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Abstract

We consider the Schrödinger–Poisson–Newton equations for crystals with a cubic lattice and one ion per cell.
We linearize this dynamics at the ground state and introducea novel class of the ion charge densities which
provide the stability of the linearized dynamics. This is the first result on linear stability for crystals.

Our key result is theenergy positivityfor the Bloch generators of the linearized dynamics under a Wiener-
type condition on the ion charge density. We also assume an additional condition which cancels the negative
contribution caused by electrostatic instability.

The proof of the energy positivity relies on a novel factorization of the corresponding Hamilton functional.
We show that the energy positivity can fail if the additionalcondition breaks down while the Wiener condition
holds.

The Bloch generators are nonselfadjoint (and even nonsymmetric) Hamilton operators. We diagonalize
these generators using our theory of spectral resolution ofthe Hamilton operatorswith positive definite energy
[15, 16]. Using this spectral resolution, we establish the stability of the linearized crystal dynamics.
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1 Introduction

First mathematical results on stability of matter were obtained by Dyson and Lenard in [8, 9] where the energy
bound from below has been established. The thermodynamic limit for the Coulomb systems was studied first
by Lebowitz and Lieb [18, 19], see the survey and further development in [20]. These results were extended
by Catto, L. Lions, Le Bris and others to Thomas-Fermie and Hartree-Fock models [4, 5, 6]. All these results
concern either the convergence of the ground state of finite particle systems in the thermodynamic limit or the
existence of the ground state for infinite particle systems.The dynamical stability of infinite particle ground
states was never considered previously.

We establish for the first time the dynamical stability of crystal ground state in linear approximation for the
simplest Schrödinger-Poisson model. The ground state forthis model was constructed in [14].

We consider crystals with the cubic latticeΓ =Z3 and with one ion per cell. The electron cloud is described
by one-particle Schrödinger equation. The ions are described as classical particles that corresponds to the Born
and Oppenheimer approximation. The ions interact with the electron cloud via the scalar potential, which is a
solution to the corresponding Poisson equation.

This model does not respect the Pauli exclusion principle for electrons. However, it provides a convenient
framework to introduce suitable functional tools, which might be useful for physically more realistic models
(Thomas–Fermie, Hartree–Fock, and second quantized models). In particular, we find a novel Wiener-type
stability criterion (1.23), (1.24).

This investigation is motivated by the lack of a suitable mathematical model for a rigorous analysis of funda-
mental quantum phenomena in the solid state physics: heat conductivity, electric conductivity, thermoelectronic
emission, photoelectric effect, Compton effect, etc., see[1].

We denote byσ(x) the charge density of one ion:
∫

R3
σ(x)dx= eZ> 0, (1.1)

wheree> 0 is the elementary charge. Letψ(x, t) be the wave function of the electron field, andΦ(x) be the
electrostatic potential generated by the ions and electrons. We assumēh= c= m= 1, wherec is the speed of
light and m is the electron mass. Then the coupled equations read

iψ̇(x, t) = −1
2

∆ψ(x, t)−eΦ(x, t)ψ(x, t), x∈ R3, (1.2)

−∆Φ(x, t) = ρ(x, t) := ∑
n

σ(x−n−q(n, t))−e|ψ(x, t)|2, x∈R3, (1.3)

Mq̈(n, t) = −〈∇Φ(x, t),σ(x−n−q(n, t))〉, n∈ Z3. (1.4)

Here the brackets stand for the Hermitian scalar product in the Hilbert spaceL2(R3) and for its different ex-
tensions, and the series (1.3) converges in a suitable sense. All derivatives here and below are understood in
the sense of distributions. These equations can be written as the Hamilton system with a formal Hamilton
functional

H (ψ ,q, p) =
1
2

∫

R3
[|∇ψ(x)|2+ρ(x)Gρ(x)]dx+∑

n

p2(n)
2M

, (1.5)

whereG :=−∆−1 andq := (q(n) : n∈Z3), p := (p(n) : n∈Z3), andρ(x) is defined similarly to (1.3). Namely,
the system (1.2)-(1.4) can be formally written as

iψ̇(x, t) = ∂ψ(x)H , q̇(n, t) = ∂p(n)H , ṗ(n, t) =−∂q(n)H , (1.6)
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where∂z := 1
2(∂z1 + i∂z2) with z1 = Rez andz2 = Imz. A ground state of a crystal is aΓ-periodic stationary

solution
ψ0(x)e−iω0t , Φ0(x) , q0(n) = q0 for n∈ Z3 (1.7)

with a realω0 (andq0 ∈R3 can be chosen arbitrary). A ground state was constructed in [14]. Substituting (1.7)
into (1.2)-(1.4), we obtain the system

ω0ψ0(x) = −1
2

∆ψ0(x)−eΦ0(x)ψ0(x), x∈ T3 := R3/Γ, (1.8)

−∆Φ0(x) = ρ0(x) := σ0(x)−e|ψ0(x)|2, x∈ T3, (1.9)

0 = −〈∇Φ0(x),σ(x−n−q0)〉, n∈ Z3, (1.10)

where we denote
σ0(x) := ∑

n
σ(x−n−q0). (1.11)

In present paper we prove the stability for theformal linearizationof the nonlinear system (1.2)-(1.4) at the
ground state (1.7). Namely, substituting

ψ(x, t) = [ψ0(x)+Ψ(x, t)]e−iω0t , q(n, t) = q0+Q(n, t) (1.12)

into the nonlinear equations (1.2), (1.4) withΦ(x, t) = Gρ(x, t), we formally obtain the linearized equations
(see Appendix A)

[i∂t +ω0]Ψ(x, t) =−1
2∆Ψ(x, t)−eΦ0(x)Ψ(x, t)−eψ0(x)Gρ1(x, t)

Q̇(n, t) = P(n, t)/M

Ṗ(n, t) =−〈∇Gρ1(t),σ(x−n−q0)〉+ 〈∇Φ0,∇σ(x−n−q0)Q(n, t)〉

∣∣∣∣∣∣∣∣∣∣

x∈R3

n∈ Z3 (1.13)

Hereρ1(x, t) is the linearized charge density

ρ1(x, t) =−∑
n

∇σ(x−n−q0)Q(n, t)−2eRe[ψ0(x)Ψ(x, t)], (1.14)

The system (1.13) is linear overR but it is not complex linear. This is due to the last term in (1.14), which
appears from the linearization of the term|ψ |2 = ψψ in (1.3). However, we need the complex linearity for the
application of the spectral theory. This why we will consider below the complexification of the system (1.13)
writing it in the variablesΨ1(x, t) := ReΨ(x, t),Ψ2(x, t) := ImΨ(x, t). We will consider the case when the
ground stateψ0(x) can be taken to be a real function. In this case

Re[ψ0(x)Ψ(x, t)] = ψ0(x)Ψ1(x, t). (1.15)

Further we denote
Y(t) = (Ψ1(·, t),Ψ2(·, t),Q(·, t),P(·, t)). (1.16)

Then (1.13) can be written as

Ẏ(t) = AY(t), A=




0 H0 0 0

−H0−2e2ψ0Gψ0 0 −S 0
0 0 0 M−1

−2S∗ 0 −T 0


 , (1.17)
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whereH0 := −1
2∆− eΦ0(x)−ω0, the operatorsS andT correspond to matrices (4.4) and (4.5) respectively,

andψ0 denotes the operators of multiplication by the real function ψ0(x). The Hamilton representation (1.6)
implies that

A= JB, B= D2
H (ψ0,q0,0) =




2H0+4e2ψ0Gψ0 0 2S 0

0 2H0 0 0

2S∗ 0 T 0
0 0 0 M−1



, (1.18)

whereJ is the skew-symmetric matrix (5.2). Our basic result is the stability for the linearized system (1.17):
for any finite energy initial state there exists a unique global solution, and it is bounded in the energy norm.

We show that the generatorA is densely defined in the Hilbert spaceX := L2(R3)⊕ L2(R3)⊕R3⊕R3

and commutes with translations by vectors fromΓ. Hence, the equation (1.17) can be reduced by the Fourier–
Bloch–Gelfand–Zak transform to equations with the corresponding Bloch generators̃A(θ) = JB̃(θ), which
depend on the parameterθ from the Brillouin zoneΠ∗ := [0,2π]3. The Bloch energy operator̃B(θ) is given by

B̃(θ) =




2H̃0(θ)+4e2ψ0G̃(θ)ψ0 0 2S̃(θ) 0

0 2H̃0(θ) 0 0

2S̃∗(θ) 0 T̂(θ) 0
0 0 0 M−1



, θ ∈ Π∗ \Γ∗, (1.19)

whereΓ∗ := 2πZ3, andH̃0(θ) := −1
2(∇+ iθ)2 − eΦ0(x)−ω0. Further,G̃(θ) is the inverse to the operator

(i∇−θ)2 : H2(T3)→ L2(T3). Finally, S̃(θ) andT̂(θ) = T̂2(θ)+ T̂1(θ) are defined respectively by (7.22) and
(4.10), (4.13).

However, the operatorA is not selfadjoint and even not symmetric, which is a typicalsituation for the
linearization ofU(1)-invariant nonlinear equations [15, Appendix B]. Respectively, the Bloch generators̃A(θ)
are not selfadjoint in the Hilbert space

X (T3) := L2(T3)⊕L2(T3)⊕C3⊕C3, T3 := R3/Γ. (1.20)

The main crux here is that we cannot apply the von Neumann spectral theorem to the nonselfadjoint generators
A and Ã(θ). We solve this problem by applying our spectral theory of theHamilton operators with positive
energy [15, 16], which is an infinite-dimensional version ofsome Gohberg and Krein ideas from the theory of
parametric resonance [12, Chap. VI]. This is why we need the positivity of the energy operator̃B(θ):

E (θ ,Y) := 〈Y, B̃(θ)Y〉T3 ≥ κ(θ)‖Y‖2
V (T3), a.e. θ ∈ Π∗ \Γ∗, (1.21)

whereκ(θ)> 0, the brackets stand for the scalar product inX (T3), and we denote

V (T3) := H1(T3)⊕H1(T3)⊕C3⊕C3. (1.22)

This positivity allows us to construct the spectral resolution of Ã(θ) which implies the stability for the linearized
dynamics (1.17).

The key result of the present paper is the proof of the positivity (1.21) for the ions’s charge densitiesσ
satisfying the following conditions on the corresponding Fourier transformσ̃(ξ ). The first one is the Wiener-
type condition

Wiener Condition: Σ(θ) := ∑
m

[ξ ⊗ξ
|ξ |2 |σ̃(ξ )|2

]
ξ=2πm−θ

> 0 , a.e. θ ∈ Π∗ \Γ∗. (1.23)
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This condition is an analog of Fermi Golden Rule for crystals. The second condition reads

σ̃(2πm) = 0, m∈ Z3\0. (1.24)

The proof of the positivity (1.21) relies on a novel factorization of the Hamilton functional. This positivity
necessarily breaks down atθ ∈ Γ∗. Examples 8.1 and 8.2 demonstrate that the positivity can break down at
some other points and submanifolds ofΠ∗.

Our main novelties are the following:

I. The factorization of energy (6.4), (6.6) and (8.8), (8.10).

II. The energy bound from below (6.1) for general densitiesσ(x).

III. The energy positivity (1.21) under conditions (1.23) and (1.24) onσ(x): we show that the Wiener condition
(1.23) is necessary and sufficient for the positivity (1.21)under assumption (1.24) (Theorem 8.3).

IV. An asymptotics of the ground state ase→ 0.

V. An example of negative energy when the condition (1.24) breaks down while the Wiener condition (1.23)
holds (Lemma 10.1).

VI. Spectral resolution of nonselfadjoint Hamilton generators and stability of the linearized dynamics.

Remark 1.1. The condition (1.24) cancels a negative contribution to theenergy, which is due to the electrostatic
instability (”Earnshaw Theorem” [27], see Remark 10.2).

Let us comment on previous results in these directions.

The crystal ground state for the Hartree-Fock equations wasconstructed by Catto, Le Bris, and Lions [5, 6].
For the Thomas-Fermie model similar results were obtained in [4].

The corresponding ground state in the Schrödinger-Poisson model was constructed in [14]. The stability for
the linearized dynamics was not established previously in any model.

In [3], Cancés and Stoltz have established the well-posedness for local perturbations of the ground state density
matrix in an infinite crystal for the reduced Hartree-Fock model of crystal in therandom phase approximation
with the Coulomb potentialw(x−y) = 1/|x−y|. However, the space-periodic nuclear potential in the equation
[3, (3)] does not depend on time that corresponds to the fixed ions’s positions. Thus the back reaction of the
electrons onto the nuclei is neglected.

The nonlinear Hartree-Fock dynamics for compact perturbations of the ground state without the random phase
approximation is not studied yet, see the discussion in [17]and in the introductions of [2, 3].

The paper [2] deals with random reduced HF model of crystal when the ions charge density and the electron
density matrix are random processes, and the action of the lattice translations on the probability space is er-
godic. The authors obtain suitable generalizations of the Hoffmann-Ostenhof and Lieb-Thirring inequalities
for ergodic density matrices, and construt random potential which is a solution to the Poisson equation with the
corresponding stationary stochastic charge density. The main result is the coincidence of this model with the
thermodynamic limit in the case of the short range Yukawa interaction.

In [21], Lewin and Sabin established the well-posedness forthe reduced von Neumann equation with density
matrices of infinite trace for pair-wise interaction potentials w∈ L1(R3). The authors also proved the asymp-
totic stability of the ground state for 2D crystals [22]. Nevertheless, the case of the Coulomb potential in 3D
remains open.

The spectral theory of the Schrödinger operators with space-periodic potentials is well developed, see [24] and
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the references therein. The scattering theory for short-range and long-range perturbations of such operators was
constructed in [10, 11].

The plan of our paper is the following. In Section 2 we recall our result [14] on the existence of a ground
state, and in Section 3 we establish small charge asymptotics of the ground state. In Sections 4–6 we study
the Hamilton structure of the linearized dynamics and establish the energy bound from below. In Section 7 we
calculate the generator of the linearized dynamics in the Fourier–Bloch representation. In Section 8 we prove
the positivity of energy. In Section 9 we apply this positivity to the stability of the linearized dynamics. Finally,
in Section 10 we construct examples of negative energy. Appendices concern some technical calculations.

AcknowledgmentsThe authors are grateful to Herbert Spohn for discussions and remarks.

2 Space-periodic ground state

Let us recall the results of [14] on the existence of the ground state (1.7). The Poisson equation (1.9) for the
Γ-periodic potentialΦ0 implies the neutrality of the periodic cellT3 = R3/Γ:

∫

T3
ρ0(x)dx= 0, (2.1)

which is equivalent to the normalization condition
∫

T3
|ψ0(x)|2dx= Z (2.2)

by (1.1). We assume thatZ > 0, since otherwise the theory is trivial. The existence of the ground state (1.7) is
proved in [14] under the condition

σper(x) := ∑
n

σ(x−n) ∈ L2(T3). (2.3)

The ion positionq0 ∈ T3 can be chosen arbitrary, and we will setq0 = 0.

2.1 Minimization of energy per cell

The wave functionψ0 is constructed as a minimal point of the energy per cell

U(ψ) =
1
2

∫

T3
[|∇ψ(x)|2+ρ(x)Gperρ(x)]dx, (2.4)

where
ρ(x) := σper(x)−e|ψ(x)|2, (2.5)

while the operatorGper :=−∆−1
per is defined by

Gperϕ(x) = ∑
m∈Z3\0

e−i2πmx ϕ̌(m)

|2πm|2 , ϕ̌(m) =
∫

T3
ei2πmxϕ(x)dx. (2.6)

More precisely,
U(ψ0) = min

ψ∈M
U(ψ), (2.7)

whereM denotes the manifold

M := {ψ ∈ H1(T3) :
∫

T3
|ψ(x)|2dx= Z}. (2.8)
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2.2 Smoothness of the ground state

The results [14] imply that there exists a ground state withψ0,Φ0 ∈ H2(T3). Henceψ0Φ0 ∈ H2(T3), and the
equation (1.8) implies that

ψ0 ∈ H4(T3)⊂C2(T3). (2.9)

In other words,

ψ0(x) = ∑
m∈Z3

ψ̌0(m)ei2πmx, ∑
m∈Z3

〈m〉8|ψ̌0(m)|2 < ∞, 〈m〉 := (1+ |m|2)1/2. (2.10)

3 Small-charge asymptotics of the ground state

We will need below the asymptotics ase→ 0 of the ground state (1.7) corresponding to a one-parametric family
of ion densities

σ(x) = eµ(x) (3.1)

with some fixed functionµ ∈ L2(R3). We assume that

µper(x) := ∑
n∈Z3

µ(x−n) ∈ L2(T3) (3.2)

in accordance with (2.3). Now the energy (2.4) reads

U(ψ) =
1
2

∫

T3
[|∇ψ(x)|2+e2ν(x)Gperν(x)]dx, ν(x) := µper(x)−|ψ(x)|2. (3.3)

Denote byψ0
e ,ω0

e the family of ground states with the parametere∈ (0,1]. The energy (3.3) is obviously
bounded uniformly ine∈ (0,1] for any fixedψ ∈ M . Hence, the energy of the minimizers is also bounded
uniformly in e∈ (0,1]. In particular, the familyψ0

e is bounded inH1(T3),

‖ψ0
e‖H1(T3) ≤C, e∈ (0,1]. (3.4)

On the other hand, ∫
ν0

e(x)Gperν0
e(x)dx≤C, ν0

e(x) := µper(x)−|ψ0
e(x)|2. (3.5)

This estimate is due to the uniform bound

‖ν0
e‖L2(T3) ≤C, e∈ (0,1] (3.6)

which holds by (3.2) and (3.4). Further, the equation (1.9) reads

−∆Φ0
e(x) = eν0

e(x). (3.7)

We will choose the solutionΦ0
e = eGperν0

e , where the operatorGper is defined by (2.6). The definition (2.6)
implies the bound

‖Φ0
e‖H2(T3) ≤ e‖ν0

e‖L2(T3) ≤Ce, e∈ (0,1] (3.8)

by (3.6).

Lemma 3.1. Let condition (3.2) hold. Then for sufficiently small e> 0,

H0
e :=−1

2
∆−eΦ0

e(x)−ω0
e ≥ 0, (3.9)

and the ground state admits the following asymptotics as e→ 0:

ω0
e = O(e2), (3.10)

ψ0
e(x) = γe+ χe(x), |γe|2 = Z+O(e4), ‖χe‖H2(T3) = O(e2). (3.11)
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Proof i) Equation (1.8) reads

ω0
eψ0

e(x) =−1
2

∆ψ0
e(x)−eΦ0

e(x)ψ0
e(x). (3.12)

Hence,

ω0
e〈ψ0

e ,ψ0
e〉T3 = ω0

eZ =
1
2
〈∇ψ0

e ,∇ψ0
e〉T3 −e〈Φ0

eψ0
e ,ψ0

e〉T3, (3.13)

which implies the uniform bound
|ω0

e | ≤C< ∞, e∈ (0,1] (3.14)

by (2.2), (3.4) and (3.8). Moreover, (3.12) and (3.8) suggest thatω0
e is close to an eigenvalue of−1

2∆:

ω0
e ≈ |2πk|2 (3.15)

with somek∈ Z3. Indeed, (3.12) can be rewritten as

(
1
2
|2πm|2−ω0

e)ψ̌0
e(m) = ře(m), re := eΦ0

eψ0
e (3.16)

and hence,

∑
m∈Z3

(
1
2
|2πm|2−ω0

e)
2|ψ̌0

e(m)|2 = O(e4), (3.17)

since‖re‖L2(T3) = O(e2) by (3.8). Denote byλe the value of|2πm|2 corresponding to the minimal magnitude
of |1

2|2πm|2−ω0
e |. Then (3.17) implies that

∑
|2πm|2 6=λe

|ψ̌0
e(m)|2 = O(e4), (3.18)

since the set of possible values of1
2|2πm|2−ω0

e is discrete and possible values ofω0
e are bounded by (3.14).

Moreover, (3.17) can be rewritten as

(
1
2

λe−ω0
e)

2Z+ ∑
|2πm|2 6=λe

[
(
1
2
|2πm|2−ω0

e)
2− (

1
2

λe−ω0
e)

2
]
|ψ̌0

e(m)|2 = O(e4) (3.19)

since

∑
m∈Z3

|ψ̌0
e(m)|2 = Z (3.20)

due to the normalization (2.2). Hence,

|1
2

λe−ω0
e |= O(e2), (3.21)

since the sum in (3.19) is nonnegative. Let us show that (3.19) also implies that

∑
|2πm|2 6=λe

(|2πm|2−λe)
2|ψ̌0

e(m)|2 = O(e4). (3.22)

First, (3.19) gives that

∑
|2πm|2 6=λe

(|2πm|2−λe)(
1
2
|2πm|2+ 1

2
λe−2ω0

e)|ψ̌0
e(m)|2 = O(e4)

However, 2ω0
e = λe+O(e2) by (3.21). Hence,

∑
|2πm|2 6=λe

(|2πm|2−λe)(|2πm|2−λe+O(e2))|ψ̌0
e(m)|2 = O(e4).
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Now (3.22) follows from (3.18) sinceλe is bounded for smalle> 0 by (3.21) and (3.14).

ii) Now let us prove thatλe = 0 for smalle> 0. Indeed, the energy of the ground state reads

U(ψ0
e) =

1
2 ∑

m∈Z3

|2πm|2|ψ̌0
e(m)|2+O(e2) (3.23)

by (3.3) and (3.5). On the other hand, (3.22) implies

∑
m
|2πm|2|ψ̌0

e(m)|2 = λeZ+ ∑
|2πm|2 6=λe

(|2πm|2−λe)|ψ̌0
e(m)|2 = λeZ+O(e4). (3.24)

Substituting (3.24) into (3.23), we obtain

U(ψ0
e) =

1
2

λeZ+O(e2), λe ≥ 0. (3.25)

On the other hand, takingψ(x)≡
√

Z, we ensure that the energy minimum (2.7) does not exceedO(e2). Hence,
(3.25) implies thatλe= 0 for smalle> 0, since the set of all possible values ofλeZ is discrete. Therefore, (3.10)
holds by (3.21).

iii) Now we can prove the asymptotics (3.11). Namely, the first identity holds if we set

γe = ψ̌0
e(0), χe(x) = ∑

m6=0

e−i2πmxψ̌0
e(m). (3.26)

Then the second asymptotics of (3.11) holds by (3.20) and (3.18) with λe = 0. The last asymptotics of (3.11)
holds since

∑
m6=0

|2πm|4|ψ̌0
e(m)|2 = O(e4) (3.27)

due to (3.22) withλe = 0. Finally, (3.8) and (3.10) with smalle> 0 imply that the lowest eigenvalue of the
Schrödinger operatorH0

e in L2(T3) is close to zero. Hence, its zero eigenvalue is exactly the lowest eigenvalue,
since the spectrum of this operator is discrete. Therefore,the nonnegativity (3.9) is proved for smalle> 0.

4 Linearized dynamics

Let us consider the linearized system (1.13). We recall thatG :=−∆−1. The meaning of the terms withG will
be adjusted below, see Lemma 5.3. We assume further that (2.3) holds, and additionally,

〈x〉2σ ∈ L2(R3), (∆−1)σ ∈ L1(R3). (4.1)

For f (x) ∈C∞
0 (R

3) the Fourier transform is defined by

f (x) =
1

(2π)3

∫

R3
e−iξx f̃ (ξ )dξ , x∈ R3; f̃ (ξ ) =

∫

R3
eiξx f (x)dx, ξ ∈ R3. (4.2)

The conditions (4.1) imply that

(∆−1)σ̃ ∈ L2(R3), 〈ξ 〉2σ̃(ξ )≤ const. (4.3)

We consider the case when the ground stateψ0(x) can be taken to be a real function. Then (1.13)–(1.15) imply
that the operator-matrixA is given by (1.17) whereSdenotes the operator with the “matrix”

S(x,n) := eψ0(x)G∇σ(x−n) : n∈ Z3, x∈ R3. (4.4)
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Finally, T is the real matrix with entries

T(n,n′) :=−〈G∇⊗∇σ(x−n′),σ(x−n)〉+ 〈Φ0,∇⊗∇σ〉δnn′ = T1(n−n′)+T2(n−n′). (4.5)

The operatorsGψ0 : L2(R3)→ L2(R3) andS: l2
3 := l2

3(Z
3)⊗C3 → L2(R3) are not bounded due to the “infrared

divergence”, see Remark 5.4. In the next section, we will construct a dense domain for all these operators.
On the other hand, the corresponding operatorsT1 andT2 are bounded by the following lemma. Denote by

Π the primitive cell
Π := {(x1,x2,x3) : 0≤ xk ≤ 1, k= 1,2,3}. (4.6)

Let us define the Fourier transform onl2
3 as

Q̂(θ) = ∑
n∈Z3

einθ Q(n), a.e. θ ∈ Π∗; Q(n) =
1

|Π∗|

∫

Π∗
e−inθ Q̂(θ)dθ , n∈ Z3, (4.7)

whereΠ∗ = 2πΠ denotes the primitive cell of the latticeΓ∗ and the series converges inL2(Π∗).

Lemma 4.1. The operators T1 and T2 are bounded in l23 under condition (4.1).

Proof The first operatorT1 reads as the convolution:T1Q(n) = ∑T1(n−n′)Q(n′), where

T1(n) =−〈∇⊗G∇σ(x),σ(x−n)〉. (4.8)

In the Fourier transform (4.7), the convolution operatorT1 becomes the multiplication,

T̂1Q(θ) = T̂1(θ)Q̂(θ), a.e. θ ∈ Π∗ \Γ∗. (4.9)

By the Parseval identity, it suffices to check that the “symbol” T̂1(θ) is a bounded function. This follows by
direct calculation from (4.5). First, we apply the Parsevalidentity:

T̂1(θ) = −∑
n

einθ 〈∇⊗G∇σ(x),σ(x−n)〉= 1
(2π)3 ∑

n
einθ 〈ξ ⊗ξ

|ξ |2 σ̃(ξ ), σ̃(ξ )einξ 〉

=
1

(2π)3 〈
ξ ⊗ξ
|ξ |2 σ̃(ξ ), σ̃(ξ )∑

n
ein(θ+ξ )〉= ∑

m

[ξ ⊗ξ
|ξ |2 |σ̃(ξ )|2

]
ξ=2πm−θ

, θ ∈ Π∗ \Γ∗ (4.10)

since the sum overn equals|Π∗|∑
m

δ (θ +ξ −2πm) by the Poisson summation formula [13]. Finally,|σ̃(ξ )| ≤

C〈ξ 〉−2 by (4.3). Hence,

|T̂1(θ)| ≤C1∑
m
|σ̃(2πm−θ)σ̃(2πm−θ)| ≤C2∑

m
〈m〉−4 < ∞. (4.11)

ii) Finally,
T̂2Q(θ) = T̂2Q̂(θ), θ ∈ Π∗, (4.12)

where
T̂2 = 〈Φ0(x),∇⊗∇σ(x)〉 (4.13)

by (1.9). The expression is finite by (4.1), sinceΦ0 ∈ H2(T3) is a bounded periodic function.
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5 The Hamilton structure and the domain

To construct solutions of the system (1.17), we need to diagonalize its generatorA. The main problem is
that this generator is neither selfadjoint and even not symmetric, so we cannot apply the von Neumann spectral
theorem. We will solve this problem by applying our spectraltheory of Hamilton operators with positive energy
[15, 16] to the Bloch representation ofA.

In this section we study the domain of the generatorA. Denote

V := H1(R3)⊕H1(R3)⊕ l2
3 ⊕ l2

3, l2
3 := l2(Z3)⊗C3. (5.1)

It is easy to check that the Hamilton representation (1.18) formally holds with the symplectic matrix

J =




0 1
2 0 0

−1
2 0 0 0

0 0 0 1
0 0 −1 0


 . (5.2)

Definition 5.1. i) S+ := ∪ε>0Sε , whereSε is the space of functionsϕ ∈ S (R3), whose Fourier transforms
ϕ̂(ξ ) vanish in theε-neighborhood of the latticeΓ∗,

ii) l c = ∪R∈Nlc(R), where lc(R) := {Q∈ l2
3 : Q(n) = 0 for |n|> R}.

iii) D := {Y = (Ψ1,Ψ2,Q,P) ∈ X : Ψ1,Ψ2 ∈ S+, Q∈ lc, P∈ lc}.

Obviously,D is dense inX .

Theorem 5.2. Let conditions (4.1) hold. Then B is a symmetric operator on the domainD ⊂ X .

Proof Formally the matrix (1.18) is symmetric. The following lemma implies thatB is defined onD .

Lemma 5.3. i) ψ0Gψ0ϕ ∈ L2(R3) and S∗ϕ ∈ l2
3 for ϕ ∈ S+.

ii) SQ∈ L2(R3) for Q∈ lc.

Proof i) First, note that

Gψ0ϕ = F−1 [ψ̃0∗ ϕ̃](ξ )
|ξ |2 . (5.3)

Further,ψ̃0(ξ ) = (2π)3 ∑m∈Z3 ψ̌0(m)δ (ξ −2πm). Respectively,

[ψ̃0 ∗ ϕ̃](ξ ) = (2π)3 ∑
m∈Z3

ψ̌0(m)ϕ̂(ξ −2πm) = 0, |ξ |< ε (5.4)

if ϕ ∈ Sε with someε > 0. Moreover,ψ̃0∗ ϕ̃ ∈ L2(R3), sinceψ0ϕ ∈ L2(R3). Hence,ϕ belongs to the domain
of Gψ0 and ofψ0Gψ0.

Now considerS∗ϕ . Applying (4.4), the Parseval identity and (5.4) we get forϕ ∈ Sε

[S∗ϕ ](n) = e
∫

ψ0(x)ϕ(x)G∇σ(x−n)dx= e〈ψ0(x)ϕ(x),G∇σ(x−n)〉

=
ie

(2π)3

∫

|ξ |>ε
[ψ̃0∗ ϕ̃ ](ξ )

ξ σ̃(ξ )e−inξ

|ξ |2 dξ . (5.5)

Here∂ α [ψ̃0∗ ϕ̃](ξ )〈ξ 〉4 ∈ L2(R3) for all α by (2.10), sinceϕ̃ ∈ S (R3). Moreover,∂ α σ̃ ∈ L2(R3) for |α | ≤ 2
by (4.3). Hence, integrating by parts twice, and taking intoaccount (5.4), we obtain

|[S∗ϕ ](n)| ≤C〈n〉−2, (5.6)
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which implies thatS∗ϕ ∈ l2
3.

ii) Let us check thatSQ∈ L2(R3) for Q∈ lc. The Fourier transform ofSQreads as

S̃Q(ξ ) = eFx→ξ ∑
n

ψ0(x)G∇σ(x−n)Q(n) = e∑
n

ψ̃0∗Fx→ξ [G∇σ(x−n)]Q(n)

= e(2π)3
∫

∑
m

ψ̌0(m)δ (η −2πm)G̃∇σ(ξ −η)∑
n

ein(ξ−η)Q(n)dη

= e(2π)3∑
m

ψ̌0(m)G̃∇σ(ξ −2πm)Q̃(ξ −2πm). (5.7)

Hence, the Parseval identity gives that

‖SQ‖L2(R3) =C‖S̃Q‖L2(R3) ≤C1∑
m
|ψ̌0(m)|‖G̃∇σ(ξ )Q̃(ξ )‖L2(R3) (5.8)

It remains to note that the sum overm is finite by (2.10) because

‖G̃∇σQ̃‖2
L2(R3) =

∫
1

|ξ |2 |σ̃(ξ )Q̃(ξ )|2dξ ≤C(Q)
∫ |σ̃(ξ )|2

|ξ |2 dξ (5.9)

since the functionQ̃(ξ ) is bounded forQ∈ lc. Finally, the last integral is finite by (4.3).

This lemma implies thatBY∈ X for Y ∈ D . The symmetry ofB onD is evident from (1.18). Theorem 5.2 is
proved.

Remark 5.4. The infrared singularity atξ = 0 of the integrands (5.3), (5.5) and (5.9) demonstrates that all
operators Gψ0 : L2(R3)→ L2(R3), S: l2

3 → L2(R3) and S∗ : L2(R3)→ l2
3 are unbounded.

Corollary 5.5. The proof of Theorem 5.2 shows that the operator A is defined onD , as well as the ”formal
adjoint” A∗, which is defined by the identity

〈AY1,Y2〉= 〈Y1,A
∗Y2〉, Y1,Y2 ∈ D . (5.10)

6 Factorization of energy and bound from below

The equation (1.17) is formally a Hamiltonian system with Hamilton functional12〈Y,BY〉. Next theorem means
the stability property of the linearized crystal.

Theorem 6.1. Let conditions (4.1) hold. Then the operator B on the domainD is bounded from below:

〈Y,BY〉 ≥ −C‖Y‖2
X , Y ∈ D . (6.1)

Proof ForY = (Ψ1,Ψ2,Q,P) ∈ D the quadratic form reads (with the notations (4.4)–(4.5))

〈Y,BY〉 = 2∑
j
〈Ψ j ,H

0Ψ j〉+4e2〈ψ0Ψ1,Gψ0Ψ1〉+2[〈Ψ1,SQ〉+ 〈Q,S∗Ψ1〉]+〈Q,T1Q〉

+〈Q,T2Q〉+〈P,M−1P〉. (6.2)

Here the first sum is bounded from below, the operatorT2 is bounded inl2
3 by Lemma 4.1, while the operator

M−1 is positive. Our basic observation is that

β (Ψ1,Q) := 4e2〈ψ0Ψ1,Gψ0Ψ1〉+2[〈Ψ1,SQ〉+ 〈Q,S∗Ψ1〉]+ 〈Q,T1Q〉 ≥ 0. (6.3)
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Indeed, the operators factorize as follows:

e2ψ0Gψ0 = f ∗ f , S= f ∗g, T1 = g∗g, (6.4)

where
f := e

√
Gψ0, g(x,n) = ∇

√
Gσ(x−n). (6.5)

Then the quadratic form (6.3) becomes the ”perfect square”

β (Ψ,Q) = 〈2 f Ψ1+gQ,2 f Ψ1+gQ〉 ≥ 0. (6.6)

Corollary 6.2. The operator B admits selfadjoint extensions by the Friedrichs Theorem [23].

7 Generator in the Fourier–Bloch transform

We reduce the operatorsA= JBandK by the Fourier–Bloch–Gelfand–Zak transform [7, 26].

7.1 The discrete Fourier transform

Let us consider a vectorY = (Ψ1,Ψ2,Q,P) ∈ X , and denote

Y(n) = (Ψ1(n, ·),Ψ2(n, ·),Q(n),P(n)) , n∈ Z3, (7.1)

where

Ψ j(n,y) =

{
Ψ j(n+y), a.e. y∈ Π,
0, y 6∈ Π.

(7.2)

Obviously,Y(n) with differentn∈ Z3 are orthogonal vectors inX , and

Y = ∑
n

Y(n), (7.3)

where the sum converges inX . The norms inX andV can be represented as

‖Y‖2
X = ∑

n∈Z3

‖Y(n)‖2
X (Π), ‖Y‖2

V = ∑
n∈Z3

‖Y(n)‖2
V (Π), (7.4)

where
X (Π) := L2(Π)⊕L2(Π)⊕C3⊕C3, V (Π) := H1(Π)⊕H1(Π)⊕C3⊕C3. (7.5)

Further, the ground state (1.7) is invariant with respect totranslations of the latticeΓ, and hence the operatorA
commutes with these translations. Namely, (4.4) implies that

S(x,n) = S(x−n,0), (7.6)

sinceψ0(x) is aΓ-periodic function. Similarly, (4.5) implies thatT commutes with translations ofΓ. Hence,A
can be reduced by the discrete Fourier transform. Namely, applying the Fourier transformFn→θ to the function
Y(·) from (7.1), we obtain

Ŷ(θ) = Fn→θY(n) := ∑
n∈Z3

einθY(n) = (Ψ̂1(θ , ·),Ψ̂2(θ , ·),Q̂(θ), P̂(θ)), a.e. θ ∈R3, (7.7)

where
Ψ̂ j(θ ,y) = ∑

n∈Z3

einθ Ψ j(n+y), a.e. θ ∈ R3, a.e. y∈R3. (7.8)
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The functionŶ(θ) is Γ∗-periodic in θ . The series (7.7) converges inL2(Π∗,X (Π)), since the series (7.3)
converges inX . The inversion formula is given by

Y(n) = |Π∗|−1
∫

Π∗
e−inθŶ(θ)dθ (7.9)

(cf. (4.7)). The Parseval–Plancherel identity gives

‖Y‖2
V = |Π∗|−1‖Ŷ‖2

L2(Π∗,V (Π)), ‖Y‖2
X = |Π∗|−1‖Ŷ‖2

L2(Π∗,X (Π)). (7.10)

The functionsΨ̂ j(θ ,y) areΓ-quasiperiodic iny; i.e.,

Ψ̂ j(θ ,y+m) = e−imθ Ψ̂ j(θ ,y), m∈ Z3. (7.11)

7.2 Generator in the discrete Fourier transform

Let us considerY ∈ D and calculate the Fourier transform (7.7) forAY. Using (4.5), (5.5), (7.6), and taking
into account theΓ-periodicity ofΦ0(x) andψ0(x), we obtain that

ÂY(θ) = Â(θ)Ŷ(θ), a.e. θ ∈ R3\Γ∗, (7.12)

whereÂ(θ) is aΓ∗-periodic operator function,

Â(θ) =




0 H0 0 0

−H0−2e2ψ0Ĝ(θ)ψ0 0 Ŝ(θ) 0
0 0 0 M−1

−2Ŝ∗(θ) 0 −T̂(θ) 0


 . (7.13)

by (1.17) and (1.18). Here

Ĝ(θ)ϕ̂(θ ,y) = ∑
m

ϕ̌(θ ,m)

(2πm−θ)2 ei(2πm−θ )y, a.e. θ ∈ R3\Γ∗. (7.14)

This expression is well-defined forϕ(x) = ψ0(x)Ψ1(x) with Ψ1 ∈ Sε since

ϕ̌(θ ,m) = ϕ̃(2πm−θ) = 0 for |2πm−θ |< ε (7.15)

according to (5.4).

Lemma 7.1. The operatorŜ(θ) acts as follows:

Ŝ(θ)Q̂(θ) = Ŝ(θ)Q̂(θ), where Ŝ(θ) = eψ0Ĝ(θ)∇σ̂ (θ ,y). (7.16)

Proof. For x= y+n equations (1.11) and (4.4) imply

SQ(y+n) = eψ0(y+n)∑
m

G∇σ0(m,y+n)Q(m)

= eψ0(y)∑
m

G∇σ(y+n−m)Q(m)

due to theΓ-periodicity ofψ0. Applying the Fourier transform (7.7), we obtain (7.16).

Furthermore,Ŝ∗(θ) in (7.13) is the corresponding adjoint operator, andT̂(θ) is the operator matrix ex-
pressed by (4.10). Note thatŜ(θ), Ŝ∗(θ) andT̂(θ) are finite dimensional operators.

13



7.3 Generator in the Bloch transform

Definition 7.2. The Bloch transform of Y is defined as

Ỹ(θ) = [FY](θ) := M (θ)Ŷ(θ) := (Ψ̃1(θ ,y),Ψ̃2(θ ,y),Q̂(θ), P̂(θ)), a.e. θ ∈ R3, (7.17)

whereΨ̃ j(θ ,y) = M(θ)Ψ̂ j := eiθyΨ̂ j(θ ,y) are Γ-periodic functions in y∈ R3.

Now the Parseval-Plancherel identities (7.10) read

‖Y‖2
V = |Π∗|−1‖Ỹ‖2

L2(Π∗,V (T3)), ‖Y‖2
X = |Π∗|−1‖Ỹ‖2

L2(Π∗,X (T3)). (7.18)

Hence,F : X → L2(Π∗,X (T3)) is the isomorphism. The inversion is given by

Y(n) = |Π∗|−1
∫

Π∗
e−inθ

M (−θ)Ỹ(θ)dθ , n∈ Z3. (7.19)

Finally, the above calculations can be summarised as follows: (7.12) implies that forY ∈ D

ÃY(θ) = Ã(θ)Ỹ(θ), a.e. θ ∈ Π∗ \Γ∗. (7.20)

Here

Ã(θ)=M (θ)Â(θ)M (−θ)=




0 H̃0(θ) 0 0

−H̃0(θ)−2e2ψ0G̃(θ)ψ0 0 S̃(θ) 0
0 0 0 M−1

−2S̃∗(θ) 0 −T̂(θ) 0


 , (7.21)

where

S̃(θ) := M(θ)Ŝ(θ) = eψ0G̃(θ)∇σ̃0(θ), (7.22)

H̃0(θ) := M(θ)H0M(−θ) =−1
2
(∇+ iθ)2−eΦ0(x)−ω0, (7.23)

G̃(θ) := M(θ)Ĝ(θ)M(−θ) = (i∇−θ)−2. (7.24)

Remark 7.3. The operatorsG̃(θ) : L2(T3)→ H2(T3) are bounded forθ ∈ Π∗ \Γ∗.

Lemma 7.4. Let the condition (1.21) hold. Then the operatorÃ(θ) admits the representation

Ã(θ) = JB̃(θ), θ ∈ Π∗ \Γ∗, (7.25)

whereB̃(θ) is the selfadjoint operator (1.19) inX (T3) with the domain

D̃ := H2(T3)⊕H2(T3)⊕C3⊕C3. (7.26)

Proof The representation (7.25) follows from (1.18) and (1.18). The operator̃B(θ) is symmetric on the domain
D̃. Moreover, operators in (1.19) are all bounded, except forH̃0(θ), which is selfadjoint inL2(T3) with the
domainH2(T3). Hence,B̃(θ) is also selfadjoint on the domaiñD.
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8 The positivity of energy

Here we prove the positivity (1.21) for the linearized dynamics (1.17) under conditions (1.23) and (1.24). It is
easy to construct the corresponding examples of densitiesσ(x).

Example 8.1. (1.23) holds forσ(x) ∈ L1(R3) if

σ̃(ξ ) 6= 0, a.e. ξ ∈ R3. (8.1)

Example 8.2. Let us define the function f(x) by its Fourier transformf̃ (ξ ) :=
2sin

ξ
2

ξ
e−ξ 2

, and set

σ(x) := eZ f(x1) f (x2) f (x3), x∈ R3. (8.2)

Thenσ(x) is the smooth function satisfying the Wiener condition (1.23), as well as (1.24) and (1.1), and

|σ(x)| ≤C(a)e−a|x|, x∈ R3, (8.3)

for any a> 0 by the Paley–Wiener theorem.

The matrix (1.23) is a continuous function ofθ ∈ Π∗ \Γ∗. Let us denote

Π∗
+ := {θ ∈ Π∗ \Γ∗ : Σ(θ) > 0}. (8.4)

Then the Wiener condition (1.23) means that|Π∗
+|= |Π∗|. In the rest of this paper we assume condition (1.24)

and consider the linearized dynamics (1.17) correspondingto a real minimizer of energy per cell. In Appendix
B we show that the real minimizer exists and is unique.

Theorem 8.3. Let conditions (4.1), and (1.24) hold. Then the Wiener condition (1.23) is necessary and suffi-
cient for the positivity (1.21) of the generator corresponding to the real minimizer of energy per cell.

Proof i) First, let us check that the Wiener condition (1.23) is necessary. Namely, let us consider the inequality
(1.21) forY0 = (0,0,Q,P) ∈ V (T3): (1.19) and (1.21) imply that

E (θ ,Y0) = QT̂(θ)Q+PM−1P≥ κ(θ)[|Q|2+ |P|2], a.e. θ ∈ Π∗ \Γ∗. (8.5)

Formula (4.13) implies that̂T2 = 0 by (B.5). Hence,

T̂(θ) = T̂1(θ) = Σ(θ), θ ∈ Π∗ \Γ∗ (8.6)

by (4.10). Therefore, (8.5) becomes

E (θ ,Y0) = QΣ(θ)Q+PM−1P≥ κ(θ)[|Q|2+ |P|2]. (8.7)

Hence, the condition (1.23) is necessary for the positivity(1.21).

ii) It remains to show that the Wiener condition (1.23) together with (1.24) is sufficient for the positivity (1.21).
Let us translate the calculations (6.2)–(6.5) into the Fourier–Bloch transform. The operators (6.5) commute
with theΓ-translations, and therefore

e2ψ0G̃(θ)ψ0 = f̃ ∗(θ) f̃ (θ), S̃(θ) = f̃ ∗(θ)g̃(θ), T̂1(θ) = g̃∗(θ)g̃(θ), (8.8)

where f̃ (θ) := e
√

G̃(θ)ψ0 andg̃(θ) =
√

G̃(θ)∇σ̃(·,θ). Hence, (1.19) implies that

E (θ ,Y) :=〈Y, B̃(θ)Y〉T3 =b(θ ,Ψ1,Q)+2〈Ψ2,H̃
0(θ)Ψ2〉T3 +PM−1P, Y=(Ψ1,Ψ2,Q,P) ∈ V (T3), (8.9)
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where
b(θ ,Ψ1,Q) := 2〈Ψ1,H̃

0(θ)Ψ1〉T3 + 〈2 f̃ (θ)Ψ1+ g̃(θ)Q, 2 f̃ (θ)Ψ1+ g̃(θ)Q〉T3. (8.10)

Let us note that̃H0(θ) =−1
2
(∇+ iθ)2 by (B.5). Hence, the eigenvalues ofH̃0(θ) equal to

1
2
|2πm−θ |2 where

m∈ Z3. Therefore,H̃0(θ) is positive definite:

〈Ψ1,H̃
0(θ)Ψ1〉 ≥

1
2

d2(θ)‖Ψ1‖2
H1(T3) , θ ∈ Π∗ \Γ∗, (8.11)

whered(θ) := dist(θ ,Γ∗). Hence, it remains to prove the following proposition.

Proposition 8.4. Under conditions of Theorem 8.3

b(θ ,Ψ1,Q)≥ ε(θ)[‖Ψ1‖2
H1(T3)+ |Q|2], θ ∈ Π∗

+, (8.12)

whereε(θ)> 0.

Proof Let us denoteα := 〈Ψ1,H̃0(θ)Ψ1〉T3, and

β11 := 〈2 f̃ (θ)Ψ1,2 f̃ (θ)Ψ1〉T3, β12 := 〈2 f̃ (θ)Ψ1, g̃(θ)Q〉T3, β22 := 〈g̃(θ)Q, g̃(θ)Q〉T3. (8.13)

Then we can write the quadratic form (8.10) as

b= 2α +β , β := β11+2Reβ12+β22. (8.14)

The positivity (8.11) implies that
α ≥ δ (θ)β11, θ ∈ Π∗ \Γ∗, (8.15)

whereδ (θ)> 0. Hence,

b≥ α +(1+δ (θ))β11+2Reβ12+β22, θ ∈ Π∗ \Γ∗. (8.16)

On the other hand, the Cauchy-Schwarz inequality implies that

|β12| ≤ β 1/2
11 β 1/2

22 ≤ 1
2
[γβ11+

1
γ

β22] (8.17)

for anyγ > 0. Hence,

b≥ α +(1+δ (θ)− γ)β11+(1− 1
γ
)β22, θ ∈ Π∗ \Γ∗. (8.18)

Therefore, choosing 1< γ ≤ 1+δ (θ), we obtain (8.12) from (8.11) since

β22 = QT̂1(θ)Q= Σ(θ)|Q|2 (8.19)

by (8.8) and (8.6).

9 Weak solutions and linear stability

Weak solutions are introduced and the linear stability is proved.
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9.1 Weak solutions

We will consider solutions to (1.17) in the sense of distributions. Let us recall thatA∗V ∈ X for V ∈ D by
Corollary 5.5.

Definition 9.1. Y(t) ∈C(R,X ) is a weak solution to (1.17) if

−
∫
〈Y(t), ϕ̇(t)V〉dt =

∫
〈Y(t),ϕ(t)A∗V〉dt, ϕ ∈C∞

0 (R), V ∈ D . (9.1)

Let us translate this definition into the Fourier–Bloch transform: by the Parseval–Plancherel identity

−
∫ [∫

Π∗
〈Ỹ(θ , t), ϕ̇(t)Ṽ(θ)〉T3dθ

]
dt =

∫ [∫

Π∗
〈Ỹ(θ , t),ϕ(t)Ã∗(θ)Ṽ(θ)〉T3dθ

]
dt (9.2)

Respectively, (9.1) is equivalent to the identity

−
∫
〈Ỹ(θ , t), ϕ̇(t)Ṽ〉T3dt=

∫
〈Ỹ(θ , t),ϕ(t)Ã∗(θ)Ṽ〉T3dt, ϕ ∈C∞

0 (R), Ṽ∈D(T3), a.e. θ ∈ Π∗ \Γ∗, (9.3)

whereD(T3) :=C∞(T3)⊕C∞(T3)⊕C3⊕C3. In other words,

˙̃Y(θ , t) = Ã(θ)Ỹ(θ , t), a.e. θ ∈ Π∗ \Γ∗ (9.4)

in the sense of vector-valued distributions.

9.2 Linear stability

The equation (9.4) is equivalent to

˙̃Y(θ , t) = JB̃(θ)Ỹ(θ , t) , t ∈ R, a.e. θ ∈ Π∗ \Γ∗. (9.5)

We reduce it, using (1.21), to an equation with a selfadjointgenerator by our methods [15, 16] which is an
infinite-dimensional version of some Gohberg and Krein ideas from the theory of parametric resonance [12,
Chap. VI]. We reproduce some details of [15] for the convenience of the reader. Namely, let us denote

Λ̃(θ) = B̃1/2(θ)> 0, θ ∈ Π∗
+. (9.6)

This is a selfadjoint operator with the domainV (T3), that follows by the interpolation arguments, and the range
RanΛ̃(θ) = X (T3). Its inverse is bounded inX (T3) by (1.21), and

‖Λ̃−1(θ)Z‖V (T3) ≤
1√
κ(θ)

‖Z‖X (T3), Z ∈ X (T3), θ ∈ Π∗
+. (9.7)

Let us setZ̃(θ , t) := Λ̃(θ)Ỹ(θ , t), and now equation (9.5) implies that

˙̃Z(θ , t) =−iK̃(θ)Z̃(θ , t), t ∈ R, a.e. θ ∈ Π∗
+ (9.8)

in the sense of vector-valued distributions, whereK̃(θ) = iΛ̃(θ)JΛ̃(θ).

Lemma 9.2. (Lemma 2.1 of [15])K(θ) is a selfadjoint operator inX (T3) with a dense domain D(K(θ)) ⊂
V (T3) for everyθ ∈ Π∗

+.
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Proof The operatorK̃(θ) is injective. On the other hand, RanΛ̃(θ) = X (T3), andJ : X (T3)→ X (T3) is a
bounded invertible operator. Hence, RanK̃(θ) = X (T3). Consider the inverse operator

R̃(θ) := K̃−1(θ) = iΛ̃−1(θ)JΛ̃−1(θ). (9.9)

It is selfadjoint sinceD(R̃(θ)) = RanK(θ) = X (T3) andR̃(θ) is bounded and symmetric. Finally,R̃(θ) is
injective, and hence,̃K(θ) = R̃−1(θ) is a densely defined selfadjoint operator by Theorem 13.11 (b) of [25]:

K̃∗(θ) = K̃(θ) , D(K̃(θ)) = RanR̃(θ)⊂ RanΛ̃−1(θ) ⊂ V (T3)

by (9.7).

This lemma implies that each weak solution to (9.8) is given by

Z̃(θ , t) = e−iK̃(θ )tZ̃(θ ,0) ∈Cb(R,X (T3)), a.e. θ ∈ Π∗
+ (9.10)

for Z̃(θ ,0) ∈ X (T3). Hence, we obtain the well posedness of the Cauchy problem for equation (9.5).

Theorem 9.3. Let all conditions of Theorem 8.3 hold andθ ∈ Π∗
+. Then for every initial statẽY(θ ,0) ∈ V (T3)

there exists a unique weak solutionỸ(θ , t) ∈Cb(R,V (T3)) to equation (9.5), and

〈Λ̃(θ)Ỹ(θ , t), Λ̃(θ)Ỹ(θ , t)〉T3 = const, t ∈ R. (9.11)

Proof Z̃(θ ,0) := Λ̃(θ)Ỹ(θ ,0) ∈ X (T3) sinceY(θ ,0) ∈ V (T3). Hence, (9.10) and (9.7) imply that

Ỹ(θ , t) = Λ̃−1(θ)e−iK(θ )t Z̃(θ ,0) ∈Cb(R,V (T3)). (9.12)

Finally, (9.11) holds sincee−iK(θ )t is the unitary group inX (T3), and hence

〈Λ̃(θ)Ỹ(θ , t), Λ̃(θ)Ỹ(θ , t)〉T3 = 〈Z̃(θ , t), Z̃(θ , t)〉T3 = const, t ∈ R.

Now we apply this theory to equation (1.17). Let us note thatΛ̃(θ)Ỹ(θ) ∈ L2(Π∗
+,X (T3)) for Y ∈ D , see

Definition 5.1.

Definition 9.4. The Hilbert spaceW is the completion ofD in the norm

‖Y‖W := ‖Λ̃(θ)Ỹ(θ)‖L2(Π∗
+,X (T3)) (9.13)

Formally,‖Y‖W = 〈Y,BY〉1/2. The Fourier-Bloch transform (7.17) extends to the isomorphism

F : W → W̃ := {Ỹ(·) ∈ L2
loc(Π

∗
+,X (T3)) : ‖Λ̃(θ)Ỹ(θ)‖L2(Π∗

+,X (T3)) < ∞}. (9.14)

Finally, let us extend definition of weak solutions toY(t) ∈ Cb(R,W ) by the identity (9.5) in the sense of
vector-valued distributions (9.3). Then Theorem 9.3 implies the following corollary.

Corollary 9.5. Let all conditions of Theorem 8.3 hold. Then for every initial state Y(0) ∈ W there exists a
unique weak solution Y(t) ∈Cb(R,W ) to equation (1.17), and the energy norm is conserved:

‖Y(t)‖W = const, t ∈ R. (9.15)

The solution is given by the formula (9.12):

Y(t) = F
−1Λ̃−1(θ)e−iK(θ )t Z̃(θ ,0) ∈Cb(R,W (T3)). (9.16)

This means that the linearized dynamics (1.17) is stable: global solutions exist for all initial states of finite
energy, and the norm is constant in time.
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10 Examples of negative energy

We show that the positivity (1.21) can fail if the condition (1.24) breaks down even when the Wiener condition
(1.23) holds. Namely, forY0 = (0,0,Q,0) ∈ V (T3) we have

E (θ ,Y0) = QT̂(θ)Q (10.1)

by (8.5).

Lemma 10.1. There exist functionsµ(x) such that the positivity (1.21) fails forσ(x) from (3.1) with small
e> 0 while (4.1) and the Wiener condition (1.23) hold.

Proof It suffices to construct an example ofσ(x) which provides

QT̂(θ0)Q< 0 (10.2)

for someθ0 ∈ Π∗ \Γ∗ andQ∈C3. The representation (4.10) can be written as

T̂1(θ) = e2∑
m

[ξ ⊗ξ
|ξ |2 |µ̃(ξ )|2

]
ξ=2πm−θ

, θ ∈ Π∗ \Γ∗ (10.3)

Similarly, (4.13) can be written in the Fourier representation as

T̂2 =−e2 1
(2π)3 〈ν̃

0
e(ξ )

ξ ⊗ξ
|ξ |2 , µ̃(ξ )〉 (10.4)

with ν0
e := µper(x)−|ψ0

e(x)|2 according to (3.5). The asymptotics (3.11) of the ground state ψ0
e(x) implies

ν̃0
e(ξ ) = µ̃per(ξ )−|γe|2(2π)3δ (ξ )− s̃(ξ ) = µ̃per(ξ )−Z(2π)3δ (ξ )− s̃(ξ ), (10.5)

since|γe|2 = Z by (3.11). Heres(x) = γeχe(x)+ γeχe(x)+ |χe(x)|2, and

‖s‖L2(T3) ≤C1e2 (10.6)

by (3.11). Further, (3.2) gives

µ̃per(ξ ) = ∑
n

µ̃(ξ )einξ = µ̃(ξ )(2π)3∑
m

δ (ξ −2πm) (10.7)

by the Poisson summation formula [13]. Substituting (10.7)into (10.5) we get

ν̃0
e(ξ ) = µ̃(ξ )(2π)3 ∑

m6=0

δ (ξ −2πm)− s̃(ξ ) (10.8)

by (1.1) and (3.1). Substituting this expression into (4.13) we obtain

T̂2 =−e2〈µ̃(ξ ) ∑
m6=0

δ (ξ −2πm)
ξ ⊗ξ
|ξ |2 , µ̃(ξ )〉+ e2

(2π)3 〈s̃(ξ )
ξ ⊗ξ
|ξ |2 , µ̃(ξ )〉. (10.9)

At last,s(x) is aΓ-periodic function and
∫

T3
s(x)dx=

∫

T3
ν0

e(x)dx= 0

by (3.7). Hence,
s̃(ξ ) = ∑

m6=0

š(m)δ (ξ −2πm), ∑
m
|š(m)|2 = O(e4), e→ 0 (10.10)
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by (10.6). Therefore,

T̂2 =−e2 ∑
m6=0

[ξ ⊗ξ
|ξ |2 |µ̃(ξ )|2

]
ξ=2πm

+O(e4), e→ 0. (10.11)

Hence, there exists aQ∈ C3 such that
QT̂2Q< 0 (10.12)

for small e> 0 if the condition (B.2) breaks down. For example, we can takeQ = 2πm with m∈ Z3 \ 0 if
µ̃(2πm) 6= 0. Finally, for anyθ0 6∈ Γ∗ we can reduce|µ̂(θ)| in all pointsθ ∈ θ0+Γ∗ keeping it in the points of
Γ∗ to have

QT̂(θ0)Q= QT̂1(θ0)Q+QT̂2Q< 0. (10.13)

At the same time, we can keep (4.1) and the Wiener condition (1.23) to hold.

Remark 10.2. The operator T2 corresponds to the last term in the last line of (1.13). This term describes the
”virtual repulsion” of the ion located at n+q0 from the same ion deflected to the point n+q0+Q(n, t). This
means that the negative energy contribution is provided by the electrostatic instability (”Earnshaw Theorem”
[27]).

A Formal linearization at the ground state

Let us substitute
ψ(x, t) = [ψ0(x)+Ψ(x, t)]e−iω0t , q(n, t) = q0+Q(n, t)

into the nonlinear equations (1.2), (1.4) withΦ(x, t) = Gρ(x, t). First, (1.3) implies that

ρ(x, t) = ∑
n

σ(x−n−q0−Q(n, t))−e|ψ0(x)+Ψ(x, t)|2

and the Taylor expansionformally gives

ρ(x, t) = ∑
n

[
σ(x−n−q0)−∇σ(x−n−q0)Q(n, t)+

1
2

∇∇σ(x−n−q0)Q(n, t)⊗Q(n, t)+ ...
]

− e
[
|ψ0(x)|2+2Re(ψ0(x)Ψ(x, t))+ |Ψ(x, t)|2

]
= ρ0(x)+ρ1(x, t)+ρ2(x, t)+ ... (A.1)

Hereρ0(x) := σ0(x)−e|ψ0(x)|2 andρk are polynomials inΨ(x, t) andQ(t) of degreek. In particular,ρ1(x, t)
is given by (1.14). As a result, we obtain the system (1.13) inthe linear approximation.

B Ground states with minimal energy per cell

Let us consider any ion densityσ(x) ∈ L2(R3) satisfying (1.24):

σ̃(2πm) = 0, m∈ Z3\0. (B.2)

Let us note that
σ̃(0) =

∫
σ(x)dx= eZ> 0 (B.3)

by (1.1). Thenσper(x) := ∑n σ(x−n)≡ eZsince

σ̌per(m) =

∫

T3
ei2πmxσper(x)dx=

∫

R3
ei2πmxσ(x)dx= 0, m∈ Z3\0 (B.4)
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by (B.2). Therefore, the functions

ψ0(x)≡
√

Z, Φ0(x)≡ 0, ω0 = 0 (B.5)

give a solution to (1.8)–(1.10) with zero energy per cell (2.4). On the other hand, the energy (2.4) is nonnegative.
Hence, the set of all minimizers of energy per cell consists of ψ0(x) ≡ eiφ√Z, with φ ∈ [0,2π].
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