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Abstract

We establish soliton-like asymptotics for finite energy solutions to the Dirac

equation coupled to a relativistic particle. Any solution with initial state close to

the solitary manifold, converges in long time limit to a sum of traveling wave and

outgoing free wave. The convergence holds in global energy norm. The proof uses

spectral theory and the symplectic projection onto solitary manifold in the Hilbert

phase space.
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1 Introduction

We prove the long time convergence to the sum of a soliton and dispersive wave for the
Dirac equation coupled to a relativistic particle. The convergence holds in global energy
norm for finite energy solution with initial state close to the solitary manifold. Our main
motivation is to develop the techniques of Buslaev and Perelman [2, 3] in the context of the
Dirac equation. The development is not straightforward because of known peculiarities
of the Dirac equation: nonpositivity of the energy, algebra of the Dirac matrices, etc. We
expect that the result might be extended to nonlinear relativistic Dirac equation relying
on an appropriate development of our techniques.

Let ψ(x) ∈ C4 be a Dirac spinor field in R3, coupled to a relativistic particle with
position q and momentum p, governed by







iψ̇(x, t) = [−iα1∂1 − iα2∂2 − iα3∂3 + βm]ψ(x, t) + ρ(x− q(t))

q̇(t) = p(t)/
√

1 + p2(t), ṗ(t) = Re〈ψ(x, t),∇ρ(x− q(t))〉

∣

∣

∣

∣

∣

∣

x ∈ R3 (1.1)

where ρ ∈ C(R3,C4) and 〈·, ·〉 stands for the Hermitian scalar product in L2(R3) ⊗ C4.
Here ∂j = ∂/∂xj , αj and β are 4× 4 Dirac matrices. The standard representation for the
Dirac matrices αj and β (in 2× 2 blocks) is

β = α0 =

(

I2 0
0 −I2

)

, αj =

(

0 σj
σj 0

)

, j = 1, 2, 3 (1.2)

where I2 denotes the unit 2× 2 matrix and

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

The matrices αj , j = 0, 1, 2, 3 are Hermitian and satisfy the anticommutation relations

α∗
j = αj, αjαk + αkαj = 2δjk (1.3)

We will use the following real orthogonality relations

βψ · αjψ = 0, j = 1, 3, and α2ψ · ψ = 0, ψ ∈ R4 (1.4)

The system (1.1) is translation-invariant and admits soliton solutions

sa,v(t) = (ψv(x− vt− a), vt+ a, pv), pv = v/
√
1− v2 (1.5)

for all a, v ∈ R3 with |v| < 1. The states Sa,v := sa,v(0) form the solitary manifold

S := {Sa,v : a, v ∈ R3, |v| < 1} (1.6)

Our main result is the soliton-type asymptotics

ψ(x, t) ∼ ψv±(x− v±t− a±) +W0(t)φ±, t→ ±∞ (1.7)

for solutions to (1.1) with initial data close to the solitary manifold S. Here W0(t)
is the dynamical group of the free Dirac equation, φ± are the corresponding asymptotic
scattering states, and the asymptotics hold in the global norm of the Hilbert space L2(R3)⊗
C4. For the particle trajectory we prove that

q̇(t) → v±, q(t) ∼ v±t + a±, t→ ±∞ (1.8)
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The results are established under the following conditions on the complex valued charge
distribution: for some ν > 5/2

(1 + |x|)ν |∂αρ| ∈ L2(R3), |α| ≤ 3 (1.9)

We assume ρ(−x) = ρ(x), x ∈ R3, for the simplicity of calculations. Finally, we assume

the Wiener condition for the Fourier transform ρ̂ = (2π)−3/2

∫

eikxρ(x)dx

B(k) = mβρ̂(k) · ρ̂(k) > 0, k ∈ R3 (1.10)

which is the nonlinear version of the Fermi Golden Rule in our case (cf. [4, 13, 14, 15]): the
nonlinear perturbation is not orthogonal to the eigenfunctions of the continuous spectrum
of the linear part. The examples are easily constructed. Namely, let us rewrite (1.10) in
the form

B(k) = m[|ρ̂1(k)|2 + |ρ̂2(k)|2 − |ρ̂3(k)|2 − |ρ̂4(k)|2] > 0, k ∈ R3 (1.11)

Therefore, we can take e.g. ρ1 constructed in [12], and ρ2 = ρ3 = ρ4 = 0.
The system (1.1) describes the charged particle interacting with its “own” Dirac field.

The asymptotics (1.7)-(1.8) mean asymptotic stability of uniform motion, i.e. “the law
of inertia”. The stability is caused by “radiative damping”, i.e. radiation of energy
to infinity appearing analytically as a local energy decay for solutions to the linearized
equation. The radiative damping was suggested first by M.Abraham in 1905 in the context
of the Maxwell-Lorentz equations, [1].

One could also expect asymptotics (1.7) for small perturbations of the solitons for
the relativistic nonlinear Dirac equations and for the coupled nonlinear Maxwell-Dirac
equations whose solitons were constructed in [6]. Our result models this situation though
the relativistic case is still open problem.

Asymptotics of type (1.7)-(1.8) were obtained previously for the Klein-Gordon and
Schrödinger equations coupled to the particle [8, 10]. More weak asymptotics of type
(1.7) in the local energy norms, and without the dispersive wave, were obtained in [7] and
[11] for the Maxwell-Lorentz and wave equations respectively.

Let us comment on our approach. For 1D translation invariant Schrödinger equation,
asymptotics of type (1.7) were proved for the first time by Buslaev and Perelman [2, 3, 4],
and extended by Cuccagna [5] for higher dimensions. Here we develop the approach [8]
where the general Buslaev and Perelman strategy has been developed for the case of the
Klein-Gordon equation: i) symplectic orthogonal decomposition of the dynamics near
the solitary manifold, ii) modulation equations for the symplectic projection onto the
manifold, and iii) the time decay in the transversal directions, etc (see more details in
Introduction [8]). We prove the asymptotics (1.7)– (1.8) in Sections 3-11 developing this
general strategy. One of difficulties is caused by well known nonpositivity of the Hamil-
tonian for the Dirac equation. Respectively, the energy conservation does not provide a
priori estimate for the solution. We obtain linear in time estimate for L2 norm of the
solution using unitarity of the free Dirac propagator. The main novelty in our case is
thorough establishing the appropriate decay of the linearized dynamics in Sections 12-17,
and Appendices A, B, and C:

I. Main difficulty lies in the proof of the decay ∼ t−3/2 in weighted norms for the free
Dirac equation. Here we prove the decay for the first time (Lemma 17.1). The proof relies
on the “soft version” of the strong Huygens principle for the Dirac equation. Namely, the
free Dirac propagator is concentrated mainly near the light cone, while the contribution
of the inner zone is a Hilbert-Schmidt operator.
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II. Next difficulty lies in the computation of the spectral properties of the linearized
equation at the soliton. We do not postulate any spectral properties of the equation in
contrast to majority of the works in the field. Namely, we find that under the Wiener
condition (1.10), the discrete spectrum consists only from zero point with algebraic mul-
tiplicity 6 (Lemma 16.2). The multiplicity is totally due to the translation invariance of
the system (1.1).

III. Moreover, we exactly calculate the symplectic orthogonality conditions (16.7) for
initial data of the linearized equation. These conditions are necessary for the proof of the
decay.

IV. All computations differ significantly from the case of the Klein-Gordon equation [8]
because of the algebra of the Dirac matrices. An important role play the real orthogonality
relations (1.4) for the Dirac matrices.

Our paper is organized as follows. In Section 2, we formulate the main result. In Sec-
tion 3, we introduce the symplectic projection onto the solitary manifold. The linearized
equation is considered in Sections 4 and 5. In Section 6, we split the dynamics in two
components: along the solitary manifold, and in transversal directions. The time decay
of the transversal component is established in sections 7-10 using the time decay of the
linearized dynamics. In Section 11 we prove the main result. In Sections 12 - 16 we justify
the time decay of the linearized dynamics relying on the weighted decay for the free Dirac
equation in a moving frame which is proved in Section 17. In Appendices A, B and C we
collect some technical calculations.

2 Main results

2.1 Existence of dynamics

We consider the Cauchy problem for the system (3.1) which we write as

Ẏ (t) = F (Y (t)), t ∈ R : Y (0) = Y0 (2.1)

Here Y (t) = (ψ(t), q(t), p(t)), Y0 = (ψ(0), q0, p0), and all derivatives are understood in the
sense of distributions. To formulate our results precisely, we need some definitions. We
introduce a suitable phase space for equation (2.1). Let L2

α, α ∈ R, denote the weighted
Agmon spaces with the norm ‖ψ‖α = ‖ψ‖L2

α
:= ‖(1 + |x|)α|ψ|‖L2, where L2 = L2(R3).

Definition 2.1. i) The phase space E is the Hilbert space L2
0 ⊕ R3 ⊕ R3 of states Y =

(ψ, q, p) with the finite norm

‖Y ‖E = ‖ψ‖0 + |q|+ |p|

ii) Eα is the space L2
α ⊕ R3 ⊕ R3 with the finite norm

‖Y ‖α = ‖ Y ‖Eα = ‖ψ‖α + |q|+ |p|

Proposition 2.2. Let (1.9) hold. Then
(i) For every Y0 ∈ E the Cauchy problem (3.1) has a unique solution Y (t) ∈ C(R, E).
(ii) For every t ∈ R, the map U(t) : Y0 7→ Y (t) is continuous on E .
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Proof. Step i) First, let us fix an arbitrary b > 0 and prove (i)-(ii) for Y0 ∈ E such that
‖ψ0‖0 ≤ b and |t| ≤ ε = ε(b) for some sufficiently small ε(b) > 0. Let us rewrite the
Cauchy problem (2.1) as

Ẏ (t) = F1(Y (t)) + F2(Y (t)), t ∈ R : Y (0) = Y0 (2.2)

where
F1 : Y 7→ ((−αj∂j − iβm)ψ, 0, 0)

F2 : Y 7→ (−iρ(x− q), p/
√

1 + p2, Re

∫

ψ · ∇ρ(x− q)dx)

The Fourier transform provides the existence and uniqueness of solution Y1(t) ∈ C(R, E)
to the linear problem (2.2) with F2 = 0. Let U1(t) : Y0 7→ Y1(t) be the corresponding
strongly continuous group of bounded linear operators on E . Then (2.2) for Y (t) ∈ C(R, E)
is equivalent to the integral Duhamel equation

Y (t) = U1(t)Y0 +

t
∫

0

ds U1(t− s)F2(Y (s)) (2.3)

because F2(Y (·)) ∈ C(R, E) in this case. The latter follows from local Lipschitz continuity
of the map F2 in E : for each b > 0 there exist a κ = κ(b) > 0 such that for all
Y1 = (ψ1, q1, p1), Y2 = (ψ2, q2, p2) ∈ E with ‖ψ1‖0, ‖ψ2‖0 ≤ b,

‖F2(Y1)− F2(Y2)‖E ≤ κ‖Y1 − Y2‖E

Therefore, by the contraction mapping principle, equation (2.3) has a unique local solution
Y (·) ∈ C([−ε, ε], E) with ε > 0 depending only on b.
Step ii) Second we derive a priori estimate. Consider ψ0 ∈ C∞

0 (R3)⊗ C4. Then

d

dt
‖ψ‖20 =

∫

(ψ · ψ̇ + ψ · ψ̇)dx =

∫

(iψ · ρ(x− q)− iψ · ρ(x− q))dx ≤ C‖ψ‖0

Hence,

‖ψ(t)‖0 ≤
1

2
Ct + ‖ψ(0)‖0

Now, the last two equalities (1.1) imply a priori estimates for |ṗ| and |q̇|. The a priori
estimates for general initial data ψ0 ∈ L2

0 follow by approximating initial data by the
functions from C∞

0 (R3)⊗ C4.
Step iii) Properties (i)-(ii) for arbitrary t ∈ R now follow from the same properties for
small |t| and from a priori estimate.

2.2 Solitary manifold and main result

Let us compute the solitons (1.5). The substitution to (1.1) gives the stationary equations

−ivj∂jψv(y) = [−iαj∂j + βm]ψv(y) + ρ(y)

v = pv/
√

1 + p2v, 0 = Re

∫

ψv(y) · ∇ρ(y) dy

∣

∣

∣

∣

∣

∣

∣

∣

(2.4)

Applying Fourier transform to the first equation in (2.4) we obtain

(−vjkj + αjkj − βm)ψ̂v(k) = ρ̂(k)
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hence

ψ̂v(k) = − (vjkj + αjkj − βm)ρ̂(k)

(vjkj + αjkj − βm)(vjkj − αjkj + βm)
=

(vjkj + αjkj − βm)ρ̂(k)

k2 +m2 − (vjkj)2
(2.5)

The soliton is given by the formula

ψv(x) =
iγ

4π
(vj∂j+αj∂j+iβm)

∫

e−m|γ(y−x)‖+(y−x)⊥|ρ(y)d3y

|γ(y − x)‖ + (y − x)⊥|
, pv = γv =

v√
1− v2

(2.6)

It remains to prove that the last equation of (2.4) holds. Indeed, Parseval identity and
equality (2.5) imply

Re

∫

ψv(y) · ∂jρ(y)dy = Re

∫

ikjψ̂v(k) · ρ̂(k)dk = Re

∫

ikj
(vjkj+αjkj−βm)ρ̂(k) · ρ̂(k)

k2 +m2 − (vjkj)2
dk = 0

since the integrand is pure imaginary function. Hence, the soliton solution (1.5) exists
and is defined uniquely for any couple (a, v) with |v| < 1 and a ∈ R3. Let us denote by
V := {v ∈ R3 : |v| < 1}.

Definition 2.3. A soliton state is S(σ) := (ψv(x− b), b, v), where σ := (b, v) with b ∈ R3

and v ∈ V .

Obviously, the soliton solution admits the representation S(σ(t)), where

σ(t) = (b(t), v(t)) = (vt+ a, v) (2.7)

Definition 2.4. A solitary manifold is the set S := {S(σ) : σ ∈ Σ := R3 × V }.

The main result of our paper is the following theorem.

Theorem 2.5. Let (1.9), and the Wiener condition (1.10) hold. Let ν > 5/2 be the
number from (1.9), and Y (t) be the solution to the Cauchy problem (2.1) with the initial
state Y0 which is sufficiently close to the solitary manifold:

d0 := distEν (Y0,S) ≪ 1 (2.8)

Then the asymptotics hold for t→ ±∞,

q̇(t) = v± +O(|t|−2), q(t) = v±t+ a± +O(|t|−1) (2.9)

ψ(x, t) = ψv±(x− v±t− a±) +W0(t)φ± + r±(x, t) (2.10)

with

‖r±(t)‖0 = O(|t|−1/2) (2.11)

It suffices to prove the asymptotics (2.9), (2.10) for t→ +∞ since the system (1.1) is
time reversible.
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3 Symplectic projection

3.1 Hamiltonian structure

Denote ψ1 = Reψ, ψ2 = Imψ, ρ1 = Re ρ, ρ2 = Im ρ, α̃2 = −iα2. Then the system (1.1)
reads























ψ̇1(x, t) = −(α1∂1 + α3∂3)ψ1(x, t) + (α̃2∂2 + βm)ψ2(x, t) + ρ2(x− q(t))

ψ̇2(x, t) = −(α̃2∂2 + βm)ψ1(x, t)− (α1∂1 + α3∂3)ψ2(x, t)− ρ1(x− q(t))

q̇(t) = p(t)/
√

1 + p2(t)

ṗ(t) =

∫

(

ψ1(x, t) · ∇ρ1(x− q(t)) + ψ2(x, t) · ∇ρ2(x− q(t))
)

dx

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x ∈ R3 (3.1)

This is a Hamilton system with the Hamilton functional

H(ψ1, ψ2, q, p) =
1

2

∫

(ψ1 · (α̃2∂2+βm)ψ1 + ψ2 · (α̃2∂2+βm)ψ2 + 2ψ1 · (α1∂1+α3∂3)ψ2)dx

+

∫

(ψ1(x) · ρ1(x− q) + ψ2(x) · ρ2(x− q))dx+
√

1 + p2 (3.2)

Equation (3.1) can be written as a Hamilton system

Ẏ = JDH(Y ), Y = (ψ1, ψ2, q, p), J :=









0 I4 0 0
−I4 0 0 0
0 0 0 I3
0 0 −I3 0









(3.3)

where DH is the Fréchet derivative with respect to ψ1k, ψ2k, k = 1, 2, 3, 4, p and q of the
Hamilton functional.

3.2 Symplectic projection onto solitary manifold

Let us identify the tangent space to E , at every point, with E . Consider the symplectic

form Ω defined on E by Ω =

∫

dψ1(x) ∧ dψ2(x) dx+ dq ∧ dp, i.e.

Ω(Y 1, Y 2) = 〈Y 1, JY 2〉, Y j = (ψj
1, ψ

j
2, q

j, pj) ∈ E , j = 1, 2 (3.4)

where

〈Y 1, Y 2〉 := 〈ψ1
1, ψ

2
1〉+ 〈ψ1

2 , ψ
2
2〉+ q1 · q2 + p1 · p2

and 〈ψ1
1, ψ

2
1〉 =

∫

ψ1
1(x) ·ψ2

1(x)dx stands for the scalar product or its different extensions.

It is clear that the form Ω is non-degenerate, i.e.

Ω(Y 1, Y 2) = 0 for every Y 2 ∈ E =⇒ Y 1 = 0

Definition 3.1. i) Y 1 ∤ Y 2 means that Y 1 ∈ E , Y 2 ∈ E , and Y 1 is symplectic orthogonal
to Y 2, i.e. Ω(Y 1, Y 2) = 0.

ii) A projection operator P : E → E is called symplectic orthogonal if Y 1 ∤ Y 2 for
Y 1 ∈ KerP and Y 2 ∈ ImP.
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Let us consider the tangent space TS(σ)S to the manifold S at a point S(σ). The
vectors τj := ∂σj

S(σ), where ∂σj
:= ∂bj and ∂σj+3

:= ∂vj with j = 1, 2, 3, form a basis in
TσS. In detail,

τj = τj(v) := ∂bjS(σ) = (−∂jψv1(y) ,−∂jψv2(y) , ej , 0 )
τj+3 = τj+3(v) := ∂vjS(σ) = ( ∂vjψv1(y) , ∂vjψv2(y) , 0 , ∂vjpv )

∣

∣

∣

∣

j = 1, 2, 3

(3.5)
where ψv1 = Reψv, ψv2 = Imψv, y := x−b is the “moving frame coordinate”, e1 = (1, 0, 0)
etc. Let us stress that the functions τj will be considered always as the functions of y,
not of x. Formula (2.6) and condition (1.9) imply that

τj(v) ∈ Eα, v ∈ V, j = 1, . . . , 6, ∀α ∈ R (3.6)

Lemma 3.2. The matrix with the elements Ω(τl(v), τj(v)) is non-degenerate ∀v ∈ V .

Proof. The elements are computed in Appendix A. As the result, the matrix Ω(τl, τj) has
the form

Ω(v) := (Ω(τl, τj))l,j=1,...,6 =

(

0 Ω+(v)
−Ω+(v) 0

)

(3.7)

where the 3× 3-matrix Ω+(v) equals

Ω+(v) = K + (1− v2)−1/2E + (1− v2)−3/2v ⊗ v (3.8)

Here K is a symmetric 3× 3-matrix with the elements

Kij =

∫

dkkjklB(k)
k2 +m2 + 3(vjkj)

2

(k2 +m2 − (vjkj)2)3
(3.9)

where B(k) > 0 is defined in (1.10). The matrix K is the integral of the symmetric
nonnegative definite matrix k ⊗ k = (kikj) with a positive weight. Hence, the matrix K
is nonnegative definite. Since the unite matrix E is positive definite, the matrix Ω+(v) is
symmetric and positive definite, hence non-degenerate. Then the matrix Ω(τl, τj) also is
non-degenerate.

Let us introduce the translations Ta : (ψ(·), q, p) 7→ (ψ(· − a), q + a, p), a ∈ R3.
Note that the manifold S is invariant with respect to the translations. Let us denote
v(p) := p/

√

1 + p2 for p ∈ R3.

Definition 3.3. i) For any α ∈ R and v < 1 denote by Eα(v) = {Y = (ψ, q, p) ∈ Eα :
|v(p)| ≤ v}. We set E(v) := E0(v).
ii) For any ṽ < 1 denote by Σ(ṽ) = {σ = (b, v) : b ∈ R3, |v| ≤ ṽ}.

The next Lemma provide that in a small neighborhood of the soliton manifold S a
“symplectic orthogonal projection” onto S is well-defined.

Lemma 3.4. (cf.[8, Lemma 3.4]) Let (1.9) hold, α ∈ R and v < 1. Then
i) there exists a neighborhood Oα(S) of S in Eα and a map Π : Oα(S) → S such that Π
is uniformly continuous on Oα(S) ∩ Eα(v) in the metric of Eα,

ΠY = Y for Y ∈ S, and Y − S ∤ TSS, where S = ΠY (3.10)

ii) Oα(S) is invariant with respect to the translations Ta, and

ΠTaY = TaΠY, for Y ∈ Oα(S) and a ∈ R3

iii) For any v < 1 there exists a ṽ < 1 s.t. ΠY = S(σ) with σ ∈ Σ(ṽ) for Y ∈
Oα(S) ∩ Eα(v).
iv) For any ṽ < 1 there exists an rα(ṽ) > 0 s.t. S(σ) + Z ∈ Oα(S) if σ ∈ Σ(ṽ) and
‖Z‖α < rα(ṽ).
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We will call Π a symplectic orthogonal projection onto S.

Corollary 3.5. The condition (2.8) implies that Y0 = S + Z0 where S = S(σ0) = ΠY0,
and

‖Z0‖ν ≪ 1 (3.11)

Proof. Lemma 3.4 implies thatΠY0 = S is well defined for small d0 > 0. Furthermore, the
condition (2.8) means that there exists a point S1 ∈ S such that ‖Y0−S1‖ν = d0. Hence,
Y0, S1 ∈ Oν(S)∩Eν(v) with a v < 1 which does not depend on d0 for sufficiently small d0.
On the other hand, ΠS1 = S1, hence the uniform continuity of the map Π implies that
‖S1−S‖ν → 0 as d0 → 0. Therefore, finally, ‖Z0‖ν = ‖Y0−S‖ν ≤ ‖Y0−S1‖ν+‖S1−S‖ν ≤
d0 + o(1) ≪ 1 for small d0.

4 Linearization on solitary manifold

Let us consider a solution to the system (3.1), and split it as the sum

Y (t) = S(σ(t)) + Z(t) (4.1)

where σ(t) = (b(t), v(t)) ∈ Σ is an arbitrary smooth function of t ∈ R. In detail, denote
Y = (ψ, q, p) and Z = (Ψ, Q, P ). Then (4.1) means that

ψ(x, t) = ψv(t)(x− b(t)) + Ψ(x− b(t), t), q(t) = b(t) +Q(t), p(t) = pv(t) + P (t) (4.2)

Let us substitute (4.2) to (1.1), and linearize the equations in Z. Setting y = x − b(t)
which is the “moving frame coordinate”, we obtain that

ψ̇ = v̇ · ∇vψv(y)− ḃ · ∇ψv(y) + Ψ̇(y, t)− ḃ · ∇Ψ(y, t)

= [−αj∂j − iβm](ψv(y) + Ψ(y, t))− iρ(y −Q)

q̇ = ḃ+ Q̇ =
pv + P

√

1 + (pv + P )2

ṗ = v̇ · ∇vpv + Ṗ = Re〈ψv(y) + Ψ(y, t),∇ρ(y −Q)〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(4.3)

Let us extract linear terms in Q. First note that ρ(y − Q) = ρ(y)− Q · ∇ρ(y) + N1(Q),
∇ρ(y −Q) = ∇ρ(y)−∇(Q · ∇ρ(y)) + Ñ1(Q).

The condition (1.9) implies that for N1(Q) and Ñ1(Q) the bound holds,

‖N1(Q)‖ν + ‖Ñ1(Q)‖ν ≤ Cν(Q)Q
2 (4.4)

uniformly in |Q| ≤ Q for any fixed Q, where ν is the parameter from Theorem 2.5. Second,
the Taylor expansion gives

pv + P
√

1 + (pv + P )2
= v +

1

γ
(P − v(v · P )) +N2(v, P )

where 1/γ =
√
1− v2 = (1 + p2v)

−1/2, and

|N2(v, P )| ≤ C(ṽ)P 2 (4.5)
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uniformly with respect to |v| ≤ ṽ < 1. Using the equations (2.4), we obtain from (4.3)
the following equations for the components of the vector Z(t):

Ψ̇(y, t) = [−αj∂j − iβm]Ψ(y, t) + ḃ · ∇Ψ(y, t) + iQ · ∇ρ(y)

+ (ḃ− v) · ∇ψv(y)− v̇ · ∇vψv(y)− iN1

Q̇(t) = 1
γ
(E − v ⊗ v)P + (v − ḃ) +N2

Ṗ (t) = −v̇ · ∇vpv + Re〈Ψ(y, t),∇ρ(y)〉+ Re〈∇ψv(y), Q · ∇ρ(y)〉+N3(v, Z)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(4.6)

whereN3(v, Z) = −Re〈∇ψv, N1(Q)〉−Re〈Ψ,∇(Q·∇ρ)〉+Re〈Ψ, Ñ1(Q)〉. Clearly, N3(v, Z)
satisfies the following estimate

|N3(v, Z)| ≤ Cν(ρ, v, Q)
[

Q2 + ‖Ψ‖−ν |Q|
]

(4.7)

uniformly in |v| ≤ ṽ and |Q| ≤ Q for any fixed ṽ < 1. For the vector version Z =
(Ψ1,Ψ2, Q, P ) with Ψ1 = ReΨ, Ψ2 = ImΨ we rewrite the equations (4.6) as

Ż(t) = A(t)Z(t) + T (t) +N(t), t ∈ R (4.8)

Here the operator A(t) = Av,w(t) depends on two parameters, v = v(t), and w = ḃ(t) and
can be written in the form

Av,w









Ψ1

Ψ2

Q
P









=









−α1∂1−α2∂2+w ·∇ α̃2∂2 + βm −∇ρ2· 0
−(α̃2∂2 + βm) −α1∂1−α2∂2+w ·∇ ∇ρ1· 0

0 0 0 Bv

〈·,∇ρ1〉 〈·,∇ρ2〉 〈∇ψvj , ·∇ρj〉 0

















Ψ1

Ψ2

Q
P









(4.9)
where Bv = 1

γ
(E − v ⊗ v). Furthermore, T (t) = Tv,w(t) and N(t) = N(t, σ, Z) in (4.8)

stand for

Tv,w =









(w − v) · ∇ψv1 − v̇ · ∇vψv1

(w − v) · ∇ψv2 − v̇ · ∇vψv2

v − w
−v̇ · ∇vpv









, N(σ, Z) =









N12(Z)
−N11(Z)
N2(v, Z)
N3(v, Z)









(4.10)

where v = v(t), w = w(t), σ = σ(t) = (b(t), v(t)), and Z = Z(t). The estimates (4.4),
(4.5) and (4.7) imply that

‖N(σ, Z)‖ν ≤ C(ṽ, Q)‖Z‖2−ν (4.11)

uniformly in σ ∈ Σ(ṽ) and ‖Z‖−ν ≤ r−ν(ṽ) for any fixed ṽ < 1.

Remark 4.1. i) The term A(t)Z(t) in the right hand side of the equation (4.8) is linear
in Z(t), and N(t) is a high order term in Z(t). On the other hand, T (t) is a zero order
term which does not vanish at Z(t) = 0 since S(σ(t)) generally is not a soliton solution if
(2.7) does not hold (though S(σ(t)) belongs to the solitary manifold).
ii) Formulas (3.5) and (4.10) imply:

T (t) = −
3

∑

l=1

[(w − v)lτl + v̇lτl+3] (4.12)

and hence T (t) ∈ TS(σ(t))S, t ∈ R.
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5 Linearized equation

Here we collect some Hamiltonian and spectral properties of the generator (4.9) of the
linearized equation. First, let us consider the linear equation

Ẋ(t) = Av,wX(t), t ∈ R, v ∈ V, w ∈ R3 (5.1)

Lemma 5.1. (cf. Lemma 5.1 [8]) i) For any v ∈ V and w ∈ R3 the equation (5.1) can
be written as the Hamilton system (cf. (3.3)),

Ẋ(t) = JDHv,w(X(t)), t ∈ R (5.2)

where DHv,w is the Fréchet derivative with respect to Ψ1k, Ψ2k, k = 1, 2, 3, 4, P and Q of
the Hamilton functional

Hv,w(X) =
1

2

∫

(Ψ1 · (α̃2∂2 + βm)Ψ1 +Ψ2 · (α̃2∂2 + βm)Ψ2 + 2Ψ1 · (α1∂1 + α3∂3)Ψ2)dy

+

∫

ρj(y)Q ·∇Ψjdy+
1

2
P ·BvP − 1

2
〈Q ·∇ψvj(y), Q ·∇ρj(y)〉, X = (Ψ1,Ψ2, Q, P ) ∈ E

(5.3)

ii) The skew-symmetry relation holds,

Ω(Av,wX1, X2) = −Ω(X1, Av,wX2), X1 ∈ E , X2 ∈ H1(R3)⊕H1(R3)⊕R3 ⊕R3 (5.4)

Lemma 5.2. The operator Av,w acts on the tangent vectors τj(v) to the solitary manifold
as follows,

Av,w[τj(v)] = (w − v) · ∇τj(v), Av,w[τj+3(v)] = (w − v) · ∇τj+3(v) + τj(v), j = 1, 2, 3
(5.5)

Proof. In detail, we have to show that

Av,w









−∂jψv1

−∂jψv2

ej
0









=









(v − w) · ∇∂jψv1

(v − w) · ∇∂jψv2

0
0









Av,w









∂vjψv1

∂vjψv2

0
∂vjpv









=









(w − v) · ∇∂vjψv1

(w − v) · ∇∂vjψv2

0
0









+









−∂jψv1

−∂jψv2

ej
0









(5.6)

Indeed, differentiate the equations (2.4) in bj and vj, and obtain that the derivatives of
soliton state in parameters satisfy the following equations,

−v · ∇∂jψv = [−α · ∇ − iβm]∂jψv − i∂jρ

−∂jψv − v · ∇∂vjψv = [−α · ∇ − iβm]∂vjψv

∂vjpv = ej(1− v2)−1/2 + v
vj

(1− v2)3/2

0= 〈∂vjψv1,∇ρ1〉+ 〈∂vjψv2,∇ρ2〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(5.7)

for j = 1, 2, 3. Then (5.6) follows from (5.7) by definition of A in (4.9)
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Corollary 5.3. Let w = v ∈ V . Then τj(v) are eigenvectors, and τj+3(v) are root vectors
of the operator Av,v, corresponding to zero eigenvalue, i.e.

Av,v[τj(v)] = 0, Av,v[τj+3(v)] = τj(v), j = 1, 2, 3. (5.8)

Remark 5.4. For a soliton solution of the system(3.1) we have ḃ = v, v̇ = 0, and hence
T (t) ≡ 0. Thus, the equation (5.1) is the linearization of the system (3.1) on a soliton
solution. In fact, we do not linearize (3.1) on a soliton solution, but on a trajectory
S(σ(t)) with σ(t) being nonlinear in t. We will show later that T (t) is quadratic in Z(t)
if we choose S(σ(t)) to be the symplectic orthogonal projection of Y (t). Then (5.1) is
again the linearization of (3.1).

6 Symplectic decomposition of dynamics

Here we decompose the dynamics in two components: along the manifold S and in
transversal directions. The equation (4.8) is obtained without any assumption on σ(t) in
(4.1). We are going to choose S(σ(t)) := ΠY (t), but then we need to know that

Y (t) ∈ O−ν(S), t ∈ R (6.1)

It is true for t = 0 by our main assumption (2.8) with sufficiently small d0 > 0. Then
S(σ(0)) = ΠY (0) and Z(0) = Y (0)− S(σ(0)) are well defined. We will prove below that
(6.1) holds if d0 is sufficiently small. Let us choose an arbitrary ṽ such that |v(0)| < ṽ < 1
and let δ = ṽ − |v(0)|. Denote by r−ν(ṽ) the positive numbers from Lemma 3.4 iv)
which corresponds to α = −ν. Then S(σ) + Z ∈ O−ν(S) if σ = (b, v) with |v| < ṽ
and ‖Z‖−ν < r−ν(ṽ). Note that ‖Z(0)‖−ν < r−ν(ṽ) if d0 is sufficiently small. Therefore,
S(σ(t)) = ΠY (t) and Z(t) = Y (t) − S(σ(t)) are well defined for t ≥ 0 so small that
|v| < ṽ and ‖Z(t)‖−ν < r−ν(ṽ). This is formalized by the following standard definition.

Definition 6.1. t∗ is the “exit time”,

t∗ = sup{t > 0 : ‖Z(s)‖−ν < r−ν(ṽ), |v(s)− v(0)| < δ, 0 ≤ s ≤ t} (6.2)

One of our main goals is to prove that t∗ = ∞ if d0 is sufficiently small. This would
follow if we show that

‖Z(t)‖−ν < r−ν(ṽ)/2, |v(s)− v(0)| < δ/2, 0 ≤ t < t∗ (6.3)

Note that
|Q(t)| ≤ Q := r−ν(ṽ), 0 ≤ t < t∗ (6.4)

Now N(t) in (4.8) satisfies, by (4.11), the following estimate,

‖N(t)‖ν ≤ Cν(ṽ)‖Z(t)‖2−ν, 0 ≤ t < t∗ (6.5)

6.1 Longitudinal dynamics: modulation equations

From now on we fix the decomposition Y (t) = S(σ(t)) + Z(t) for 0 < t < t∗ by setting
S(σ(t)) = ΠY (t) which is equivalent to the symplectic orthogonality condition of type
(3.10),

Z(t) ∤ TS(σ(t))S, 0 ≤ t < t∗ (6.6)

This allows us to simplify drastically the asymptotic analysis of the dynamical equations
(4.8) for the transversal component Z(t). As the first step, we derive the longitudinal
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dynamics, i.e. the “modulation equations” for the parameters σ(t). Let us derive a
system of ordinary differential equations for the vector σ(t). For this purpose, let us write
(6.6) in the form

Ω(Z(t), τj(t)) = 0, j = 1, . . . , 6, 0 ≤ t < t∗ (6.7)

where the vectors τj(t) = τj(σ(t)) span the tangent space TS(σ(t))S. Note that σ(t) =
(b(t), v(t)), where

|v(t)| ≤ ṽ < 1, 0 ≤ t < t∗ (6.8)

by Lemma 3.4 iii). It would be convenient for us to use some other parameters (c, v)
instead of σ = (b, v), where

c(t) = b(t)−
∫ t

0

v(τ)dτ, ċ(t) = ḃ(t)− v(t) = w(t)− v(t), 0 ≤ t < t∗ (6.9)

The following statement can be proved similar to the Lemma 6.2 in [8].

Lemma 6.2. Let Y (t) be a solution to the Cauchy problem (3.1), and (4.1), (6.7) hold.
Then

|ċ(t)|+ |v̇(t)| ≤ C(ṽ)‖Z‖2−ν (6.10)

6.2 Decay for transversal dynamics

In Section 11 we will show that our main Theorem 2.5 can be derived from the following
time decay of the transversal component Z(t):

Proposition 6.3. Let all conditions of Theorem 2.5 hold. Then t∗ = ∞, and

‖Z(t)‖−ν ≤
C(ρ, v, d0)

(1 + |t|)3/2 , t ≥ 0 (6.11)

We will derive (6.11) in Sections 7-10 from our equation (4.8) for the transversal
component Z(t). This equation can be specified using Lemma 6.2. Indeed, the lemma
implies that

‖T (t)‖ν ≤ C(ṽ)‖Z(t)‖2−ν , 0 ≤ t < t∗ (6.12)

by (4.10) since w − v = ċ. Thus (4.8) becomes the equation

Ż(t) = A(t)Z(t) + Ñ(t), 0 ≤ t < t∗ (6.13)

where A(t) = Av(t),w(t), and Ñ(t) := T (t) +N(t) satisfies the estimate

‖Ñ(t)‖ν ≤ C(ṽ, Q)‖Z(t)‖2−ν, 0 ≤ t < t∗ (6.14)

In all remaining part of our paper we will analyze mainly the basic equation (6.13) to
establish the decay (6.11). We are going to derive the decay using the bound (6.14) and
the orthogonality condition (6.6).

Similarly [8] we reduce the problem to the analysis of the frozen linear equation,

Ẋ(t) = A1X(t), t ∈ R (6.15)

where A1 = Av1,v1 with v1 = v(t1) and a fixed t1 ∈ [0, t∗). Then we can apply some
methods of scattering theory and then estimate the error by the method of majorants.
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Note, that even for the frozen equation (6.15), the decay of type (6.11) for all solutions
does not hold without the orthogonality condition of type (6.6). Namely, by (5.8) the
equation (6.15) admits the secular solutions

X(t) =

3
∑

1

Cjτj(v) +

3
∑

1

Dj[τj(v)t+ τj+3(v)] (6.16)

which arise by differentiation of the soliton (1.5) in the parameters a and v in the moving
coordinate y = x− v1t. Hence, we have to take into account the orthogonality condition
(6.6) in order to avoid the secular solutions. For this purpose we will apply the corre-
sponding symplectic orthogonal projection which kills the “runaway solutions” (6.16).

Remark 6.4. The solution (6.16) lies in the tangent space TS(σ1)S with σ1 = (b1, v1) (for
an arbitrary b1 ∈ R) that suggests an unstable character of the nonlinear dynamics along
the solitary manifold.

Definition 6.5. i) For v ∈ V , denote by Πv the symplectic orthogonal projection of E
onto the tangent space TS(σ)S, and Pv = I−Πv.
ii) Denote by Zv = PvE the space symplectic orthogonal to TS(σ)S with σ = (b, v).

Note that by the linearity,

ΠvZ =
∑

Πjl(v)τj(v)Ω(τl(v), Z), Z ∈ E (6.17)

with some smooth coefficients Πjl(v). Hence, the projector Πv, in the variable y = x− b,
does not depend on b, and this explains the choice of the subindex in Πv and Pv.

Now we have the symplectic orthogonal decomposition

E = TS(σ)S + Zv, σ = (b, v), (6.18)

and the symplectic orthogonality (6.6) can be written in the equivalent forms,

Πv(t)Z(t) = 0, Pv(t)Z(t) = Z(t), 0 ≤ t < t∗ (6.19)

Remark 6.6. The tangent space TS(σ)S is invariant under the operator Av,v by Lemma
5.3 i), hence the space Zv is also invariant by (5.4): Av,vZ ∈ Zv for sufficiently smooth
Z ∈ Zv.

Below in section 12-18 we will prove the following proposition which will be one of the
main ingredients for proving (6.11). Let us consider the Cauchy problem for the equation
(6.15) with A = Av,v for a fixed v ∈ V . Recall that the parameter ν > 5/2 is also fixed.

Proposition 6.7. Let the conditions (1.9)- (1.10) hold, |v| ≤ ṽ < 1, and X0 ∈ E . Then
i) Equation (6.15), with A = Av,v, admits the unique solution eAtX0 := X(t) ∈ C(R, E)
with the initial condition X(0) = X0.
ii) For X0 ∈ Zv ∩ Eν, the decay holds,

‖eAtX0‖−ν ≤
Cν(ρ, ṽ)

(1 + |t|)3/2‖X0‖ν , t ∈ R (6.20)
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7 Frozen transversal dynamics

Now let us fix an arbitrary t1 ∈ [0, t∗), and rewrite the equation (6.13) in a “frozen form”

Ż(t) = A1Z(t) + (A(t)− A1)Z(t) + Ñ(t), 0 ≤ t < t∗ (7.1)

where A1 = Av(t1),v(t1) and

A(t)−A1=









[w(t)−v(t1)] · ∇ 0 0 0
0 [w(t)−v(t1)] · ∇ 0 0
0 0 0 Bv(t)−Bv1(t)

0 0 〈∇(ψv(t)j−ψv(t1)j),∇ρj〉 0









The next trick is important since it allows us to kill the “bad terms” [w(t)−v(t1)] · ∇ in
the operator A(t)− A1.

Definition 7.1. Let us change the variables (y, t) 7→ (y1, t) = (y + d1(t), t), where

d1(t) :=

∫ t

t1

(w(s)− v(t1))ds, 0 ≤ t ≤ t1 (7.2)

Next define

Z1(t) := (Ψ1(y1 − d1(t), t),Ψ2(y1 − d1(t), t), Q(t), P (t)) (7.3)

Then we obtain the final form of the “frozen equation” for the transversal dynamics

Ż1(t) = A1Z1(t) +B1(t)Z1(t) + Ñ1(t), 0 ≤ t ≤ t1 (7.4)

where Ñ1(t) = Ñ(t) expressed in terms of y = y1 − d1(t), and

B1(t) =









0 0 0 0
0 0 0 0
0 0 0 Bv(t) − Bv1(t)

0 0 〈∇(ψv(t)j−ψv(t1)j),∇ρj〉 0









Let us estimate the “remaining terms” B1(t)Z1(t) and Ñ1(t).

Lemma 7.2. The bound holds

‖B1(t)Z1(t)‖ν ≤ C(ṽ)‖Z(t)‖−ν

∫ t1

t

‖Z(s)‖2−νds, 0 ≤ t ≤ t1 (7.5)

Proof. Lemma 6.2 implies

|Bv(t) −Bv1(t)| ≤ |
t

∫

t1

v̇(s) · ∇vBv(s)ds| ≤ C(ṽ)

t
∫

t1

‖Z(s)‖2−νds

similarly,

|〈∇(ψv(t)j − ψv(t1)j),∇ρj | ≤ C(ṽ)

t
∫

t1

‖Z(s)‖2−νds

Therefore,

‖B1(t)Z1(t)‖ν = |〈∇(ψv(t)j − ψv(t1)j),∇ρj〉Q1(t)|+ |(Bv(t) − Bv1(t))P1(t)|

≤ C(ṽ)(|Q(t)|+ |P (t)|)
t

∫

t1

‖Z(s)‖2−νds ≤ C(ṽ)‖Z(t)‖−ν

∫ t1

t

‖Z(s)‖2−νds
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Lemma 7.3. The bounds hold

‖Ñ1(t)‖ν ≤ C(ṽ, Q)(1 + |d1(t)|)ν‖Z(t)‖2−ν , 0 ≤ t ≤ t1 (7.6)

Proof. For any Φ ∈ L2
α and d ∈ R3 we have

‖Φ(y − d)‖2α =

∫

|Φ(y − d)|2(1 + |y|)2αdy =

∫

|Φ(y)|2(1 + |y + d|)2αdy

≤
∫

|Φ(y)|2(1 + |y|)2α(1 + |d|)2αdy ≤ (1 + |d|)2α‖Φ‖2α, α ∈ R

Hence, the bound (7.6) follows.

8 Integral inequality

The equation (7.4) can be written in the integral form:

Z1(t) = eA1tZ1(0) +

∫ t

0

eA1(t−s)[B1Z1(s) + Ñ1(s)]ds, 0 ≤ t ≤ t1 (8.1)

Now we apply the symplectic orthogonal projection P1 := Pv(t1) to both sides of (8.1):

P1Z1(t) = eA1tP1Z1(0) +

∫ t

0

eA1(t−s)P1[B1Z1(s) + Ñ1(s)]ds

The projector P1 commutes with the group eA1t since the space Z1 := P1E is invariant
with respect to eA1t by Remark 6.6. Applying (6.20) we obtain that

‖P1Z1(t)‖−ν ≤ C
‖P1Z1(0)‖ν
(1 + t)3/2

+ C

∫ t

0

‖P1[B1Z1(s) + Ñ1(s)]‖ν ds
(1 + |t− s|)3/2 .

The operator P1 = I−Π1 is continuous in Eν by (6.17). Hence, (7.5)-(7.6) imply

‖P1Z1(t)‖−ν ≤ C(d1(0))

(1 + t)3/2
‖Z(0)‖ν

+ C(d1(t))

∫ t

0

1

(1 + |t− s|)3/2
[

‖Z(s)‖−ν

∫ t1

s

‖Z(τ)‖2−νdτ + ‖Z(s)‖2−ν

]

ds, 0 ≤ t ≤ t1.

(8.2)

where d1(t) := sup0≤s≤t |d1(s)|. Let us introduce the “majorant”

m(t) := sup
s∈[0,t]

(1 + s)3/2‖Z(s)‖−ν , t ∈ [0, t∗). (8.3)

Now we reduce further the exit time. Denote by ε < 1 a fixed positive number which we
will specify below.

Definition 8.1. t′∗ is the exit time

t′∗ = sup{t ∈ [0, t∗) : m(s) ≤ ε, 0 ≤ s ≤ t}. (8.4)
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To estimate d1(t), note that

w(s)− v(t1) = w(s)− v(s) + v(s)− v(t1) = ċ(s) +

∫ t1

s

v̇(τ)dτ (8.5)

by (6.9). Hence, (7.2), Lemma 6.2 and the definition (8.3) imply that for t1 < t′∗

|d1(t)| = |
∫ t

t1

(w(s)− v(t1))ds| ≤
∫ t1

t

(

|ċ(s)|+
∫ t1

s

|v̇(τ)|dτ
)

ds

≤ C(ṽ)m2(t1)

∫ t1

t

(

1

(1 + s)3
+

∫ t1

s

dτ

(1 + τ)3

)

ds ≤ C(ṽ)m2(t1) ≤ C(ṽ), 0 ≤ t ≤ t1

(8.6)

Now we can to replace C(d1) with C(ṽ) in (8.2): for t1 < t′∗

‖P1Z1(t)‖−ν ≤ C(ṽ)

(1 + t)3/2
‖Z(0)‖ν

+ C(ṽ)

∫ t

0

1

(1 + |t− s|)3/2
[

‖Z(s)‖−ν

∫ t1

s

‖Z(τ)‖2−νdτ + ‖Z(s)‖2−ν

]

ds, 0 ≤ t ≤ t1 (8.7)

9 Symplectic orthogonality

Finally, we are going to change P1Z1(t) by Z(t) in the left hand side of (8.7). We will
prove that it is possible using again that d0 ≪ 1 in (2.8).

Lemma 9.1. (cf.[8]) For sufficiently small ε > 0, we have for t1 < t′∗

‖Z(t)‖−ν ≤ C‖P1Z1(t)‖−ν , 0 ≤ t ≤ t1, (9.1)

where C depends only on ρ and v.

Proof. Since |d1(t)| ≤ C for t ≤ t1 < t′∗ then ‖Z(t)‖−ν ≤ C‖Z1(t)‖−ν , and it suffices to
prove that

‖Z1(t)‖−ν ≤ 2‖P1Z1(t)‖−ν , 0 ≤ t ≤ t1. (9.2)

Recall that P1Z1(t) = Z1(t)−Πv(t1)Z1(t). Then estimate (9.2) will follow from

‖Πv(t1)Z1(t)‖−ν ≤ 1

2
‖Z1(t)‖−ν , 0 ≤ t ≤ t1. (9.3)

Symplectic orthogonality (6.19) implies

Πv(t),1Z1(t) = 0, t ∈ [0, t1], (9.4)

where Πv(t),1Z1(t) is Πv(t)Z(t) expressed in terms of the variable y1 = y + d1(t). Hence,
(9.3) follows from (9.4) if the difference Πv(t1) −Πv(t),1 is small uniformly in t, i.e.

‖Πv(t1) −Πv(t),1‖ < 1/2, 0 ≤ t ≤ t1. (9.5)

It remains to justify (9.5) for small enough ε > 0. Formula (6.17) implies

Πv(t),1Z1(t) =
∑

Πjl(v(t))τj,1(v(t))Ω(τl,1(v(t)), Z1(t)), (9.6)
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where τj,1(v(t)) are the vectors τj(v(t)) expressed in the variables y1. Since |d1(t)| ≤ C
and ∇τj are smooth and fast decaying at infinity functions, then

‖τj,1(v(t))− τj(v(t))‖ν ≤ C|d1(t)|ν ≤ C, 0 ≤ t ≤ t1 (9.7)

for all j = 1, 2, . . . , 6. Furthermore,

τj(v(t))− τj(v(t1)) =

∫ t1

t

v̇(s) · ∇vτj(v(s))ds

and therefore

‖τj(v(t))− τj(v(t1))‖ν ≤ C

∫ t1

t

|v̇(s)|ds, 0 ≤ t ≤ t1 (9.8)

Similarly,

|Πjl(v(t))−Πjl(v(t1))| = |
∫ t1

t

v̇(s) ·∇vΠjl(v(s))ds| ≤ C

∫ t1

t

|v̇(s)|ds, 0 ≤ t ≤ t1 (9.9)

since |∇vΠjl(v(s))| is uniformly bounded by (6.8). Hence, the bounds (9.5) will follow
from (6.17), (9.6) and (9.7)-(9.9) if we establish that the integral in the right hand side
of (9.8) can be made as small as we please by choosing ε > 0 small enough. Indeed,

∫ t1

t

|v̇(s)|ds ≤ Cm2(t1)

∫ t1

t

ds

(1 + s)3
≤ Cε2, 0 ≤ t ≤ t1 (9.10)

10 Decay of transversal component

Here we prove Proposition 6.3.
Step i) We fix 0 < ε < 1 and t′∗ = t′∗(ε) for which Lemma 9.1 holds. Then the bound of
type (8.7) holds with ‖P1Z1(t)‖−ν in the left hand side replaced by ‖Z(t)‖−ν :

‖Z(t)‖−ν ≤
C

(1 + t)3/2
‖Z(0)‖ν

+ C

∫ t

0

1

(1 + |t− s|)3/2
[

‖Z(s)‖−ν

∫ t1

s

‖Z(τ)‖2−νdτ + ‖Z(s)‖2−ν

]

ds, 0 ≤ t ≤ t1 (10.1)

for t1 < t′∗. This implies an integral inequality for the majorant m(t) defined in (8.3).
Namely, multiplying both sides of (10.1) by (1 + t)3/2, and taking the supremum in
t ∈ [0, t1], we get

m(t1) ≤ C‖Z(0)‖ν+C sup
t∈[0,t1]

∫ t

0

(1 + t)3/2

(1 + |t− s|)3/2
[

m(s)

(1 + s)3/2

∫ t1

s

m2(τ)dτ

(1 + τ)3
+

m2(s)

(1 + s)3

]

ds

for t1 ≤ t′∗. Taking into account that m(t) is a monotone increasing function, we get

m(t1) ≤ C‖Z(0)‖ν + C[m3(t1) +m2(t1)]I(t1), t1 ≤ t′∗ (10.2)

where

I(t1) = sup
t∈[0,t1]

∫ t

0

(1 + t)3/2

(1 + |t− s|)3/2
[

1

(1 + s)3/2

∫ t1

s

dτ

(1 + τ)3
+

1

(1 + s)3

]

ds ≤ I < ∞
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Therefore, (10.2) becomes

m(t1) ≤ C‖Z(0)‖ν + CI[m3(t1) +m2(t1)], t1 < t′∗ (10.3)

This inequality implies that m(t1) is bounded for t1 < t′∗, and moreover,

m(t1) ≤ C1‖Z(0)‖ν , t1 < t′∗ (10.4)

since m(0) = ‖Z(0)‖ν is sufficiently small by (3.11).
Step ii) The constant C1 in the estimate (10.4) does not depend on t∗ and t′∗ by Lemma
9.1. We choose d0 in (2.8) so small that ‖Z(0)‖ν < ε/(2C1). It is possible due to (3.11).
Then the estimate (10.4) implies that t′∗ = t∗ and therefore (10.4) holds for all t1 < t∗.
Further,

|v(t)− v(0)| ≤
t

∫

0

|v̇(s)|ds ≤ Cm2(t)

t
∫

0

ds

(1 + s)3
≤ Cm2(t)

Hence the both inequalities (6.3) also holds if ‖Z(0)‖ν is sufficiently small by (8.3). Finally,
this implies that t∗ = ∞, hence also t′∗ = ∞ and (10.4) holds for all t1 > 0 if d0 is small
enough. It complete the proof of Proposition 6.3.

11 Soliton asymptotics

Here we prove our main Theorem 2.5 under the assumption that the decay (6.11) holds.
First we will prove the asymptotics (2.9) for the vector components, and afterwards the
asymptotics (2.10) for the fields.
Asymptotics for the vector components. From (4.3) we have q̇ = ḃ + Q̇, and from
(6.13), (6.14), (4.9) it follows that Q̇ = P +O(‖Z‖2−ν). Thus,

q̇ = ḃ+ Q̇ = v(t) + ċ(t) + P (t) +O(‖Z‖2−ν) (11.1)

Bounds (6.10) and (6.11) imply that

|ċ(t)|+ |v̇(t)| ≤ C1(ρ, v, d0)

(1 + t)3
, t ≥ 0 (11.2)

Therefore, c(t) = c+ + O(t−2) and v(t) = v+ + O(t−2), t → ∞. Since |P | ≤ ‖Z‖−ν, the
estimate (6.11), and (11.1)-(11.2), imply that

q̇(t) = v+ +O(t−3/2) (11.3)

Similarly,

b(t) = c(t) +

∫ t

0

v(s)ds = v+t+ a+ +O(t−1) (11.4)

hence the second part of (1.8) follows:

q(t) = b(t) +Q(t) = v+t+ a+ +O(t−1) (11.5)

since Q(t) = O(t−3/2) by (6.11).
Asymptotics for the fields. For the field part of the solution ψ(x, t) let us define the
accompanying soliton field as ψv(t)(x− q(t)), where we define now v(t) = q̇(t), cf. (11.1).
Then for the difference z(x, t) = ψ(x, t)− ψv(t)(x− q(t)) we obtain the equation

ż(x, t) = [−αj∂j − iβm]z(x, t)− iv̇ · ∇vψv(t)(x− q(t))
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Then

z(t) = W0(t)z(0)−
∫ t

0

W0(t− s)[iv̇(s) · ∇vψv(s)(· − q(s))]ds (11.6)

To obtain the asymptotics (2.10) it suffices to prove that z(t) = W0(t)φ+ + r+(t) with
some φ+ ∈ L2

0 and ‖r+(t)‖0 = O(t−1/2). This is equivalent to

W0(−t)z(t) = φ+ + r′+(t) (11.7)

where ‖r′+(t)‖0 = O(t−1/2) since W0(t) is a unitary group in L2
0 by the charge conservation

for the free Dirac equation. Finally, (11.7) holds since (11.6) implies

W0(−t)z(t) = z(0)−
∫ t

0

W0(−s)f(s)ds, f(s) = iv̇(s) · ∇vψv(s)(· − q(s))

where the integral in the right hand side converges in L2
0 with the rate O(t−1/2). The

latter holds since ‖W0(−s)f(s)‖0 = O(s−3/2) by the unitarity of W0(−s) and the decay
rate ‖f(s)‖0 = O(s−3/2). Let us prove this rate of decay. It suffices to prove that
|v̇(s)| = O(s−3/2), or equivalently |ṗ(s)| = O(s−3/2). Substitute (4.2) to the last equation
of (1.1) and obtain

ṗ(t) = Re

∫

[

ψv(t)(x− b(t)) + Ψ(x− b(t), t)
]

∇ρ(x− b(t)−Q(t))dx

= Re

∫

ψv(t)(y)∇ρ(y)dy + Re

∫

ψv(t)(y) [∇ρ(y −Q(t))−∇ρ(y)] dy

+ Re

∫

Ψ(y, t)∇ρ(y −Q(t))dy

The first integral in the right hand side is zero by the stationary equations (2.4). The
second integral is O(t−3/2), since Q(t) = O(t−3/2), and by the conditions (1.9) on ρ.
Finally, the third integral is O(t−3/2) by the estimate (6.11). The proof is complete.

12 Decay for linearized dynamics

In remaining sections we prove Proposition 6.7. Here we discuss our general strategy of
the proof. We apply the Fourier-Laplace transform

X̃(λ) =

∫ ∞

0

e−λtX(t)dt, Reλ > 0 (12.1)

to (6.15). According to Proposition 6.7, we expect that the solution X(t) is bounded in
the norm ‖ · ‖−ν. Then the integral (12.1) converges and is analytic for Reλ > 0. We
will write A and v instead of A1 and v1 in all remaining part of the paper. After the
Fourier-Laplace transform (6.15) becomes

λX̃(λ) = AX̃(λ) +X0, Reλ > 0 (12.2)

Let us stress that (12.2) is equivalent to the Cauchy problem for the functions X(t) ∈
Cb([0,∞); E−ν). Hence the solution X(t) is given by

X̃(λ) = −(A− λ)−1X0, Reλ > 0 (12.3)

if the resolvent R(λ) = (A− λ)−1 exists for Reλ > 0.
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Let us comment on our following strategy in proving the decay (6.11). First, we will
construct the resolvent R(λ) for Reλ > 0 and prove that it is a continuous operator in
E−ν. Then X̃(λ) ∈ E−ν and is an analytic function for Reλ > 0. Second, we have to
justify that there exist a (unique) function X(t) ∈ C([0,∞); E−ν) satisfying (12.1).

The analyticity of X̃(λ) and Paley-Wiener arguments (see [9]) should provide the
existence of a E−ν - valued distribution X(t), t ∈ R, with a support in [0,∞). Formally,

Λ−1X̃ = X(t) =
1

2π

∫

R

eiωtX̃(iω + 0)dω, t ∈ R (12.4)

However, to check the continuity of X(t) for t ≥ 0, we need additionally a bound for
X̃(iω + 0) at large |ω|. Finally, for the time decay of X(t), we need an additional infor-
mation on the smoothness and decay of X̃(iω + 0). More precisely, we should prove that
the function X̃(iω + 0)
i) is smooth outside ω = 0 and ω = ±µ, where µ = µ(v) > 0,
ii) decays in a certain sense as |ω| → ∞.
iii) admits the Puiseux expansion at ω = ±µ.
iv) is analytic at ω = 0 if X0 ∈ Zv := PvE and X0 ∈ Eν.
Then the decay (6.11) would follow from the Fourier-Laplace representation (12.4).

13 Solving the linearized equation

Here we construct the resolvent as a bounded operator in E−ν for Reλ > 0. We will write
(Ψ̃1, Ψ̃2, Q̃, P̃ ) instead of (Ψ̃1(y, λ), Ψ̃2(y, λ), Q̃(λ), P̃ (λ)) to simplify the notations. Then
(12.2) reads

(A− λ)









Ψ̃1

Ψ̃2

Q̃

P̃









= −









Ψ01

Ψ02

Q0

P0









It is the system of equations

(−α1∂1 − α3∂3 + v · ∇ − λ)Ψ̃1 + (βm+ α̃2∂2)Ψ̃2 − Q̃ · ∇ρ2 = −Ψ01

−(βm+ α̃2∂2)Ψ̃1 + (−α1∂1 − α3∂3 + v · ∇ − λ)Ψ̃2 + Q̃ · ∇ρ1 = −Ψ02

BvP̃ − λQ̃ = −Q0

−〈∇Ψ̃j , ρj〉+ 〈∇ψvj , Q̃ · ∇ρj〉 − λP̃ = −P0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(13.1)

Step i) Let us study the first two equations. First, we compute the matrix integral kernel
Gλ(y − y′) of the Green operator

Gλ =

(

−α1∂1 − α3∂3 + v · ∇ − λ βm+ α̃2∂2
−βm− α̃2∂2 −α1∂1 − α3∂3 + v · ∇ − λ

)−1

(13.2)

In Fourier space

Ĝλ(k) =

(

iα1k1 + iα3k3 − ivk − λ βm− α2k2
−βm+ α2k2 iα1k1 + iα3k3 − ivk − λ

)−1

, vk =

3
∑

j=1

vjkj
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To invert the matrix, let us solve the system

af1 + bf2 = g1
−bf1 + af2 = g2

∣

∣

∣

∣

(13.3)

where a = iα1k1+ iα3k3− ivk−λ, b = βm−α2k2. Multiplying the first equation of (13.3)
by c = −iα1k1 − iα3k3 − ivk − λ and the second equation by −b, we obtain

caf1 + cbf2 = cg1
b2f1 − cbf2 = −bg2

∣

∣

∣

∣

(13.4)

since ba = cb by the anticommutations (1.3). Further, b2 + ac = k2 +m2 + (ivk + λ)2.
Therefore, summing up the equations (13.4), we obtain that

f1 =
cg1 − bg2

k2 +m2 + (ivk + λ)2

Similarly, we obtain

f2 =
bg1 + cg2

k2 +m2 + (ivk + λ)2

Hence

Ĝλ(k)=
1

k2+m2+(ivk+λ)2

(

−iα1k1−iα3k3−ivk−λ −βm+ α2k2
βm− α2k2 −iα1k1−iα3k3−ivk−λ

)

(13.5)

Taking the inverse Fourier transform we obtain

Gλ(y) =

(

(α1∂1 + α3∂3 + v · ∇ − λ) −(βm+ α̃2∂2)
(βm+ α̃2∂2) (α1∂1 + α3∂3 + v · ∇ − λ)

)

gλ(y) (13.6)

where

gλ(y) = F−1
k→y

1

k2 +m2 + (ivk + λ)2
, y ∈ R3 (13.7)

Note that denominator in RHS (13.7) does not vanish for Reλ > 0 since |v| < 1. This
implies

Lemma 13.1. The operator Gλ with the integral kernel Gλ(y−y′), is continuous operator
L2
0 ⊕ L2

0 → L2
0 ⊕ L2

0 for Reλ > 0.

From now on we use the system of coordinates in y-space in which v = (|v|, 0, 0), hence
vk = |v|k1. Let us compute the function gλ(y). One has

k2+m2+(i|v|k1+λ)2 =
1

γ2
k21+k

2
2+k

2
3+2i|v|k1λ+λ2+m2 =

1

γ2
(k1+iγ

2|v|λ)2+k22+k23+κ2

where

γ = 1/
√
1− v2, κ2 =

v2λ2

1− v2
+λ2+m2 =

λ2

1− v2
+m2 = γ2(λ2+µ2), µ := m/γ (13.8)

Hence formally,

gλ(y) =
1

(2π)3/2

∫

e−ikydk
1
γ2 (k1 + iγ2|v|λ)2 + k22 + k23 + κ2

=
e−γ2|v|λy1

(2π)3/2

∫

e−ikydk
1
γ2k21 + k22 + k23 + κ2

=
γe−γ|v|λỹ1

(2π)3/2

∫

e−ikỹdk

k21 + k22 + k23 + κ2
= γe−γ|v|λỹ1R(ỹ,−κ2) (13.9)
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Here ỹ1 = γy1, ỹ = (γy1, y2, y3), and R(y − y′, ζ) is the integral kernel of the operator
R(ζ) = (−∆− ζ)−1. It is well known that R0(y, ζ) = ei

√
ζ|y|/4π|y|. Therefore,

gλ(y) =
e−κ|ỹ|−κ1ỹ1

4π|ỹ| (13.10)

where κ1 := γ|v|λ. We choose Reκ > 0 for Reλ > 0. Let us note that for 0 < |v| < 1

0 < Reκ1 < Reκ, Reλ > 0 (13.11)

Let us state the result which we have got above.

Lemma 13.2. i) The function gλ(y) decays exponentially in y for Reλ > 0.
ii) The formulas (13.10) and (13.8) imply that for every fixed y, the function gλ(y) admits
an analytic continuation in λ to the Riemann surface of the algebraic function

√

λ2 + µ2

with the branching points λ = ±iµ.

Thus, from (13.1) and (13.2) we obtain the representation

Ψ̃1 = −G11
λ Ψ01 −G12

λ Ψ02 − (G12
λ ∇ρ1) · Q̃+ (G11

λ ∇ρ2) · Q̃ (13.12)

Ψ̃2 = −G21
λ Ψ01 −G22

λ Ψ02 − (G22
λ ∇ρ1) · Q̃+ (G21

λ ∇ρ2) · Q̃

Step ii) Now we proceed to the last two equations (13.1):

− λQ̃ +BvP̃ = −Q0, 〈∇ψvj , Q̃ · ∇ρj〉 − 〈∇Ψ̃j, ρj〉 − λP̃ = −P0. (13.13)

Let us rewrite equations (13.12) as Ψ̃j = Ψ̃j(Q̃) + Ψ̃j(Ψ0), where

Ψ̃1(Ψ0) = −G11
λ Ψ01 −G12

λ Ψ02, Ψ̃2(Ψ0) = −G21
λ Ψ01 −G22

λ Ψ02 (13.14)

Ψ̃1(Q̃) = (−G12
λ ∇ρ1 +G11

λ ∇ρ2) · Q̃, Ψ̃2(Q̃) = (−G22
λ ∇ρ1 +G21

λ ∇ρ2) · Q̃ (13.15)

Then 〈∇Ψ̃j, ρj〉 = 〈∇Ψ̃j(Q̃), ρj〉+ 〈∇Ψ̃j(Ψ0), ρj〉, and the last equation (13.13) becomes

〈∇ψvj , Q̃ · ∇ρj〉 − 〈∇Ψ̃j(Q̃), ρj〉 − λP̃ = −P0 + 〈∇Ψ̃j(Ψ0), ρj〉 =: −P0 − Φ(λ)

where
Φ(λ) = 〈Ψ̃j(Ψ0),∇ρj〉 (13.16)

First we compute the term

〈∇ψvj , Q̃ · ∇ρj〉 =
∑

lj

〈∇ψvj , Q̃l∂lρj〉 =
∑

lj

〈∇ψvj , ∂lρj〉Q̃l

Applying the Fourier transform Fy→k, we have by the Parseval identity and (A.20) that

∑

j

〈∂iψvj , ∂lρj〉 =
∑

j

〈−ikiψ̂vj ,−iklρ̂j〉 =
∫

kikl(ψ̂v1 · ρ̂1 + ψ̂v2 · ρ̂2)dk (13.17)

= −
∫

kiklm
βρ̂1 · ρ̂1 + βρ̂2 · ρ̂2
k2 +m2 − (|v|k1)2

dk = −
∫

kiklB(k)dk
k2 +m2 − (|v|k1)2

=: −Lil

As the result, 〈∇ψvj , Q̃ · ∇ρj〉 = −LQ̃, where L is the 3 × 3 matrix with the matrix
elements Lil. The matrix L is diagonal and positive defined by (1.10).
Now let us compute the term −〈∇Ψ̃j(Q̃), ρj〉 = 〈Ψ̃j(Q̃),∇ρj〉. One has

〈Ψ̃j(Q̃), ∂iρj〉=
∑

l

(

〈−G12
λ ∂lρ1+G

11
λ ∂lρ2, ∂iρ1〉−〈G22

λ ∂lρ1−G21
λ ∂lρ2, ∂iρ2〉

)

Q̃l=
∑

l

Hil(λ)Q̃l
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and by the Parseval identity and (1.3)-(1.4) we have

Hil(λ) : = 〈−G12
λ ∂lρ1 +G11

λ ∂lρ2, ∂iρ1〉 − 〈G22
λ ∂lρ1 −G21

λ ∂lρ2, ∂iρ2〉
= 〈[(βm− α2k2)ρ̂1 − (iα1k1 + iα3k3 + i|v|k1 + λ)ρ̂2]ĝλkl, kiρ̂1〉
+ 〈[(iα1k1 + iα3k3 + i|v|k1 + λ)ρ̂1 + (βm− α2k2)ρ̂2]ĝλkl, kiρ̂2〉 (13.18)

=

∫

kiklm
βρ̂1 · ρ̂1 + βρ̂2 · ρ̂2

k2 +m2 − (|v|k1 − iλ)2
dk =

∫

kiklB(k)dk
k2 +m2 − (|v|k1 − iλ)2

The matrix H is well defined for Reλ > 0 since the denominator does not vanish. The
matrix H is diagonal. Indeed, if i 6= l, then at least one of these indices is not equal to
one, and the integrand in (13.17) is odd with respect to the corresponding variable. Thus,
Hil = 0. As the result, 〈Ψ̃j(Q̃),∇ρj〉 = HQ̃, where H is the matrix with matrix elements
Hil. Finally the equations (13.13) become

M(λ)

(

Q̃

P̃

)

=

(

Q0

P0 + Φ(λ)

)

, where M(λ) =

(

λE −Bv

L−H(λ) λE

)

(13.19)

Assume for a moment that the matrix M(λ) is invertible (later we will prove this). Then
we obtain

(

Q̃

P̃

)

=M−1(λ)

(

Q0

P0 + Φ(λ)

)

, Reλ > 0 (13.20)

Finally, formula (13.20) and formulas (13.12), where Q̃ is expressed from (13.20), give the
expression of the resolvent R(λ) = (A− λ)−1, Reλ > 0.

Lemma 13.3. The matrix function M(λ) (respectively, M−1(λ)), Reλ > 0 admits an
analytic (respectively meromorphic) continuation to the Riemann surface of the function
√

µ2 + λ2, λ ∈ C.

Proof. The analytic continuation of M(λ), exists by Lemma 13.1 ii) and the convolution
expressions in (13.18) by (1.9). The inverse matrix is then meromorphic since it exists for
large Reλ. The latter follows from (13.19) since H(λ) → 0, Reλ→ ∞, by (13.18).

14 Regularity on imaginary axis

Let us describe the continuous spectrum of the operator A = Av,v on the imaginary axis.
By definition, the continuous spectrum corresponds to ω ∈ R, such that the resolvent
R(iω + 0) is not a bounded operator in E . By the formulas (13.12), this is the case
when the Green function Gλ(y− y′) loses the exponential decay. This is equivalent to the
condition Reκ = 0. Thus, iω belongs to the continuous spectrum if |ω| ≥ µ = m

√
1− v2.

By Lemma 13.3, the limit matrix

M(iω) :=M(iω + 0) =

(

iωE −Bv

L−H(iω + 0) iωE

)

, ω ∈ R (14.1)

exists, and its entries are continuous functions of ω ∈ R, smooth for |ω| < µ and |ω| > µ.
Recall that the point λ = 0 belongs to the discrete spectrum of the operator A by Lemma
5.3, hence M(iω + 0) (probably) also is not invertible at ω = 0.

Proposition 14.1. (cf. [8, Proposition 15.1]) Let ρ satisfy the conditions (1.9)- (1.10),
and |v| < 1. Then the limit matrix M(iω + 0) is invertible for ω 6= 0, ω ∈ R.

Corollary 14.2. The matrix M−1(iω) is smooth in ω ∈ R outside three points ω = 0,±µ.
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15 Singular spectral points

The components Q(t) and P (t) are given by the Fourier integral
(

Q(t)
P (t)

)

=
1

2π

∫

eiωtM−1(iω + 0)

(

Q0

P0 + Φ(iω)

)

dω (15.1)

if it converges in the sense of distributions. Corollary 14.2 alone is not sufficient for
the proof of the convergence and decay of the integral. Namely, we need an additional
information about behavior of the matrix M−1(iω) near its singular points ω = 0,±µ,
and asymptotics at |ω| → ∞. We will analyze all the points separately.

I. First we consider the points ±µ.

Lemma 15.1. The matrix M−1(iω) admits the asymptotics in a vicinity of ±µ:

M−1(iω) = C±+O((ω∓µ) 1

2 ), ∂ωM
−1(iω) = O((ω∓µ)− 1

2 ), ∂2ωM
−1(iω) = O((ω∓µ)− 3

2 )
(15.2)

Proof. It suffices to prove similar asymptotics for M(iω). Then (15.2) holds also for
M−1(iω), since the matrices M(±iµ) are invertible. The asymptotics for M(iω) holds by
the convolution representation (13.18)

Hjj(λ) = 〈mgλβ ∗ ∂jρ1, ∂jρ1〉+ 〈mgλβ ∗ ∂jρ2, ∂jρ2〉, j = 1, 2, 3 (15.3)

since gλ admits the corresponding asymptotics by the formula (13.10). Namely

gλ(y) =
1

4π|ỹ| + r±(λ, y), λ→ ±iµ, Reλ > 0

where

r±(λ, y)=O((λ∓ iµ)
1

2 ), ∂λr±(λ, y)=O((λ∓ iµ)−
1

2 ), ∂2λr±(λ, y)=O((1+|y|)(λ∓ iµ)−
3

2 )

The condition (1.9) provides the convergence of all integrals arising in ∂kλHjj.

II. Second, we study the asymptotic behavior of M−1(λ) at infinity.

Lemma 15.2. There exist a matrix D0 and a matrix-function D1(ω), such that

M−1(iω) =
D0

ω
+D1(ω), |ω| ≥ µ+ 1, ω ∈ R (15.4)

where, for k = 0, 1, 2

|∂kωD1(ω)| ≤
C(k)

|ω|2 , |ω| ≥ µ+ 1, ω ∈ R (15.5)

Proof. The structure (14.1) of the matrix M(iω) provides that it suffices to prove the
following estimate for the elements of the matrix H(iω) := H(iω + 0):

|∂kλHjj(λ)| ≤ C(k), λ ∈ C, |λ| ≥ µ+ 1, j = 1, 2, 3, k = 0, 1, 2 (15.6)

The estimate (15.6) follows from the representation (15.3) and the bounds

|gλ(y)| ≤
C1

|y| , |∂λgλ(y)| ≤
C2

|y| + C3, |∂2λgλ(y)| ≤
C4

|y| + C5|y|, Reλ > 0
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III. Finally, we consider the point ω = 0 which is an isolated pole of a finite degree
by Lemma 13.3. In Appendix B we prove that the matrix M−1(iω) can be written in the
form

M−1(iω) =





1
ω
M11(ω)

1
ω2M12(ω)

M21(ω)
1
ω
M22(ω)



 (15.7)

whereMij(ω), i, j = 1, 2 are the diagonal matrices, smooth for the ω ∈ (−µ, µ). Moreover,

M22 = M11, M11 = iM12B
−1
ν (15.8)

16 Transversal decay for the linearized equation

Here we prove Proposition (6.7).

16.1 Decay of vector components

First, we establish the decay (6.20) for the components Q(t) and P (t).

Lemma 16.1. Let X0 ∈ Zv ∩ Eν. Then Q(t), P (t) are continuous and

|Q(t)|+ |P (t)| ≤ Cν(ρ, ṽ)(1 + |t|)−3/2, t ≥ 0. (16.1)

Proof. The expansions (15.2), (15.4) and (15.7) imply the convergence of the Fourier
integral (15.1) in the sense of distributions to a continuous function of t ≥ 0. Let us prove
(16.1). First let us note that the condition X0 ∈ Zv implies that the whole trajectory
X(t) lies in Zv. This follows from the invariance of the space Zv under the generator
Av,v (cf. Remark 6.6). If X0 6∈ Zv, then the components Q(t) and P (t) may contain
non-decaying terms which correspond to the singular point ω = 0 since the linearized
dynamics admits the secular solutions without decay, see (6.16). We will show that the
symplectic orthogonality condition leads to (16.1). Let us split the Fourier integral (15.1)
into three terms using the partition of unity ζ1(ω) + ζ2(ω) + ζ3(ω) = 1, ω ∈ R:

(

Q(t)
P (t)

)

=
1

2π

∫

eiωt(ζ1(ω) + ζ2(ω) + ζ3(ω))M
−1(iω + 0)

(

Q0

P0 + Φ(iω)

)

dω =
3

∑

j=1

Ij(t)

where the functions ζj(ω) ∈ C∞(R) are supported by

supp ζ1 ⊂ {ω ∈ R : ε0/2 < |ω| < µ+ 2}

supp ζ2 ⊂ {ω ∈ R : |ω| > µ+ 1}

supp ζ3 ⊂ {ω ∈ R : |ω| < ε0}

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(16.2)

i) Let us represent Ij(t), j = 1, 2 as

Ij(t) =
1

2π

∫

eiωtζj(ω)
[

M−1(iω + 0)

(

Q0

P0

)

+M−1(iω + 0)

(

0
Φ(iω)

)

]

dω

= sj(t)

(

Q0

P0

)

+ sj(t) ∗
(

0
f(t)

)

(16.3)

where
sj(t) = Λ−1ζj(ω)M

−1(iω + 0), f(t) = Λ−1Φ(iω)
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By (13.14)

Ψ̃1(Ψ0) = −ΛReW+
v (t)(Ψ10 + iΨ20), Ψ̃2(Ψ0) = −Λ ImW+

v (t)(Ψ10 + iΨ20)

where W+
v (t) is the dynamical group of the equation

Ψ̇(x, t) = [α · ∇ + iβm+ v · ∇]Ψ(x, t) (16.4)

Evidently, for the group the W+
v (t) the bound (17.5) obtained in Lemma 17.1 for the

group Wv(t) also holds. Hence, (13.16) implies

|f(t)| = |Re〈W+
v (t)(Ψ10 + iΨ20),∇ρ〉| ≤ Cν(ρ, v)(1 + t)−3/2 (16.5)

Further, the function s1(t) decays as (1 + |t|)−3/2 by asymptotics (15.2), and the function
s2(t) decays as (1+ |t|)−2 due to Proposition 15.2. Hence, formula (16.3) implies the decay
(1 + |t|)−3/2 for I1(t) and I2(t).
iii) Finally, the function I3(t) decays as t

−∞ if Z0 ∈ Zv. It follows from next lemma

Lemma 16.2. If Z0 ∈ Zv then
(

Q̃(iω)

P̃ (iω)

)

=M−1(iω)

(

Q0

P0 + Φ(iω)

)

∈ C∞(−µ, µ) (16.6)

Proof. In Appendix C we prove that the symplectic orthogonality conditions (6.7) at t = 0
imply

P0 + Φ(0) = 0, B−1
v Q0 + Φ′(0) = 0 (16.7)

Then
P0 + Φ(iω) = Φ(iω)− Φ(0) = iωΥ1(ω)

B−1
v Q0 +Υ1(ω) =

Φ(iω)− Φ(0)

iω
− Φ′(0) = iωΥ2(ω)

where Υj(ω) ∈ C∞(−µ, µ), since Ψ̃j(Ψ0) ∈ C∞(−µ, µ), by (13.14) and (13.6). Therefore,
representations (15.7)-(15.8) imply

P̃ (iω) = M21(ω)Q0 + iM22(ω)Υ1(ω) ∈ C∞(−µ, µ)

Q̃(iω) =
1

ω
M11(ω)Q0 +

i

ω
M12(ω)Υ1(ω) =

i

ω
M12(B

−1
v Q0 +Υ1(ω))

= −M12Υ2(ω) ∈ C∞(−µ, µ)

16.2 Decay of fields

Now we prove the decay of the field components Ψ1(x, t),Ψ2(x, t) corresponding to (6.20).
The first two equations of (6.15) may be written as one equation:

Ψ̇(x, t) = [−α · ∇ − iβm+ v · ∇]Ψ(x, t)− iQ(t) · ∇ρ, x ∈ R3, t ∈ R (16.1)

where Ψ(t) = Ψ1(·, t) + iΨ2(·, t)). Applying the Duhamel representation, we obtain

Ψ(t) =Wv(t)Ψ0 −
∫ t

0

Wv(t− s)Q(s) · ∇ρ ds, t ≥ 0 (16.2)

where Wv(t) the dynamical group (propagator) of the ”modified” free Dirac equation

Ψ̇(x, t) = [−α · ∇ − iβm+ v · ∇]Ψ(x, t) (16.3)

Lemma 17.1 on the weighted decay for the group Wv(t), the decay of Q from (16.1), and
representation (16.2) yield

‖Ψ(t)‖−ν ≤ Cν(ρ, ṽ)‖Ψ0‖ν(1 + |t|)−3/2, t ≥ 0 (16.4)

for any Ψ0 ∈ Zv ∩ Eν . It completes the proof of Proposition 6.7.
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17 Weighted decay for free Dirac equation

Lemma 17.1. For any Φ ∈ L2
ν with ν > 3/2 the bound holds

‖Wv(t)Φ‖−ν ≤ Cν(v)‖Φ‖ν
(1 + |t|)3/2 , t ≥ 0 (17.5)

Proof. Step i) Note, that

(∂t + α · ∇+ iβm+ v · ∇) (∂t − α · ∇ − iβm+ v · ∇) = (∂2t + 2∂tv · ∇ −∆(1− v2) +m2)

Hence the integral kernel Wv(x− y, t) of the operator Wv(t) has the form

Wv(z, t) = (∂t + α · ∇+ iβm+ v · ∇)Gv(z, t), (17.6)

where Gv(z, t) is a fundamental solution of the ”modified” Klein-Gordon operator

(∂2t + 2∂tv · ∇ −∆(1− v2) +m2)Gv(z, t) = δ(z)δ(t)

Let Gv(t), t ≥ 0 be the operator with the integral kernel Gv(x − y, t). It is easy to see
that

[Gv(t)Φ](x) = [G0(t)Φ](x− vt), x ∈ R3, t ≥ 0

Then

Gv(z, t) = G0(z−vt, t) =
δ(t− |z − vt|)

4πt
− m

4π

θ(t− |z − vt|)J1(m
√

t2 − |z − vt|2)
√

t2 − |z − vt|2
, t > 0

where J1 is the Bessel function of order 1, and θ is the Heavyside function. Let us fix an
arbitrary ε ∈ (|v|, 1). Well known asymptotics of the Bessel function imply that

|∂tGv(z, t)|, |∂zjGv(z, t)| ≤ C(ε)(1 + t)−3/2, |z − vt| ≤ εt, t ≥ 1, j = 1, 2, 3 (17.7)

Step ii) Now we consider an arbitrary t ≥ 1. Denote ε1 = ε − |v|. We split the function
Φ in two terms, Φ = Φ1,t + Φ2,t such that

‖Φ1,t‖L2
ν
+ ‖Φ2,t‖L2

ν
≤ C‖Φ‖L2

ν
, t ≥ 1 (17.8)

and

Φ1,t(x) = 0 for |x| > ε1t

2
, and Φ2,t(x) = 0 for |x| < ε1t

4
(17.9)

The estimate (16.4) forWv(t)Φ2,t follows by charge conservation for Dirac equation, (17.9)
and (17.8):

‖Wv(t)Φ2,t‖L2
−ν

≤ ‖Wv(t)Φ2,t‖L2
0
= ‖Φ2,t‖L2

0
≤ C(ε)‖Φ2,t‖L2

ν

(1 + t)ν
≤ C1(ε)‖Φ‖L2

ν

(1 + t)3/2
, t ≥ 1

(17.10)
since ν > 3/2.
Step iii) Next we consider Wv(t)Φ1,t. Now we split the operator Wv(t) in two terms:

Wv(t) = (1− ζ)Wv(t) + ζWv(t), t ≥ 1
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where ζ is the operator of multiplication by the function ζ(|x|/t) such that ζ = ζ(s) ∈
C∞

0 (R), ζ(s) = 1 for |s| < ε1/4, ζ(s) = 0 for |s| > ε1/2. Since 1 − ζ(|x|/t) = 0 for
|x| < ε1t/4, then applying the charge conservation and (17.8), we have for t ≥ 1

‖(1−ζ)Wv(t)Φ1,t‖L2
−ν

≤
C(ε)‖Wv(t)Φ1,t‖L2

0

(1 + t)ν
=
C(ε)‖Φ1,t‖L2

0

(1 + t)ν
≤C1(ε)‖Φ1,t‖L2

ν

(1 + t)ν
≤ C2(ε)‖Φ‖L2

ν

(1 + t)3/2

(17.11)
since ν > 3/2.
Step iv) It remains to estimate ζWv(t)Φ1,t. Let χt be the characteristic function of the
ball |x| ≤ ε1t/2. We will use the same notation for the operator of multiplication by this
characteristic function. By (17.9), we have

ζWv(t)Φ1,t = ζWv(t)χtΦ (17.12)

The matrix kernel of the operator ζWv(t)χt is equal to

W ′
v(x− y, t) = ζ(|x|/t)Wv(x− y, t)χt(y)

Since ζ(|x|/t) = 0 for |x| > ε1t/2 and χt(y) = 0 for |y| > ε1t/2. Therefore,W
′
v(x−y, t) = 0

for |x−y| > ε1t. On the other hand, |x−y| ≤ ε1t implies |x−y−vt| ≤ εt, since ε1+|v| = ε
by definition of ε1. Hence, equality (17.6) and bounds (17.7) yield

|W ′
v(x− y, t)| ≤ C(1 + t)−3/2, t ≥ 1 (17.13)

The norm of the operator ζWv(t)χt : L
2
ν → L2

−ν is equivalent to the norm of the operator

〈x〉−νζWv(t)χt(y)〈y〉−ν : L2
0 → L2

0 (17.14)

Therefore, (17.13) implies that operator (17.14) is Hilbert-Schmidt operator since ν > 3/2,
and its Hilbert-Schmidt norm does not exceed C(1+ t)−3/2. Hence, by (17.12) and (17.8)

‖ζWv(t)Φ1,t‖L2
−ν

≤ C(1 + t)−3/2‖Φ‖L2
ν
, t ≥ 1 (17.15)

Finally, the estimates (17.15), (17.11) and (17.10) imply (16.4).

A Computing Ω(τi, τj)

Here we justify the formulas (3.7)-(3.9) for the matrix Ω.
1) First, the Parseval identity implies

Ω(τj , τl) = 〈∂jψv1, ∂lψv2〉−〈∂jψv2, ∂lψv1〉=
∫

kjkl dk(ψ̂v1 ·ψ̂v2−ψ̂v2 ·ψ̂v1) = 0, j, l = 1, 2, 3

since the integrand is odd function.

2) Second, we consider

Ω(τj+3, τl+3) = 〈∂vjψv1, ∂vlψv2〉 − 〈∂vjψv2, ∂vlψv1〉 (A.16)

Let us derive the formulas for ψv1 and ψv2. The first equation of (2.4) implies

[(vj∂j)
2 −∆+m2]ψv = [ivj∂j + iαj∂j − βm]ρ1

Hence
[(vj∂j)

2 −∆+m2]ψv1 = −[vj∂j + α1∂1 + α3∂3]ρ2 − [α̃2∂2 + βm]ρ1
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[(vj∂j)
2 −∆+m2]ψv2 = [vj∂j + α1∂1 + α3∂3]ρ1 − [α̃2∂2 + βm]ρ2

Applying the Fourier transform, we obtain

ψ̂v1 =
[ivk + iα1k1 + iα3k3]ρ̂2 + [α2k2 − βm]ρ̂1

−(vk)2 + k2 +m2

ψ̂v2 =
−[ivk + iα1k1 + iα3k3]ρ̂1 + [α2k2 − βm]ρ̂2

−(vk)2 + k2 +m2

∣

∣

∣

∣

∣

∣

∣

∣

(A.17)

Differentiating, we get

∂vj ψ̂v1 =
ikjρ̂2

−(vk)2 + k2 +m2
+

2kjvkψ̂v1

−(vk)2 + k2 +m2

∂vl ψ̂v2 =
−iklρ̂1

−(vk)2 + k2 +m2
+

2klvkψ̂v2

−(vk)2 + k2 +m2

∣

∣

∣

∣

∣

∣

∣

∣

(A.18)

Hence, (A.16) implies

Ω(τj+3, τl+3) =

∫

kjkl[ρ̂1 · ρ̂2 − ρ̂2 · ρ̂1]dk
(k2 +m2 − (vk)2)2

+

∫

4kjkl(vk)
2[ψ̂v1 · ψ̂v2 − ψ̂v2 · ψ̂v1]dk

(k2 +m2 − (vk)2)2

+

∫

2ikjklvk[ρ̂2 · ψ̂v2 + ψ̂v2 · ρ̂2 + ρ̂1 · ψ̂v1 + ψ̂v1 · ρ̂1]
(k2 +m2 − (vk)2)2

= 0

since all integrands are odd functions.

3) Finally, (A.18) implies

Ω(τj , τl+3) = −〈∂jψv1, ∂vlψv2〉+ 〈∂jψv2, ∂vlψv1〉+ ej · ∂vlpv (A.19)

=

∫

ikjψ̂v1 · [−iklρ̂1 + 2klvkψ̂v2)]− ikjψ̂v2 · [iklρ̂2 + 2klvkψ̂v1)]

k2 +m2 − (vk)2
dk + ej · ∂vlpv

=

∫

kjkl
−[ψ̂v1 · ρ̂1 + ψ̂v2 · ρ̂2] + 2ivk[ψ̂v1 · ψ̂v2 − ψ̂v2 · ψ̂v1]

k2 +m2 − (vk)2
dk + ej · ∂vlpv

Recall, that ρj(x) are even, then ρ̂j(k) are real. Hence (1.3)-(1.4) and (A.17) imply

(k2 +m2 − (vk)2)(ψ̂v1 · ρ̂1 + ψ̂v2 · ρ̂2) = [α2k2 − βm]ρ̂1 · ρ̂1 + [α2k2 − βm]ρ̂2 · ρ̂ (A.20)

+[ivk + iα1k1 + iα3k3]ρ̂2 · ρ̂1 − [ivk + iα1k1 + iα3k3]ρ̂1 · ρ̂2 = −Bρ̂ · ρ̂

(k2 +m2 − (vk)2)2(ψ̂v1 · ψ̂v2 − ψ̂v2 · ψ̂v1) = 2i(k2 +m2 − (vk)2)2 Im(ψ̂v1 · ψ̂v2) (A.21)

= −2βmρ̂1 · [ivk + iα1k1 + iα3k3]ρ̂1 − 2[ivk + iα1k1 + iα3k3]ρ̂2 · βmρ̂2 = −2ivkBρ̂ · ρ̂

Substituting (A.20) and (A.21) into the right hand site of (A.19), we obtain

Ω(τj , τl+3) =

∫

kjkl

( B(k)
(k2 +m2 − (vk)2)2

+
4(vk)2B(k)

(k2 +m2 − (vk)2)3

)

dk + ej · ∂vlpv

that correspond to (3.7) - (3.9).
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B Computing M−1(iω)

Here we derive formula (15.7). Denote F (ω) := −L+H(iω+ 0) which is diagonal. Then
by (14.1) for ω ∈ R we obtain

detM(iω)=det

(

iωE −Bv

−F (ω) iωE

)

= −
(

ω2+
F11(ω)

γ3

)(

ω2+
F22(ω)

γ

)(

ω2+
F33(ω)

γ

)

(B.22)

where

Fjj(ω) =

∫

k2jBdk
(

1

m2 + k2 − (|v|k1 + ω)2
− 1

m2 + k2 − (|v|k1)2
)

, j = 1, 2, 3 (B.23)

Formula (B.22) is obvious since both matrices F (ω) and Bv are diagonal, hence the matrix
M(iω) is equivalent to three independent matrices 2 × 2. Namely, let us transpose the
columns and rows of the matrix M(iω) in the order (142536). Then we get the matrix
with three 2 × 2 blocks on the main diagonal. Therefore, the determinant of M(iω) is
product of the determinants of the three matrices. Further,

M−1(iω) =

(

M11(ω) M12(ω)
M21(ω) M22(ω)

)

(B.24)

where

M11(ω) =M22(ω) =







−iωγ3

ω2γ3+F11(ω)
0 0

0 −iωγ
ω2γ+F22(ω)

0

0 0 −iωγ
ω2γ+F33(ω)







M12 =





−1
ω2γ3+F11

0 0

0 −1
ω2γ+F22

0

0 0 −1
ω2γ+F33



 , M21 =







−γF11

ω2γ3+F11
0 0

0 −γF22

ω2γ+F22
0

0 0 −γF33

ω2γ+F33







Let us prove that for ω ∈ (−µ, µ)
Fjj(ω) = ω2fjj(ω), fjj(ω) ∈ C∞(−µ, µ), fjj(0) > 0 (B.25)

Indeed, formula (B.23) implies that Fjj(0) = 0. Differentiating (B.23), we obtain

F ′
jj(0) = 2

∫

k2jB(k)dk
|v|k1

(k2 +m2 − (|v|k1)2)2
= 0

since integrand is odd function in respect to k1, and

F ′′
jj(0) = 2

∫

k2jB(k)dk
k2 +m2 + 3(|v|k1)2
(k2 +m2 − (|v|k1)2)3

> 0

By (B.25) we can represent the matrices Mij(ω) as

M11(ω) =M22(ω) =
1

ω







−iγ3

γ3+f11(ω)
0 0

0 −iγ
γ+f22(ω)

0

0 0 −iγ
γ+f33(ω)






=

1

ω
M11(ω)

M12(ω) =
1

ω2







−1
γ3+f11(ω)

0 0

0 −1
γ+f22(ω)

0

0 0 −1
γ+f33(ω)






=

1

ω2
M12(ω) (B.26)

M21(ω) =







−γ3f11(ω)
γ3+f11(ω)

0 0

0 −γf22(ω)
γ+f22(ω)

0

0 0 −γf33(ω)
γ+f33(ω)






= M21(ω)

where Mij(ω) ∈ C∞(−µ, µ).
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C Symplectic orthogonality conditions

Here we derive conditions (16.7) from the symplectic orthogonality conditions (6.7). First
let us compute Φ(0). Formulas (13.14) and (13.16) imply

(Φ(0))j = 〈Ĝ11
0 Ψ̂01 + Ĝ12

0 Ψ̂02, ikjρ̂1〉+ 〈Ĝ11
0 Ψ̂02 − Ĝ12

0 Ψ̂01, ikjρ̂2〉, j = 1, 2, 3

On the other hand, by (13.5) formulas (A.17) read

ψ̂v1 = −Ĝ11
0 ρ̂2 + Ĝ12

0 ρ̂1, ψ̂v2 = Ĝ11
0 ρ̂1 + Ĝ12

0 ρ̂2

Hence, for j = 1, 2, 3

0 = −Ω(Z0, τj) = 〈Ψ01, ∂jψv2〉 − 〈Ψ02, ∂jψv1〉+ P0 · ej
= −〈Ψ01, ikj(Ĝ

11
0 ρ̂1 + Ĝ12

0 ρ̂2)〉+ 〈Ψ02, ikj(Ĝ
12
0 ρ̂1 − Ĝ11

0 ρ̂2)〉+ P0 · ej = (Φ(0) + P0)j

since (Ĝ11
0 )∗ = −Ĝ11

0 , (Ĝ12
0 )∗ = Ĝ12

0 . Hence the first condition (16.7) follows. Further,

∂λĜ
11
λ

∣

∣

∣

λ=0
=

−1− 2ivkĜ11
0

k2 +m2 − (vk)2
, ∂λĜ

12
λ

∣

∣

∣

λ=0
=

−2ivkĜ12
0

k2 +m2 − (vk)2

Then (13.14) and (13.16) imply for j = 1, 2, 3

(Φ′(0))j=−
〈Ψ̂01+2ivk(Ĝ11

0 Ψ̂01 + Ĝ12
0 Ψ̂02)

k2 +m2 − (vk)2
, ikjρ̂1

〉

−
〈Ψ̂02+2ivk(Ĝ11

0 Ψ̂02−G12
0 Ψ̂01)

k2 +m2 − (vk)2
, ikj ρ̂2

〉

On the other hand, from (A.17) and (A.18) it follows that for j = 1, 2, 3

∂vj ψ̂v1 =
ikj ρ̂2 + 2kjvk(−Ĝ11

0 ρ̂2 + Ĝ12
0 ρ̂1)

k2 +m2 − (vk)2
, ∂vj ψ̂v2 =

−ikj ρ̂1 + 2kjvk(Ĝ
11
0 ρ̂1 + Ĝ12

0 ρ̂2)

k2 +m2 − (vk)2

Hence,

0 = Ω(Z0, τj+3) = 〈Ψ01, ∂vjψv2〉 − 〈Ψ02, ∂vjψv1〉+Q0 · ∂vjpv

=
〈

Ψ01,
−ikj ρ̂1 + 2kjvk(Ĝ

11
0 ρ̂1 + Ĝ12

0 ρ̂2)

k2 +m2 − (vk)2

〉

−
〈

Ψ02,
ikj ρ̂2 + 2kjvk(−Ĝ11

0 ρ̂2 + Ĝ12
0 ρ̂1)

k2 +m2 − (vk)2

〉

+ Q0 · ∂vjpv = (Φ′(0) +B−1
v Q0)j, j = 1, 2, 3

since Q0 · ∂vjpv = Q0 · B−1
v ej = B−1

v Q0 · ej . Hence the second condition (16.7) follows.
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(2003), 419-475.



33

[5] S.Cuccagna, Stabilization of solutions to nonlinear Schrödinger equations, Commun.
Pure Appl. Math. 54, no.9 (2001), 1110-1145.

[6] M. Esteban, V. Georgiev, E. Sere, Stationary solutions of the Maxwell-Dirac and
the Klein-Gordon-Dirac equations, Calc. Var. Partial Differ. Equ. 4, no.3 (1996),
265-281.

[7] V.Imaikin, A.Komech, N.Mauser, Soliton-type asymptotics for the coupled Maxwell-
Lorentz equations, Ann. Inst. Poincaré, Phys. Theor. 5 (2004), 1117-1135.
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