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Abstract We consider the Hamiltonian system of scalar wave field and a single nonrelativistic particle
coupled in a translation invariant manner. The particle is also subject to a confining external potential.
The stationary solutions of the system are a Coulomb type wave field centered at those particle positions
for which the external force vanishes. We prove that solutions of finite energy converge, in suitable local
energy seminorms, to the setS of all stationary states in the long time limitt →±∞. Further we show
that the rate of relaxation to a stable stationary state is determined by spatial decay of initial data. The
convergence is followed by the radiation of the dispersion wave which is a solution to the free wave
equation.

Similar relaxation has been proved previously for the case of relativistic particle when the speed of
the particle is less than the speed of light. Now we extend these results to nonrelativistic particle with
arbitrary superlight velocity. However, we restrict ourselves by the plane particle trajectories in IR3. The
extension to general case remains an open problem.
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1 Introduction

We consider the Hamiltonian system of a real scalar fieldϕ(x) on IR3, and an extended nonrelativistic
particle with the center positionq∈ IR3 and with the charge densityρ(x−q). The field is governed by the
wave equation with a source. The particle is subject to the wave field and also to an external potentialV,
which is confining in the sense of (1.9). The interaction between the particle and the scalar field is local,
translation invariant, and linear in the field. We study the long-time behavior of the coupled system. Our
main results are the asymptotics

q̇(t)→ 0, q̈(t)→ 0, t →±∞, (1.1)

and the convergence of the field to the corresponding Coulombic potential. Moreover, we establish the
rate of the convergence in the case whenq± is a nondegenerate local minimum of the potentialV.

Let π(x) be the canonically conjugate field toϕ(x) and letp be the momentum of the particle. The
Hamiltonian (energy functional) reads then

H (ϕ,q,π , p)≡
1
2

p2+V(q)+
1
2

∫

(|π(x)|2+ |∇ϕ(x)|2)dx+
∫

ϕ(x)ρ(x−q)dx. (1.2)

Taking formally variational derivatives in (1.2), the coupled dynamics becomes

ϕ̇(x, t) = π(x, t), π̇(x, t) = ∆ϕ(x, t)−ρ(x−q(t)),

q̇(t) = p(t), ṗ(t) =−∇V(q(t))+
∫

ϕ(x, t)∇ρ(x−q(t))dx.

∣

∣

∣

∣

∣

∣

∣

(1.3)

For smoothϕ(x) vanishing at infinity the Hamiltonian can be rewritten as

H (ϕ,q,π , p)≡
1
2

p2+V(q)+
1
2

∫

(|π(x)|2+ |∇[ϕ(x)−∆−1ρ(x−q)]|2)dx+
1
2
〈ρ ,∆−1ρ〉, (1.4)

where
1
2
〈ρ ,∆−1ρ〉=−

1
8π

∫ ∫ ρ(x)ρ(y)
|x−y|

dxdy≤ 0. (1.5)

Thus the energy (1.4) is bounded from below if|〈ρ ,∆−1ρ〉| < ∞ which provides a priori estimates for
solutions to (1.3), and hence guarantees the existence of global solutions. Otherwise, the dynamics is not
well defined. For example,〈ρ ,∆−1ρ〉=−∞ for the point particle withρ(x) = δ (x):

〈δ ,∆−1δ 〉=−(2π)−3
∫

1
k2dk=−∞. (1.6)

This “ultraviolet divergence” was discovered first for the point particle in classical electrodynamics,
where−〈ρ ,∆−1ρ〉 is proportional to the energy of the particle in its own electrostatic field. Respec-
tively, the infinite energy (1.6) for the point particle is not satisfactory since it also means its infinite
mass. This infinity inspired the introduction of the “extended electron” by Abraham [1]. Our system
(1.3) is a scalar analog of the Abraham electrodynamics withthe extended electron [23, 28].

The stationary solutions for (1.3) are easily determined. Denote

sq(x) =−

∫ ρ(y−q)
4π |y−x|

dy, x,q∈ IR3. (1.7)
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Let Z = {q∈ IR3 : ∇V(q) = 0} be the set of critical points forV. Then the set of all stationary states is
given by

S = {(ϕ,π ,q, p) = (sq,0,q,0) := Sq| q∈ Z}. (1.8)

One natural goal is to investigate the domain of attraction for S and in particular to prove that each finite
energy solution of (1.3) converges to some stationary states Sq± = (sq±,0,q±,0) ∈ S in the long time
limit t →±∞.

To state our main results we need some assumptions onV andρ . We assume that

V ∈C2(IR3), lim
|q|→∞

V(q) = ∞. (1.9)

ρ ∈C∞
0 (IR

3), ρ(x) = 0 for |x| ≥ Rρ , ρ(x) = ρr(|x|). (1.10)

Moreover, we suppose that the following Wiener condition holds:

ρ̂(k) 6= 0 for k∈ IR3. (1.11)

It is an analogue of the Fermi Golden Rule: the coupling termρ(x−q) is not orthogonal to the eigen-
functionseikx of the continuous spectrum of the linear part of the equation(cf. [26, 27]). As we will see,
the Wiener condition (1.11) is very essential for our asymptotic analysis.

For technical reasons, we restrict ourselves to the case when the particle moves in the plane, i.e. we
suppose thatq(t) = (q1(t),q2(t),q3(t)) ∈ R3 such that

q3(t) = 0, t ∈ IR. (1.12)

For example, this condition holds if initial fieldsϕ0(x) = ϕ(x,0) andπ0(x) = π(x,0) are symmetric in
x3, and

q3(0) = p3(0) = 0 and ∂x3V(x1,x2,0) = 0, for (x1,x2) ∈ IR2. (1.13)

In the first part of the paper we prove that the setS is an attracting set for each trajectoryY(t) =
(ϕ(t),π(t),q(t), p(t)). Namely, we consider initial dataY(0) = (ϕ0,π0,q0, p0) with

ϕ0 ∈C2(IR3), π0 ∈C1(IR3) (1.14)

such that

|∇ϕ0(x)|+ |π0(x)|+ |x|(|∇∇ϕ0(x)|+ |∇π0(x)|) = O(|x|−σ), |x| → ∞, where σ > 3/2, (1.15)

which guarantees the finiteness of the energy (1.2). First, we prove the relaxation (1.1). Further, we prove
the long-time attraction

Y(t)→ S , t −→±∞. (1.16)

where the convergence of the fields holds in local energy seminorms. If additionally, the setS is discrete,
then (1.16) implies

Y(t)→ Sq±, t −→±∞, (1.17)

where the stationary statesSq± ∈ S depend on the solutionY(t) considered.
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In the second part of the paper we specify the rate of convergence in (1.17) to a stationary stateSq+
in the case whereq∗ ∈ Z is a non-degenerate minimum of the potential, i.e.,

d2V(q+)> 0. (1.18)

whered2V(q+) is the Hessian. We suppose that the initial fields belong to the weighted space øH1
α ⊕L2

α
with someα > 1 (see Definition 2.1). Then for anyε > 0

q̇(t) = O(|t|−α+ε), q(t) = q++O(|t|−α+ε), ‖(ϕ(t),π(t))− (sq+,0)‖øH1
−α⊕L2

−α
= O(t−α+ε), t → ∞.

(1.19)
Moreover, in this case the scattering asymptotics hold,

(ϕ(x, t),π(x, t)) = (sq+,0)+W(t)Φ++ r(x, t). (1.20)

HereW(t) is the dynamical group of the free wave equation,Φ ∈ øH1⊕L2 is the corresponding asymp-
totic state, and

‖r(t)‖øH1⊕L2 = O(|t|−α+1+ε), t → ∞. (1.21)

The investigation is inspired by fundamental problems of the field theory and quantum mechanics.
Namely, the relaxation of the acceleration (1.1) is known asradiation dampingin classical electrody-
namics since Lorentz and Abraham [1], however it was proved for the first time in [23, 22] for the case
of relativistic particle with ˙q= p/

√

p2+1. Second, the asymptotics (1.17) give a dynamical model of
Bohr’s transitions to quantum stationary states, see the details in [17, 18].

Our extension to the nonrelativistic particle is not straightforward and important in connection with
the Cherenkov radiation. The main difficulty is due to the singular nature of the radiation for|q̇(t)| ≥ 1.

Traditionally the classical Larmor and Liénard formulas [6, (14.22)] and [6, (14.24)] are accepted
for the power of radiation of a point particle. These formulas contain the factor(1−β ·ω)−3 (cf. our
formula (5.4)) whereβ = v/c andω is the direction of the radiation. Herev= q̇(τ) is the particle velocity
at the “retarded time”τ andc is the propagation speed of the wave field in the dispersive medium. These
formulas are deduced from the Liénard-Wiechert expressions for the retarded potentials neglecting the
initial fields. Moreover, these formulas neglect the back fieldreaction though it should be the key reason
for the relaxation. The main problem is that this back field-reaction is infinite for the point particles. In
(1.3) we setc= 1. Generallyc is less than the speed of light in vacuum, so the particle velocitiesq̇(t)> 1
are possible. Then the factor(1−β ·ω)−3 in the Larmor formula becomes infinite for some directions
ω.

A rigorous meaning to these calculations for relativistic particle has been suggested first in [23, 22]
for the Abraham model of the ”extended electron” under the Wiener condition (1.11). The survey can be
found in [28].

For the nonrelativistic Abraham type model (1.3) with the “extended electron” the radiation remains
finite due to the smoothing by the coupling functionρ . Nevertheless, the case|q̇(t)|> 1 rises many open
questions.

Our main novelties in present paper are the following.

I. Global attraction of finite energy solutions to stationary states for the case of nonrelativistic particle.

II. Asymptotics (1.19)–(1.21) in the weighted Sobolev norms for the case of nonrelativistic particle.
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Let us comment on previous results in these directions. The global attractions (1.16) and (1.17) were
proved in [22, 23] for the system of type (1.3) with relativistic particle and for the similar Maxwell-
Lorentz system. In [20] the global attraction to solitons was proved for the system (1.3) without external
potential under the Wiener condition (1.11). In [11] this result was extended to similar Maxwell-Lorentz
system. In [7]–[10] the global attraction to solitons is proved for the system (1.3) and similar systems
with the Klein-Gordon and Maxwell equations with smallρ . In [12]–[16] the global attraction to solitary
waves is proved for the Klein–Gordon and Dirac equations coupled toU(1)-invariant nonlinear oscilla-
tors.

The asymptotics of type (1.19)–(1.21) were established in [22] for the case of relativistic particle in
local energy seminorms for initial fields with compact support. In [21] we have proved the asymptotic
stability of the stationary states for the system (1.3) in the weighted Sobolev norms.

In a series of papers, Egli, Fröhlich, Gang, Sigal, and Soffer have established the convergence to
a soliton for the system of type (1.3) with the Schrödinger equation instead of the wave equation. The
main result of [5] is the long time convergence to a soliton with a subsonic speed for initial solitons with
supersonic speeds. The convergence is considered as a reason for the Cherenkov radiation, see [5] and
the references therein.

The asymptotics of type (1.20) were proved by Soffer and Weinstein for nonlinear Schrödinger equa-
tions with a potential [29, 30], and for translation invariant nonlinear Schrödinger equations by Buslaev,
Perelman and Sulem [2, 3, 4].

Now let us comment on our methods. For the proof of (1.1) we estimate the energy dissipation by
decomposingϕ into a near and far field. Energy is radiated in the far field. Since the Hamiltonian is
bounded from below, such radiation cannot go on forever and acertain ”energy radiation functional”
has to be bounded. This radiation functional can be written as a convolution. By a Wiener Tauberian
Theorem, using (1.11), we conclude (1.1) for ¨q. Therefore (1.1) also holds for ˙q since|q(t)| is bounded
by someq0 < ∞ due to (1.9). Finally, we deduce (1.16) and (1.17) from (1.1)and integral represen-
tations for the fields. This strategy is close to [22, 23, 28],however, the singularity of the radiation at
|q̇(t)| ≥ 1 requires suitable modifications in application of the Wiener Tauberian Theorem. We suggest
the modification for the plane particle trajectories (1.12). The extension to general case remains an open
problem.

We prove the asymptotics (1.19)–(1.21) by a development of the methods of [22] and controlling the
nonlinear part of (1.3) by the dispersion decay for the linearized equation which we established in [21].
Let us emphasize however, that the asymptotics (1.19)–(1.21) are quite different from the asymptotic
stability proved in [21].

The plan of our paper is as follows. In§2 we introduce appropriate functional spaces and formulate
our main results. In§3 we refine known results on the long range asymptotics of the Liénard-Wiehert
potentials. In§4 we calculate the energy radiation integral. We use this formula in §5 to prove the
velocity relaxation. In§6 we prove the attraction to stationary states. In§7 we consider the linearization
at stationary state. In§8 we prove a version of strong Huygens principle for nonlinear system (1.3). In
§§9–10 we deduce the asymptotics (1.19)–(1.21).
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2 Existence of dynamics and main results

We consider the Cauchy problem for the Hamiltonian system (1.3) which can be written as

Ẏ(t) = F(Y(t)), t ∈ IR, Y(0) =Y0. (2.1)

HereY(t) = (ϕ(t),π(t),q(t), p(t)), Y0 = (ϕ0,π0,q0, p0), and all derivatives are understood in the sense
of distributions.

Now we introduce a suitable phase space. LetL2 be the real Hilbert spaceL2(IR3) with scalar product
〈·, ·〉 and norm‖ · ‖L2, and letH1 denote the Sobolev spaceH1 = {ψ ∈ L2 : |∇ψ| ∈ L2} with the norm
‖ψ‖H1 = ‖∇ψ‖L2 + ‖ψ‖L2. For α ∈ IR let us define byL2

α the weighted Sobolev spacesL2
α with the

norms‖ψ‖L2
α

:= ‖(1+ |x|)αψ‖L2.

Denote by øH1 the completion of real spaceC∞
0 (IR

3) with the norm‖∇ϕ(x)‖L2. Equivalently, using
Sobolev’s embedding theorem, øH1 = {ϕ(x) ∈ L6(IR3) : |∇ϕ(x)| ∈ L2}. Denote by øH1

α the completion
of real spaceC∞

0 (IR
3) with the norm‖(1+ |x|)α∇ϕ(x)‖L2.

For anyR> 0 denote by‖ϕ‖L2(BR)
the norm inL2(BR), whereBR = {x ∈ IR3 : |x| ≤ R}. Then the

seminorms‖ϕ‖H1(BR)
= ‖∇ϕ‖L2(BR)

+‖ϕ‖L2(BR)
are continuous on øH1.

Definition 2.1. i) The phase spaceE is the real Hilbert spaceøH1 ⊕ L2 ⊕ IR3 ⊕ IR3 of states Y=
(ψ,π ,q, p) with the finite norm

‖Y‖E = ‖∇ψ‖L2 +‖π‖L2 + |q|+ |p|.

ii) EF is the spaceE endowed with the Fréchet topology defined by the local energy seminorms

‖Y‖R = ‖ϕ‖H1(BR)
+‖π‖L2(BR)

+ |q|+ |p|, ∀R> 0. (2.2)

iii) Eα with α ∈ IR is the Hilbert spaceøH1
α ⊕L2

α ⊕ IR3⊕ IR3 with the norm

‖Y‖α = ‖Y‖Eα = ‖∇ψ‖L2
α
+‖π‖L2

α
+ |q|+ |p|. (2.3)

iv) Fα is the spaceøH1
α ⊕L2

α of fields F= (ψ,π) with the finite norm

‖F‖α = ‖F‖Fα = ‖∇ψ‖L2
α
+‖π‖L2

α
. (2.4)

Note that we use the same notation for the norms in the spaceFα as in the spaceEα defined in (2.3).
We hope it will not create misunderstandings since it will bealways clear from the context if we deal
with fields only, and therefore with the spaceFα , or with fields-particles, and therefore with elements of
the spaceEα .

Note that both spacesEF andE are metrisable, øH1 is not contained inL2 and for instance‖Sq‖L2 =∞.
On the other hand,Sq ∈ E . Therefore,E is the space of finite energy states. The Hamiltonian functional
(1.4) is continuous on the spaceE and is bounded from below. In the point charge limit the lowerbound
tends to−∞ by (1.6).

Lemma 2.2. (see [22, Lemma 2.1]) Let conditions (1.9) and (1.10) hold. Then
(i) For every Y0 ∈ E the Cauchy problem (2.1) has a unique solution Y(t) ∈C(IR,E ).
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(ii) For every t∈ IR the map U(t) : Y0 7→Y(t) is continuous both onE and onEF .
(iii) The energy is conserved, i.e.

H (Y(t)) = H (Y0) f or t ∈ IR. (2.5)

(iv) The following a priori estimates hold

‖Y(t)‖E ≤C(Y0), t ∈ IR. (2.6)

(v) The time derivatives q(k)(t), k = 0,1,2,3, are uniformly bounded, i.e. there are constantsqk > 0,
depending only on the initial data, such that

|q(k)(t)| ≤ qk f or t ∈ IR. (2.7)

Our first main result is the following theorem.

Theorem 2.3. Let conditions (1.9)–(1.12) and (1.14)-(1.15) hold. Then for the corresponding solution
Y(t) ∈ E to the Cauchy problem (2.1)
i) The attraction holds

Y(t)
EF−→ S , t −→±∞. (2.8)

ii) If additionally, the setS is discrete, then (2.8) implies similar convergence

Y(t)
EF−→ S±, t −→±∞. (2.9)

Our second main result refine the asymptotics (2.8)– (2.9) for initial fields from the Sobolev weighted
spaces.

Theorem 2.4. Let conditions (1.9)–(1.11) hold, and let Y(t) ∈ C(IR,E ) be a solution to the Cauchy
problem (2.1) with Y0 ∈ Eα , whereα > 1. Suppose that

Y(t)
EF−→ Sq+ , t → ∞ (2.10)

where the limit point q+ ∈ Z satisfies (1.18). Then
i) For everyε > 0

‖Y(t)−Sq+‖−α = O(t−α+ε), t → ∞. (2.11)

ii) For everyε > 0 the scattering asymptotics hold,

(ϕ(x, t),π(x, t)) = (sq+,0)+W(t)Φ++ r(x, t), (2.12)

whereΦ+ ∈ øH1⊕L2, and

‖r(t)‖øH1⊕L2 = O(|t|−α+1+ε), t → ∞. (2.13)
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3 Li énard-Wiechert asymptotics

The solution to the non-homogeneous wave equation from the system (1.3) is the sum of two terms. The
first is the retarded Liénard-Wiechert potential (3.1) which is the solution to the non-homogeneous wave
equation with zero initial data. The second term is the solution to the homogeneous equation with the
initial data of the total field. This term is given by the Kirchhoff formula (3.13).

The second term does not does not affect the long-time asymptotics of the solution due to the strong
Huygens principle. Thus, exactly the retarded Liénard-Wiechert potential is responsible for the long-time
asymptotics.

In this section we refine the results [22, 23] on the long time and long range asymptotics of the
Liénard-Wiechert potentials

ϕr(x, t) =−
1

4π

∫

dy θ(t −|x−y|)
|x−y|

ρ(y−q(t −|x−y|)), πr(x, t) = ϕ̇r(x, t). (3.1)

These asymptotics will play the key role in subsequent calculation of the energy radiation which is used
in the proof of the relaxation (1.1). Furthermore, we estimate the energy radiation corresponding to the
Kirchhoff integral (3.13).

First, we prove asymptotics of the retarded potentials in the wave zone|x| ∼ t →∞. These asymptotics
and their proofs are similar to that of Lemma 3.2 of [23].

Lemma 3.1. Let conditions (1.9) and (1.10) hold. Then there exists Tr > 0 such that the following
asymptotics hold uniformly in t∈ [Tr ,T] for every fixed T> Tr ,

πr(x, |x|+ t) = π(ω(x), t)|x|−1+O(|x|−2), (3.2)

∇ϕr(x, |x|+ t) = −ω(x)π(ω(x), t)|x|−1+O(|x|−2) (3.3)

as|x| → ∞ with a functionπ(ω, t). Hereω(x) = x/|x|.

Proof. The integrand of (3.1) vanishes for|y|> Tr := q0+Rρ . Then fort −|x|> Tr one has

|x−y| ≤ |x|+ |y| ≤ t −Tr +Tr ≤ t,

and hence (3.1) implies that

πr(x, t) =−

∫

dy
1

4π |x−y|
∇ρ(y−q(τ)) · q̇(τ), (3.4)

whereτ = t −|x−y|. Similarly, for t −|x|> Tr

∇ϕr(x, t) =
∫

dy
1

4π |x−y|
n∇ρ(y−q(τ)) · q̇(τ)+O(|x|−2)

= −ω(x)πr(x, t)+O(|x|−2), (3.5)

sincen=
x−y
|x−y|

= ω(x)+O(|x|−1) for boundedy. Now we substitute|x|+ t instead oft in representa-

tions (3.4), (3.5) to get asymptotics (3.2), (3.3) fort > Tr . Thenτ becomes

τ = |x|+ t −|x−y|= t +ω(x) ·y+O(|x|−1) = τ +O(|x|−1), τ = t +ω ·y, (3.6)

7



since

|x|− |x−y|= |x|−
√

|x|2−2x·y+ |y|2 ∼ |x|
(x·y
|x|2

+
|y|2

2|x|2

)

= ω(x) ·y+O(|x|−1).

Hence (3.4) implies (3.2) with

π(ω, t) =−
1

4π

∫

dy ∇ρ(y−q(τ)) · q̇(τ). (3.7)

Then (3.5) gives (3.3) immediately.

Note that asymptotics (3.2) - (3.3) hold without condition (1.12). However, this condition allows us
to represent (3.7) in a more efficient way forω close to(0,0,±1), see next lemma. Namely, let us denote

Θ =

{

0, q1 < 1
ε +
√

1− (q1)
−2, q1 ≥ 1

(3.8)

with an arbitrary small 0< ε < 1−
√

1− (q1)
−2. Then forω = (ω1,ω2,ω3) with |ω3| ≥ Θ we obtain

|ω · q̇|= |q̇||cos(ω, q̇)| ≤ q1

√

1− (ω3)2 ≤ q1

√

1−Θ2 < 1. (3.9)

Lemma 3.2. Let conditions (1.9), (1.10) and (1.12) hold. Then for anyω with |ω3| ≥ Θ one has

π(ω, t) =
1

4π

∫

dy ρ(y−q(τ))
ω · q̈(τ)

(1−ω · q̇(τ))2 (3.10)

Proof. We observe that

∇yρ(y−q(τ)) · q̇(τ) = ∇ρ(y−q(τ)) · q̇(τ) (1−ω · q̇(τ)).

Then (3.9) implies
∫

dy ∇ρ(y−q(τ)) · q̇(τ) =
∫

dy ∇yρ(y−q(τ)) · q̇(τ)
1

1−ω · q̇(τ)

= −
∫

dy ρ(y−q(τ))
2

∑
j=1

∂
∂y j

q̇ j(τ)
1−ω · q̇(τ)

. (3.11)

Differentiating, we get
2

∑
j=1

∂
∂y j

q̇ j

1−ω · q̇
=

ω · q̈
(1−ω · q̇)2 . (3.12)

Then (3.7) agrees evidently with (3.10).

Denote(ϕK(t),πK(t)) :=W(t)[(ϕ0,π0)], whereϕK(x, t) is the Kirchhoff integral

ϕK(x, t) =
1

4πt

∫

St(x)
d2y π0(y)+

∂
∂ t

(

1
4πt

∫

St(x)
d2y ϕ0(y)

)

, (3.13)

andπK(x, t) = ϕ̇K(x, t). HereSt(x) denotes the sphere{y : |y− x| = t} andd2y is the corresponding
surface area element. Below we will use the following lemma:
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Lemma 3.3. Let (ϕ0,π0) satisfies (1.14) and (1.15). Then there exist I0 < ∞ such that for every R> 0
and every T> T0 ≥ 0

∫ R+T

R+T0

dt
∫

SR

d2x
(

|πK(x, t)|
2+ |∇ϕK(x, t)|

2
)

≤ I0. (3.14)

Here and below SR = SR(0).

Proof. Formula (3.13) implies

ϕK(x, t) =
t

4π

∫

S1

d2z π0(x+ tz)+
1

4π

∫

S1

d2z ϕ0(x+ tz)+
t

4π

∫

S1

d2z ∇ϕ0(x+ tz) ·z.

Therefore

∇ϕK(x, t) =
t

4π

∫

S1

d2z ∇π0(x+ tz)+
1

4π

∫

S1

d2z ∇ϕ0(x+ tz)+
t

4π

∫

S1

d2z ∇x(∇ϕ0(x+ tz) ·z).

Here all derivatives are understood in the classical sense.A similar representation holds forπK(x, t).
Hence, taking into account the assumption (1.15), we obtain

|πK(x, t)|, |∇ϕK(x, t)| ≤C
1

∑
s=0

ts
∫

S1

d2z |x+ tz|−σ−s, σ > 3/2. (3.15)

Further, forσ 6= 2 we have
∫

S1

d2z |x+ tz|−σ−s=
2π

(σ +s−2)|x|t

(

(t−|x|)2−σ−s− (t + |x|)2−σ−s
)

, s= 0,1.

Therefore,

R+T
∫

R+T0

dt
∫

SR

d2x
(

|πK(x, t)|
2+ |∇ϕK(x, t)|

2
)

≤ C

R+T
∫

R+T0

[(t+R)4−2σ +(t −R)4−2σ

t2 +(t −R)2−2σ
]

dt

≤ C1

R+T
∫

R+T0

dt
[(

1+
R
t

)2
+
(

1−
R
t

)2
+1
]

(t −R)2−2σ < ∞.

4 Scattering of energy to infinity

In this section we establish a lower bound on the total energyradiated to infinity in terms of a ”radiation
integral”. Since the energy is bounded a priori, this integral has to be finite, which is then our main input
for proving Theorem 2.3.

Proposition 4.1. Let conditions (1.9), (1.10), (1.14), (1.15) hold, and let Y(t) = (ϕ(t),π(t),q(t), p(t))∈
C(IR,E ) be the solution to (1.2) with initial data Y(0) = (ϕ0,π0,q0, p0). Then

∫ ∞

0
dt
∫

S1

d2ω|π(ω, t)|2 < ∞. (4.1)
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Proof. Step i). The energyHR(t) at timet ∈ IR in the ballBR with a radiusR> q0+Rρ is defined by

HR(t) =
1
2

∫

BR

dx
(

|π(x, t)|2+ |∇ϕ(x, t)|2
)

+
1
2

p2(t)+V(q(t))+
∫

IR3
dx ϕ(x, t)ρ(x−q(t)) . (4.2)

Let us fix aR> 0 and consider a total radiated energyHR(R+T0)−HR(R+T) from the ballBR during
the time interval[R+T0,R+T], whereT >T0 ≥ 0. This quantity is bounded a priori, becauseHR(R+T0)
andHR(R+T) are bounded by (2.6). Hence,

HR(R+T0)−HR(R+T)≤ I < ∞, (4.3)

whereI does not depend onT0, T andR.

Step ii). Note that the functionϕ(x, t) = ϕr(x, t)+ϕK(x, t) is C1 differentiable in the regiont > |x| by
(1.15), (3.1) and (3.13). Hence, differentiating (4.2) int and integrating by parts, we get

d
dt

HR(t) =
∫

SR

d2x ω(x) ·π(x, t)∇ϕ(x, t), t > R. (4.4)

Now (4.4) and (4.3) imply

−

∫ R+T

R+T0

dt
∫

SR

d2x ω(x) ·π(x, t)∇ϕ(x, t)≤ I . (4.5)

Step iii). Let us show that 4.5 leads to (4.1) in the limitsR→ ∞ and thenT → ∞. Indeed, substituting

π = πr +πK, ϕ = ϕr +ϕK (4.6)

into (4.5), we obtain

−

∫ R+T

R+T0

dt
∫

SR

d2x ω(x) · (πr∇ϕr +πK∇ϕr +πr∇ϕK +πK∇ϕK)≤ I . (4.7)

Then Lemmas 3.1 and 3.3 imply for every fixedT > T0 := Tr ,
∫ T

Tr

dt
∫

S1

d2ω |π(ω, t)|2 ≤ I1+TO(R−1), (4.8)

whereI1 < ∞ does not depend onT andR. This follows by the Cauchy-Schwarz inequality. Taking the
limit R→ ∞ and thenT → ∞ we obtain (4.1).

5 Relaxation of the particle acceleration and velocity

In this section we deduce the relaxation ˙q(t)→ 0, q̈(t)→ 0 ast → ∞ using Proposition 4.1. First, the
function

π(ω, t) =
1

4π

∫

dyρ(y−q(t +ω ·y))
ω · q̈(t+ω ·y)

(1−ω · q̇(t +ω ·y))2
(5.1)

is globally Lipschitz-continuous inω andt for |ω3| ≥ Θ due to (3.9) and the bounds (2.7) withk= 2,3.
Hence, Proposition 4.1 implies that

lim
t→∞

π(ω, t) = 0 (5.2)
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uniformly in ω ∈ Ω(Θ) := {ω ∈ S1: |ω3| ≥ Θ}. Denoter(t) = ω · q(t) ∈ IR, s= ω · y, andρa(q3) =
∫

dq1dq2ρ(q1,q2,q3), and decompose in (5.1) they-integration along and transversal toω. Then

π(ω, t) =
∫

dsρa(s− r(t+s))
r̈(t+s)

(1− ṙ(t +s))2

=
∫

dτ ρa(t− (τ − r(τ)))
r̈(τ)

(1− ṙ(τ))2
=
∫

dθ ρa(t−θ)gω(θ) = ρa∗gω(t). (5.3)

Here we substitutedθ = θ(τ) = τ − r(τ), which is a nondegenerate diffeomorphism since ˙r ≤ r < 1 due
to (3.9), and we set

gω(θ) =
r̈(τ(θ))

(1− ṙ(τ(θ)))3 , ω ∈ Ω(Θ). (5.4)

Now we extendq(t) smoothly to zero fort < 0. Thenρ̃ ∗gω (t) is defined for allt and agrees withπ(ω, t)
for sufficiently larget. Hence (5.2) reads as a convolution limit

lim
t→∞

ρa∗gω(t) = 0, ω ∈ Ω(Θ). (5.5)

Now note that (2.7) withk = 2,3 imply thatg′ω(θ) is bounded. Hence (5.5) and (1.11) imply by Pitt’s
extension to Wiener’s Tauberian Theorem, cf. [25, Thm. 9.7(b)],

lim
θ→∞

gω(θ) = 0, ω ∈ Ω(Θ). (5.6)

Lemma 5.1. Let conditions (1.9)–(1.12) and (1.14)-(1.15) hold, and let Y(t) ∈ E be the corresponding
solution to the Cauchy problem (2.1). Then

lim
t→∞

q̈(t) = 0. (5.7)

Proof. The limit (5.6) holds for anyω ∈ S1 with |ω3| ≥ Θ (see (3.8)). Moreover,θ(t)→ ∞ ast → ∞.
Hence, ¨r(t) = ω · q̈(t)→ 0 ast → ∞ for anyω ∈ Ω(Θ).

Remarks 5.2. (i) For a point chargeρ(x) = δ (x) we haveρa(s) = δ (s). Hence, (5.5) implies (5.6)
directly, without the application of the Wiener Tauberian Theorem.
(ii) Condition (1.11) is necessary for the implication (5.6)⇒(5.7). Indeed, if (1.11) is violated, then
ρ̂a(ξ ) = 0 for someξ ∈ IR, and with the choice g(θ) = exp(iξ θ) we haveρa∗g(t) = 0 whereas g does
not decay to zero.

Corollary 5.3. Let conditions of Lemma 5.1 hold. Then

lim
t→∞

q̇(t) = 0. (5.8)

Proof. (5.7) implies (5.8) since|q(t)| ≤ q0 due to (2.7) withk= 0.
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6 Transitions to stationary states

Here we prove our main Theorem 2.3. First we show that the set

A = {Sq : q= (q1,q2,0) ∈ IR3, |q| ≤ q0)} (6.1)

is an attracting subset. It is compact inEF sinceA is homeomorphic to a closed ball in IR3.

Lemma 6.1. Let conditions of Theorem 2.3 hold. Then

Y(t)
EF−→ A , t −→±∞. (6.2)

Proof. It suffices to verify that for everyR> 0

‖Y(t)−Sq(t)‖R = ‖ϕ(t)−sq(t)‖H1(BR)
+‖π(t)‖L2(BR)

+ |p(t)| → 0 ast → ∞. (6.3)

Let us estimate each term separately.

i) Convergence (5.8) implies that|p(t)| → 0 ast → ∞.

ii) The integral representation (3.4) implies that for|x|< R andt > R+Tr , Tr = q0+Rρ , we have

|πr(x, t)| ≤ C max
τ∈[t−R−Tr ,t]

|q̇(τ)|
∫

|y|<Tr

dy
1

|x−y|
|∇ρ(y−q(t−|x−y|))|.

Here the integral is bounded uniformly int >R+Tr for x∈BR, and therefore (5.8) implies that‖πr(t)‖L2(BR)
→

0 ast → ∞. Hence,‖π(t)‖L2(BR)
→ 0 by (4.6) and (3.15).

iii) The integral representation (3.1) implies fort > R+Tr and|x|< R that

ϕr(x, t)−sq(t)(x) =−
∫

|y|<Tr

dy
1

4π |x−y|

(

ρ(y−q(t −|x−y|))−ρ(y−q(t))
)

.

The differenceq(t−|x−y|)−q(t) may be written as an integral depending only on ˙q(τ) for τ ∈ [t−R−
Tr , t], which tends to zero ast → ∞ uniformly in x ∈ BR due to (5.8). Hence‖ϕr(t)−ϕq(t)‖L2(BR)

→ 0
ast → ∞. Then‖ϕ(t)−ϕq(t)‖L2(BR)

→ 0 by (4.6) and (3.15). This proves the claim, since‖∇(ϕ(t)−
ϕq(t))‖L2(BR)

may be estimated in a similar way.

Now we prove the convergences (2.8).

Lemma 6.2. Under conditions of Theorem 2.3 the convergence holds

Y(t)
EF−→ S , t −→±∞. (6.4)

Proof. Lemma 6.1 implies that the orbitO(Y) := {Y(t) : t ∈ IR} is precompact inEF sinceA is the
compact set inEF . Let us denote byΩ the set of all omega-limit points of the orbit inEF : Y ∈ Ω means
by definition that

Y(tk)
EF−→Y, tk → ∞. (6.5)

It suffices to prove thatΩ ⊂ S , i.e. that any omega-limit pointY = Sq+ with someq+ ∈ Z.
First, Lemma 6.1 implies thatY ∈ A . Further,Ω is invariant with respect to the dynamical group

U(t) with t ∈ IR due to the continuity ofU(t) in EF . Hence, there exists aC2-curvet 7→ Q(t) ∈ IR3 such
thatU(t)Y = SQ(t), according to Definition (6.1). However, forSQ(t) to be a solution of (1.3) we must
haveQ̇(t)≡ 0, and henceQ(t)≡ q+ ∈ Z. Therefore,Y = Sq+ ∈ S .
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At last, we formalize the implication (2.8)⇒ (2.9) by the following definition. LetT be a subset of
a metrisable spaceF .

Definition 6.3. T is a trapping set inF , if for every continuous curve Y(t)∈C(IR,F )with a precompact

orbit O(Y) the convergence Y(t)
F
−→ T as t→ ∞ implies the convergence Y(t)

F
−→ T as t→ ∞ to some

point T∈ T .

For example every discrete set in IR3 is a trapping set in IR3.

Lemma 6.4. Let the conditions of of Theorem 2.3 hold and let Z be a trapping set inIR3. Then there exist
stationary states S± ∈ S depending on Y0 such that (2.9) holds.

Proof. The setZ is the image of the setS under the mapI : (ϕ,π ,q, p) 7→ q. This map is continuous
EF → IR3 and it is injection onS . ThereforeS is a trapping set inEF , becauseZ is a trapping set in IR3.
Hence (2.8) implies (2.9).

7 Linearization at stationary state

In the rest of the paper we prove Theorem 2.4. If the particle is close to a stable minimum ofV, we
expect the nonlinear evolution to be dominated by the linearized dynamics. In this case the rate of the
convergence (2.9) corresponds to the decay rate of initial fields. For notational simplicity we assume
isotropy in the following sense

∂i∂ jV(q+) = ν2
0δi j , i, j = 1,2,3 ν0 > 0. (7.1)

Without loss of generality we takeq+ = 0. Let S0 = (s0,0,0,0) be the stationary state of (1.3) corre-
sponding toq+ = 0. To linearize (1.3) atS0, we setϕ(x, t) = s0(x)+ψ(x, t). Then (1.3) becomes

ψ̇(x, t) = π(x, t), π̇(x, t) = ∆ψ(x, t)+ρ(x)−ρ(x−q(t)),

q̇(t) = p(t), ṗ(t) = −∇V(q(t))+
∫

d3x ψ(x, t)∇ρ(x−q(t))

+
∫

d3x s0(x)[∇ρ(x−q(t))−∇ρ(x)] .

∣

∣

∣

∣

∣

∣

∣

∣

(7.2)

We denoteX(t) = Y(t)−S0 = (ψ(t),π(t),q(t), p(t))∈ C(IR,E ) and rewrite the nonlinear system (7.2)
in the form

Ẋ(t) = AX(t)+B(X(t)). (7.3)

Here the linear operatorA reads

A : (ψ,π ,q, p) 7→ (π , ∆ψ +∇ρ ·q, p, − (ν2
0 +ν2

1)q+
∫

d3xψ(x)∇ρ(x)),

with

ν2
1δi j =

1
3
‖ρ‖2

L2δi j =−

∫

d3x∂is0(x)∂ jρ(x). (7.4)

The factor 1/3 is due to a spherical symmetry ofρ(x) (see (1.10)). The nonlinear part is given by

B(X) =
(

0, ρ(x)−ρ(x−q)−∇ρ(x) ·q, 0, −∇V(q)+ν2
0q+

∫

d3xψ(x)[∇ρ(x−q)−∇ρ(x)]

+
∫

d3x∇s0(x)[ρ(x)−ρ(x−q)−∇ρ(x) ·q]
)

. (7.5)
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Consider the Cauchy problem for the linear equation

Ż(t) = AZ(t), Z = (Ψ,Π,Q,P), t ∈ IR, (7.6)

with initial condition
Z|t=0 = Z0 = (Ψ0,Π0,Q0,P0). (7.7)

System (7.6) is a formal Hamiltonian system with the quadratic Hamiltonian

H0(Z) =
1
2

(

P2+(ν2
0 +ν2

1)Q
2+

∫

d3x(|Π(x)|2+ |∇Ψ(x)|2−2Ψ(x)∇ρ(x) ·Q)
)

, (7.8)

which is the formal Taylor expansion ofH (Y0+Z) up to second order atZ = 0.

Lemma 7.1. Let condition (1.10) holds and Z0 ∈ E . Then
(i) The Cauchy problem (7.6), (7.7) has a unique solution Z(t) ∈C(IR,E ).
(ii) For every t, the map U0(t) : Z0 7→ Z(t) is continuous both onE andEF .
(iii) The energyH0 is conserved, i.e.

H0(Z(t)) = H0(Z0), t ∈ IR. (7.9)

iv) The estimate holds
‖Z(t)‖E ≤C, t ∈ IR (7.10)

with C depending only on the norm‖Z0‖E of the initial state.

The key role in the proof is played the positivity of the Hamiltonian (7.8):

2H0(Z) = P2+ν2
0Q2+

∫

d3x(|Π(x)|2+ |∇Ψ(x)+ρ(x)Q)|2 ≥ 0.

Thus (7.10) follows from (7.9) because ofν0 > 0. The positivity ofH0 is also obvious from (1.4).
In [21] we proved the following long-time decay of the linearized dynamics in the weighted Sobolev

norms.

Proposition 7.2. Let conditions (1.10)–(1.11) hold, and let Z0 ∈ Eα with someα > 1. Then

‖U0(t)Z0‖−α ≤C(ρ ,α)(1+ |t|)−α‖Z0‖α , t ∈ IR. (7.11)

Similar decay also holds for the dynamical groupW(t) of 3D free wave equation.

Proposition 7.3. (cf. [24, Proposition 2.1] and [19]. Let(ϕ0,π0) ∈ Fα with someα > 1. Then

‖W(t)(ϕ0,π0)‖−α ≤C(α)(1+ |t|)−α‖(ϕ0,π0)‖α , t ∈ IR. (7.12)

We will use both these decays in the next section.
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8 A nonlinear Huygens principle

The following lemma is a version of strong Huygens principlefor the nonlinear system (1.3). LetM∗ be
a fixed number,M∗ > 3Rρ +1.

Lemma 8.1. Let conditions of Theorem 2.4 hold and letδ > 0 be an arbitrary fixed number. Then for
sufficiently large t∗ > 0 there exists a solution

Y∗(t) = (ϕ∗(x, t),π∗(x, t),q∗(t), p∗(t)) ∈C([t∗,∞), E )

to the system (1.3) such that
(i) Y∗(t) coincides with Y(t) in some future cone,

ϕ∗(x, t) = ϕ(x, t) f or |x|< t − t∗,
q∗(t) = q(t) f or t > t∗.

(8.1)

(ii) Y∗(t∗) admits a decomposition Y∗(t∗) = S0+K0+Z0, where Z0 = (Ψ0,Π0,Q0,P0) satisfies

Ψ0(x) = Π0(x) = 0 f or |x| ≥ M∗ , (8.2)

‖Z0‖α ≤ δ , (8.3)

and K0 satisfies
‖U0(τ)K0‖−α ≤C(1+ t∗+ τ)−α , τ > 0, (8.4)

where C=C(α) does not depend onδ .

Proof. The convergence (2.10) withq+ = 0 implies that for everyε > 0 there existtε such that

|q(t)|+ |q̇(t)|< ε for t > tε . (8.5)

We may assume thattε > 1/ε. Denote

t0,ε = tε +Rρ , t1,ε = t0,ε +1, t2,ε = t1,ε + ε +Rρ , t3,ε = t2,ε + ε +Rρ . (8.6)

Then there exist a functionqε(·) ∈C1(IR) such that

qε(t) =

{

q(t), t > t1,ε ,
0, t < t0,ε ,

and |qε(t)|+ |q̇ε(t)|< ε for all t ∈ IR (8.7)

by suitable interpolation. Now we define the modificationϕε(x, t) of the solutionϕ(x, t) = ϕr(x, t)+
ϕK(x, t):

ϕε(x, t) = ϕr,ε(x, t)+ϕK(x, t) for x∈ IR3 and t > 0, (8.8)

where

ϕr,ε(x, t) =−
∫

d3y
1

4π |x−y|
ρ(y−qε(t−|x−y|)) . (8.9)

For |x|< t − t2,ε and|y| ≤ Rρ + ε, we have

t−|x−y| > t − (|x|+ |y|)> t− (t − t2,ε +Rρ + ε) = t1,ε .
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Then (8.9), (3.1), and (8.7) imply

ϕr,ε(x, t) = ϕr(x, t) for |x|< t− t2,ε . (8.10)

Further, for|x|> t − tε and|y| ≤ Rρ , we obtain

t −|x−y|< t − (|x|− |y|)< t − (t − tε −Rρ) = t0,ε .

Thenqε(t −|x−y|) = 0 by (8.7), and hence

ϕr,ε(x, t) = s0(x) for |x|> t − tε . (8.11)

Moreover,ϕr,ε(·, ·) ∈C1(IR4), and (8.7) implies

sup
x∈IR3, t∈IR

(|ϕ̇r,ε(x, t)|+ |∇ϕr,ε(x, t)−∇s0(x)|+ |ϕr,ε(x, t)−s0(x)|) = O(ε). (8.12)

Now we definet∗ := t3,ε , and

Y∗(t) = (ϕε(t), ϕ̇ε(t),q(t), p(t)), K0 = (ϕK(t∗), ϕ̇K(t∗),0,0), Z0 = (ϕr,ε(t∗)−s0, ϕ̇r,ε(t∗),q(t∗), p(t∗)).
(8.13)

It is easy to check thatt∗ andY∗(t), K0, Z0 satisfy all requirements of Lemma 8.1, providedε > 0 be
sufficiently small.

First,Y∗(x, t) is a solution to (1.3) fort > t∗. Indeed, for|x|< ε +Rρ one hast −|x−y|> t3,ε −2ε −
2Rρ = t1,ε . Since, (8.6) implies thatqε(t −|x− y|) = q(t −|x− y|) andϕε(x, t) = ϕ(x, t) then. Hence,
Y∗(t) =Y(t) in the region|x|< ε +Rρ . On the other hand, (8.5) and (8.7) imply

ρ(x−qε(t)) = ρ(x−q(t)) = 0 for |x|> ε +Rρ and t > tε .

Hence,ϕr,ε(x, t) satisfies the equation

ϕ̈(x, t) = ∆ϕ(x, t) for |x|> ε +Rρ and t > tε . (8.14)

Therefore,Y∗(t) satisfies (1.3) in the region|x|> ε +Rρ . Now (8.1) follows from (8.7) and (8.10), (8.2)
for M∗ = 3Rρ +2ε +1 follows from (8.11), and (8.3) follows from (8.2) and (8.12).

It remains to prove (8.4). We deduce the estimate from the decay (7.12) for the linearized dynamics
U(t) and decay (7.11) forW(t). DenoteU(τ)K0 = (Ψ(x,τ),Π(x,τ),Q(τ),P(τ)). From [21, formulas
(4.18), (4.19), (4.25)] it follows that

(

Q(τ)
P(τ)

)

= L ∗

(

0
fk

)

(τ)

where
fk(τ) = 〈W(τ)[φk(t∗), φ̇k(t∗)],∇ρ〉= 〈W(τ + t∗)[φ0,π0],∇ρ〉,

and

(Ψ(τ),Π(τ)) =W(τ + t∗)[φ0,π0]+
∫ τ

0
W(τ −s)[0,Q(s) ·∇ρ ]ds

Moreover, according to [21, formula (4.20)] forL (t) the decay holds

L (t) = O(|t|)−N, t → ∞, ∀N > 0.

Then the decay (8.4) follows.
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9 The rate of convergence

Here we prove Theorem 2.4 i). Due to (8.1) it suffices to prove that for anyε > 0

‖Y∗(t)−S0‖−α = O(t−α+ε), t → ∞. (9.1)

DenoteX(τ) =Y∗(t∗+ τ)−S0. ThenX(0) = K0+Z0 and the integrated version of (7.3) reads

X(τ) =U0(τ)K0+U0(τ)Z0+

∫ τ

0
dsU0(τ −s)B(X(s)), τ > 0. (9.2)

Further, (7.11), (7.5), (8.2) and (8.4) imply

‖X(τ)‖−α ≤C

(

(t∗+ τ +1)−α +(1+ τ)−α‖Z0‖α +

∫ τ

0
ds(1+ τ −s)−α‖X(s)‖2

−α

)

, τ > 0. (9.3)

We fix an arbitraryε ∈ (0,1/2) and introduce the majorant

m(t) = sup
0≤s≤t

(1+s)α−ε‖X(s)‖−α . (9.4)

Let µ be any fixed positive number, and letTµ be the exit time:

Tµ = sup{t > 0 : m(t)≤ µ}. (9.5)

Multiplying both sides of (9.3) by(1+ τ)α−ε , and taking the supremum inτ ∈ [0,Tµ ], we get

m(τ)≤C

(

(1+ τ)α−ε

(1+ t∗+ τ)α +δ +
∫ τ

0
ds

(1+ τ)α−ε

(1+ τ −s)α
m2(s)

(1+s)2α−2ε

)

, τ ≤ Tµ . (9.6)

Note that for everyε > 0

sup
τ>0

(1+ τ)α−ε

(1+ t∗+ τ)α → 0, t∗ → ∞. (9.7)

Hence taking into account thatm(t) is a monotone increasing function, we get for sufficiently large t∗
that

m(τ)≤C(δ +Cm2(τ)), τ ≤ Tµ . (9.8)

This inequality implies thatm(τ) is bounded forτ ≤ Tµ , and moreover,

m(τ)≤C1δ , τ ≤ T (9.9)

if δ is sufficiently small. The constantC1 in (9.9) does not depend onT. Due to Lemma 8.1 we can
chooset∗ so large thatδ < µ/(2C1). Then (9.9) implies thatT = ∞ and (9.9) holds for allτ > 0 if t∗ is
sufficiently large. ✷
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10 Scattering asymptotics

Here we prove Theorem 2.4 ii). We prove asymptotics (2.12)–(2.13) fort →+∞ only since system (1.3)
is time reversible. DenoteΦ(x, t) = (Φ1(x, t),Φ2(x, t)) = (ϕ(x, t),π(x, t))− (sq+,0). Then asymptotics
(2.12)– (2.13) are equivalent to

Φ(t) =W(t)Φ++ r(t), ‖r(t)‖øH1⊕L2 = O(t−α+1+ε), t →+∞,

This is equivalent to

W(−t)Φ(t) = Φ++ r1(t), ‖r1(t)‖øH1⊕L2 = O(t−α+1+ε), t →+∞ (10.1)

due to the unitarity ofW(t) on øH1⊕L2. The first two equations of (1.3) imply

Φ̇1(x, t) = Φ2(x, t), Φ̇2(x, t) = ∆Φ1(x, t)+ρ(x−q+)−ρ(x−q(t)).

Then

Φ(t) =W(t)Φ(0)−
∫ t

0
W(t −s)[(0,ρ(x−q+)−ρ(x−q(s)))]ds. (10.2)

Therefore,

W(−t)Φ(t) = Φ(0)−
∫ t

0
W(−s)R(s)ds, R(s) = (0,ρ(x−q+)−ρ(x−q(s)), (10.3)

where the integral converges in øH1⊕L2 with the rateO(t−α+1+ε). Indeed,

‖W(−s)R(s)‖øH1⊕L2 = O(s−α+ε), 0< ε < α −1

by the unitarity ofW(−s) and the decay rate‖R(s)‖øH1⊕L2 = O(s−α+ε) which follows from the condi-
tions (1.10) onρ and the asymptotics (2.11). Setting

Φ+ = Φ(0)−
∫ ∞

0
W(−s)R(s)ds, r1(t) =

∫ ∞

t
W(−s)R(s)ds,

we obtain (10.1).
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