoti¢s(3.11) of the grountestd(x) implies
Ve(€) = Fer(€) — yel*(270°6(&) — 8(8) = fper( &) — Z(210)°5(€) - 8(£), (10.5)
since|ye|* = Z by (311). Heres(x) = VeXe(X) + VeXe(X) + [ Xe(X)[?, and
S| 2(t3) < C1€° (10.6)

by (3.11). Further[(3]2) gives

Foer(8) = 3 (&) )" = fi(&)(2m*®y (& —2mm) (10.7)
by the Poisson summation formula]13]. Substituting (Lh#%) (10.5) we get
Ue(&) = H(E)(Zﬂ)g’é &(& —2mm) —§(§) (10.8)
0
by (I.1) and[(3.1). Substituting this expression info (48 obtain
s e 3 i . &€ o E®E
To= ez(u(f)r;f(f 2rm) e B(E)) + (3 (8(8) T (D). (10.9)

At last, s(x) is al -periodic function and

/Tss(x)dx: /T3 v2(x)dx=0

&) = ;Oé(m)fs(s —2mm), Y EmMP =0,  e-0 (10.10)

by (3.7). Hence,



by (10.6). Therefore,

T.=—€&5% ﬁ;’f\ﬂ(f)\z +0(", e—o. (10.11)
mZ0

&=2m

Hence, there exists@ e C2 such that )
Q5,0 <0 (10.12)

for smalle > 0 if the condition [B.2) breaks down. For example, we can @ke 2rm with m € Z3\ 0 if
[i(2rm) # 0. Finally, for any6, ¢ I'* we can reducéi(0)| in all points6 € 6y +I'* keeping it in the points of
I to have

QT (60)Q = QT1(60)Q+QTQ < 0. (10.13)
At the same time, we can kedp (4.1) and the Wiener condtict8]1o hold. [ |

Remark 10.2. The operator T corresponds to the last term in the last line [of (1.13). Thist describes the
"virtual repulsion” of the ion located at n- ¢° from the same ion deflected to the point g° 4+ Q(n,t). This
means that the negative energy contribution is providechbyelectrostatic instability ("Earnshaw Theorem”

[27)).
A Formal linearization at the ground state

Let us substitute .
wixt) =[O +W(x e, qnt)=c’+Q(nt)

into the nonlinear equations (1.2), (1.4) witlix,t) = Gp(x,t). First, [1.3) implies that

p(X,t) = Z G(X_ n-— qO - Q(n7t)) - e‘ LIJO(X) + LP(X,t)F
n
and the Taylor expansidiormally gives

pxt) = 3 [a(x—n—qo) - Da(x—n—qo)Q(n,t)+%DDG(X—n—qo)Q(n,t)®Q(n,t)+...]

m
— [ | W00+ 2Re(P )P (x,1)) + (WO 2] = P20 + Pa(x,t) + P2(X,E) + . (A1)
Herep®(x) := a%(x) — e/@O(x)|? andpx are polynomials in¥(x,t) andQ(t) of degreek. In particular,py(xt)
is given by [1.14). As a result, we obtain the systém (1.13)énlinear approximation.
B Ground states with minimal energy per cell
Let us consider any ion density(x) € L?(R?) satisfying [1.24):
g(2m) =0, me z3\0. (B.2)

Let us note that
5(0) = / o(x)dx=eZ> 0 (B.3)

by (I.2). Thenope(X) := ¥,0(X—n) = eZsince

Goer(M) = /T €M (x)dx = /Raeiz’““xa(x)dx:o, me 73\ 0 (B.4)
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by (B.2). Therefore, the functions
Px) =vz, d°x =0, =0 (B.5)

give a solution to[(1I8)£(1.10) with zero energy per ¢ellf20n the other hand, the ener@y {2.4) is nonnegative.
Hence, the set of all minimizers of energy per cell consisigx) = €9/Z, with ¢ € [0,271].
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